Worst-Case Time Disparity Analysis of Message

Synchronization in ROS

Ruoxiang Li', Nan Guan!, Xu Jiang?, Zhishan Guo?, Zheng Dong* and Mingsong Lv?

1City University of Hong Kong, Hong Kong SAR
3North Carolina State University, US

Abstract—Multi-sensor data fusion is essential in autonomous
systems to support accurate perception and intelligent decisions.
To perform meaningful data fusion, input data from different sen-
sors must be sampled at time points in close propinquity to each
other, otherwise the result cannot accurately reflect the status of
the physical environment. ROS (Robotic Operating System), a
popular software framework for autonomous systems, provides
message synchronization mechanisms to address the above prob-
lem, by buffering messages carrying data from different sensors
and grouping those with similar timestamps. Although message
synchronization is widely used in applications developed based
on ROS, little knowledge is known about its actual behavior and
performance, so it is hard to guarantee the quality of data fusion.
In this paper, we model the message synchronization policy in
ROS and formally analyze its worst-case time disparity (maximal
difference among the timestamps of the messages grouped into
the same output set). We conduct experiments to evaluate the
precision of the proposed time disparity upper bound against the
maximal observed time disparity in real execution, and compare
it with the synchronization policy in Apollo Cyber RT, another
popular software framework for autonomous driving systems.
Experiment results show that our analysis has good precision and
ROS outperforms Apollo Cyber RT in terms of both observed
worst-case time disparity and the theoretical bound.

I. INTRODUCTION

Modern autonomous systems, e.g., autonomous vehicles,
robots and drones, heavily rely on multi-sensor data fusion
to accurately perceive the surrounding physical environment
and make intelligent decisions [1], [2]. Usually, the fusion
algorithms are developed under the assumption that input
data from different sensors are sampled at the same time.
However, this assumption rarely holds in reality, due to both
the intrinsic hardware characteristics (e.g., different sensors
may have different sampling frequencies and there are clock
drifts among different sensors) and the software-incurred delay
(e.g., due to preprocessing and transfer of the sensor data).
In this paper, we use time disparity (which will be formally
defined in Section II) to describe the temporal inconsistency
of input data from different sensor sources. The fusion results
will be much less useful or even completely meaningless if
the time disparity is too large. For example, in autonomous
vehicles, perception of the external environment usually relies
on fusion of independent measurements from multiple sensors.
If the measurements from two sensors, e.g., a camera and a
LiDAR, happened at two substantially different time points,
the fusion of their information will not be useful to reconstruct
an accurate view of the surrounding environment [3].
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Fig. 1: The role of Message Synchronizer. Arrows denote mes-
sages and the number above each arrow denotes its timestamp.

ROS (Robotic Operating System) [4] is a popular software
framework for developing robotic systems. ROS has been used
by hundreds of thousands of developers to power a large
number and different types of robots and other autonomous
systems. ROS provides a Message Synchronizer [5] to reduce
the time disparity of data inputs to fusion algorithms. As
shown in Fig. 1, the Message Synchronizer receives input
messages from multiple channels. Each message carries data
from some sensor and has a timestamp indicating when the
data was sampled. The Message Synchronizer selects one
message from each input channel to form an output message
set and sends it to the subsequent data fusion component.
The Message Synchronizer is widely used in ROS-based
applications. For example, Autoware [6], [7], an open-source
software framework for autonomous driving systems based on
ROS, uses the Message Synchronizer to synchronize camera
data and 3D LiDAR data before sending them to the data
fusion node. However, although widely used, ROS provides
little public information about how its Message Synchronizer
actually works, and in particular, what is the exact policy
used to select input messages to form the output message set.
Therefore, most developers have to use it as a black box, and
rely on testing to examine whether the time disparity of its
output can meet the fusion algorithm’s requirement.

In this paper, we model the ROS Message Synchronizer
and formally derive a tight upper bound of the worst-case
time disparity of its output message sets. Different from
testing which only covers a limited part of all possible system
behaviors and thus in general is not able to capture the worst-
case time disparity, our formal analysis provides an absolute
guarantee for the maximal time disparity of the output message
set under any circumstance at run time. Therefore, as long
as the derived bound falls into the tolerable range of the
fusion algorithm, it is ensured that the fusion algorithm will
always offer expected quality at run time. Such guarantees are



especially important to the design of mission-critical and safe-
critical systems, in which (occasional) low-quality outputs may
lead to serious consequences.

Our formal analysis is also useful to systems that are less
critical and can tolerate occasional low-quality outputs of the
fusion algorithm (and thus can tolerate occasional violation of
the expected time disparity range). This is because our analysis
results provide useful information to efficiently guide system
design. In testing, when the observed time disparity is too
large, there is no guiding information about how to revise the
system design. The common practice is to gradually tune the
system parameters and redo the testing, and iterate until the
observed time disparity is satisfactory. In contrast, the worst-
case time disparity bound derived in this paper has a closed-
form relationship with the timing parameters of the sensor
data streams, by which we can quickly find the proper range
of these parameters to meet the requirement. This is much
more efficient than the testing-based approach.

We conduct experiments to evaluate the precision of the
time disparity upper bound developed in this paper against
the maximal observed time disparity in real execution in
ROS with various parameter settings. Experiment results show
that our analysis has good precision. We also compare the
synchronization policy in ROS with the (simple) policy used
in Apollo Cyber RT [8], another popular open-source software
framework for autonomous driving systems. Experiment re-
sults show that the synchronization policy in ROS outperforms
Apollo Cyber RT in terms of both observed worst-case time
disparity and the theoretical bound.

II. PROBLEM MODEL

In this section, we introduce the system model and the prob-
lem to be solved in this paper. The system receives inputs from
several sensors, each repeatedly generating messages carrying
sensor data. Each message is associated with a timestamp,
which represents the time when its carried sensor data is
sampled. Each message may experience some delay (due to,
e.g., pre-processing or data transfer) before arriving at the
Message Synchronizer. The Message Synchronizer, according
to some synchronization policy, decides how to select arrived
messages from different sensors to form an output message
set and publishes it. We will introduce the synchronization
policy used in ROS Message Synchronizer in Section III. Our
target is to analyze the worst-case time disparity, i.e., the
maximum difference among the timestamps of all messages in
an output message set published by the Message Synchronizer.
In the following, we will introduce the notations to describe
the relevant aspects of the system and then formally define the
worst-case time disparity metric.

The Message Synchronizer has N input channels. Each
channel has a buffer queue Q); to temporally store the messages
arrived at this channel. For this moment, we assume that
each queue (; is sufficiently long and thus no overflow
occurs. Later in Section V, we will get rid of this assumption
by providing upper bounds of the required queue size. For
simplicity of presentation, we also use (); to refer to the
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Fig. 2: An example, where the x-axis represents the timestamp.

i'" input channel of the Message Synchronizer, when it is
unambiguous from the context.

We use m” to represent the k*" message currently in queue
Q;. For simplicity, sometimes we also use m; to represent a
message in queue (); when there is no need to specify which
message it is exactly. BEach message m¥ has a timestamp,
denoted by t(mF¥), which represents the time when the sensor
data carried by m} was sampled. The difference between the
timestamps of two consecutive messages in Q; is at least 7.2
and at most 7}V (both TP and T}V are strictly greater than
0). For the special case where a sensor periodically generate
messages, T2 = T)V. We assume that the messages in the
same queue (Q; arrive in the same order as their timestamps,
ie., Vk: t(mF) < t(mFth).

A message may experience some delay before arriving at the
Message Synchronizer. Therefore, the timestamp of a message
is in general different from the time when the message arrives
at the Message Synchronizer. We use D and D!V to represent
the best-case and worst-case delay experienced by messages
in Q;, respectively, and use a(m¥) to denote the time when
message m¥ arrives at the Message Synchronizer, so we have

t(mF) + DB < a(mF) < t(mF) + DV

The Message Synchronizer selects one message from each
queue @; to form an output message set and publishes it.
We say a message set S is a regular message set if S has N
elements and each element in S comes from a different queue.
An output message set published by the Message Synchronizer
must be a regular message set. The time disparity of a set of
messages is defined as:

Definition 1 (Time Disparity). Let S = {m1, ..., my} be a set
of messages. The time disparity of S, denoted by A(S), is the
maximal difference between the earliest and latest timestamps
of messages in S:

A(S) = max{t(mi)} — gj}iens{t(mj)}

For example, in Fig. 2, the time disparity of regular message
set {m$,m3,mi} is 24 — 22 = 2, and the time disparity of
regular message set {m?, m3, m3} is 22 — 16 = 6.

The problem to solve in this paper is to analyze the worst-
case time disparity, i.e., the maximal time disparity of output
message sets produced by the Message Synchronizer.

III. ROS MESSAGE SYNCHRONIZATION POLICY

The ROS Message Synchronizer has two synchronization
policies: the ExactTime policy [9] and the ApproximateTime
policy [10]. The ExactTime policy is simple: it only selects



messages from different input channels with exactly the same
timestamp to form an output set, and discards messages that
cannot find their exact matches. The time disparity of any
output message set published under the ExactTime policy
is trivially 0. However, in reality it is too restrictive to
require data from different sensors to have exactly the same
timestamp, so the ExactTime policy is rarely used in practice.
Therefore, we will limit our attention to the widely used
ApproximateTime policy, which is much more complex and
difficult to analyze. Although ROS is evolving actively over
years, its Message Synchronizer component is stable. We have
checked all ROS 2 C++ versions until the latest Humble [11],
and ROS 1 C++ versions since Diamondback [12], where the
message synchronization policies are the same, so the model
and results of this paper apply to all these versions.

The ApproximateTime policy aims to find and publish
regular message sets with as small time disparity as possible.
The ApproximateTime policy is quite complex and has many
optimization and implementation details. It is both infeasible
and unnecessary to build a full model equivalent to its source
code. Instead, we will develop a high-level abstract model
which captures the essential aspects relevant to the analysis
problem studied in this paper, and exclude those irrelevant
low-level details. In particular, we will only model what is
its output, rather than how the output is obtained in its actual
implementation.

It is a natural question whether our abstract model can cor-
rectly represent the ApproximateTime policy itself. To address
this, we conducted intensive experiments to empirically valid
our model by comparing the actual outputs of its original
implementation in ROS and the expected outputs according
to our abstract model. As will be shown in Section VI-A, the
actual outputs match the expected outputs according to our
model in all experiments. Although this still does not give any
absolute assurance, it should be fair to claim the correctness
of our abstract model with high confidence. In the following,
we present our abstract model, starting with introducing some
important concepts used in the ApproximateTime policy.

A. Predicted Message

Each queue @Q; stores not only messages that are already
arrived (called arrived messages), but also an artificial pre-
dicted message at the end of @Q;. A predicted message is
never included in output message sets. Instead, it is only used
to provide auxiliary information in the selection procedure.
mk represents the message stored in the k' position in Q;,
no matter it is an arrived message or a predicted message.
If Q; currently stores messages {m},...,mk}, mF must be a
predicted message and mj}, ..., mffl are all arrived messages.

The timestamp of a predicted message mY is set to be

t(my) =t(m{~Y) + 17

where mffl is the last arrived message in ();, and TiB is

the minimal difference between two consecutive messages’
timestamps in this channel. When the system starts at time
0, a predicted message with timestamp O was initially put into
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Fig. 3: An example illustrating the predicted messages, pivot
and selected set.

each queue. Note that sometime a queue may only have a
predicted message but no arrived message.

By considering the predicted messages, the Approximate-
Time policy can exploit the possibility that the arrived mes-
sages may team up with some messages that will arrive in the
future to form an output message set with even smaller time
disparity. For example, suppose there are two input channels
Q1 and Qo, with T8 = TV = TP = T}V = 10. Suppose
currently there is only one arrived message m} in Q1 with
t(m}) = 2 and only one arrived message m3 in Qo with
t(m3) = 10. If we use m} and m3 to form an output message
set, its time disparity is t(m3)—t(mi) = 10—2 = 8. However,
as messages in ()1 arrives periodically, the timestamp of the
next message to arrive at Q; will be t(mi)+T/V =2+10 =
12, so it is actually better to wait the next message in 1 to
arrive and let it team up with m%, which results in a smaller
time disparity 12 — 10 = 2.

In general, T}V is larger than T2, so the actual timestamp of
the next message arrived at (J; may be later than the timestamp
of the predicted message. For example, we change T}V of the
above example to 20 and assume that the actual timestamp of
the next message of (); is 22. In this case, after m% arrives (and
its actual timestamp is known), the ApproximateTime policy
will select m} and m3 to form the output message set because
teaming up m? and m3 will lead to larger time disparity, as
will be introduced later in this section.

B. Pivot

Definition 2 (Pivot). Let S = {m},...,m% }, where each m}
is the first arrived message in ;. The pivot myp is the one
with the largest timestamp among all elements in S*.

If several messages in S* all have the latest timestamp, the
message with the maximum queue number is the pivot.

Intuitively, the pivot is a message that must be included in
the next published output message set, and other messages will
be selected based on how close (in terms of timestamps) they
are to the pivot. The pivot changes over time as the status of
the queues changes.

The queue containing the pivot is the pivot queue, and other
queues are non-pivot queues. For example, suppose the current
queue status is shown in Fig. 3, then m] is the pivot since it



has the latest timestamp among all first messages in all queues.
Q4 is the pivot queue, and @1, @2, Q3 are non-pivot queues.

C. Selected Set

The selected set is the one with the smallest time disparity
among all regular message sets including the pivot.

Definition 3 (Selected Set). Let A be the set of all regular
message sets consisting of messages currently in queues (either
arrived or predicted) and including the pivot. The selected set
has the smallest time disparity among all elements in A.

If multiple elements in A all have the smallest time dis-
parity, the selected set S = {my,....,my} must satisfy the
following condition: there does not exist another element
S = {my,...m} in A st (i) A(S") = A(S) and (ii)
Im; € S :t(m]) < t(my).

If only one regular message set in A has the smallest time
disparity, it is clearly the selected set. If multiple regular mes-
sage sets in A all have the smallest time disparity, according
to the second half of Definition 3, the one with as-early-as-
possible messages is the selected set. For example, in Fig. 3,
among all regular message sets including the pivot m}, the
two sets S = {m?,m3,m3, m}} and S’ = {m?,m3, mi, mi}
both have the smallest time disparity 6. According to the sec-
ond half of Definition 3, S’ is not the selected set because there
exists S containing m3 which is earlier than its correspondence
m§ in S’. S is the selected set, because there is no other regular
message set containing the pivot has the same time disparity
as S and satisfies Im; € S : t(m}) < t(my).

Although the selected set is defined as selecting among all
regular message sets including the pivot, which could be ex-
ponentially many, it is found by a polynomial-time procedure
in its implementation in the ROS Message Synchronizer. As
we aim to provide a high-level model focusing on what is
the result generated by the policy, but not how the results are
obtained, we will not further discuss details of its polynomial-
time implementation in ROS.

D. The ApproximateTime Policy

Algorithm 1 shows the pseudo-code for the Approximate-
Time policy to select and publish the output message set
when a new message arrives. Suppose at the current moment
Q; originally has k messages {m},...,m¥}, where mF is a
predicted message (recall that the last message in a queue
must be a predicted message). The algorithm first updates Q);
with the newly arrived message m; (Line 1 to 3), by discarding
the original predicted message m¥, putting the newly arrived
message to the end of (; as m¥, and finally generating a new
predicted message m ¥t with t(mF ™) = t(mF) + TF and
put it to the end of Q;.

Next, the algorithm repeatedly checks whether each queue
currently contains at least one arrived message or not. If not,
i.e., some queue only has a predicted message, it is impossible
to publish an output message set anyway, so the algorithm
simply stops without any further checking. If yes, it first sets
the current pivot according to Definition 2 (Line 5). Then it

Algorithm 1: Publish output message sets when a new
message arrives under the ApproximateTime policy

Input: the newly arrived message m;

1 discard the last message in @);;

2 put m; to the end of @Q;;

3 generate a predicted message with timestamp
t(m;) + T and put it to the end of Q; ;

4 while each queue has at least one arrived message do
5 mp < the current pivot (Definition 2);
6 if all predicted messages’ timestamps > t(mp)
then
S < the selected set (Definition 3) ;
8 if all messages in S are arrived messages then
9 publish S ;
10 for each m; € S do
1 discard m; and all messages before m;
L in the corresponding @;;
12 else
13 L return;
14 else
15 L return;
16 return;

checks whether all predicted messages’ timestamps are no
earlier than t(mp) (Line 6). If not, the algorithm returns
without publishing any output message set (Line 15), the
intuition behind which is explained as follows. If a predicted
message my, in some queue Q) has t(my) < t(me), then
the timestamps of the arrived messages (if any) in this queue
are even smaller, so this predicted message has the closest
timestamp to the pivot mp. Therefore, the next message to
arrive in this queue has a chance to make a better output
message set than the existing arrived messages in (g, so it
makes sense to wait until the next message of @)y arrives (and
its actual timestamp is revealed) to make the decision'.

If all predicted messages’ timestamps are no earlier than
t(mp), the algorithm will find the selected set S according
to Definition 3 (Line 7), and checks whether all messages
in S are arrived messages (Line 8). If not, i.e., S contains
at least one predicted message, S cannot be published and
the algorithm stops (Line 13). If yes, S is published as an
output message set (Line 9). After that, for each queue @),
the corresponding message m; in S and all messages in Q;
before m; are discarded.

From Algorithm 1, we can see that under the Approximate-
Time policy, the output message sets are decided based on the
messages’ timestamps, but not their arrival times. The arrival

11f the checking of Line 6 is removed, the selected set includes a predicted
message and thus cannot be published anyway. Therefore, removing this
checking (i.e., removing Line 6, 14 and 15) actually does not change the result
of Algorithm 1. However, the checking in Line 6 guarantees the existence of
m;{ when finding the selected set as will be discussed in the Section IV, so
we keep it in our abstract model.
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Fig. 4: An example illustrating the ApproximateTime policy.

times affect when Algorithm 1 is executed and thus when the
output message sets are published.

E. An lllustrative Example

We use Fig. 4 to illustrate Algorithm 1. The x-axis rep-
resents the timestamp and the messages’ arrival time is not
explicitly depicted in the figure. T2= 30, T.P= T£= 40 and
TV =TV =T¥ = +oc0. The original queue status is shown
in Fig. 4-(a), and at some later time point a message with
timestamp 60 arrives at Q3. Note that T2 is the minimal sep-
aration between the timestamps of two consecutive messages
in U3, and this newly arrived message’s timestamp is larger
than the corresponding predicted message (m3 in Fig. 4-(a)).

This newly arrived message triggers the execution of Algo-
rithm 1. First, Q3 is updated, discarding the original predicted
message, inserting the newly arrived message to (3 as the new
m3 and generating a new predicted message m3, as shown in
Fig. 4-(b). Now each queue has at least one arrived message, so
the while-condition in Line 4 is true. mj is the pivot (denoted
by mp) since it has the largest timestamp among the first
messages of all queues. Since the timestamp of the predicted
message m% is smaller than mp, the if-condition in Line 6 is
false and the algorithm stops.

At some later point, a message with timestamp 50 arrived
at ()2, which triggers the execution of Algorithm 1. After
updating @2 with this newly arrived message, m3 is still the
pivot, as shown in Fig. 4-(c). Now the if-condition in Line 6
is satisfied. The regular message set S = {m?, m3, mi} has
the smallest time disparity, so it is the selected set. Since this
selected set contains only arrived messages (satisfying the if-
condition in Line 8), it will be published and the messages in
S and those messages earlier than the corresponding message
in S are discarded, resulting in Fig. 4-(d).

Algorithm 1 may publish more than one output message
set (i.e., iterate for more than one time in the while-loop).
Suppose the current queue status is shown in Fig. 4-(e). Now
the selected set is {m?,m}, mi}, which cannot be published

since m? is a predicted message. Later, the next messages

in all queues all arrived, but the one in ; has a timestamp
much later than predicted, as shown in Fig. 4-(f). Now the
selected set is {m}, m}, mi}, which are all arrived messages
and can be published. After that, Algorithm 1 enters the second
iteration of the while-loop. Now, as shown in Fig. 4-(g), m}
becomes the pivot and the selected set is {m1i, m}, mi}, which
contains only arrived messages and thus can also be published,
after which the queue status is shown in Fig. 4-(h).

IV. TIME DISPARITY ANALYSIS

This section derives an upper bound of the time disparity
of any output message set published by Algorithm 1. We
assume that the timestamps of any two messages (either in
the same channel or not) are different. This assumption is
only for simplicity of presentation, but does not compromise
the generality of our analysis. If two messages indeed have
the same timestamp, we can treat them as if one’s timestamp
is later than the other’s by an arbitrarily small amount of time.
Our analysis focuses on an arbitrary output message set ST®
published by Algorithm 1 at some time point. Our target is to
upper-bound A(S*"®). We will do this indirectly, by finding a
reference set S* with A(S*) = A(S*®) and derive an upper
bound for A(S*).

A. Reference Set

Let mp denote the current pivot. For each non-pivot queue
Q;, we define m} and m) as:

o mX: the last message in Q; with t(m;) < t(mp).

o m): the first message in Q; with t(m;) > t(mp).
Fig. 5 shows an example illustrating m} and m}. The concepts
of mY and m} only make sense for non-pivot queues. How-
ever, we also define m} = m} = NULL when Q); is the pivot
queue, where NULL is an special value that does not equal
any message (this enables us to use m} and m} for all queues,
without explicitly distinguishing the difference between pivot
and non-pivot queues, which simplifies the presentation).

The definitions of m} and m} by themselves do not
guarantee their existence, i.e., it may be possible that the
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Fig. 5: An example illustrating neighbour set, reference set
and dominated queue (QQs is dominated by Q7).

timestamps of messages in (); are all smaller (or all larger)
than ¢(mp). However, when S*'® is published, m} and m}
indeed both exist:

o If the timestamps of all messages in Q; are larger than
t(mp), in particular, the timestamp of the first message
in Q; is larger than ¢(my), it contradicts that the pivot’s
timestamp is the largest among the first messages in all
queues. Therefore, m)} must exist.

o If the timestamps of all messages in (); are smaller than
t(mp), in particular, the timestamp of the last message in
Q; (which is a predicted message) is smaller than ¢(mp),
it contradicts that Algorithm 1 publishes S*"® only if
all predicted messages’ timestamps > t(myp) (Line 6).
Therefore, m} must exist.

Definition 4 (Neighbor Set). Let mp be the pivot. A neighbor
set S ={my,....,mpn} is a regular message set s.t.,

1) S includes the pivot mp and
2) Each m; in S, except the pivot, is either m} or m.

In Fig. 5, {m¥,m}y, m%, mp} and {my,my, my, my} are
two neighbor sets. A neighbor set can choose either m} or
mY for each Q; (i = 1,2,3), so there are in total 23 =38
neighbor sets in this example.

Definition 5 (Reference Set). A reference set S* has the
smallest time disparity among all neighbor sets, i.e.,

A(57) = min{A(0)} (1

where ) is the set of all neighbor sets.

There could be multiple reference sets, which all have the
smallest time disparity among the neighbor sets. For example,
in Fig. 5, there are two reference sets, {m}, m}, m3, my} and
{m¥, m¥, m%, mp}, both having the smallest time disparity 5.

Lemma 1. Let S*Y® be a published output message set and
S* the reference set, then

A(S™) = A(S7) 2)

Proof. If S*B is a neighbor set, it must be the reference set
since it has the smallest time disparity, so the lemma trivially
holds. In the following we prove for the case that STV® is not
a neighbor set.

An output message set must be a selected set, so
A PUB — H A 3
(5™7) = min{A(S)} 3)

where A is the set of all regular message sets including the
pivot. €2 is set of all neighbor sets, and we know 2 C A, so
by (1) and (3) we know that A(SP"B) < A(S*).

Then we prove A(S*) < A(S*"®). For an output message
set STV® € A\, we construct a neighbor set S € : the
pivot in S*YB is also in S; for each non-pivot queue @; and
m; € SPUP:

o if t(m;) < t(mp), S includes my.

o if t(m;) > t(me), S includes m}.
For both cases, the selected message from (Q; in S is closer
to the pivot in terms of timestamp than the correspondence
in SR, so A(S) < A(S™®). By (1), we know A(S*) <
A(S) < A(S™E). In conclusion, the lemma is proved. O

In the following we will derive an upper bound of A(S*).
We first introduce some auxiliary notations. For each non-pivot
queue we define

zi = t(me) — t(m7) S
yi = t(my) — t(me) (5)
For a neighbor set S = {mq,--- ,my}, we define

1(S) =1¥(S)+1Y(S), where
P(5) = max {z;}, 1(S)= max {y;}

e X
m;=mj X

For example, in Fig. 5, S = {m}, m}, m%, mp} is a neighbor
set, for which we have [*(S) =2, [¥(S) =5 and I(S) = 7.

Lemma 2. Let S* be the reference set and §) the set of all
neighbor sets, then

A(S*) =min {l(o)} (6)

oeQ

Proof. For each neighbor set S = {my, ...
A(S) = max{t(m;)} — min {t(m;)}

= g%g{t(mj) — t(me)} + max {t(me) — t(m.)}

7mN}:

Since m; # mj == t(mp) —t(m;) <0 and m; #m) =
t(m;) — t(mp) <0,

A(S) = max {t(mp) — t(m;)} + max {#(my) — t(ms))}
= max {yi}+ max {a} =1() +1%(5) = U(S)
and by (1), the lemma is proved. O

B. Removing the Dominated Queues

With Lemma 2, our remaining task is to derive an upper
bound for mingeq {I(S)}. To this end, we first exclude the
dominated queues from our consideration.

Definition 6 (Dominated Queue). A non-pivot queue Q; is a
dominated queue if there exists a non-pivot queue Q) s.t.,

ry<xp N Y <Yk



In this case, we say (); is dominated by Qy.

Definition 7 (Reduced Neighbor Set). S is a neighbor set.
The reduced neighbor set corresponding to S, denoted by S,
is obtained by removing all messages in dominated queues
from S.

S \S' is the subset of messages in S in dominated queues.

For example, in Fig. 5, Q3 is dominated by ()1, since x3 <
1 and y3 < y1. S = {mY, m3, m¥, mp} is a neighbor set, and
S = {mY, m¥, mp} is the corresponding reduced neighbor set
where m3 in the dominated queue ()3 is removed.

The definition of I(+), I¥(-) and [¥(-), which were originally
defined for a neighbor set .S, can also be applied to SorS \ S
in the same way. For example, 1¥(S) equals the maximal z;
among all messages in S that selects my; 1¥(S\S) equals the
maximal y; among all messages in .S \S that selects m).

Lemma 3. Let S* be a reference set and Q the set of all
reduced neighbor sets, then

A(S*) =min{l(0)}

oed
Proof. Let S be a reduced neighbor set with minimal /(-), i.
l(S} min__¢, {{(c)}. We construct S based on S: the plvot
in S is also in S; for each non-pivot queue @);
o if Qz is not a dominated queue, the selection between
mY and m} in S is the same as the selection between
mY and m) in S.
e if Q; is a domlnated queue, the selection between m;
and m} in S is the same as the selection between m?
and mj in S, where Q; is a queue dominating ;.

X
%
X
J

1(S) =I*(S) 4+ 1(9)
= max (zX(S), lX(S\S‘)> + max (zY(S), zY(S\S))
By the construction of S, for each message m; € S \S’ if

m; = m} . then Im; € 5:m; = m} and x; > z;, so we

N
have max(lx( ), ¥( S\S = [*(S). By the same reasoning,

we also have max(lY( ),1¥(S\S)) = 1¥(5), so we have
1(S) =IX(S) +1Y(S) = 1X(8) + I¥(S) =1(S) (D)

Next we prove [(S) = mingeq {I(0)}. We prove it by
contradiction, assuming 3 : S’ € Q : [(S") < I(S). Let S’
denote the reduced neighbor set corresponding to S’.

1(S") =1X(S") +1"(5")
— max (ZX(S”), zX(s’\S’)) + max (zV(S/), zY(s'\S’))
— IX(8) +1Y(8") < 1(S")
which together with our assumption [(S”) < I(.S) and (7) gives
1(S") = IX(S") +1¥(S") < 1(S) = 1(S)

which contradicts that S has the minimal I(-) among all
reduced neighbor sets, so our assumption must be false and
thus 1(S) = minyeq {I(c)}. Combining this with /(S) =
min__q {I(0)}, (6) and (7), the lemma is proved. O

Q3 v v v v v J Mp,
10 12 14 16 18 20 22 24 26 28 30
timestamp

Fig. 6: Illustration for renumbering the queues after removing
the dominated queues for the case in Fig. 5.

C. Deriving the Upper Bound

Next we will derive an upper bound for min__¢, {I(c)}. We
use N to denote the number of queues in a reduced neighbor
set. We renumber? the queues so that:

e Q1,...,Qg_, are non-pivot queues, Q5 is the pivot

queue, and

e Q1,...,Qg_, are sorted in decreasing order of z;, i.e.,

Vie[l,N—2:z >z (8)
Since @Q;41 is not dominated by ();, we also have
Vie[l,N—=2]:y <yin 9)

For example, after removing dominated queue Q5 in Fig.
5, the remaining queues are renumbered as shown in Fig. 6.

In the following, we will prove that a reduced neighbor set
S = {1y, ...,7h g} with the minimal {(-) must comply with
a particular pattern: if 7/, selects mY, then My, ...,
must also select mY, as stated in the following lemma.

my_y

Lemma 4. Let § = {1y, .y} be a reduced neighbor
set with the minimal () among all reduced neighbor sets. If
In; € S:my =mY, thenVk € [i +1,N — 1] : iy, = mj.

Proof. Let i be the smallest index with 772; = m} and j largest
index with 7h; = m]Y- (so i # j). We will show that j > i leads
to a contradiction, so it must be j < ¢ and the lemma holds.

Since ¢ is the smallest index with 7; = m¥ and j is the
largest index with m; = m , by (8) and (9) we know lX(S) =
x; and [¥(S) = y;. If j >4, then z; > z; and y; < y;.

Now we consider another S, which selects m}‘ instead of
m;( and all the other selections are the same as S. We know
that [¥(S") = max{z;, z;} = 2, i.e., [X($') = I*(S). On the
other hand, 1¥(S’) must become smaller than y; so [¥(S') <
1¥(S). In summary, [(S) < I(S), which contradicts that S has
the smallest [(-) among all reduced neighbor sets in Q. O

The pattern specified in the above lemma can be further
divided into three cases, as shown in Fig. 7:
o Case 1: 1,...,m_, all select m} (Fig. 7-(a)).
o Case 2: 1y,...,my_, all select m} (Fig. 7-(b)).
o Case 3: 3i: My, ..., 1, select m) and M;iq, ...,
select m} (Fig. 7-(c)).

my_4

2We renumber the queues to simplify the presentation of the following
proofs. This does not compromise the generality of our analysis, as one can
arbitrarily renumber the queues without affecting the analysis results.
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Fig. 7: The three cases of the pattern specified in Lemma 4.

Now we are ready to upper-bound min,_ ¢ {/(0)}:

Lemma 5. Let Q be the set of all reduced neighbor sets and
N the number of messages in a reduced neighbor set, then

ZTW

my} be the one with smallest I(-)
2], we define

(10)

min {I(c
oefd

Proof. Let S = {ry, ...,
among all elements in 2. For each ¢ € [1, N —

o' ={ml, ... ,m},mi ... ,my ,mp}

where my is the pivot. By (8) and (9) we know Vi € [1, N—
2] :l(0") = Z/,—i—xzﬂ We use o*" to represent the element in
Q) which selects m¥ for each i € [1, N — 1], s0 (o allxy — xl,
and use 0¥ to represent the element in Q) which selects my
for each i € [1, N — 1], so I(¢™™Y) =y _,.

We will prove that [(S) is upper-bounded by the RHS of
(10) in three cases:

Case 1: 1y, ..., 7, all select m} (Fig. 7-(a)). All queues
are sorted in decreasing order of x;, so [(S) = 2. Since 1(5)
is the minimal among all reduced neighbor sets, we know

1(c™Y) > 1(S) and Vi € [1, N — 2] : I(0?) > 1(S), i.e
r1 <Y1+ a2
TS YR T TR
1 S Yy
Adding all these inequalities gives
(N—Day < yr+astyot++2gy_oHyy_o+T5_1TUx_,

By adding z; and dividing N on both sides, and combining
x4y <TV (Vi€ [1,N —1]), we get

1 —1
_E: W
nEgah

i(8) =

Case 2: 7y, ...,y _, all select m} (Fig. 7-(b)). The proof

of this case is symmetric to Case 1, so we only briefly sketch
it to save space. In this case, I(S) = y5_,, and we know

Y1 <m
Y1 S Y1+ a2

Y1 SYR_2 T TR

Putting them together and by z; + y; < TV for each i €
[1, N — 1], we get

/\

Z(S) =Yn_1

1 W
NET@

Case 3: 3i: my, ..., 7, select mY and M4 1, ..., myg_, select
my (Fig. 7- (c)) By Lemma 4, we know there is some & such
that S=o* soViell, N—2] I(c*) <l(c"). We also have
I(o®)<l(o ‘"‘"X) =1 and [(c*)<l(c™Y)=y5_,,. So we have

Yk + Tht1 S 21
Ye + Tir1 S y1+ T2

(11)
Y + Tht1 S Yy_g T x5
Y+ Trr1 S Y4
by which we get
1 N-1
l(S) = l(o’k) =Tp4+1 + Yk < = Z TZ»W
N i
In summary, for all three cases, we have proved
| V-1
)<=, Z v
O

Theorem 1. The time disparity of a published set ST is
upper-bounded by

A(S™*) < max

12
T 2<n<N (12)

Lz

n—1 largest

Proof. By Lemma 1, Lemma 3 and Lemma 5, we have

It is unknown which queues are dominated queues. However,
we can assume the N — 1 queues with the largest TW are the

non-dominated non-pivot queues to upper-bound Zi:l v,
and we know 2 < N < N, so the theorem is proved. O
For example, suppose N = 4, TVV = 20, T}V = 30,

TY =60 and T}V = 75. The time disparity bound in (12) is
computed by max( 75 60+75’ 30+640+70) _ 60-;)—75 — 45,

We can see that the bound in (12) only depends on TV of
each queue, but is unrelated to DZ and D}V. This is consistent
with that the time disparity of an output message set published
by Algorithm 1 only depends on the messages’ timestamps,

but not the delay they experienced.
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Fig. 8: Illustration for the case of the worst-case time disparity
of 50.

D. Tightness

Now we prove that the time disparity bound in Theorem 1
is tight, i.e., for any IV > 2, there exists a system with /N input
channels whose worst-case time disparity exactly equals the
bound in Theorem 1. We can construct the desired system as
follows: let 7V =100, T} =50 and T3V = ... = T{ | =
40. Tt is not difficult to see that this system’s actual worst-case
time disparity is 50. Take the scenario shown in Fig. 8 as an
example. After publishing the first two output message sets,
the worst-case time disparity of 50 occurs at the third output
message set, i.e., {m?$,m3, m3,...,m%_;,m% }. On the other
hand, the bound in Theorem 1 equals 50, so its tightness is
proved.

Although the above example has already proved the tight-
ness of the bound in Theorem 1, its construction only covers a
particular case where the maximal % Z ﬂW is achieved

n—1 largest
with n = 2 or n = 3. Actually, we can even prove a stronger

conclusion in the sense that the bound 7—1L Z TV is tight
n—1 largest

for any n, i.e., the bound (10) in Lemma 5 is also tight.

Lemma 6. The bound (10) in Lemma 5 is tight.

Proof. Let the system have N > 2 queues and Vi € [1, N] :
T}V = X, where X is an arbitrary number that is not too
small (e.g., X > 10). We construct the worst-case scenario
as follows. First, my in (Qn is currently the pivot. Second,
the timestamps of the first message after the pivot and the
last message before the pivot for each non-pivot queue are
constructed to satisfy the following constraints:

T1 =Y + 22

T1=YN—2 +TN-1

L1 =YN-1
i.e., change all the inequalities in Case 1 of the proof of
Lemma 5 into equations. By the same reasoning as in the
proof of Lemma 5, the one with the minimal time disparity
among all reduced neighbor sets must fall in one of the three
cases in Lemma 5, i.e., its time disparity is either x1, or yn—_1
or y;—1 + x; (for some ¢), which all equal x; by the above
equations. Summing up both sides of the above equations gives

Ny =z1+ (W +22)+... +(Yv—2 +2n_1) + Yn—a

On the other hand, we know

(r1+y)+ (2 +... +ynv—2)+(rn-_1+yn-1) = (N-1)X

In summary we have z; = W, which exactly equals the

bound computed by Lemma 5. O

V. REQUIRED QUEUE SIZE BOUND

The model and analysis introduced so far are based on
the assumption that all queues are sufficiently long and no
overflow occurs. In this section, we will get rid of this
assumption by showing that we can find an upper bound of
the queue size with which Theorem 1 still holds.

In reality, the ROS message synchronizer may discard
messages for two reasons:

o Active discard. Recall that Algorithm 1 (Line 11) discards
the published messages and all messages earlier than the
published one in each queue. In this case, we say these
messages are actively discarded.

e Passive discard. If a queue is full when a new message ar-
rives, the earliest message in this queue will be discarded.
In this case, we say the message is passively discarded.

To upper-bound the needed queue size, it seems that we need
to find the condition under which passive discard never occurs.
However, this is actually unnecessary. Consider two scenarios
with the same system input:

S1. Queues sizes are unlimited and no passive discard occurs.
S2. Queues sizes are limited and some messages that are not
published in S1 are passively discarded.

The passive discard in S2 should not affect the selection of
pivots and the corresponding selection of published output
message sets, and the outputs in these two scenarios are the
same. In other words, we can view each unlimited queue in
S1 as having two parts: the first part has the same size as
the corresponding queue in scenario S2, and the second part
has unlimited size and stores the messages that are passively
discarded in scenario S2. In this case, a message can be
published only if it is in the first part of the queue, and
messages in the second part will be discarded anyway.

Therefore, in the following, we will calculate the required
size of each queue so that when an output message set is
published, the queue is large enough to store all messages that
contain this published message and ensure the pivot remains
unchanged once it is selected, regardless whether the messages
before those have been passively discarded or not.

Definition 8 (Required Size of Q;). S*'® = {my,....,mpn} is

an output message set published at time t. The required size

of Q; for STV® is the number of arrived messages in @Q;, and
m,; € STB satisfies:

o if t(m;) < t(mp), my is the earliest message in Q;, or

o if t(m;) > t(me), there must exist an only message m

with t(m}) < t(mp) that is the earliest message in Q;.

1

i

We use DY ~—and DE. to denote the maximal D}" and
minimal DP, and TV, ~and T2, the maximal 7}V and

minimal 72, among all queues Q;.



Lemma 7. Let S*'® = {m1,...,mn} be an output message
set published at time t. The required size of Q; for STU® is at

t—a(m})+DY —DE

most | T | 41

Proof. If a message is in (; at time ¢, its timestamp is no
later than ¢ — Df . On the other hand, the timestamp of m;
is no earlier than a(m}) — D}V. Therefore, the total length of
the time interval to generate messages that are after m; and
have arrived at Q; by ¢ is at most t —a(m})+ D} — DB. The

. t—a(mH+DY —DF
number of such messages is at most L%J, and

plus m} itself, the required size of Q; at t is lupper-bounded
1 w B

by [elmlt2e =B |4, m

Lemma 8. Let S*'® = {m1,...,my} be an output message

set published at time t and mp € S*® is the pivot. Then for

each m; € S*Y® and m} is the corresponding earliest message

in QQ;, we have

a(ml’) _a(mzl> < Z_FT;W +D7‘§z/az _DzB
where A denotes the RHS of (12).
Proof. By Theorem 1, for each m; € S*"®, we know

t(my) — t(m;) < A. Since t(m;) < t(mj)+ T}V, we have
t(mj) — t(m}) < A+ TY. On the other hand, we also have
a(my;) — t(m;) < D}V and a(m}) — t(m}) > Df. Putting
them together proves

a(m;) = a(mi) < A+ T} + Dy,

max

B
— D!
Since mp € STUP, the lemma is proved. O

Lemma 9. Let S*"® = {mq,...,mn} be an output message
set published at time t and my is the pivot in S*'%, then

B
- Dmin

t—a(mp) <TW + DIV

max max

Proof. Let t’ denote the earliest time point at which each non-
pivot contains at least one arrived message with timestamp
larger than ¢(mp). By the definition of ¢, some message arrives
at ¢’ and thus Algorithm 1 is executed at t’. We will first
prove S*UP is published no later than t'. We prove this by
contradiction, assuming S*V® is published after ¢’.

By the definition of ¢/, the while-condition in Line 4 and
the if-condition in Line 6 in Algorithm 1 are both true, so
the selected set at ¢/ must not be S*® (otherwise S*VB is
published at t'). Let S be the selected set at ¢’. First, S does
not contain any predicted message, since for each @; there
exists an arrived message with timestamp later than ¢(mp)
(so the predicted message is “further away” from the mp
than this arrived message). Therefore, the selected set S must
be published, so the pivot mp must not be in S (since the
same message cannot be included in two published output
message sets). Therefore, for the queue of myp, S includes a
message after mp. After S is published, all messages before
the published message in S are discarded, and in particular,
myp is discarded, which contradicts that m, is in STY® which is
published after ¢’. Therefore, our assumption is false, so S*V®
is published no later than t/, i.e., t < ¢'.

We assume message m; of @Q; arrived at ¢ and triggers the
execution of Algorithm 1, so m/ is the first message in Q;
with timestamp t(m/) < t(mp) + T}V. Assume the pivot m,
is in queue Qy, then t(mp) < a(mp)—DP, so in summary we
have t(m}) < a(mp)—DP + T}V. On the other hand, since
a(m}) =t', we know t(m}) > t'—D}V. Putting them together,
we have ¢’ < a(mp) + T}V + DYV — DB < a(mp)+ DY, . +
TW — DB  and since t < ¢/, the lemma is proved. O

max min’

Theorem 2. The required size of QQ; for any published output

message set is upper bounded by
\‘A—FT};KLL +T1W +2D’}/T‘L/G.L +D2VV — Dfnn

TB
where A\ denotes the RHS of (12).

+1

— 2DlBJ

Proof. The theorem is proved by combining Lemma 7,
Lemma 9 and Lemma 8. O

VI. EXPERIMENTS

We conduct experiments to both validate our high-level
model of the ApproximateTime policy and evaluate the analysis
precision of the time disparity bound in Theorem 1. The source
codes of all experiments are anonymously available online at
https:// github.com/ruoxianglee/ synchronizer.

A. Model Validation

We implement Algorithm 1 (called our implementation) in
the Message Filter package of ROS2 (the Dashing version) and
let it run in parallel with the original implementation of the Ap-
proximateTime policy in ROS2. We implement Algorithm 1 in
a straightforward way, without any performance optimization,
to reduce the chance of introducing implementation errors.
When a new message arrives at the Message Synchronizer, our
implementation and the original implementation will update
their own queues, select and publish the output message
set independently. We compare all the output message sets
published in the two implementations to see if they are the
same. We run the experiments on an Intel i7 desktop computer
with ROS2 Dashing installed on Ubuntu 18.04, using artificial
input messages generated using timers with different settings,
including different number of input channels (from 2 to 9,
as currently the ROS Message Filter supports up to 9 input
channels), different timestamp separation of each channel (T?
chosen between 10ms and 100ms, and the ratio between TiB
and T}V chosen between 1 and 1.8). For the experiments in
each setting, the delay experienced by the messages randomly
varies between 1ms and 40ms. We in total conduct experiments
with 700 different settings, and run the system for 0.5 hours in
each setting. In all these experiments, the output message sets
produced by our implementation and the original implementa-
tion are exactly the same. Besides artificial input messages, we
also conduct experiments with sensor data inputs generated by
the SVL simulator [13] (including camera, LiDAR and IMU
sensors in SVL, with different frequency settings), where the
outputs of the two implementations are also the same. These
experiments justify the correctness of our model with high
confidence.
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Fig. 9: Evaluation experiment results.

B. Evaluation of the Time Disparity Bound

We conduct experiments to evaluate the precision of the
time disparity bound in Theorem 1 by comparing it with the
maximal observed time disparity in the real execution in ROS.
We also compare with the time disparity (bound) of output
produced by the message synchronizer in Apollo CyberRT
[8], another popular open source runtime framework for au-
tonomous driving systems. Apollo CyberRT uses a simple
synchronization policy: A fixed input channel is selected to
be master channel, and other channels are slave channels.
When a new message arrives in the master channel, if all slave
channels are not empty, the newly arrived message together
with the latest message in each slave channel are published
as an output message set. No output message set is published
upon the arrival of messages in slave channels. For this simple
synchronization policy, we can also easily calculate its worst-
case time disparity bound (proof provided in the appendix):

W, W B pW ; B
max {2r<n;1>§v{Tz +D; }—Dl , Dy EQ?N{D" }} (13)

where ()1 is the master channel. Different from the Approxi-
mateTime policy in ROS, the time disparity of output messages
under the Apollo CyberRT synchronization policy depends on
the delay experienced by the messages.

For each experiment, we compare the following values:

« ROS-B: the time disparity bound under the ROS Approx-
imateTime policy calculated by (12) in Theorem 1.

« ROS-O: the maximal observed time disparity under the
ROS ApproximateTime policy in real execution.

o CyberRT-B: the time disparity bound under the synchro-
nization policy in Apollo CyberRT calculated by (13).

o CyberRT-O: the maximal observed time disparity under
Apollo CyberRT synchronization policy in real execution.

Fig. 9-(a) shows the experiment results with different num-
bers of channels (x-axis), where messages of each channel
were generated periodically (i.e., T2 = T}V) with period ran-
domly distributed in [50, 100] and delay randomly distributed
n [1,40]. For each x-axis value, the result is the average of
1000 experiments. Each experiment in Fig. 9-(b) uses the same
setting as Fig. 9-(a), but sets the number of channels to be 6
and changes the periods as indicated by the x-axis. In Fig.
9-(c), the messages are no longer generated periodically, but
with timestamp separation randomly distributed between T?
and T}V, and the ratio between 7V and T}P varies as indicated
by the x-axis. In Fig. 9-(d), we use the same setting as in Fig.
9-(a), but sets the number of channels to be 6 and changes the
range of delay experienced by each message.

From the experiment results we can see that, our time
disparity bound in Theorem 1 in general has good precision,
but the pessimism increases as the timestamp separation falls
in a wider range or the ratio between 7V and T” becomes
larger. Note that the maximal observed time disparity in real
execution only reflects a lower bound of the real worst-case
time disparity because there is no guarantee to capture the real
worst case. Therefore, the actual gap between the real worst-
case time disparity and the derived upper bounds could be
smaller than the gap indicated in Fig. 9.

As expected, ROS-B and ROS-O both remain stable as
the delay increases, while CyberRT-B and CyberRT-O both
increase as the delay increases. The performance of the ROS
ApproximateTime policy is significantly better than the simple
policy in Apollo CyberRT, in terms of both maximal observed
time disparity and the worst-case time disparity bound.

VII. RELATED WORK

Data fusion algorithms are usually developed under the
assumption that data from different sensors are perfectly
aligned, which rarely holds in reality. To solve this problem,
various techniques have been developed to compensate the
temporal inconsistency of input data [14]-[17]. However, such
compensation works only if the temporal inconsistency falls
into a certain range, which is the motivation of this paper.

Previous work [1]-[3], [18] studied how to precisely times-
tamp the sensor data in the context of multi-sensor data fusion.
In this paper, we assume that sensor data are already associated
with valid timestamps in the same coordinate using these
existing techniques, and focus on the problem after that, i.e.,
how to manage the sensor data flows in the computing system
based on these timestamps.

To promote ROS in time-sensitive application domains,
work has been done on measurement-based evaluation of the
real-time performance of ROS. [19] evaluated the capabilities
and performance for ROS1 and ROS2 with different DDS
implementations, considering various metrics, such as latency,
throughput, the number of threads and memory consumption.
[20] conducted communication evaluation for ROS2 real-time
applications taking into account the worst-case latency. To
overcome the bottleneck of performance analysis in robot



software development, [21] proposes a multipurpose low-
overhead framework for tracing ROS application.

Some work aimed to improve the real-time capability of
ROS from the system architecture perspective. [22] presented
a real-time ROS architecture for separately executing real-time
and non-real-time tasks on a integrated OS environment with
multi-core processors. [23] proposed an offline scheduling
framework for ROS considering both ROS scheduling restric-
tions and CPU/GPU coordination mechanism. [24] presented a
priority-based message transmission mechanism to reduce the
worst-case execution time for node processing and inserting
a sync node to harmonize the frequencies of different sensor
data to improve the time disparity. In [25], a fixed-priority
based DAG scheduling framework was proposed with end-
to-end latency guarantees. The authors also introduced a
synchronization mechanism to reduce the time disparity, but
their work is based on measurement for the specific case but
does not provide any formal analysis.

Some recent work has been done on formal real-time
performance analysis of ROS2. [26], [27] modeled the single-
thread Executor in ROS2 and studied response time analysis
of processing chains executing on it. [28] redesigns the ROS2
executor with a fixed priority assignment policy to overcome
the limitations of the default scheduling strategy of ROS2, and
analyze the end-to-end latency based on the proposed schedul-
ing policy. [29] proposes an automatic latency manager and
apply existing real-time scheduling theory to latency control
of the critical callback chains in ROS2 applications, which
adaptively estimates and adjusts the scheduling parameters
without the user’s involvement. In [30], the authors take both
the starvation freedom and execution-time variance of the
default ROS2 scheduler into consideration, and propose a more
accurate response time analysis for processing chains. [31]
presents two new executors based on the thread dispatch model
and producer-consumer model and developed corresponding
response time analysis techniques. The above work all focus
on the executor component in ROS, while in this paper we
consider another important component: the Message Synchro-
nizer.

Past work on real-time scheduling and analysis studied
different real-time performance metrics, such as response time
[32], [33], tardiness [34] and data freshness [35]. However,
existing analysis and design techniques developed oriented to
these constraints do not apply to the analysis of time disparity
studied in this paper.

VIII. CONCLUSION

In this paper, we model the ApproximateTime message
synchronization policy in ROS and formally analyze the
worst-case time disparity of their output message sets. We
conduct experiments to evaluate the precision of the developed
time disparity upper bound against the maximal observed
time disparity in real execution, and compare them with
the synchronization policy in Apollo CyberRT. Experiment
results show that our analysis has good precision and the
synchronization policy in ROS greatly outperforms Apollo

CyberRT in terms of both observed worst-case time disparity
and the theoretical bound. This is the first step towards the
analytical study of the data synchronization in multi-sensor
data fusion regarding the worst-case time disparity metrics,
and many problems along this direction are still open. For
example, the required queue size bound derived in this paper
is only to show that our time disparity analysis is applicable
without assuming infinite queue sizes, but it is unclear whether
we could develop tighter bound than that, which will be a topic
for our future work. We will also study how to improve the
design and implementation of the ROS Message Synchronizer
for average-case time disparity performance while maintaining
the same (or even better) worst-case time disparity bound.
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APPENDIX

Theorem 3. Under the Apollo CyberRT synchronization pol-
icy, Q1 is the master channel, and Qs,...,QN are slave
channels. The time disparity A(S*®) of a published output
message set S*U® = {my,...,my} is upper-bounded by:

PUB) - 4 W _ nB W_ s B
A(S )_max{Zgliaév{T, +D}"}—D¢, Dy zglgnN{Dl }

Proof. For m; we know
a(my) — DYV <t(my) < a(m;) — DB (14)

For an arbitrary slave queue @; (2 <1i < N), let mg be the
next message after m;. We have

t(m;) + DP < a(m;) (15)
a(my) < a(mj) < t(mj) + D}V (16)
t(m;) < t(mq) + TV (17)

Combing (14)-(17), we have
t(m;)+DP — D" <t(my) < t(m;)+T)V +DP —DP (18)
o If t(my) > t(m;), by (18), we have
t(m1) —t(m;) < T)V + D}V — DY
o If t(mq) < t(my), by (18), we have
t(m;) —t(m1) < DY — DP

The theorem can be proved by combining these two cases. [
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