






has the latest timestamp among all first messages in all queues.

Q4 is the pivot queue, and Q1, Q2, Q3 are non-pivot queues.

C. Selected Set

The selected set is the one with the smallest time disparity

among all regular message sets including the pivot.

Definition 3 (Selected Set). Let Λ be the set of all regular

message sets consisting of messages currently in queues (either

arrived or predicted) and including the pivot. The selected set

has the smallest time disparity among all elements in Λ.

If multiple elements in Λ all have the smallest time dis-

parity, the selected set S = {m1, ...,mN} must satisfy the

following condition: there does not exist another element

S′ = {m′
1, ...,m

′
N} in Λ s.t. (i) ∆(S′) = ∆(S) and (ii)

∃mi ∈ S : t(m′
i) < t(mi).

If only one regular message set in Λ has the smallest time

disparity, it is clearly the selected set. If multiple regular mes-

sage sets in Λ all have the smallest time disparity, according

to the second half of Definition 3, the one with as-early-as-

possible messages is the selected set. For example, in Fig. 3,

among all regular message sets including the pivot m1
4, the

two sets S = {m2
1,m

2
2,m

3
3,m

1
4} and S′ = {m2

1,m
2
2,m

4
3,m

1
4}

both have the smallest time disparity 6. According to the sec-

ond half of Definition 3, S′ is not the selected set because there

exists S containing m3
3 which is earlier than its correspondence

m4
3 in S′. S is the selected set, because there is no other regular

message set containing the pivot has the same time disparity

as S and satisfies ∃mi ∈ S : t(m′
i) < t(mi).

Although the selected set is defined as selecting among all

regular message sets including the pivot, which could be ex-

ponentially many, it is found by a polynomial-time procedure

in its implementation in the ROS Message Synchronizer. As

we aim to provide a high-level model focusing on what is

the result generated by the policy, but not how the results are

obtained, we will not further discuss details of its polynomial-

time implementation in ROS.

D. The ApproximateTime Policy

Algorithm 1 shows the pseudo-code for the Approximate-

Time policy to select and publish the output message set

when a new message arrives. Suppose at the current moment

Qi originally has k messages {m1
i , ...,m

k
i }, where mk

i is a

predicted message (recall that the last message in a queue

must be a predicted message). The algorithm first updates Qi

with the newly arrived message mi (Line 1 to 3), by discarding

the original predicted message mk
i , putting the newly arrived

message to the end of Qi as mk
i , and finally generating a new

predicted message mk+1
i with t(mk+1

i ) = t(mk
i ) + TB

i and

put it to the end of Qi.

Next, the algorithm repeatedly checks whether each queue

currently contains at least one arrived message or not. If not,

i.e., some queue only has a predicted message, it is impossible

to publish an output message set anyway, so the algorithm

simply stops without any further checking. If yes, it first sets

the current pivot according to Definition 2 (Line 5). Then it

Algorithm 1: Publish output message sets when a new

message arrives under the ApproximateTime policy

Input: the newly arrived message mi

1 discard the last message in Qi;

2 put mi to the end of Qi;

3 generate a predicted message with timestamp

t(mi) + TB
i and put it to the end of Qi ;

4 while each queue has at least one arrived message do

5 mP ← the current pivot (Definition 2);

6 if all predicted messages’ timestamps > t(mP)
then

7 S ← the selected set (Definition 3) ;

8 if all messages in S are arrived messages then

9 publish S ;

10 for each mj ∈ S do

11 discard mj and all messages before mj

in the corresponding Qj ;

12 else

13 return;

14 else

15 return;

16 return;

checks whether all predicted messages’ timestamps are no

earlier than t(mP) (Line 6). If not, the algorithm returns

without publishing any output message set (Line 15), the

intuition behind which is explained as follows. If a predicted

message mk in some queue Qk has t(mk) < t(mP), then

the timestamps of the arrived messages (if any) in this queue

are even smaller, so this predicted message has the closest

timestamp to the pivot mP. Therefore, the next message to

arrive in this queue has a chance to make a better output

message set than the existing arrived messages in Qk, so it

makes sense to wait until the next message of Qk arrives (and

its actual timestamp is revealed) to make the decision1.

If all predicted messages’ timestamps are no earlier than

t(mP), the algorithm will find the selected set S according

to Definition 3 (Line 7), and checks whether all messages

in S are arrived messages (Line 8). If not, i.e., S contains

at least one predicted message, S cannot be published and

the algorithm stops (Line 13). If yes, S is published as an

output message set (Line 9). After that, for each queue Qj ,

the corresponding message mj in S and all messages in Qj

before mj are discarded.

From Algorithm 1, we can see that under the Approximate-

Time policy, the output message sets are decided based on the

messages’ timestamps, but not their arrival times. The arrival

1If the checking of Line 6 is removed, the selected set includes a predicted
message and thus cannot be published anyway. Therefore, removing this
checking (i.e., removing Line 6, 14 and 15) actually does not change the result
of Algorithm 1. However, the checking in Line 6 guarantees the existence of
m

Y

i
when finding the selected set as will be discussed in the Section IV, so

we keep it in our abstract model.













Lemma 7. Let SPUB = {m1, ...,mN} be an output message

set published at time t. The required size of Qi for SPUB is at

most ⌊
t−a(m1

i
)+DW

i
−DB

i

TB

i

⌋+ 1.

Proof. If a message is in Qi at time t, its timestamp is no

later than t − DB
i . On the other hand, the timestamp of mi

is no earlier than a(m1
i )−DW

i . Therefore, the total length of

the time interval to generate messages that are after m1
i and

have arrived at Qi by t is at most t−a(m1
i )+DW

i −DB
i . The

number of such messages is at most ⌊
t−a(m1

i
)+DW

i
−DB

i

TB

i

⌋, and

plus m1
i itself, the required size of Qi at t is upper-bounded

by ⌊
t−a(m1

i
)+DW

i
−DB

i

TB

i

⌋+ 1.

Lemma 8. Let SPUB = {m1, ...,mN} be an output message

set published at time t and mP ∈ SPUB is the pivot. Then for

each mi ∈ SPUB and m1
i is the corresponding earliest message

in Qi, we have

a(mP)− a(m1
i ) ≤ ∆+ TW

i +DW
max −DB

i

where ∆ denotes the RHS of (12).

Proof. By Theorem 1, for each mj ∈ SPUB, we know

t(mj) − t(mi) ≤ ∆. Since t(mi) ≤ t(m1
i ) + TW

i , we have

t(mj)− t(m1
i ) ≤ ∆+ TW

i . On the other hand, we also have

a(mj) − t(mj) ≤ DW
j and a(m1

i ) − t(m1
i ) ≥ DB

i . Putting

them together proves

a(mj)− a(m1
i ) ≤ ∆+ TW

i +DW
max −DB

i

Since mP ∈ SPUB, the lemma is proved.

Lemma 9. Let SPUB = {m1, ...,mN} be an output message

set published at time t and mP is the pivot in SPUB, then

t− a(mP) ≤ TW
max +DW

max −DB
min

Proof. Let t′ denote the earliest time point at which each non-

pivot contains at least one arrived message with timestamp

larger than t(mP). By the definition of t′, some message arrives

at t′ and thus Algorithm 1 is executed at t′. We will first

prove SPUB is published no later than t′. We prove this by

contradiction, assuming SPUB is published after t′.

By the definition of t′, the while-condition in Line 4 and

the if-condition in Line 6 in Algorithm 1 are both true, so

the selected set at t′ must not be SPUB (otherwise SPUB is

published at t′). Let S be the selected set at t′. First, S does

not contain any predicted message, since for each Qi there

exists an arrived message with timestamp later than t(mP)
(so the predicted message is “further away” from the mP

than this arrived message). Therefore, the selected set S must

be published, so the pivot mP must not be in S (since the

same message cannot be included in two published output

message sets). Therefore, for the queue of mP, S includes a

message after mP. After S is published, all messages before

the published message in S are discarded, and in particular,

mP is discarded, which contradicts that mP is in SPUB which is

published after t′. Therefore, our assumption is false, so SPUB

is published no later than t′, i.e., t ≤ t′.

We assume message m′
i of Qi arrived at t′ and triggers the

execution of Algorithm 1, so m′
i is the first message in Qi

with timestamp t(m′
i) ≤ t(mP) + TW

i . Assume the pivot mP

is in queue Qk, then t(mP) ≤ a(mP)−D
B
k , so in summary we

have t(m′
i) ≤ a(mP)−D

B
k + TW

i . On the other hand, since

a(m′
i) = t′, we know t(m′

i) ≥ t′−DW
i . Putting them together,

we have t′ ≤ a(mP) + TW
i +DW

i −DB
k ≤ a(mP) +DW

max +
TW
max −DB

min, and since t ≤ t′, the lemma is proved.

Theorem 2. The required size of Qi for any published output

message set is upper bounded by
⌊

∆+ TW
max + TW

i + 2DW
max +DW

i −DB
min − 2DB

i

TB
i

⌋

+ 1

where ∆ denotes the RHS of (12).

Proof. The theorem is proved by combining Lemma 7,

Lemma 9 and Lemma 8.

VI. EXPERIMENTS

We conduct experiments to both validate our high-level

model of the ApproximateTime policy and evaluate the analysis

precision of the time disparity bound in Theorem 1. The source

codes of all experiments are anonymously available online at

https://github.com/ruoxianglee/synchronizer.

A. Model Validation

We implement Algorithm 1 (called our implementation) in

the Message Filter package of ROS2 (the Dashing version) and

let it run in parallel with the original implementation of the Ap-

proximateTime policy in ROS2. We implement Algorithm 1 in

a straightforward way, without any performance optimization,

to reduce the chance of introducing implementation errors.

When a new message arrives at the Message Synchronizer, our

implementation and the original implementation will update

their own queues, select and publish the output message

set independently. We compare all the output message sets

published in the two implementations to see if they are the

same. We run the experiments on an Intel i7 desktop computer

with ROS2 Dashing installed on Ubuntu 18.04, using artificial

input messages generated using timers with different settings,

including different number of input channels (from 2 to 9,

as currently the ROS Message Filter supports up to 9 input

channels), different timestamp separation of each channel (TB
i

chosen between 10ms and 100ms, and the ratio between TB
i

and TW
i chosen between 1 and 1.8). For the experiments in

each setting, the delay experienced by the messages randomly

varies between 1ms and 40ms. We in total conduct experiments

with 700 different settings, and run the system for 0.5 hours in

each setting. In all these experiments, the output message sets

produced by our implementation and the original implementa-

tion are exactly the same. Besides artificial input messages, we

also conduct experiments with sensor data inputs generated by

the SVL simulator [13] (including camera, LiDAR and IMU

sensors in SVL, with different frequency settings), where the

outputs of the two implementations are also the same. These

experiments justify the correctness of our model with high

confidence.





software development, [21] proposes a multipurpose low-

overhead framework for tracing ROS application.

Some work aimed to improve the real-time capability of

ROS from the system architecture perspective. [22] presented

a real-time ROS architecture for separately executing real-time

and non-real-time tasks on a integrated OS environment with

multi-core processors. [23] proposed an offline scheduling

framework for ROS considering both ROS scheduling restric-

tions and CPU/GPU coordination mechanism. [24] presented a

priority-based message transmission mechanism to reduce the

worst-case execution time for node processing and inserting

a sync node to harmonize the frequencies of different sensor

data to improve the time disparity. In [25], a fixed-priority

based DAG scheduling framework was proposed with end-

to-end latency guarantees. The authors also introduced a

synchronization mechanism to reduce the time disparity, but

their work is based on measurement for the specific case but

does not provide any formal analysis.

Some recent work has been done on formal real-time

performance analysis of ROS2. [26], [27] modeled the single-

thread Executor in ROS2 and studied response time analysis

of processing chains executing on it. [28] redesigns the ROS2

executor with a fixed priority assignment policy to overcome

the limitations of the default scheduling strategy of ROS2, and

analyze the end-to-end latency based on the proposed schedul-

ing policy. [29] proposes an automatic latency manager and

apply existing real-time scheduling theory to latency control

of the critical callback chains in ROS2 applications, which

adaptively estimates and adjusts the scheduling parameters

without the user’s involvement. In [30], the authors take both

the starvation freedom and execution-time variance of the

default ROS2 scheduler into consideration, and propose a more

accurate response time analysis for processing chains. [31]

presents two new executors based on the thread dispatch model

and producer-consumer model and developed corresponding

response time analysis techniques. The above work all focus

on the executor component in ROS, while in this paper we

consider another important component: the Message Synchro-

nizer.

Past work on real-time scheduling and analysis studied

different real-time performance metrics, such as response time

[32], [33], tardiness [34] and data freshness [35]. However,

existing analysis and design techniques developed oriented to

these constraints do not apply to the analysis of time disparity

studied in this paper.

VIII. CONCLUSION

In this paper, we model the ApproximateTime message

synchronization policy in ROS and formally analyze the

worst-case time disparity of their output message sets. We

conduct experiments to evaluate the precision of the developed

time disparity upper bound against the maximal observed

time disparity in real execution, and compare them with

the synchronization policy in Apollo CyberRT. Experiment

results show that our analysis has good precision and the

synchronization policy in ROS greatly outperforms Apollo

CyberRT in terms of both observed worst-case time disparity

and the theoretical bound. This is the first step towards the

analytical study of the data synchronization in multi-sensor

data fusion regarding the worst-case time disparity metrics,

and many problems along this direction are still open. For

example, the required queue size bound derived in this paper

is only to show that our time disparity analysis is applicable

without assuming infinite queue sizes, but it is unclear whether

we could develop tighter bound than that, which will be a topic

for our future work. We will also study how to improve the

design and implementation of the ROS Message Synchronizer

for average-case time disparity performance while maintaining

the same (or even better) worst-case time disparity bound.
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APPENDIX

Theorem 3. Under the Apollo CyberRT synchronization pol-

icy, Q1 is the master channel, and Q2, ..., QN are slave

channels. The time disparity ∆(SPUB) of a published output

message set SPUB = {m1, ...,mN} is upper-bounded by:

∆(SPUB) ≤ max

{

max
2≤i≤N

{

TW
i +DW

i

}

−DB
1 , DW

1 −min
2≤i≤N

{

DB
i

}

}

Proof. For m1 we know

a(m1)−DW
1 ≤ t(m1) ≤ a(m1)−DB

1 (14)

For an arbitrary slave queue Qi (2 ≤ i ≤ N ), let m′
i be the

next message after mi. We have

t(mi) +DB
i ≤ a(mi) (15)

a(m1) ≤ a(m′
i) ≤ t(m′

i) +DW
i (16)

t(m′
i) ≤ t(mi) + TW

i (17)

Combing (14)-(17), we have

t(mi)+DB
i −D

W
1 ≤ t(m1) ≤ t(mi)+TW

i +DB
i −D

B
1 (18)

• If t(m1) > t(mi), by (18), we have

t(m1)− t(mi) ≤ TW
i +DW

i −DB
1

• If t(m1) ≤ t(mi), by (18), we have

t(mi)− t(m1) ≤ DW
1 −DB

i

The theorem can be proved by combining these two cases.
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