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rparamagnetic signatures in
nanoparticle magnetite: a generalized approach for
physically meaningful statistics and synthesis
diagnostics†
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Magnetization is a common measurable for characterizing bulk, nanoscale, and molecular materials, which

can be quantified to high precision as a function of an applied external field. These data provide detailed

information about a material's electronic structure, phase purity, and impurities, though interpreting this

data can be challenging due to many contributing factors. In sub-single-domain particles of a magnetic

material, an inherently time-dependent rotation of the entire particle spin becomes possible. This

phenomenon, known as superparamagnetism (SPM), simultaneously represents a very early size-

dependent property to be considered, while being one of the least explored in the current quantum

materials era. This discrepancy is, at least in part, due to the need for models with less built-in

complexity that can facilitate the generation of comparative data. In this work, we map an extensive

dataset of variable-size SPM Fe3O4 (magnetite) to an intrinsic statistical model for their field-

dependence. By constraining the SPM behavior to a probabilistic model, the data are apportioned to

several decorrelated sources. From this, there is strong evidence that standard measures such as

saturation magnetization, MS, are poor comparative parameters, being dependent on experimental

knowledge and measurement of the magnetic mass. In contrast, parameters of the intrinsic probability

distribution, such as the maximum susceptibility, cmax, are far better suited to describe the SPM behavior

itself and do not propagate unknown magnetic mass error. By confining the data fitting to intrinsic

variables of the model distribution, scaling parameters, and linear contributions, we find greater value in

magnetic data, ultimately aiding potential synthesis diagnostics and prediction of new properties and

functionality.
Introduction

Much of nanoscience is predicated on the idea that funda-
mental properties of solid-state materials undergo radical
changes when reduced to the nanoscale size regime, both as the
result of the outsized role of the surface and from spatial
connement of the wavefunction. The enhanced and tunable
functionality possible from such changes has resulted in
a rapidly expanding array of synthetic and characterization
techniques, as well as more intuitive and physically accurate
models. In this pursuit, chemistry has played an increasingly
important role in targeting and optimizing structure–property
relationships on the nanoscale. One of the most intriguing
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areas to build structure–property insight is in nanoscale
analogues of correlated magnetic materials. Such materials
display fundamentally different behavior as a result of spatial
connement, enhancing the role of phonon coupling and
giving rise to superparamagnetism (SPM) – a curious blending
of permanent magnetism and paramagnetism. In SPM, the sub-
single-domain connement results in a collective angular
momentum state with momentMSPM =MS cos(q), where q is the
angle of rotation of the moment vector q = [−p/2, p/2] with q =

±p/2 representing the energy minima of a bistable double-well
potential with spins totally aligned or anti-aligned. In this
framework, the ground state is dened by an energetically iso-
lated manifold of coupled spins known as a macro- or super-
spin. The macrospin has a collective spin that scales with the
particle volume and takes on a time-dependent, high suscepti-
bility switching behavior that is sensitive to a wide range of
interactions and chemical modications. Effectively, the SPM
particle acts as a Curie paramagnet with a moment equivalent
to the net moment of all contributions of the SPM nanoparticle,
Chem. Sci., 2023, 14, 7589–7594 | 7589
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Fig. 1 Magnetization curves (top), differential magnetization (c) curve
(middle), and corresponding Cauchy CDF (bottom). The effect of clinear
(green dashed line) is demonstrated in the magnetization curve, as it
obscures both the true saturation magnetization (Ms) and coercive field
(Hc), however, it is depicted more clearly as the vertical offset of the
differential magnetization curve at H = ±N. Stemming purely from the
statistical model, g is represented in red as the half-width at half-max
(HWHM). The susceptibility atHc, denoted cmax, is represented in purple.
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oen 104–105 mB. The switchable nature of SPM nds applica-
tions at the intersections of many diverse elds1 such as
biomedicine,2 electronics,3,4 sensing,5 imaging,6 rheology,7 and
catalysis.8 With energy concerns driving the need for higher
performance and materials scarcity driving efforts to diversify
component resources, the need for understanding, control, and
quantication of magnetic materials is extant.

Herein, we demonstrate how the stochastic nature of SPM
can be leveraged in a general, physically meaningful model
wherein the eld-dependent magnetization curve is treated as
a parameterized cumulative distribution function, F(x), of
a Cauchy distribution (also known as the Lorentz or Cauchy–
Lorentz distribution). Within this framework, we can decorre-
late the intrinsic distribution of particle spin alignments from
overall scaling and background paramagnetism. This method is
designed to generate a consistent parameter space across
samples displaying SPM to extract consistent, intuitive, and
quantitative information from samples collected under a variety
of conditions and with various imperfections. In essence, it acts
as a pre-processing step to categorize parameters by their origin
and constraints, dramatically reducing the noise in any further
modeling based on specic quantum mechanical models. In
a useful example, we demonstrate how peakshape parameters
such as the maximum susceptibility, cmax, display a consistent
linear trend with magnetic particle size while scaling parame-
ters such as saturation magnetization, MS do not.

Arguably the most common and information-rich charac-
terization method of bulk, nanoscale, and molecular magnetic
materials is the measurement of magnetization as a function of
an external magnetic eld (Fig. 1 and S1†). In nanomaterials,
specic models have been employed to interpret magnetic
moment vs.magnetic eld in terms of structure9,10 and degree of
crystallinity,11–13 as well as nanoscale-specic properties such as
size,14,15 shape,16,17 and surface.18,19

In many cases, the correlation of properties with t param-
eters depends strongly on the specics of the material and
sample form, making broad comparisons across many samples
difficult. At the heart of the difficulty in applying generalizable
models to nanoscale magnetism, especially colloidal nano-
particles, is the meaningful treatment of rapidly uctuating
forces arising from non-uniform physical systems (i.e., particle
distributions). Modeling complex data as a combination of both
deterministic and stochastic forces is oen achieved via solu-
tions to stochastic differential equations. For example, the
effect of particle size dispersity can be modeled through
a lognormal distributed function.20–28 The most common solu-
tion to a Langevin equation used in magnetism corresponds to
the macrospin limit ð~J/NÞ of the Brillouin equation for satu-
ration behavior of a discrete magnetic angular momentum
vector,~J: The macrospin approximation of the SPM, however,
means that the moment vs. external eld behavior is better
estimated as the net sum of the moment-weighted populations
of fully aligned and anti-aligned states. From this standpoint,
a magnetic eld sweep can be re-normalized in the form of
a cumulative distribution function (CDF; F(H)). This CDF
describes a large population of macrospins aligned in one eld
direction changing their equilibrium population as eld is
7590 | Chem. Sci., 2023, 14, 7589–7594
swept until the equilibrium lies fully in the other direction. Due
to the equilibrium nature of the system, the CDF endpoints of
0 and 1 are only reached at elds of H = ±N. The use of such
a model for data modeling and comparative analysis is of
interest because any parameter distribution associated with it
can be assigned to the intrinsic SPM behavior and is subject to
the constraints of the distribution.

The Cauchy distribution (Fig. S2†) is a continuous, stable
probability distribution that conforms to the requirements
detailed above. Its cumulative distribution function (Fig. 1, eqn
(1)) and probability density function (PDF; eqn (2)) aremodied by
the location parameter, x0, and the scale parameter, g.29 As a stable
distribution, the Cauchy distribution has applications in chem-
istry and physics,30–32 geology,33 engineering,34 and economics.35
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All data reported herein is t to the CDF of an underlying
Cauchy distribution that is scaled proportional to Ms with an
additive parameter clinearH, where clinear is a susceptibility term
accounting for the sum response from paramagnetic and
diamagnetic components. To extract consistent and quantita-
tive information, the Cauchy distribution model is presented to
provide insight into intrinsic SPM behavior. This model
provides a material-independent formalism for standardized
data collection and comparison, as well as a method for pre-
processing data for validation and further analysis via deter-
ministic models.
Results and discussion

Magnetite (Fe3O4) nanoparticles have a high magnetization and
superparamagnetic susceptibility over a wide size range,
making them desirable targets for magnetic optimization
towards numerous applications.36 Magnetite nanoparticle
samples of varying size (d = 5–12 nm) were synthesized
according to our previously described method (Fig. 2a, S3a–e
and Table S1†).15 The percent relative standard deviation (%
RSD) among all sample diameters exhibits a notable degree of
consistency, falling between 9.88% and 12.97%. Briey, a stoi-
chiometric powder form of iron oleate was used in the high
temperature decomposition of iron oleate with octadecene and
oleic acid as the solvent and surfactant, respectively. To avoid
the commonly observed issue of overreduction of magnetite
(Fe3O4) to wüstite (FeO), 5% O2 was owed through the reaction
during the reux stage. One particularly difficult aspect of
modeling SPM nanoparticle magnetization is the detection and
quantication of interparticle interactions. To probe the effect
of interparticle interactions, silica shells were grown onto each
set of magnetite nanoparticles (Fig. 2b) through a previously
described reverse microemulsion procedure.37 Briey, silica
shells were grown onto Fe3O4 by the hydrolysis of tetraethylor-
thosilicate (TEOS) in microemulsions of aqueous ammonia in
cyclohexane. Empty silica shells further prevent interparticle
interactions. The average diameter was determined via TEM.
Fig. 2 TEM images (a) 9.57 nm Fe3O4 nanoparticles and (b) Fe3O4@-
SiO2 nanoparticles.

© 2023 The Author(s). Published by the Royal Society of Chemistry
Magnetite phase purity was conrmed by pXRD (Fig. S4†).
Finally, to account for variability in surface ligand mass by
sample, Thermogravimetric Analysis (TGA) was carried out from
30 °C to 1000 °C under air (Fig. S5, S6 and Table S2†).

Magnetization vs. magnetic eld studies (Fig. 3a and b) were
conducted on all Fe3O4 and Fe3O4@SiO2 samples (H = −7 to 7
T; T= 300 K). A calibration of the magnetic eld was carried out
using a palladium standard with a precisely known suscepti-
bility. This step is necessary for precise measurement of the low-
eld magnetization, as remnant elds of approximately ±30 Oe
in the superconducting magnet can uctuate over time. This
small residual eld leads to a difference between the recorded
and true elds, resulting in an “inverted” hysteresis loop and
false coercivities (details in ESI†). An interpolation was per-
formed on the forward sweep of each curve, generating evenly
spaced points to prevent biasing, then t to eqn (3) for further
analysis (Table S3†). The derivative, dM/dH of the t function
from each data set (Fig. 3d and e) represents the instantaneous
magnetic susceptibility as a function of magnetic eld. Visual-
izing dM/dH (proportional to the Cauchy PDF and also known
as a Lorentzian lineshape) can be advantageous for various
applications, such as Magnetic Particle Imaging (MPI),38 and
provides intuition about parameters typically neglected in SPM
analysis. These parameters include the maximum super-
paramagnetic susceptibility, cmax (Fig. 3f), g (Fig. 3g), and
clinear, the y-axis offset of dM/dH vs. H at H = ±N (Fig. 1). While
some amount of clinear is common due to decoupled spins at the
particle surface,39 from defects, or from molecular impurities,
these effects are typically only observable at elds where the
SPM macrospin is fully saturated.

One of the most interesting points to emerge from our
quantication of SPM magnetization data by the Cauchy
distribution function was the lack of conformity of the satura-
tion magnetization, MS to a distinct size trend. The size of the
macrospin is expected to increase linearly with particle volume
in the SPM regime, and we observe only a very weak trend
(Fig. 3c). In a general sense, an increase in saturation magne-
tization with nanoparticle diameter is observed for Fe3O4

nanoparticles, while a slight decrease in saturation magnetiza-
tion with diameter is observed in Fe3O4@SiO2. This difference
in behavior could be attributed to surface effects at the interface
between the two materials, although due to the effect of sample
mass error, it is important to exercise caution when considering
saturation magnetization. The difference in error of the sample
mass is roughly 102 times larger than the error in magnetic
moment. To demonstrate the effect of error, 1000 samples
following randomized normal distributions in magnetic
moment and mass with corresponding typical errors were
generated and plotted as a histogram of magnetic moment per
gram (Fig. S7†). For these reasons, parameters based on
susceptibility (g, g−1, cmax, clinear) can supplement saturation
magnetization to better describe the overall magnetic proper-
ties of SPM nanoparticles. The use of susceptibility-based terms
is demonstrated in Fig. 3f and g, as both cmax and g−1 exhibit
a strong linear dependence on nanoparticle diameter. By
comparison, only a weak trend is evident in Ms vs. d in (Fig. 3c),
highlighting that g is determined from the distribution
Chem. Sci., 2023, 14, 7589–7594 | 7591
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Fig. 3 Magnetic properties. Plots of isothermal magnetization vs.magnetic field for (a) Fe3O4 and (b) Fe3O4@SiO2 at 300 K. (c) Plot of saturation
magnetization vs. nanoparticle diameter (nm). Plots of derivative to fit (magnetic susceptibility) vs. magnetic field for (d) Fe3O4 and (e) Fe3-
O4@SiO2 at 300 K. (f) Plots of cmax vs. nanoparticle diameter (nm) and (g) g−1 vs. nanoparticle diameter (nm).

Fig. 4 Plots of magnetic parameters for large dataset of Fe3O4

nanoparticles, plotted in per g of sample. (a) Plot ofMs vs. d. (b) Plot of
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function only and thus decorrelated from the scaling of the
magnetization curve.

The effect of interparticle interactions via dipolar coupling is
commonly neglected in measurements of nanoparticle SPM due
to assumptions about its relative strength or how the behavior
shouldmanifest. It has been shown that the introduction of large
silica shells can drastically reduce interparticle interactions
compared to other methods. Indeed, from our ZFC-FC
measurement, stark differences are observed between interact-
ing vs. non-interacting samples (Fig. S8†). While non-interacting
Fe3O4 nanoparticles are expected to exhibit a rise in the FC curve
with decreasing temperature below the blocking temperature, as
dipolar coupling strength increases, Fe3O4 nanoparticles (e.g.,
randomly-close-packed powder assemblies) will exhibit a slight
dip in the FC curve below the blocking temperature.40,41 Addi-
tionally, the non-interacting case results in a sharper ZFC curve.
All ve Fe3O4@SiO2 lack signatures of interparticle interactions,
conrmed by the rise in the FC curves below the blocking
temperature and a signicant enhancement in peak sharpness
(Fig. S9b†). To compare both nanoparticle sets, the Fe3O4 mass
percentage in Fe3O4@SiO2 was determined by EDX (Table S2†).
In applications such as MPI and granular magnetoresistance, the
sharpness of the magnetization curve directly correlates with
performance. In the absence of dipolar coupling, cmax and g−1

increase across all sizes, indicating a sharpening of the dM/dH
peak. For example, the 12.3 nm sample exhibits an increase in
cmax of 106% between Fe3O4 and Fe3O4@SiO2.

As a test of the trends observed with cmax and g−1, an anal-
ysis across a larger dataset was performed (Fig. 4, Table S4†). An
identical analysis was conducted using 22 Fe3O4 samples,
synthesized over a period of two years with variations in iron
oleate synthetic methods, and with diameters ranging from
4 nm to 14 nm. Each 300 K magnetization curve was t to eqn
(3). In a similar fashion to the smaller dataset, the larger dataset
also exhibits a weak dependence of Ms on diameter (R2 = 0.37)
7592 | Chem. Sci., 2023, 14, 7589–7594
with a stronger relationship of cmax (R
2 = 0.88) and g−1 (R2 =

0.88) vs. diameter, thus demonstrating the viability of this
method. The collection, analysis, and statistical modelling of
cmax vs. d. (c) Plot of g
−1 vs. d.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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large datasets holds the potential to uncover previously unob-
served trends in magnetic nanoparticles and help identify
impurities, phase mixtures, multi-domain relaxation effects,
and other synthetic challenges oen obscured by qualitative or
overly parameterized models.

Following the strong trend of maximum magnetic suscepti-
bility as a function of diameter, the ability to predict and target
specic magnetic properties can become trivial. This may prove
useful in biological and sensing applications requiring maximal
magnetic susceptibility response within a targeted eld range.
For example, in MPI, the g parameter (HWFM of c vs. d) is
indicative of spatial resolution.38 Another example is in nano-
composite magnetoresistance, where predicting the structure–
property relationship correlates with magnetoresistance
percentage and curve shape.4
Fig. 5 Magnetic data for a physical mixture of 5.4 nm Fe3O4@SiO2 and
12.3 nm Fe3O4@SiO2. (a) Plot of normalized zero-field cooled
magnetization vs. temperature from 5–300 K under an applied field of
0.01 T. (b) Plot of isothermal magnetization vs. magnetic field for the
physical mixture. The fit is shown in black, with contributions from
5.4 nm and 12.3 nm shown in red and purple, respectively. The fit was
carried out using a sum of two unique Cauchy functions, with a relative
ratio between the two, p, as an additional fit parameter. The g and Hc

parameters from the individual samples (Table S3†) were held
constant, whileMs and clinear were allowed to vary to account for mass
errors. (c) Plot of magnetic susceptibility vs. magnetic field, with
contributions from the 5.4 nm and 12.3 nm shown in blue and orange,
respectively. And (e) Fe3O4@SiO2 at 300 K. (f) Plots of cmax vs. nano-
particle diameter and g−1 vs. nanoparticle diameter.

© 2023 The Author(s). Published by the Royal Society of Chemistry
As previously discussed, superparamagnetic nanoparticles
are typically characterized with their native long-chain ligands
present and thus contain a signicant percentage (10–25% w/w)
of diamagnetic organic material. The presence of diamagnetic
material is wholly accounted for by the linear susceptibility
term, clinear. Therefore, any diamagnetic contribution can be
effectively subtracted out, leaving just the contribution from the
SPM portion. This concept is also observed in the Fe3O4@SiO2

samples, as the diamagnetic contribution from silica is entirely
accounted for with clinear.

Extending this concept to multiple independent SPM
signals, the Cauchy method can deconvolute contributions
from magnetic materials beyond the simple case of neat oleate
bound and silica shelled iron oxide nanoparticles. While any
sum of Cauchy distributions within an isolated particle will
form a single Cauchy distribution (e.g., representing a more
complex energy manifold), a separate population of isolated
magnetic components with different properties will be repre-
sented with a unique Cauchy function. To show this experi-
mentally, a physical mixture was made with 5.4 nm Fe3O4@SiO2

and 12.3 nm Fe3O4@SiO2 to simulate a bimodal distribution
that can result from colloidal synthesis. Contributions from
each sample are observed in the ZFC-FC measurement (Fig. 5a).
The magnetization curve was t to a linear combination of two
unique Cauchy functions (Fig. 5b) modied by a term, p, to
account for the relative ratio of each component. The plot of
magnetic susceptibility vs. magnetic eld (Fig. 5c) of the
mixture demonstrates that two unique distributions are
necessary to fully describe the magnetization curve, while
a single Cauchy CDF is a poor t (Fig. S10†). A test for multiple
distribution ts to interpret magnetization data may prove
useful in applications beyond the SPM nanoparticles studied in
this work. At minimum, it can help to prevent misinterpretation
of mixed samples where qualitative interpretation of the data
may result in poor conclusions and perpetuate synthetic
difficulties.

Conclusions

Statistical modelling is shown to improve the quantication of
experimentally complex data of SPM nanoparticles. A general-
ized curve-tting model is demonstrated based on the Cauchy
distribution to better describe the overall magnetization curve.
The preservation of underlying statistics is imperative for
making accurate comparisons between datasets, with the
potential to discover stronger trends, built upon new models,
ultimately aiding material design.

Data availability

All data underlying the ndings of this study, along with any
associated in-house code for processing and computational
modeling, have been deposited in a structured and version-
controlled repository on Zenodo. The dataset and codebase are
openly available under the MIT License to foster transparency
and reproducibility. These data can be accessed via the
following DOI: 10.5281/zenodo.7987572.
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