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ABSTRACT

Real-time Vehicle-of-Interest (VoI) detection is becoming a core
application to smart cities, especially in areas with high accident
rates. With the increasing number of surveillance cameras and
the advanced developments in edge computing, video tasks pre-
fer to run on edge devices close to cameras due to the constraints
of bandwidth, latency, and privacy concerns. However, resource-
constrained edge devices are not competent for dynamic tra�c
loads with resource-intensive video analysis models. To address
this challenge, we propose RT-VeD, a real-time VoI detection sys-
tem based on the limited resources of edge nodes. RT-VeD utilizes
multi-granularity computer vision models with di�erent resource-
accuracy trade-o�s. It schedules vehicle tasks based on a tra�c-
aware actor-critic framework to maximize the accuracy of VoI
detection while ensuring an inference time-bound. To evaluate the
proposed RT-VeD, we conduct extensive experiments based on a
real-world vehicle dataset. The experiment results demonstrate that
our model outperforms other competitive methods.
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1 INTRODUCTION

Smart cities are growing worldwide with the rise of arti�cial intelli-
gence and big data. The proliferation of Internet of Things devices
in cities (e.g., surveillance cameras deployed at intersections) has
led to an explosion in monitor video data, which contributes to
the popularization of road tra�c safety applications [19] such as
road tra�c analysis, anomaly detection, and Vehicle-of-Interest
(VoI) detection (i.e., identify target vehicles in the monitor area).
Real-time Vehicle-of-Interest (VoI) detection is a core application to
public surveillance video analysis, especially in the tra�c accident
scenes, which utilizes the available video data of cameras at inter-
sections in the road network to acquire real-time passing vehicle
information and identify the VoI collaboratively. With advanced
computer vision-based technology, such as deep neural networks
(DNN), video data are processed to capture the features of vehicles
traveling through and search for the candidate targets matching
the features of VoI.

Most of existing computer vision based technologies are cen-
tralized processing based on a cloud computing platform. These
studies focus on �ne-grained image processing models running on
cloud servers, including vehicle detection [38], identi�cation [3],
and tracking model [39]. Researchers propose general models to
extract and match vehicle features from images, which focuses
on the accuracy of image processing. With the increasing num-
ber of cameras, cloud-based video analysis adds up higher latency
and consumes a larger amount of bandwidth during data upload-
ing, which is a bottleneck for real-time applications. Considering
these constraints, the concept of edge computing [36, 37] has been
proposed. It brings computing resources close to the data source,
which enables fast local computation and provides opportunities
for real-time systems.

In this paper, we study how to leverage edge nodes to detect
real-time VoIs by implementing a video analysis system on the edge
device. Even though edge nodes enable many tasks to be performed
quickly with powerful GPU platforms [21], whether real-time tasks
can be completed in time is a�ected by many factors. On the one
hand, edge nodes carry a �xed computing budget compared to the
cloud server. A typical computation-intensive �ne-grained vehi-
cle identi�cation model using deep neural network needs more
inference time on the edge due to the limited computing resources.
On the other hand, the task load of edge nodes at intersections
is dynamic. Figure 1 shows the tra�c conditions during morning
and evening rush hours in Shenzhen city. At most of the intersec-
tions, the passing number of vehicles is small and hence we can







KDD ’22, August 14–18, 2022, Washington, DC, USA. Shuai Wang et al.

Table 1. The test environment is AMD Ryzen 7 3700x (CPU) with
4G memory and NVIDIA GeForce RTX 2080 Ti (GPU).

3.3 Adaptive Vehicle-Model Matching

Framework

Take into account the dynamics of the tra�c condition and the per-
formance of multi-granularity vehicle feature in a real scenario, we
propose an adaptive tra�c-aware vehicle-model matching frame-
work via actor-critic reinforcement learning. Actor is a core policy
network that outputs actions at each time step according to the
state. Critic is another function approximator, which receives the
state of environment as input and output the state value to evaluate
the action and give feedback to the actor. This framework is uti-
lized to select a model of appropriate granularity for each vehicle
bounding box under the complete time bounds for real-time tasks.

3.3.1 Problem Formulation as MDP. We model the vehicle-model
matching as a sequential decision problem [1] where we consider
matching each vehicle bounding box with an appropriate granu-
larity model at each time step. Our goal is to accomplish real-time
tasks while maximizing the accuracy of target vehicle detection.
Then we model the problem as a Markov Decision Process (MDP),
which is characterized by four major components: (S,A,R,P).

• State S: We take the environment captured by the mon-
itoring as input, which includes two parts: the feature of
vehicle passing through the intersection, and the computing
resources of edge device. The state of an intersection 8 at
time step C is de�ned as B8C = {EC

1
, EC

2
, . . . , EC= ; 4C }, where E

C
= is

the real-time state of vehicle =’ bounding box including dif-
ferent graunlarity features it has obtained. 4C is the current
cpu usage state of the edge node at intersection 8 .

• Action A: An action means the matching of all vehicles
and models currently. The action space for each vehicle at
time step C is de�ne as �C = {02C , 0

C
C , 0

<
C , 0:C , 0

?
C }, which repre-

sents �ve models available for each current vehicle bound-
ing box. At each time step, the appropriate model should
be simultaneously matched for each vehicle at the current
intersection. The action space is variable due to the dynamic
tra�c in the road. So the 0C is represented as a action set:
{0CE1 , 0

C
E2 , . . . , 0

C
E= }, where n is the number of vehicles.

• Reward R: After the agent taking an action 0C at the state
BC , we will receive the immediate reward A (BC ,0C ) based on
system’s feedback. The reward A (BC ,0C ) is two-fold: (i) The
information entropy generated by the multi-granularity in-
formation of vehicle identi�cation and (ii) real-time comple-
tion of task processing. The details are explained in Section
Reward Function.

• State transition P: Given the current state BC , the informa-
tion of vehicles obtained will change after an action 0C is
taken. The intersection state will also change correspond-
ingly. State transition probability ?(BC+1) | BC , 0C ) de�nes the
state transition from BC to BC+1 after taking action 0C . We
assume that the MDP satis�es ?(BC+1 | BC , 0C , . . . , B1, 01) =
?(BC+1 | BC , 0C ).

Given the historical MDP, i.e., (S,A,R,P), our goal is to �nd an
optimal policy c : S → A , which can maximize the cumulative

reward from the sequential decision process. We design a tra�c-

aware actor critic framework to conduct vehicle-model matching
problem considering instant time constraints and matching reward.

3.3.2 Recurrent Matching Network as Actor. Considering the in�u-
ence between the actions of di�erent vehicles at the same time step
due to the competition of limited resources, we learn strategy with
recurrent neural network (RNN) [28]. To obtain an optimal pol-
icy network (actor) c , we propose an encoder-decoder framework
based on RNN, named recurrent matching network, to extract the
dynamic tra�c feature and output action for each corresponding
vehicle bounding box. Given the input state BC = {EC

1
, EC

2
, . . . , EC= ; 4C },

the actor learns to infer the target action set 0C = {0CE1 , 0
C
E2 , . . . , 0

C
E= }

for every vehicle bounding box at time step C .
As shown in Figure 4, the actor has two RNN networks as the en-

coder and decoder respectively. The low-level RNN has two inputs:
(i) the sequence of vehicle state +C = {EC

1
, EC

2
, . . . , EC= } as the inputs of

each RNN cell; (ii) global state embedding as the initial hidden state
ℎ0, representing the current tra�c feature at the intersection, as
the following

ℎC0 = 5 (BC ) (1)

ℎC8 = 5 (ℎC8−1, E
C
8 ) (2)

These inputs are transformed into a sequence of hidden states
(ℎC

1
, ℎC

2
, . . . , ℎC=) based on eq.2 and they are aggregated as a hidden

vector�C in the middle layer. The high-level RNN takes�C as input
and generates the sequence of actions 0CE1 , . . . , 0

C
E= continuously.

Generation of 0CE8 is conditioned on all previously generated actions
0CE1:E8−1 and the created hidden vector �C :

% (0C ) =

=∏

8=1

% (0CE8 | 0
C
E1:E8−1 ,�C ) (3)

% (0CE8 | 0
C
E1:E8−1 ,�C ) = B> 5 C<0G (6(HC

8 ,�C )) (4)

where 6(·) is a one-layer neural network, HC
8 is the hidden state of

the high-level RNN which summarizes 0CE1:E8−1 .

3.3.3 Reward Function. After the action 0C completing at time step
C , our system receives the feature information of the selected model
corresponding to the current vehicles (e.g., the color of E1 or the
type of E2). In the real-time VoI detection system, the objective is to
(i) maximize the accuracy of VoI detection, and (ii) ensure real-time
tasks meet deadlines.

To realize the above goal(i), we utilize a novel concept, infor-
mation entropy, to represent the accuracy of VoI detection. In the
action space �C = {02C , 0

C
C , 0

<
C , 0:C , 0

?
C } of each vehicle, the execution

of each action represents that the system obtains corresponding
granularity information of a vehicle. e.g., if vehicle E8 selects 02C
at step C , the system gets the color information for that vehicle.
Di�erent actions correspond to di�erent levels of accuracy, just as
a license plate number can pinpoint a VoI’s location, while color
information can only identify candidate vehicles of the same color
as the VoI. More practically, vehicles have their own tra�c patterns.
The distribution of di�erent types (or colors) of vehicles in the road
network also has its regularity. That is to say, the probability of
vehicles with di�erent attributes appearing at the intersection is
di�erent. Each of the information we gain on the vehicle assists in
matching the target to varying degrees. So the choice of each action
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at the intersections of the road network. In this work, we propose
a real-time VoI detection system based on an adaptive model se-
lection framework (RT-VeD) to fully leverage the limited resources
of edge nodes, whereby the proper vehicle identi�cation model
can be selected on the dynamic tra�c condition. We utilize com-
puter vision models with di�erent resource-accuracy trade-o�s
and propose a multi-granularity model. And then we decompose
and schedule vehicle tasks based on the current tra�c load with
a tra�c-aware actor-critic framework to maximize the accuracy
of VoI detection in real-time. We evaluate our method based on a
real-world vehicle dataset. Experimental results demonstrate that
our method outperforms state-of-the-art baselines.
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