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ABSTRACT

Real-time Vehicle-of-Interest (VoI) detection is becoming a core
application to smart cities, especially in areas with high accident
rates. With the increasing number of surveillance cameras and
the advanced developments in edge computing, video tasks pre-
fer to run on edge devices close to cameras due to the constraints
of bandwidth, latency, and privacy concerns. However, resource-
constrained edge devices are not competent for dynamic traffic
loads with resource-intensive video analysis models. To address
this challenge, we propose RT-VeD, a real-time VoI detection sys-
tem based on the limited resources of edge nodes. RT-VeD utilizes
multi-granularity computer vision models with different resource-
accuracy trade-offs. It schedules vehicle tasks based on a traffic-
aware actor-critic framework to maximize the accuracy of Vol
detection while ensuring an inference time-bound. To evaluate the
proposed RT-VeD, we conduct extensive experiments based on a
real-world vehicle dataset. The experiment results demonstrate that
our model outperforms other competitive methods.
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1 INTRODUCTION

Smart cities are growing worldwide with the rise of artificial intelli-
gence and big data. The proliferation of Internet of Things devices
in cities (e.g., surveillance cameras deployed at intersections) has
led to an explosion in monitor video data, which contributes to
the popularization of road traffic safety applications [19] such as
road traffic analysis, anomaly detection, and Vehicle-of-Interest
(VoI) detection (i.e., identify target vehicles in the monitor area).
Real-time Vehicle-of-Interest (Vo) detection is a core application to
public surveillance video analysis, especially in the traffic accident
scenes, which utilizes the available video data of cameras at inter-
sections in the road network to acquire real-time passing vehicle
information and identify the VoI collaboratively. With advanced
computer vision-based technology, such as deep neural networks
(DNN), video data are processed to capture the features of vehicles
traveling through and search for the candidate targets matching
the features of Vol.

Most of existing computer vision based technologies are cen-
tralized processing based on a cloud computing platform. These
studies focus on fine-grained image processing models running on
cloud servers, including vehicle detection [38], identification [3],
and tracking model [39]. Researchers propose general models to
extract and match vehicle features from images, which focuses
on the accuracy of image processing. With the increasing num-
ber of cameras, cloud-based video analysis adds up higher latency
and consumes a larger amount of bandwidth during data upload-
ing, which is a bottleneck for real-time applications. Considering
these constraints, the concept of edge computing [36, 37] has been
proposed. It brings computing resources close to the data source,
which enables fast local computation and provides opportunities
for real-time systems.

In this paper, we study how to leverage edge nodes to detect
real-time Vols by implementing a video analysis system on the edge
device. Even though edge nodes enable many tasks to be performed
quickly with powerful GPU platforms [21], whether real-time tasks
can be completed in time is affected by many factors. On the one
hand, edge nodes carry a fixed computing budget compared to the
cloud server. A typical computation-intensive fine-grained vehi-
cle identification model using deep neural network needs more
inference time on the edge due to the limited computing resources.
On the other hand, the task load of edge nodes at intersections
is dynamic. Figure 1 shows the traffic conditions during morning
and evening rush hours in Shenzhen city. At most of the intersec-
tions, the passing number of vehicles is small and hence we can
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(a) Morning rush hour (b) Evening rush hour

Figure 1: Traffic flow during rush hours in Shenzhen, China

utilize a fine-grained model to process each vehicle and identify
the VoI quickly. However, in some cases, when the number of vehi-
cles that appear in the video is too large (as the intersection Q in
Figure 1a), the real-time video processing for all vehicles requires
far more computing resources and may not be able to complete in
time, leading to a failed retrieval of the VoI. However, in Figure 1b,
the volume of traffic at intersection Q has decreased. Under the
dynamic traffic load, whether the task can be completed in real time
is a challenge for Vol identification. In view of limited computing
resources on edge nodes and dynamic traffic flow, this paper aims
to achieve accurate detection of VoI under the completion time
bound on resource-constrained edge nodes. To deal with the above
issue, we design a smart Real-Time Vehicle-of-Interest Detecting
system, RT-VeD, to pinpoint the target vehicles (Vols) quickly on
the edge node at each intersection. Specifically, we have two major
components in RT-VeD: (i) a multi-granularity vehicle identification
module and (ii) an adaptive real-time vehicle-model matching frame-
work. When our design executes on the edge nodes, each real-time
task is equivalent to a vehicle identification module running on the
detected vehicle. The execution time of a real-time task depends
on the multi-granularity vehicle identification model selected by
the adaptive vehicle-model matching framework. In particular, a
vehicle-model matching policy network based on deep reinforce-
ment learning is designed to adaptive select the most suitable model
for each task and make the real-time task complete in time. Our
contributions are as follows:

o We propose an effective real-time system for detecting target
vehicles (Vols) in an intelligent city transportation system,
which enables us to utilize the limited resources of edge
nodes to complete the real-time tasks efficiently, especially
during heavy traffic hours.

o We consider the inference time of the video processing model

and real-time traffic conditions synchronously. A multi-granularity

vehicle identification module and an adaptive real-time vehicle-
model matching framework are proposed to realize the ac-
curate search of target vehicles (Vols) in a limited time.

e We have extensively evaluated RT-VeD in real-world vehi-
cle datasets. The experimental result shows that our model
outperforms other competitive methods.

2 PROBLEM STATEMENT

Given the intersections with smart edge devices in the road network
of a city, we aim to locate the real-time position of the Vols by
processing the real-time video from the surveillance cameras of
related intersections, using the computing resources of edge devices
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correspondingly. In our setup, we suppose the combination of a
surveillance camera and an edge computing platform as an edge
node, which is deployed at each intersection. A number of video
analysis models are deployed on the edge node to process the real-
time video streaming captured by the camera.

2.1 Vision-based Vol Detection

VoI detection from surveillance video relies on computer vision-
based machine learning algorithms. Especially, deep learning has
become increasingly popular in computer vision over the years.
When our real-time system works, input is a query request for
the target vehicle. Once the input is received, the video analysis
algorithm deployed on the edge nodes starts to perform traffic video
data analysis in real-time, and then outputs the current possible
positions of the target vehicle. More specifically, a target vehicle
detection can be roughly divided into the following modules (as
Figure 2 shows):

e Vehicle detection. For each frame of input video, vehicle
detection aims to locate all vehicles in each picture and label
the corresponding vehicle bounding box. A typical two-stage
vehicle detection network utilizes a Convolutional Neural
Network (CNN) based feature extractor to generate feature
map of an input video frame and a region proposal network
to create candidate vehicle bounding boxes.

Vehicle identification. For each vehicle bounding box, ve-
hicle identification aims to obtain the feature information of
the vehicle image, such as color, make or plate number. Tradi-
tional vehicle identification usually uses a deep CNN-based
feature extractor (e.g. MobileNetV2) to extract fine-grained
attribute features of a vehicle image, including global, region
and key-point features.

Target vehicle matching. For each target vehicle, vehicle
matching aims to find the bounding boxes consistent with
the feature of the target vehicle from the real-time video and
locate its position, through the feature information obtained
from vehicle identification. Query input is a target vehicle
with its feature information.

satocncar
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i
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(b) Vehicle identification (c) Target vehicle matching

(a) Vehicle detection

Figure 2: Vision-based Vol detection

2.2 Problem Formulation

Considering the inference time of vision-based models on the edge
nodes and real-time task processing, the problem is formulated as
follows.

LetI={i, ig,...,in} be a set of intersections in the area near Vol
(e.g., hit-and-run vehicle near the accident area) and V = {v1, va, . . ., 0}
be the set of vehicles in this area. Suppose v, € V (which is the
Vol) is involved in a accident, we aim to identify the vy and obtain
the intersection i, where it is from the real-time traffic. For each
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intersection iy, given the sequence of vehicles at time step t (i.e., iltc
i i
= {Ulk,l)zk, o
detection and identification module in a time-bound t. Let ¢ denote
the processing time of vehicle detection on video frame, and ¢4
denote the inference time for vehicle identification module in 3.
In order to obtain the features of all vehicles in real time, we must
make the video analysis time T = tg + 3.7_, t;cd less than ¢.

Uilk }) and the edge device, we need complete vehicle

3 MODEL DESIGN

In this section, we give the overview architecture of our RT-VeD
system, then introduce the two main modules of the architecture
in detail.

3.1 Overall Architecture

To identify the VoI from all vehicles passing through the intersec-
tions in real time, a number of popular video analysis models are
deployed on the edge nodes to extract the feature information of
all vehicles in each video frame synchronously. To make up for the
limited computing capacity of the edge nodes in real-time tasks,
we seek to develop an adaptive model to trade-off the vehicle iden-
tification performance and the inference time of different models
according to the real-time traffic condition. Figure 3 illustrates the
overall architecture of the proposed method. There are two major
components in RT-VeD: a multi-granularity vehicle identification
module and an adaptive real-time vehicle-model matching frame-
work. The multi-granularity vehicle identification module realizes
five-granularity vehicle identification network models to extract
five features of vehicles. Each model consumes distinct inference
time and outputs vehicle information in different granularity when
processing images. Considering the current traffic condition, the
adaptive real-time vehicle-model matching framework is a dynamic
policy network to match each vehicle bounding box to a model of
appropriate granularity for the time constraints, which is realized
through an actor-critic reinforcement learning framework|[2, 10].

3.2 Multi-granularity Vehicle Identification

We regard the target vehicle identification as a process of feature
matching, and divide vehicle features into multiple granularities.
Multiple granularities of vehicle features are utilized to match target
vehicles in different degrees (e.g., Vehicle color as a coarse-grained
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Table 1: Cost of multi-granularity models

Inference time | CPU usage
Color 1.0ms 0.3%
Type 30.2ms 15.8%
Make 84.6ms 25.3%
Key-point 180ms 30%
Plate number 514ms 37.9%

feature assists in detecting candidate vehicles with the same color
as the Vol. Vehicle plate number as the most fine-grained feature
locates the only Vol.). Since the fine-grained vehicle identification
algorithm needs an unaffordable amount of time to process video
frames (especially during the rush hour), the Vol detecting system
can use a coarse-grained algorithm to save time. This paper divides
vehicle features into five different granularity as follows:

e Color identification. As a basic classifier, color is an essen-
tial feature of a vehicle. Color identification [7] measures the
similarity between bounding boxes and Vol by color distribu-
tion in spaces. Given Hue Saturation Intensity (HSI) features,
we use K-Nearest Neighbors (KNN) [14] to identify the color
of each bounding box. After the coarse-grained identification
model, a set of vehicles of similar color to the target vehicle
can be detected, which narrows down the search scope of
the target vehicle.

e Type identification. There are many types of vehicles, in-
cluding bus, truck, sedan and so on. Vehicle type features
[8] can be distinguished by differences in appearance and
silhouette, by which we lock on to vehicles of the same type
as Vol. To extract vehicle type features better, we utilize the
B-CNN model [18] to process bounding boxes of vehicles.

e Make identification. Make and model of a vehicle are more
distinctive [6], and such information extracts vehicle features
in a finer granularity level. A typical algorithm seeks to use
deep learning approaches to generate discriminative features
because of the ability to extract features automatically. For
instance,we could adopt the MobileNetv2 network [35] for
such purpose.
Key-point identification. The above several granularities
of vehicle feature are the common features of a class of
vehicles. However, each specific vehicle has its unique key-
point feature on some key parts, (e.g., windows [25]) which
assists in more accurate match to Vol. This paper utilizes
the Faster R-CNN network structure to train a key-point
classifier to extract the fine-grained feature of vehicles.

Plate number identification. License plate number is a

unique identification for a vehicle, acting as its identity card

[27]. In other words, as the most fine-grained classifier, plate

number feature confirms the location of Vol accurately. In

this study, YoLov3 [16] is used to detect the license plate
frame, and a CNN model is used to recognize and classify
the specific text information of license plate.

Our Multi-granularity vehicle identification module is built upon
five algorithms with different granularity levels. To show the com-
putation cost of different granularity algorithms, we implement
these algorithms and measure inference time and cpu usage on one
vehicle bounding box of different granularity feature extractors in
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Table 1. The test environment is AMD Ryzen 7 3700x (CPU) with
4G memory and NVIDIA GeForce RTX 2080 Ti (GPU).

3.3 Adaptive Vehicle-Model Matching
Framework

Take into account the dynamics of the traffic condition and the per-
formance of multi-granularity vehicle feature in a real scenario, we
propose an adaptive traffic-aware vehicle-model matching frame-
work via actor-critic reinforcement learning. Actor is a core policy
network that outputs actions at each time step according to the
state. Critic is another function approximator, which receives the
state of environment as input and output the state value to evaluate
the action and give feedback to the actor. This framework is uti-
lized to select a model of appropriate granularity for each vehicle
bounding box under the complete time bounds for real-time tasks.

3.3.1 Problem Formulation as MDP. We model the vehicle-model
matching as a sequential decision problem [1] where we consider
matching each vehicle bounding box with an appropriate granu-
larity model at each time step. Our goal is to accomplish real-time
tasks while maximizing the accuracy of target vehicle detection.
Then we model the problem as a Markov Decision Process (MDP),
which is characterized by four major components: (S, A, R, P).

e State S: We take the environment captured by the mon-
itoring as input, which includes two parts: the feature of
vehicle passing through the intersection, and the computing
resources of edge device. The state of an intersection i at
time step ¢ is defined as s’ = {ol, 05, ..., 0h; e}, where o}, is
the real-time state of vehicle n” bounding box including dif-
ferent graunlarity features it has obtained. e; is the current
cpu usage state of the edge node at intersection i.

e Action A: An action means the matching of all vehicles
and models currently. The action space for each vehicle at
time step ¢ is define as A; = {af, al{, a;", a]lf, af}, which repre-
sents five models available for each current vehicle bound-
ing box. At each time step, the appropriate model should
be simultaneously matched for each vehicle at the current
intersection. The action space is variable due to the dynamic
traffic in the road. So the a; is represented as a action set:
{af,l, af,z, el af,n}, where n is the number of vehicles.

e Reward R: After the agent taking an action a; at the state
s, we will receive the immediate reward r(ss,a;) based on
system’s feedback. The reward r(s;,a;) is two-fold: (i) The
information entropy generated by the multi-granularity in-
formation of vehicle identification and (ii) real-time comple-
tion of task processing. The details are explained in Section
Reward Function.

e State transition #: Given the current state s;, the informa-
tion of vehicles obtained will change after an action a; is
taken. The intersection state will also change correspond-
ingly. State transition probability p(ss+1) | ¢, a;) defines the
state transition from s; to s41 after taking action a;. We
assume that the MDP satisfies p(sq+1 | St az,...,51,a1) =
p(see1 | st ar).

Given the historical MDP, i.e., (S, A, R, P), our goal is to find an
optimal policy 7 : S — A, which can maximize the cumulative
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reward from the sequential decision process. We design a traffic-
aware actor critic framework to conduct vehicle-model matching
problem considering instant time constraints and matching reward.

3.3.2  Recurrent Matching Network as Actor. Considering the influ-
ence between the actions of different vehicles at the same time step
due to the competition of limited resources, we learn strategy with
recurrent neural network (RNN) [28]. To obtain an optimal pol-
icy network (actor) 7, we propose an encoder-decoder framework
based on RNN, named recurrent matching network, to extract the
dynamic traffic feature and output action for each corresponding

vehicle bounding box. Given the input state s; = {vi, vé, el v,ﬁ; et}
the actor learns to infer the target action set a; = {af,l, asz, . .,agn

for every vehicle bounding box at time step ¢.

As shown in Figure 4, the actor has two RNN networks as the en-
coder and decoder respectively. The low-level RNN has two inputs:
(i) the sequence of vehicle state V; = {v{, Ué, .. U,tl} as the inputs of
each RNN cell; (ii) global state embedding as the initial hidden state
ho, representing the current traffic feature at the intersection, as
the following

h(t) =f (st) (1)

hi = f(hi_y,0; (@)

These inputs are transformed into a sequence of hidden states
(nt, h;, ..., ht) based on eq.2 and they are aggregated as a hidden
vector C; in the middle layer. The high-level RNN takes C; as input
and generates the sequence of actions aﬁ,l, s af,n continuously.
Generation of af,i is conditioned on all previously generated actions
¢

y,.0;_, and the created hidden vector Cr:
n
P(ay) = [ | P(al, | by, CO) 3)
i=1
P(ay, | @y, ,,Ct) = softmax(g(H}, Cr)) 4)

where g(-) is a one-layer neural network, Hf is the hidden state of
the high-level RNN which summarizes agx:vm

3.3.3 Reward Function. After the action a; completing at time step
t, our system receives the feature information of the selected model
corresponding to the current vehicles (e.g., the color of v or the
type of v2). In the real-time Vol detection system, the objective is to
(i) maximize the accuracy of Vol detection, and (ii) ensure real-time
tasks meet deadlines.

To realize the above goal(i), we utilize a novel concept, infor-
mation entropy, to represent the accuracy of Vol detection. In the
action space A; = {ag, a?, a;", a’t‘, af } of each vehicle, the execution
of each action represents that the system obtains corresponding
granularity information of a vehicle. e.g., if vehicle v; selects af
at step ¢, the system gets the color information for that vehicle.
Different actions correspond to different levels of accuracy, just as
a license plate number can pinpoint a VoI’s location, while color
information can only identify candidate vehicles of the same color
as the VoI. More practically, vehicles have their own traffic patterns.
The distribution of different types (or colors) of vehicles in the road
network also has its regularity. That is to say, the probability of
vehicles with different attributes appearing at the intersection is
different. Each of the information we gain on the vehicle assists in
matching the target to varying degrees. So the choice of each action



RT-VeD: Real-Time Vol Detection on Edge Nodes with an Adaptive Model Selection Framework

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Actor

(encoder-decoder)

Critic (mn)
Calculate State Value

i
|
| !
1 Matching Policy

]

]

State

identification

Softmax \
n
= c Rp—
. 1 t
Multi-gran '
1

|Embedding
| —
1

i V(sy,) V(sv,) Visuy)

Loss 1

=

Figure 4: Multi-Granularity Vehicle-Model Matching

is important. Hence, we use information entropy to represent the
accuracy of locating Vol with different information obtained.

Information entropy is a quantitative index of the information
content of a system and entropy is a measure of the uncertainty of
random variables as eq.5. p(x;) is the probability of x; occurring.
In our scenario, we expressed the probability that the information
obtained from each action exists in all vehicles as p. The smaller p
is, the higher the accuracy of the information brought by the action
is.

We hope to obtain information with high certainty (e.g., plate
number) and minimize information entropy. Information gain g; =
info(sy) — info(st, ar) represents the degree of reduction of infor-
mation uncertainty under a condition a;. Therefore, we define the
gain from the information obtained for each action a; as the reward
r+. More specifically, r; = [r},r} ..., r} 1is alist corresponding
to a;, where rf,i =info(st) — info(st, af,i).

n

info(se) = = ) p(xi) log p(xi) (5)

i=0

Although we need more fine-grain information, this may cause
longer inference time and higer cpu usage, result in the failure to
complete the real-time tasks. We set the length of time step as the
time-bound. To ensure real-time tasks meet deadlines, we also take
into account the inference time of each action. If the inference time
of a; at time step t times out, r; will be a negative value. Taking
into account time constraints, action rewards are defined as:

n

> T<t

T =131 (6)

-1T >t
3.34 Learning from Critic. The critic network is another RNN
structure, which receives the same state input as actor and outputs

the state value V(s;). Critic evaluate the action and give actor
feeback by state value function Vp, (s¢), which is defined as:

Vo (se) = Elrs +yrear+ -+ reanl (7

where 6, represents network parameters of critic, y is the discount
factor of reward.

3.3.5 Model Training. We consider the dynamic traffic state and
determine vehicle-model matching action at each time step and
store the transitions (s, az, 1, S¢+1) to the experience memory D.
Then we sample some transitions for training. The parameters 0.
of critic network are updated by minimizing the following loss
function:

Lo, = 3lre+ 1V (s1a1) = Vo, (1)1 ®
The training of actor is based on an advantage function, which is
used to reduce the high variance of policy networks and stabilize
the model:

A(St, (lt) =71+ )/Vec (SH.]) - VQC (St). (9)

We utilize actor to choose action and the advantage function evalu-
ate how better the action is by time different method. the gradient
of actor is defined as:

Vo, J(0) = Vg, log mg, (s, ar)A(st, at) (10)

0q < 0q + aA(st, a1)Vg, log mg (st ar) (11)

where 0, represents network parameters of actor and g, (s¢, ar) is
the policy probability function. « is the learning rate. The updated
process of 6, is based on the gradient descent. The detailed training
process are summarized in Algorithm 1.

4 EVALUATION

To evaluate the efficiency of RT-VeD in realistic scenarios, we con-
duct extensive experiments based on a real-world datasets.

4.1 Experimental Setup

4.1.1 Dataset. To evaluate the performance of our work, we col-
lect a real-world vehicular system dataset, which is provided by
the Shenzhen Committee of Transportation (SCT), including one
month of GPS traces of more than 30000 vehicles in Shenzhen,
China. Figure 5a shows the format of a GPS record. Based on the
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Algorithm 1: Traffic-aware actor-critic reinforcement
learning for vehicle-model matching

Input: real-time traffic state at the intersection
Output: vehicle-model matching policy for each vehicle
for i = 0 to Iteration number do
for t = 0 to episode do
for each vehicle do
Find optimal action: Sample optimal (s}, , al,
pair according to state-action matching
probability computed by actor network;

Execute a;: and update state s;;

Compute V(s;) and A(sy, a;), store transitions
(st ag, rt, St+1) to replay memory D.

Updating actor-critic;

for j = 0 to critic do

Sample a batch of (s¢, as, 14, s¢+1) from D Update
critic according to eq.8

for j = 0 to actor do

Sample a batch of (s, ar, rt, sp+1) from D Update
critic according to eq.10

GPS dataset, we obtain the traffic conditions at the city intersec-
tions during different periods. In addition, we also utilize a image
dataset captured by surveillance cameras deployed at intersections
to measure the execution time of the real-time vehicle identification
tasks implemented by different models selected by RT-VeD.

Vehicle ID | 353211%**
Longitude | 116.595865
Latitude | 23.270327
Time 09:17:39
(a) A GPS record (b) Video frames

Figure 5: Datasets

4.1.2  Baselines. To evaluate the overall performance of our work,
we compare RT-VeD with widely used baselines including two
categories: model selection based baselines and non-model selection
based baselines.

Model selection baesd baselines:

e Adadeep[23] This work proposes an adaptive model pa-
rameter selection method, which leverages a DQN based
strategy to effectively select a combination of compression
techniques that balance user-specified performance goals
and resource constraints.

e SkipRec-RL[5] This work proposes an adaptive model hid-
den layer selection framework for deep sequential recom-
mender system. SkipRec-RL is a policy gradient framework
to learn to automatically determine which layers should be
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Figure 6: Travel time and number of vehicles distribution at
an intersection

retained and which layers are allowed to be skipped, so as
to achieve user-specific decisions on a per-user basis.

o Greedy strategy Regardless of the dynamic task load on
edge node, the greedy strategy will select the most fine-
grained model first under the time-bound, based on some
prior knowledge.

e RT-VeD A adaptive model selection strategy to trade off
the accuracy and resource according to the real-time traffic
conditions based on the traffic-aware actor-critic framework
as mentioned above.

Non-model selection based baselines: On the other hand, in
order to verify the effect of the adaptive model selection method, we
compare our model with the traditional static fine-grained model ap-
proach. Here we utilize the last two fine-grained models mentioned
in Section Multi-granularity Vehicle Identification as baselines: key-
point identification (Ageypoint) and plate number identification

(Aplate)~

4.1.3 Implementation Details. We implement the model and base-
lines with TensorFlow 1.14 and Python 3.6 environment and train
these in an edge server with AMD Ryzen 7 3700x (CPU) and one
NVIDIA GeForce RTX 2080 Ti (GPU). We set the time step to one
second. The actor has a two-layer RNN and a single-layer RNN
structure, and critic has a three-layer RNN as value network. The
learning rate « is 0.002.

4.2 Experimental Results

4.2.1 Traffic Measurement. Based on the massive GPS dataset, we
measure the dynamic traffic at the city intersections in the moni-
tored areas. Figure 6a shows an example of traveling time taken by
vehicles passing an intersection during different periods. We can
find vehicles with a longer travel time in rush hour (e.g., morning
and evening). In general, about 90 percent of the vehicles across the
intersection time is less than 3 seconds, which also motivates us
to consider appropriate model deployment to make tasks complete
in real-time. According to time and location in the GPS record, we
measure the traffic condition at the intersections. Figure 6b shows
the distribution of the number of vehicles passing the intersection
in one frame. Corresponding to Figure 6a, the larger traffic volume
matches the longer traveling time. Furthermore, we can capture
the dynamic temporal distribution of traffic in an intersection.

4.2.2  Information Entropy. Information entropy measures the ac-
curacy to locate the target vehicle based on the multi-granularity
feature from the model selected. In our experiment, we calculate
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the information entropy by using the proportion of vehicle infor-
mation obtained by each action in the whole vehicle data set in the
region. Then we aim to obtain the minimum information entropy
to maximize the accuracy of identifying Vol. So we compare the
proposed RT-VeD with baselines above and the overall performance
of all the methods is shown in Figure 7 to 9.
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Figure 7: Information entropy performance during a day

Figure 7 shows the advantage of our approach over model se-
lection based baselines in temporal dimension. We evaluate the
cumulative information entropy every 30 minutes in a day with
all the methods and the time variation trend of information entropy
as Figure 7 shows. The value of information entropy fluctuates with
time and peaks appear in the morning and evening rush hours,
which is consistent with the pattern of traffic flow at intersection.
Among all the methods, RT-VeD has the lowest information en-
tropy, especially in the peak hours. This shows that our actor-critic
reinforcement learning network has learned the traffic patterns at
intersections well from the dataset. By combining RNN networks,
RT-VeD captures the overall state as well as the fine-grained vehicle
state. Adadeep and SkipRec-RL are worse than the others due to
suboptimal network structure in our problem. In real scenes, some-
times color is more useful than vehicle make due to the resource
constraints, the Greedy strategy fails to capture the dynamic char-
acteristics of the environment. In order to show the impacts of our
method in the spatial dimension, we measure the cumulative infor-
mation entropy of all model selection based baselines in downtown
and suburban intersections respectively at the same heavy traffic
period in Figure 8. Since the traffic volume in the suburbs is smaller
than downtown, the accumulated information entropy obtained is
also smaller. As we can see, our method is superior to the other
three baselines both in downtown and suburban intersections.

In addition, we compare RT-VeD with two types of baseline un-
der heavy traffic conditions in Figure 9. RT-VeD outperforms other
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Figure 8: Cumulative information entropy in different areas
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Figure 9: Cumulative information entropy during rush hours

baselines under the morning rush hour and evening rush hour,
respectively. Compared with other model selection based baselines,
our method has more obvious advantages in peak periods. Due to
the time-bound, the traditional static fine-grained vehicle identi-
fication model Ay, ypoins and plate number identification Apjqre
running on edge nodes can only accomplish a limited number of
tasks in rush hours. RT-VeD makes the most of computing resources
of edge nodes through model selection. Figure 9 shows the high
efficiency of our method under heavy traffic conditions. The results
show that our RT-VeD can detect the target vehicle more accurately
in a dynamic traffic environment.

4.2.3 Real-time Performance. To search for target vehicle in real
time, the other key performance metric of RT-VeD is the video
analysis delay to identify the vehicle in the video frame. In order to
study the real-time performance of our method in video analysis,
we measure the average vehicle identification delay in one frame,
according to the action from model selection framework and the
inference time of the multi-granularity model in Table 1.

The bar diagram of Figure 10a shows the average video analysis
delay in one frame with different methods during the rush hours.
We can see that the RT-VeD and the other three model selection
based baselines are able to complete tasks before time-bound while
the static fine-grained models are timeout. This is because fine-
grained models consume longer network interference time running
on edge nodes. The model selection based baselines will give a time-
out penalty in training the network so as to reduce the execution
time of the method. As shown in the broken line of Figure 10a, we
evaluate the proposed approach and other baselines by comparing
the relative information entropy with Adadeep methods (which is
set as 1.0) during heavy traffic hours. Although the average time
delay of Adadeep and SkipRec-RL is shorter than that of RT-VeD,
their accuracy is worse because they prefer coarse-grained models,
reducing the time cost. To highlight the adaptability of RT-VeD to
the dynamic environment, we evaluate the video analytics delay
in different traffic conditions. The average delay in one frame cor-
responding to the different number of vehicle volumes is shown
in Figure 10b. When there are few vehicles, all methods can com-
plete the task in a short time. As the number of vehicles increases,
Akeypoint and Apjqye are gradually unable to complete the task
in real-time, and the others can meet the time-bound. In addition,
SkipRec-RL is more sensitive to the number of vehicles. As the
number of vehicles increases, SkipRec-RL takes significantly more
time. But it prefers models that do not timeout, even though it is not
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the most accurate. Among them, RT-VeD can achieve the highest
accuracy and meet real-time requirements.
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Figure 10: Average delay comparison

Considering the additional running cost of reinforcement learn-
ing network, we also measure the inference time of actor network
on edge nodes. In particular, the time cost of our vehicle-model
matching policy network running on the edge is about 0.001s, which
can be ignored.

4.2.4 Summary. In a dynamic traffic environment, RT-VeD with
an adaptive model selection policy network realizes the optimal
accuracy of VoI detection within a time-bound compared with the
other baselines.

5 RELATED WORK

Extensive studies have been conducted to solve target vehicle de-
tection problems. Among existing research, most work focus on
capturing targets quickly and accurately at cloud servers. The emer-
gence of edge computing also allows more researchers to participate
in related applications. This part investigates some related works
of this paper from different three perspectives.

5.1 Vehicle Detection Model in Computer Vision

There have extensive researches on the vehicle detection, identi-
fication, tracking and retrieval based on intersection surveillance
video data running on cloud servers in the field of computer vision.
This kind of work aims to propose a general technical model to
extract the precise features from a large number of vehicle images.
The present situation of vehicle detection or tracking technology is
summarized in [41]. Specifically, [34] and [15] studied the problem
of vehicle recognition and classification based on camera in some
special environments. On the other hand, vehicle re-identification
between multi-camera has been a hot research topic in recent
years[24, 39, 40], which becomes challenging task for the intel-
ligent transportation system. [12, 38] utilize the multi-granularity
features of vehicles or region feature to identify and track the tar-
get vehicle. [31] and [22] make specific study on the problem of
multi-target tracking. This paper places target vehicle detection in
a new edge computing scenario, creating new challenges.

5.2 Edge-based Real-time Video Analysis

With the popularity of edge computing in recent years, there are a
number of researches on real-time task processing models under
the limited computing resources of edge nodes. [30] proposes a
queuing theory based edge capacity planning solution for real-time
computation-intensive applications that takes into account usage
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of both CPU and GPU. An edge-cloud collaboration method is pro-
posed to minimize the time delay of video processing by reasonably
allocating tasks between the cloud and edge[4, 11, 33, 42]. [13]
develops an adaptive region of interest (ROI) based image compres-
sion scheme to reduce response latency and [32] develops a Face in
Video Recognition framework which performs real-time key-frame
extraction on IoT edge devices to reduce the data volume. [29]
introduces a lightweight convolutional neural network that uses
deep separable convolution to speed up computational execution.
Most of the work saves running time through model compression,
while our work proposes a dynamic model transformation method
to make full use of computing resources of edge nodes.

5.3 Model Selection based on Reinforcement
Learning

Deep reinforcement learning (DRL) is widely applied in a variety of
scenarios to learn actions at different states that maximize reward
function[26]. More and more research is devoted to solve decision-
making problems using DRL. [17] proposes a scheme for adaptive
model selection based on decision making in photonic reservoir
computing and [9] develops a Q-learning based dynamic model
selection (DMS) framework aiming to choose the best forecasting
model from a pool of state-of-the-art machine learning models at
each time step. [20] leverage DQN to dynamically select parts of a
network to execute according to different input resolution to opti-
mize both accuracy and efficiency of multi-objective optimization
problems. [23] leverages a DQN based strategy to effectively select a
combination of compression techniques that balance user-specified
performance goals and resource constraints. And [5] proposes an
adaptive model hidden layer selection framework for deep sequen-
tial recommender system, which is a policy gradient framework to
learn to skip inactive hidden layers on a per-user basis.

To the best of our knowledge, RT-VeD is the first work to leverage
reinforcement learning (RL) for real time Vol detection considering
both the accuracy of vehicle matching and computing resource
constraints on edge nodes.

6 DISCUSSION

6.1 Lesson learned

Based on the data analysis and evaluation results, we learned the
following lessons. (i) Different features of vehicle assists in matching
and localization of VoI to varying degrees. (ii) Choosing a suitable
model can make full use of the limited resources of edge nodes
based on reinforcement learning in our work.

6.2 Future work

Our work is validated on a single edge server, and future research

hopes to evaluate distributed multi-edge node collaborative decision-
making in a traffic area. At present, edge cameras have not been

deployed and applied on a large scale in the city. But with the de-
velopment of network technology, edge intelligence is bound to

become a trend.

7 CONCLUSION

The emergence of edge computing offers opportunities for the im-
plementation of real-time systems on the edge nodes distributed
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at the intersections of the road network. In this work, we propose
a real-time Vol detection system based on an adaptive model se-
lection framework (RT-VeD) to fully leverage the limited resources
of edge nodes, whereby the proper vehicle identification model
can be selected on the dynamic traffic condition. We utilize com-
puter vision models with different resource-accuracy trade-offs
and propose a multi-granularity model. And then we decompose
and schedule vehicle tasks based on the current traffic load with
a traffic-aware actor-critic framework to maximize the accuracy
of Vol detection in real-time. We evaluate our method based on a
real-world vehicle dataset. Experimental results demonstrate that
our method outperforms state-of-the-art baselines.

REFERENCES

[1] Oguzhan Alagoz, Heather Hsu, Andrew J Schaefer, and Mark S Roberts. 2010.

[2

(3]

[4

[9

[10

[11

[12

=

=

[13]

[14

(15

[16

[17

(18

[19

]

]

]

Markov decision processes: a tool for sequential decision making under uncer-
tainty. Medical Decision Making 30, 4 (2010), 474-483.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine 34, 6 (2017), 26-38.

Jingye Cai, Jianhua Deng, Muhammad Umar Aftab, Muhammad Saddam Khokhar,
Rajesh Kumar, et al. 2019. Efficient and deep vehicle re-identification using multi-
level feature extraction. Applied Sciences 9, 7 (2019), 1291.

Jianguo Chen, Kenli Li, Qingying Deng, Keqin Li, and S Yu Philip. 2019. Dis-
tributed deep learning model for intelligent video surveillance systems with edge
computing. IEEE Transactions on Industrial Informatics (2019).

Lei Chen, Fajie Yuan, Jiaxi Yang, Xiang Ao, Chengming Li, and Min Yang. 2021.
A User-Adaptive Layer Selection Framework for Very Deep Sequential Recom-
mender Models. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 3984-3991.

Li-Chih Chen, Jun-Wei Hsieh, Yilin Yan, and Duan-Yu Chen. 2015. Vehicle
make and model recognition using sparse representation and symmetrical SURFs.
Pattern Recognition 48, 6 (2015), 1979-1998.

Pan Chen, Xiang Bai, and Wenyu Liu. 2014. Vehicle color recognition on urban
road by feature context. IEEE Transactions on Intelligent Transportation Systems
15, 5 (2014), 2340-2346.

Zhen Dong, Yuwei Wu, Mingtao Pei, and Yunde Jia. 2015. Vehicle type classifica-
tion using a semisupervised convolutional neural network. IEEE transactions on
intelligent transportation systems 16, 4 (2015), 2247-2256.

Cong Feng and Jie Zhang. 2019. Reinforcement learning based dynamic model
selection for short-term load forecasting. In 2019 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT). IEEE, 1-5.

Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. 2012.
A survey of actor-critic reinforcement learning: Standard and natural policy
gradients. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 42, 6 (2012), 1291-1307.

Philipp M Grulich and Faisal Nawab. 2018. Collaborative edge and cloud neural
networks for real-time video processing. Proceedings of the VLDB Endowment 11,
12 (2018), 2046-2049.

Haiyun Guo, Chaoyang Zhao, Zhiwei Liu, Jingiao Wang, and Hanqing Lu. 2018.
Learning coarse-to-fine structured feature embedding for vehicle re-identification.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

Yundi Guo, Beiji Zou, Ju Ren, Qingqing Liu, Deyu Zhang, and Yaoxue Zhang.
2019. Distributed and efficient object detection via interactions among devices,
edge, and cloud. IEEE Transactions on Multimedia 21, 11 (2019), 2903-2915.

DS Guru, YH Sharath, and S Manjunath. 2010. Texture features and KNN in
classification of flower images. IJCA, Special Issue on RTIPPR (1) (2010), 21-29.
Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen, and Wen-Fong Hu. 2006. Au-
tomatic traffic surveillance system for vehicle tracking and classification. IEEE
Transactions on Intelligent Transportation Systems 7, 2 (2006), 175-187.

Yi-Qi Huang, Jia-Chun Zheng, Shi-Dan Sun, Cheng-Fu Yang, and Jing Liu. 2020.
Optimized YOLOV3 algorithm and its application in traffic flow detections. Ap-
plied Sciences 10, 9 (2020), 3079.

Kazutaka Kanno, Makoto Naruse, and Atsushi Uchida. 2020. Adaptive model
selection in photonic reservoir computing by reinforcement learning. Scientific
reports 10, 1 (2020), 1-12.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. 2015. Bilinear cnn
models for fine-grained visual recognition. In Proceedings of the IEEE international
conference on computer vision. 1449-1457.

Honghai Liu, Shengyong Chen, and Naoyuki Kubota. 2013. Intelligent video
systems and analytics: A survey. IEEE Transactions on Industrial Informatics 9, 3
(2013), 1222-1233.

[20]

[21

[22

[23

™
=)

[25

[26

[30

(31]

[32

[34

[35

[36

[37

'@
&

[39

[40

N
=

[42

KDD ’°22, August 14-18, 2022, Washington, DC, USA.

Lanlan Liu and Jia Deng. 2018. Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

Liangkai Liu, Yongtao Yao, Ruijun Wang, Baofu Wu, and Weisong Shi. 2020.
Equinox: A road-side edge computing experimental platform for cavs. In 2020
International Conference on Connected and Autonomous Driving. IEEE, 41-42.
Qiankun Liu, Bin Liu, Yue Wu, Weihai Li, and Nenghai Yu. 2019. Real-time online
multi-object tracking in compressed domain. IEEE Access 7 (2019), 76489-76499.
Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du. 2018.
On-demand deep model compression for mobile devices: A usage-driven model
selection framework. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services. 389-400.

Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. 2017. Provid: Progressive
and multimodal vehicle reidentification for large-scale urban surveillance. IEEE
Transactions on Multimedia 20, 3 (2017), 645-658.

Xiaobin Liu, Shiliang Zhang, Qingming Huang, and Wen Gao. 2018. Ram: a
region-aware deep model for vehicle re-identification. In 2018 IEEE International
Conference on Multimedia and Expo (ICME). IEEE, 1-6.

Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang,
Ying-Chang Liang, and Dong In Kim. 2019. Applications of deep reinforcement
learning in communications and networking: A survey. IEEE Communications
Surveys & Tutorials 21, 4 (2019), 3133-3174.

Khalid W Maglad. 2012. A vehicle license plate detection and recognition system.
Journal of Computer Science 8, 3 (2012), 310.

Larry R Medsker and LC Jain. 2001. Recurrent neural networks. Design and
Applications 5 (2001), 64-67.

Seyed Yahya Nikouei, Yu Chen, Sejun Song, Baek-Young Choi, and Timothy R
Faughnan. 2019. Toward intelligent surveillance as an edge network service
(isense) using lightweight detection and tracking algorithms. IEEE Transactions
on Services Computing (2019).

Marius Noreikis, Yu Xiao, and Yuming Jiang. 2019. Edge capacity planning for
real time compute-intensive applications. In 2019 IEEE International Conference
on Fog Computing (ICFC). IEEE, 175-184.

Fabio Previtali, Domenico D Bloisi, and Luca Iocchi. 2017. A distributed ap-
proach for real-time multi-camera multiple object tracking. Machine Vision and
Applications 28, 3-4 (2017), 421-430.

Xuan Qi, Chen Liu, and Stephanie Schuckers. 2018. IoT edge device based key
frame extraction for face in video recognition. In 2018 18th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 641-644.
Jinke Ren, Guanding Yu, Yinghui He, and Geoffrey Ye Li. 2019. Collaborative cloud
and edge computing for latency minimization. IEEE Transactions on Vehicular
Technology 68, 5 (2019), 5031-5044.

Reyes Rios-Cabrera, Tinne Tuytelaars, and Luc Van Gool. 2012. Efficient multi-
camera vehicle detection, tracking, and identification in a tunnel surveillance
application. Computer Vision and Image Understanding 116, 6 (2012), 742-753.
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
Mahadev Satyanarayanan. 2017. The emergence of edge computing. Computer
50, 1 (2017), 30-39.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637-646.

Sayanan Sivaraman and Mohan M Trivedi. 2012. Real-time vehicle detection
using parts at intersections. In 2012 15th international ieee conference on intelligent
transportation systems. IEEE, 1519-1524.

Jakub Spanhel, Vojtech Bartl, Roman Juranek, and Adam Herout. 2019. Vehicle re-
identification and multi-camera tracking in challenging city-scale environment.
In Proc. CVPR Workshops, Vol. 2. 1.

Xiao Tan, Zhigang Wang, Minyue Jiang, Xipeng Yang, Jian Wang, Yuan Gao,
Xiangbo Su, Xiaoqing Ye, Yuchen Yuan, Dongliang He, et al. 2019. Multi-camera
vehicle tracking and re-identification based on visual and spatial-temporal fea-
tures.. In CVPR Workshops. 275-284.

Anshul Vishwakarma and Amit Khare. 2008. Vehicle detection and tracking for
traffic surveillance applications: A review paper.

Baofu Wu, Yuankai He, Zheng Dong, Jian Wan Wan, Jilin Zheng, and Weisong
Shi. 2022. To Turn or Not To Turn, SafeCross is the Answer. In 2022 IEEE 42th
International Conference on Distributed Computing Systems (ICDCS). IEEE.



	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Vision-based VoI Detection
	2.2 Problem Formulation

	3 Model Design
	3.1 Overall Architecture
	3.2 Multi-granularity Vehicle Identification
	3.3 Adaptive Vehicle-Model Matching Framework

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related Work
	5.1 Vehicle Detection Model in Computer Vision
	5.2 Edge-based Real-time Video Analysis
	5.3 Model Selection based on Reinforcement Learning

	6 Discussion
	6.1 Lesson learned
	6.2 Future work

	7 Conclusion
	References

