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1 Introduction

Consider an experiment which can result in k possible events, say, E1, · · · , Ek, where k ≥ 2 is an integer

and E1, · · · , Ek form a partition of the sample space. Repeat the experiment n times independently and

let oi denote the observed frequency of event Ei for i ∈ {1, · · · , k}. Then (o1, · · · , ok) has a multino-

mial distribution. To test the null hypothesis that the probabilities for events E1, · · · , Ek are equal to

p1, · · · , pk, respectively, where p1, · · · , pk are k specified positive numbers with p1 + · · · + pk = 1, define

the following chi-squared test statistic

X 2
n =

k∑︂
i=1

(oi − ei)
2

ei
, (1.1)

where ei = npi is the expected number of events Ei to occur in the n trials of the experiment for

i ∈ {1, · · · , k}. The limiting distribution of X 2
n is a chi-squared distribution with k−1 degrees of freedom

when k is a fixed integer. This is the well-known chi-squared goodness-of-fit test proposed by Pearson [15].

A test with approximate size α rejects the null hypothesis if X 2
n > χ2

k−1(α), where χ2
k−1(α) denotes the

α-level critical value of a chi-squared distribution with k − 1 degrees of freedom for α ∈ (0, 1).

As a statistical method, Pearson’s chi-squared goodness-of-fit test is one of the most popular topics

offered in college statistics courses. The above testing problem can be restated in a different form.

Let f0 be a discrete probability mass function defined over {xi, 1 ≤ i ≤ k} and set pi = f0(xi) for

1 ≤ i ≤ k. Assume that a random sample of size n, X1, · · · , Xn, is drawn from the distribution of a

discrete random variable X, where X is a discrete random variable having a probability mass function

f(x) for x = x1, · · · , xk. Now we can define Ei = {xi} for 1 ≤ i ≤ k and set oi =
∑︁n

j=1 I(Xj ∈ Ei) for

1 ≤ i ≤ k, and ei = npi. Then Pearson’s test statistic X 2
n defined in (1.1) can be used to test hypothesis

H0 : f = f0; i.e. f(xi) = f0(xi) for 1 ≤ i ≤ k. Traditionally, Pearson’s chi-squared goodness-of-fit test is

suggested to use only if the value of k is relatively small compared with the sample size n. When there

are infinite many values for a discrete random variable X or the number of distinct values of X is too

large compared with the sample size n, one can first select a proper integer k and then re-group values

of X into k categories by putting the values of X with small probabilities (under the null hypothesis)

into one category. When f0 is a probability density function, one can discretize the variable X so that

Pearson’s chi-squared goodness-of-fit test can be used to test whether the density function of X is equal

to f0.

When a probability function or density function f0 is not fully specified, that is, f0 depends some

unknown parameters, say θ, the probabilities p1, · · · , pk depend on θ. We can replace θ with some

estimators such as the maximum likelihood estimator, then X 2
n still converges in distribution to a chi-

squared distribution with k − r − 1 degrees of freedom where r is the dimension of θ. For more topics

and their developments related to Pearson’s test statistics, we refer to Voinov et al. [19].

When the sample size n is small or k is relatively large, some expected frequencies ei may become too
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small. A variety of estimates of the discrete probability distribution of Pearson’s test statistics have been

discussed in the literature, see, e.g. Cochran [2], Yarnold [20], Larntz [11], Lawal [12], Hutchinson [8] and

references therein. Baglivo et al. [1] derived formulas for the exact distributions and significance levels

of Pearson’s goodness of fit test statistics. Cressie and Read [4] provided a comprehensive review for

Pearson’s goodness-of-fit test and the likelihood ratio test.

In this paper, we are interested in the goodness-of-fit test when both n and k go to infinity, that is,

we allow that k = kn changes with n and kn can be even much larger than n. We note that asymptotic

normality of Pearson’s chi-squared test statistics has been obtained by Tumanyan [18] and Holst [7]

when n/kn → a ∈ (0,∞) and some restrictive conditions are held. A recent work by Rempala and

Wesolowski [17] extended this scope by imposing conditions on the following decomposition of Pearson’s

test statistics:

X 2
n = Sn1 + Sn2, where Sn1 =

kn∑︂
i=1

(oi − ei)
2

ei
−

kn∑︂
i=1

oi − ei
ei

, Sn2 =

kn∑︂
i=1

oi − ei
ei

. (1.2)

By assuming that Sn2 is negligible, Rempala and Wesolowski [17] showed that X 2
n is asymptotically

normal if n2/kn → ∞ as n → ∞. The conditions imposed in Rempala and Wesolowski [17] will be

discussed further in Section 2. Since the negligibility condition is trivially true for equiprobable cells,

that is, p1 = · · · = pkn
, X 2

n has a normal limit, and furthermore, Rempala and Wesolowski [17] showed

in this case that X 2
n , after properly normalized, converges in distribution to a Poisson distribution if

n2/kn → λ ∈ (0,∞).

Pearson’s chi-squared test has been proven to be unbiased if one uses equiprobable cells, see, e.g.

Mann and Wald [13] and Cohen and Sackrowitz [3]. Koehler and Larntz [9] provided empirical evidence

for the accuracy of the normal approximation when n2/kn is reasonably large.

If one does not use equiprobable cells, Haberman [6] noted that Pearson’s test can be biased when

some expected frequencies become too small. And this is the case if kn is too large compared with n.

To overcome this drawback, Zelterman [21, 22] proposed to use D2 statistic for the test, i.e. Sn1 in the

decomposition (1.2). Kim et al. [10] compared some asymptotic properties of X 2
n statistic and D2 statistic

for large sparse multinomial distributions.

In this paper, we investigate the limiting distribution for Pearson’s goodness-of-fit test statistic X 2
n

and D2 statistic. By using the decomposition (1.2) for Pearson’s goodness-of-fit test statistic we propose

some new test statistics which are more powerful in general.

The rest of the paper is organized as follows. In Section 2, we investigate the limiting distributions

of Pearson’s goodness-of-fit test statistics and new test statistics. In Section 3, we carry out a simulation

study to compare the performance of these test statistics in terms of the size and the power of the tests.

In Section 4, we apply Pearson’s goodness-of-fit test statistics to test whether the winning numbers from

Minnesota Lottery Game Daily 3 were randomly selected with equal probabilities. Then we summarize

the paper with some concluding remarks. All proofs are given in the Supplement.
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2 Main results

Throughout, we always assume that k = kn → ∞ as n → ∞. We adopt some notations as follows. The

symbol
d→ denotes the convergence in distribution, N(0, 1) denotes a standard normal random variable,

and Φ(x) = (2π)−1/2
∫︁ x

−∞ e−t2/2dt is the cumulative distribution function of the standard normal. We

also define

σ2
n1 =

2(kn − 1)(n− 1)

n
, σ2

n2 =
1

n

(︁ kn∑︂
i=1

1

pi
− k2n

)︁
, σ2

n = σ2
n1 + σ2

n2, (2.1)

where σ2
n, σ2

n1 and σ2
n2 are the variances of X 2

n , Sn1 and Sn2, respectively. In Read and Cressie [16],

the first three asymptotic moments have been derived for the so-called power-divergence statistics which

include Pearson’s X 2
n statistic as a special case.

We need to impose the following conditions in deriving the limiting distributions for Pearson’s

test statistic X 2
n and some new test statistics that we will propose in the paper:

We first investigate the asymptotic properties of Sn1 (i.e. D2 statistic) and X 2
n .

1

n2k2n

kn∑︂
i=1

1

p2i
→ 0 as n→ ∞, (2.2)

min
(︂∑︁kn

i=1
1
p3i

− k4n

n3σ4n2
I(σ2n2 > 0),

σ2n2
kn

)︂
→ 0 as n→ ∞. (2.3)

Theorem 2.1. If (2.2) holds, then we have

Sn1 − (kn − 1)

σn1

d→ N(0, 1) as n→ ∞, (2.4)

where σn1 is defined in (2.1).

Theorem 2.2. Under conditions (2.2) and (2.3) we have

X 2
n − (kn − 1)

σn

d→ N(0, 1) as n→ ∞, (2.5)

where σn is defined in (2.1).

Based on the normal approximation (2.5), a test with approximate size α rejects the null

hypothesis if X 2
n > kn − 1 + σnzα, where zα denotes the α-level critical value of the standard

normal distribution for each α ∈ (0, 1). Based on (2.4), a test with approximate size α rejects

the null hypothesis if Sn1 > kn − 1 + σn1zα.

A test of size α is said to be unbiased if the power of the test is at least α under alternative

hypotheses. The test based on the statistic X 2
n is not unbiased under some alternatives as
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pointed out by Haberman [6]. More seriously, our simulation study indicates that the test has a

nearly zero power under some alternatives, that is, the test loses its power completely in those

cases; see Table 2. In order to understand why this happens, we will look at the decomposition

(1.2) for the goodness-of-fit test statistic X 2
n . From Lemma A.1 in the Supplement, we have

under the null hypothesis P (Ei) = pi for 1 ≤ i ≤ kn that

E(Sn1 − (kn − 1)) = 0 and E(Sn2) = 0,

and under the alternative H1: P (Ei) = p′i for 1 ≤ i ≤ kn that

E
(︁
Sn1 − (kn − 1)|H1

)︁
= (n− 1)

kn∑︂
i=1

(p′i − pi)
2

pi
and E(Sn2|H1) =

kn∑︂
i=1

p′i − pi
pi

. (2.6)

The variances under H1 can be calculated for both Sn1 and Sn2. Since the rejection region of

the goodness-of-fit test is one-sided, the test gains its power from a shift to right in location of

the test statistic X 2
n under the alternative. In Sn1, the effect of a shift is always positive, but

the sign of
∑︁kn

i=1
p′i−pi
pi

, the location shift in Sn2, can be negative. If this shift in location to left

in Sn2 is overwhelming, the observed values for X 2
n can be very small and will result in rejecting

the alternative hypotheses.

Since we are considering the situation when both n and kn are large, from (2.6), |E(Sn2|H1)|
can be very large compared with E

(︁
Sn1 − (kn − 1)|H1

)︁
when kn is much larger than n. This

indicates that using |Sn2| in the test statistics can be more powerful than Sn2. We propose a

class of test statistics Sn1 + c|Sn2|, where c ≥ 0 is a constant. Their limiting distributions are

given as follows.

Theorem 2.3. Under conditions (2.2) and (2.3) we have as n→ ∞

sup
x

⃓⃓⃓
P
(︂Sn1 + c|Sn2| − (kn − 1)

σn1
≤ x

)︂
− P

(︂
Z1 +

cσn2
σn1

|Z2| ≤ x
)︂⃓⃓⃓

→ 0, (2.7)

where Z1 and Z2 are independent random variables with the standard normal distribution, and

c ≥ 0 is any given constant.

For each s, define Ψ(x, s) as the cumulative distribution function of Z1 + s|Z2|, i.e.

Ψ(x, s) = P (Z1 + s|Z2| ≤ x) =

√︃
2

π

∫︂ ∞

0
Φ(x− st) exp(−t2/2)dt. (2.8)

For each α ∈ (0, 1), let ψα(s) denote an α-level critical value of Ψ(·, s), that is, 1−Ψ(ψα(s), s) =

α. The integral in (2.8) has no close form solution but it can be evaluated numerically by using
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function ‘integrate’ in R. Critical values ψα(s) can be solved via the Newton-Raphson method.

Note that Ψ(x, 0) = Φ(x) and thus ψα(0) = zα for α ∈ (0, 1).

Three test statistics, Sn1, X 2
n , and Sn1 + c|Sn2| with c ≥ 0, can be used to test the null

hypothesis that P (Ei) = pi for 1 ≤ i ≤ kn, and their rejection regions at level α, according to

equations (2.4), (2.5) and (2.7), are given by

R0 =
{︂
Sn1 > kn − 1 + σn1zα

}︂
,

R =
{︂
X 2
n > kn − 1 + σnzα

}︂
, (2.9)

and

Rc =
{︂
Sn1 + c|Sn2| > kn − 1 + σn1ψα(

cσn2
σn1

)
}︂

(2.10)

for c ≥ 0. Note that test R0 can be considered as a special case of Rc defined in (2.10) with

c = 0.

The aforementioned test statistics (or their corresponding rejection regions) are the same

when p1 = · · · = pkn since σ2n2 = 0 and Sn2 = 0 in this case. Note that Theorem 2.1 can

be considered as a special case of Theorem 2.3 with c = 0, but in Theorem 2.1 we impose

only condition (2.2) which is less restrictive than conditions in Theorem 2.3. If we assume

p1 = · · · = pkn , condition (2.2) is equivalent to limn→∞ kn/n
2 = 0. Immediately we have the

following corollary.

Corollary 2.1. Assume that {kn} is a sequence of positive integers such that kn → ∞ and

kn = o(n2) as n→ ∞. Then under the assumption that p1 = · · · = pkn, we have

X 2
n − (kn − 1)

σn1

d→ N(0, 1) as n→ ∞.

Under the assumption of the equiprobable cells with p1 = · · · = pkn , we have Sn2 = 0 =∑︁kn
i=1

oi−ei
ei

for any samples, regardless of how large for any single term oi−ei
ei

. As a remedy,

we can assign a weight for each term such that the weighted sum is not degenerate. Now we

introduce a weighted version for Sn2 as follows

Sn2 =

kn∑︂
i=1

ci(oi − ei)

ei
, (2.11)

where ci ≥ 0 for 1 ≤ i ≤ kn and
∑︁kn

i=1 ci = kn. Obviously, Sn2 is a special case of Sn2 with

c1 = · · · = ckn = 1.
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We can verify that

σ2n2 = E(S
2
n2) =

1

n

(︂ kn∑︂
i=1

c2i
pi

− k2n

)︂
and E(Sn2) = 0; (2.12)

see (A.31) in the Supplement.

Now we propose a new class of test statistics Sn1 + c|Sn2|, where c ≥ 0 is a constant. We

need the following condition for the asymptotic normality for those test statistics.

min
(︂∑︁kn

i=1
c4i
p3i

− k4n

n3σ4n2
I(σ2n2 > 0),

σ2n2
kn

)︂
→ 0 as n→ ∞. (2.13)

Theorem 2.4. Under conditions (2.2) and (2.13) we have as n→ ∞

sup
x

⃓⃓⃓
P
(︂Sn1 + c|Sn2| − (kn − 1)

σn1
≤ x

)︂
− P

(︂
Z1 +

cσn2
σn1

|Z2| ≤ x
)︂⃓⃓⃓

→ 0, (2.14)

where Z1 and Z2 are independent random variables with the standard normal distribution, and

c ≥ 0 is any given constant.

For given weights c1, · · · , ckn and constant c ≥ 0, a test of size α based on approximation

(2.14) for test statistic Sn1 + c|Sn2| has the following rejection region

Rc = {Sn1 + c|Sn2| > kn − 1 + σn1ψα(
cσn2
σn1

)}, (2.15)

where σn2 is defined in (2.12).

Of particular interest, we offer a discussion for the selection on weights c1, · · · , ckn so that

Sn2 is non-degenerate and condition (2.13) is satisfied for the equiprobable cells. When p1 =

· · · = pkn = 1
kn

, we select weights c1, · · · , ckn such that they are not identically equal to 1. This

ensures σ2n2 > 0.

A very simple way is to select an integer k0 such that k0 ∼ hkn for some h ∈ (0, 1) and assign

a value kn/k0 to k0 of ci’s and 0 to the remaining kn − k0 weights. Then for any integer r ≥ 1,

we have

kn∑︂
i=1

cr+1
i

pri
− kr+1

n = krnk0
(︁kn
k0

)︁r+1 − kr+1
n =

(︂(︁kn
k0

)︁r − 1
)︂
kr+1
n ∼

(︁
h−r − 1

)︁
kr+1
n .

Then the first term in the parentheses in (2.13) approximately equals

(h−3 − 1)k4n

n
(︁
(h−1 − 1)k2n

)︁2
)
∼ h−3 − 1

(h−1 − 1)2
1

n
→ 0

as n→ ∞. That is, (2.13) holds.
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3 A simulation study

In this section, we compare the performance of the test statistics defined in Section 2 through

some simulations.

We first compare the sizes and powers of the test statistics X 2
n , Sn1 and Sn1 + c|Sn2| under

some general null hypotheses. Then we compare the performance of X 2
n and Sn1 + c|Sn2| under

equiprobable cells with p1 = · · · = pkn .

Firstly, we consider the following five tests, including R, R0, R1, R3 and R5 as defined in

(2.9) and (2.10) with selection of α = 0.05 and several combinations of n and kn. For each case,

the simulation is repeated 10000 times by using R package, and the sizes and powers of these

tests are estimated.

We assume kn is an even integer and define

p1 = · · · = p kn
2

=
r

kn
, p kn

2
+1 = · · · = pkn =

2 − r

kn
(3.1)

for r ∈ (0, 2). For given n and kn, each of the above probability distributions is uniquely

determined by r. We note that p1 = · · · = pkn = 1
kn

if and only if r = 1.

Table 1 contains estimated sizes for the five tests R, R0, R1, R3 and R5 with n = 100, 1000

and some selected values for kn. For each combination of (n, kn), we take three probability

distributions from (3.1) with r = 0.1, 0.2, 0.6 and 1.0, respectively. When r = 1.0, all the five

tests are the same. From Table 1 the estimated sizes for all five tests are very close to the

nominal level 0.05, and thus, we conclude all the five tests perform very well in terms of the

accuracy in type I error.

To assess the overall performance of the distributional approximations to the standardized

test statistics (Sn1 + c|Sn2| − (kn− 1))/σn1 under the null hypothesis, we compare the empirical

distributions of the test statistics based on 10000 samples and their theoretical cumulative

distribution functions under the null hypothesis with a distribution from family (3.1). Figure 1

contains plots for both the empirical distributions and the approximate distributions of the test

statistics with c = 0, 1, 3. The parameter of the distribution under H0 is set to be r = 0.2.

We discover from Figure 1 that all three theoretical distributions for the test statistics fit the

empirical distributions very well, and their accuracies improve when sample size is getting large.

Results for other distributions are similar and are not reported here.

To estimate the power for these tests, for each combination of n and kn, we choose prob-

ability distribution (3.1) as the null hypothesis with r = 0.2 (or r = 0.6), and use probability
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distribution (3.1) with r = 0.2±0.1 (or accordingly, r = 0.6±0.1) as alternative hypotheses from

which random samples are generated. Table 2 lists the estimated powers for the five tests. Sur-

prisingly, the power of test R is nearly zero when the value of r in the true alternative hypothesis

is smaller than the value of r specified in the null hypothesis, that is, Pearson’s goodness-of-fit

test is seriously biased in those cases. As we have explained below equation (1.2), this is mainly

due to
∑︁kn

i=1
p′i−pi
pi

. For example, if r = 0.2 for the distribution under the null hypothesis and

r = 0.1 under the alternative, we have

kn∑︂
i=1

p′i − pi
pi

= (
−0.1

0.2
+

0.1

1.8
)
kn
2

= −2kn
9
.

We can also estimate the standard deviation of X 2
n under the alternative hypothesis and find

out that it is much smaller than order kn. This explains the incapability of Pearson’s goodness-

of-fit test in detecting an alternative in this case. We also notice that the performance of R
is quite regular when r = 0.2 for the distribution under the null hypothesis and r = 0.3 under

the alternative. Since
∑︁kn

i=1
p′i−pi
pi

= 2kn
9 > 0 in this case, Pearson’s goodness-of-fit test gains its

power. In both examples, the power of test Rc increases with c. In the first example, test Rc is

superior to R for all c ≥ 0. In the second example, test Rc outperforms R when c ≥ 3.

It seems plausible that test Rc with c > 0 improves upon R when
∑︁kn

i=1
p′i−pi
pi

is quite different

from zero. It is interesting to know how much improvement can be made when
∑︁kn

i=1
p′i−pi
pi

is

zero or very close to zero. To make an empirical comparison, we introduce a new family of

probability distributions. For convenience, we assume that kn is divisible by 4 and define a

family of probability distributions

p′1 = · · · = p′kn
4

=
1.5r′

kn
, p′kn

4
+1

= · · · = p′kn
2

=
0.5r′

kn
, p′kn

2
+1

= · · · = p′kn =
2 − r′

kn
(3.2)

for r′ ∈ (0, 2). For given n and kn, each probability distribution above is uniquely determined by

r′. It is easy to see that for a probability distribution (p1, · · · , pkn) from (3.1) and a probability

distribution (p′1, · · · , p′kn) from (3.2),
∑︁kn

i=1
p′i−pi
pi

= 0 if r = r′. Table 3 includes estimated

powers of the five tests for several combinations of n and kn with r = r′ = 0.6, 1.4. The

probability distribution under the null hypothesis is from family (3.1) with parameter r and the

true probability distribution under the alternative is from (3.2) with parameter r′ = r. From

Table 3, the power of Rc decreases with c for large c. We note that the constant c represents the

weight of |Sn2| we take into account in the test, and Sn1 has always a positive shift in location
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under the alternative, and thus it is more likely to detect the alternative if the weight of |Sn2|
in the test is smaller. In other words, increasing the weight c can decrease the power of Rc in

this case. Therefore, we do not recommend to use a large c in general. In Table 3, we have used

least favorable distributions to the use of Sn2 under alternatives since the expectations of Sn2

under the alternatives are zero. Overall, the performance of test R0 is slightly better than test

R1 from Table 3.

Now we compare X 2
n and Sn1+c|Sn2| for the case of equiprobable cells. Recall that Xn = Sn1

in this case. We define Sn2 by using the method discussed at the end of Section 2, that is, we

define k0 = 0.8kn and set ci = kn
k0

= 1
0.8 = 1.25 for 1 ≤ i ≤ k0 and 0 otherwise. This time,

we consider only two tests, R0 and R1, as defined in (2.9) and (2.15) with c = 1. For several

combinations of n and kn, the sizes for the two tests are estimated based on 10000 replicates.

The powers for the two tests are also estimated when the distributions under the alternatives

are from family (3.1) with r = 0.8, 1.2 and 1.4 or from family (3.2) with r′ = 0.8, 1.1 and 1.2.

The estimated sizes and powers are reported in Table 4.

From Table 4, we conclude that the sizes for both R1 and R1 are close to the nominal level

0.05, and in general, R1 is more powerful than R1. These empirical results are consistent with

Theorem 2.4, and adding the term Sn2 defined in (2.11), a non-trivial linear combination of the

terms (oi − ei)/ei, can improve the power of the test significantly.

Next, we extend our comparison of Sn1 and Sn1+c|Sn2| to some none-equiprobable cases. We

also use the method discussed at the end of Section 2 to define Sn2 by setting k0 = 0.40kn this

time. We consider the distributions from family (3.2) and use the same settings as in Table 3.

Only for an illustration purpose, we demonstrate the weighted test statistics can improve the

power of the test R1 when the expectation of Sn2 under H1 in (2.6) is zero. Both the sizes

and powers for tests R0 and R1 are reported in Table 5. From the table, we see that both the

tests maintain reasonable sizes for all combinations of n and kn. From Tables 3 and 5, we can

conclude that test R1 performs significantly better than R0 and R1 in terms of power.

Finally, we compare the performance of these tests under sparsity. To this end, we introduce

a class of distributions as follows

p1 = · · · = p0.95kn =
r

8kn
, p0.95kn+1 = · · · = pkn =

160 − 19r

8kn
(3.3)

for r ∈ (0, 8), where kn is a multiple of 20. We see that only 5% of probabilities pi’s take a

larger value 160−19r
8kn

in (3.3). In our study, we select r = 2 for the distribution under the null
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hypothesis and estimate the sizes of the five tests considered in Table 1 and estimate the powers

of the tests under the alternatives r = 1 and r = 3 for some combinations of n and kn. The

estimated sizes and powers are reported in Table 6.

Results in Table 6 are quite similar to Tables 1 and 2 in the following aspects: a. the

estimated type I errors are close to nominal level 0.05 for all five tests; b. Pearson’s test R
loses its power totally for some distributions under the alternative while tests R1, R3, and

R5 outperform with large powers. Although test R0 is better than Pearson’s test, its overall

performance is not quite satisfactory. For example, for some distributions under the alternative,

its powers are smaller than the type I errors. We examine the results in Table 6 when n = 100

with r = 1 under the alternative and find out that the power of the test decreases from 0.0416

to 0.0246 when kn increases from 100 to 400. The same phenomenon can also be observed when

n = 1000.

It is worth mentioning that conditions (2.2) and (2.3) that ensure the asymptotic normality

of Sn1 and X 2
n may be moderately violated if kn is too large compared with n. This is the case

for some combinations of n and kn and for some distributions used in Table 6. In our study, the

sizes (type I errors) of all five tests are reasonably close to the nominal level 0.05; see Tables 1

and 6. In terms of power, test R1, R3, and R5 are also very robust as they gain good powers

from Tables 2 and 6.

To conclude this section, we present more discussion on selection of c. Our simulation study

indicates that there is no answer for optimal section of c in general. As we have pointed out,

c represents the weight of |Sn2| in test Rc. When c is large, the test Rc is almost the same as

{|Sn2|/σn2 > zα/2}, where zα/2 is the α/2-level critical value of the standard normal distribution.

On the one hand, the power of test Rc increases with c in most cases in Tables 2 and 6. By

comparing the powers of the test Rc for various values of c in our simulation study, we find out

that the increment in the power for the test Rc is very limited when c is larger than 3, and

the power of R2 is close to that of R3 in most cases. On the other hand, Table 3 indicates

that one may prefer to employ a test Rc with a smaller value c in the worst scenarios such as

those distributions given in (3.2). We observe from Table 3 that the power of R1 is very close

to that of R0 in most cases. Our simulation study also shows that the power of R2 is only

slightly smaller than that of R1 in most cases. Intuitively, the power of test Rc depends on the

probability distributions under both the null and alternative hypotheses as well as the relative

convergence rate of n and kn. A theoretical investigation on how the power function of the test

11



Rc depends on these factors can be very helpful but may be very complicated. In practice, the

distributions under the alternative are unknown, and the optimal choice of c that works for all

distributions does not exist. To balance different situations, one can use tests R1 or R2. As

a general recommendation, one can calculate tests R, R0, R1 and R2 for comparison purpose.

One should be cautious about accepting the null hypothesis based on R or R0 since the powers

of the two tests may be much smaller than their sizes or type I errors. In other words, tests

R and R0 may reject the alternative hypotheses with a probability close to one when the null

hypotheses are not true.

4 A real data application

As an application, we study the winning numbers from the Minnesota Lottery Game Daily 3.

The game has been played for many years, and a winning number consisting of three digits is

drawn daily. The three digits are drawn from digits 0, 1, · · · , 9. Minnesota Lottery does not

reveal how the three digits are selected in its official website. According to the State Lottery Re-

port Card (available at the site https://www.lotterypost.com/lottery-report-card.asp),

the winning numbers for Minnesota Daily 3 are drawn by computer programs.

In Game Daily 3, there are 1000 possible drawing outcomes. We are interested in whether the

drawing mechanism for Daily 3 is random, this is, whether all 1000 possible outcomes are equally

likely. Recent winning numbers for this game can be found at the Minnesota Lottery web site

https://www.mnlottery.com/games/lotto_games/daily_3/winning_s/. As an application,

we examine some early data from Game Daily 3. We have collected a total of 2919 data

points from August 14, 1990 to August 13, 1998. The winning numbers were drawn every

day except Christmas days in years 1990, 1991 and 1992. This old dataset was obtained from

the official Minnesota lottery website but now it is no longer available. One may find it from

https://www.lotterypost.com/results.

Since our null hypothesis is that p1 = · · · = p1000 = 1/1000, all three test statistics, X 2
n ,

Sn1, and Sn1 + c|Sn2|, are the same. We first apply all 2919 data for the test. The observed

X 2
n is 978.5677 with mean 999 and standard deviation 44.69, and the standardized statistic is

(978.6777 − 999)/44.69 = −0.4572, which has a p-value 0.6962. To apply the new test R1, we

assign a value 1.25 to these 800 weights ci to the cells associated to the drawing numbers whose

first digits are smaller than 8. Then we have an observed value −0.1774 for
(︁
Sn1 + |Sn2|− (kn−

1)
)︁
/σn, and the corresponding p-value is 0.6927. Therefore, at the 5% significance level, we
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Figure 1: Plots of the empirical distribution for the standardized test statistics (Sn1 + c|Sn2| −
(kn − 1))/σn1 and their theoretical limiting cumulative distribution Ψ(x, cσn2/σn1) under the

null hypothesis from family (3.1) with r = 0.2. Ψ is defined in (2.8). We select c = 0, 1, and 3,

corresponding to the tests R0, R1 and R3. In these plots, the red/smooth lines represent the

theoretical cumulative distributions Ψ(x, cσn2/σn1).
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Table 1: Estimated Sizes of Tests (Nominal Level α = 0.05): Probability distributions

under null hypotheses and the true distributions that are used to generate samples are from

family (3.1) with different values for parameter r

Sample Distribution True Probability of Rejecting H0 for Tests

Size (n) kn under H0 distribution R R0 R1 R3 R5

100 50 r = 0.1 r = 0.1 0.0679 0.0638 0.0642 0.0536 0.0500

100 50 0.2 0.2 0.0663 0.0614 0.0668 0.0633 0.0599

100 50 0.6 0.6 0.0609 0.0593 0.0628 0.0672 0.0674

100 50 1.0 1.0 0.0576 0.0576 0.0576 0.0576 0.0576

100 100 r = 0.1 r = 0.1 0.0610 0.0595 0.0569 0.0482 0.0450

100 100 0.2 0.2 0.0667 0.0610 0.0594 0.0567 0.0526

100 100 0.6 0.6 0.0579 0.0562 0.0594 0.0616 0.0642

100 100 1.0 1.0 0.0531 0.0531 0.0531 0.0531 0.0531

100 200 r = 0.1 r = 0.1 0.0644 0.0679 0.0567 0.0491 0.0413

100 200 0.2 0.2 0.0619 0.0579 0.0622 0.0536 0.0544

100 200 0.6 0.6 0.0580 0.0550 0.0606 0.0579 0.0539

100 200 1.0 1.0 0.0691 0.0691 0.0691 0.0691 0.0691

1000 300 r = 0.1 r = 0.1 0.0571 0.0543 0.0574 0.0521 0.0519

1000 300 0.2 0.2 0.0552 0.0523 0.0567 0.0562 0.0538

1000 300 0.6 0.6 0.0515 0.0518 0.0527 0.0536 0.0556

1000 300 1.0 1.0 0.0514 0.0514 0.0514 0.0514 0.0514

1000 1000 r = 0.1 r = 0.1 0.0570 0.0594 0.0583 0.0533 0.0543

1000 1000 0.2 0.2 0.0525 0.0548 0.0526 0.0523 0.0489

1000 1000 0.6 0.6 0.0538 0.0534 0.0526 0.0505 0.0516

1000 1000 1.0 1.0 0.0530 0.0530 0.0530 0.0530 0.0530

1000 3000 r = 0.1 r = 0.1 0.0542 0.0600 0.0515 0.0501 0.0505

1000 3000 0.2 0.2 0.0549 0.0568 0.0570 0.0511 0.0510

1000 3000 0.6 0.6 0.0544 0.0546 0.0561 0.0553 0.0532

1000 3000 1.0 1.0 0.0565 0.0565 0.0565 0.0565 0.0565

1000 10000 r = 0.1 r = 0.1 0.0485 0.0648 0.0447 0.0468 0.0472

1000 10000 0.2 0.2 0.0544 0.0614 0.0506 0.0493 0.0494

1000 10000 0.6 0.6 0.0520 0.0590 0.0567 0.0491 0.0486

1000 10000 1.0 1.0 0.0567 0.0567 0.0567 0.0567 0.0567
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Table 2: Estimated Powers of Tests (α = 0.05): Probability distributions under null hy-

potheses and the true distributions that are used to generate samples are from family (3.1) with

different values for parameter r
Sample Distribution True Probability of Rejecting H0 for Tests

Size (n) kn under H0 distribution R R0 R1 R3 R5

100 50 r = 0.1 r = 0.05 0.0042 0.0455 0.1044 0.1408 0.1315

100 50 0.2 0.1 0.0041 0.0677 0.1998 0.3646 0.3864

100 50 0.2 0.3 0.3207 0.1377 0.2608 0.3679 0.3884

100 50 0.6 0.5 0.0436 0.0699 0.0909 0.1316 0.1614

100 50 0.6 0.7 0.1247 0.0856 0.1066 0.1463 0.1768

100 200 r = 0.1 r = 0.05 0.0025 0.0372 0.1120 0.1096 0.0893

100 200 0.2 0.1 0.0010 0.0413 0.2627 0.3577 0.3730

100 200 0.2 0.3 0.3890 0.1156 0.3178 0.3831 0.3935

100 200 0.6 0.5 0.0231 0.0573 0.0924 0.1526 0.1743

100 200 0.6 0.7 0.1399 0.0723 0.1111 0.1678 0.1946

1000 300 r = 0.1 r = 0.05 0.0000 0.0936 0.7955 0.9723 0.9823

1000 300 0.2 0.1 0.0001 0.2739 0.9465 0.9996 1.0000

1000 300 0.2 0.3 0.8806 0.3361 0.8425 0.9876 0.9951

1000 300 0.6 0.5 0.0369 0.1202 0.2360 0.5269 0.7207

1000 300 0.6 0.7 0.2917 0.1464 0.2591 0.5150 0.6971

1000 1000 r = 0.1 r = 0.05 0.0000 0.0577 0.9308 0.9825 0.9856

1000 1000 0.2 0.1 0.0000 0.1123 0.9937 0.9999 1.0000

1000 1000 0.2 0.3 0.9678 0.2041 0.9463 0.9953 0.9968

1000 1000 0.6 0.5 0.0072 0.0814 0.2860 0.7165 0.8531

1000 1000 0.6 0.7 0.3585 0.1000 0.2880 0.6896 0.8311

1000 3000 r = 0.1 r = 0.05 0.0000 0.0423 0.9741 0.9874 0.9880

1000 3000 0.2 0.1 0.0000 0.0657 0.9996 1.0000 1.0000

1000 3000 0.2 0.3 0.9951 0.1545 0.9902 0.9974 0.9979

1000 3000 0.6 0.5 0.0004 0.0632 0.4394 0.8597 0.9174

1000 3000 0.6 0.7 0.5278 0.0826 0.4314 0.8272 0.8948

1000 10000 r = 0.1 r = 0.05 0.0000 0.0431 0.9838 0.9883 0.9891

1000 10000 0.2 0.1 0.0000 0.0476 1.0000 1.0000 1.0000

1000 10000 0.2 0.3 0.9974 0.1292 0.9952 0.9967 0.9969

1000 10000 0.6 0.5 0.0000 0.0575 0.7122 0.9226 0.9377

1000 10000 0.6 0.7 0.7677 0.0777 0.6766 0.8997 0.9165
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Table 3: Estimated Powers of Tests (α = 0.05): Probability distributions under null hy-

potheses and the true distributions that are used to generate samples are from family (3.1) with

parameter r and family (3.2) with parameter r′, respectively

Sample Distribution Distribution Probability of Rejecting H0 for Tests

Size (n) kn under H0 under H1 R R0 R1 R3 R5

100 100 r =0.6 r′ =0.6 0.1562 0.1511 0.1536 0.1400 0.1173

100 100 1.4 1.4 0.3179 0.3418 0.3386 0.2895 0.2168

100 200 r =0.6 r′ =0.6 0.1197 0.1238 0.1215 0.0992 0.0808

100 200 1.4 1.4 0.1940 0.2260 0.2241 0.1647 0.1185

1000 300 r =0.6 r′ =0.6 0.8606 0.8739 0.8716 0.8513 0.8083

1000 300 1.4 1.4 0.9999 1.0000 1.0000 1.0000 1.0000

1000 1000 r =0.6 r′ =0.6 0.4694 0.4939 0.4833 0.4016 0.2968

1000 1000 1.4 1.4 0.9713 0.9758 0.9721 0.9403 0.8441

1000 3000 r =0.6 r′ =0.6 0.2252 0.2575 0.2370 0.1556 0.1104

1000 3000 1.4 1.4 0.6195 0.7019 0.6605 0.4225 0.2482

1000 10000 r =0.6 r′ =0.6 0.1156 0.1547 0.1292 0.0794 0.0671

1000 10000 1.4 1.4 0.2212 0.3412 0.2761 0.1275 0.0924

Table 4: Estimated Sizes and Powers for Tests R0 and R1 for Equiprobable Cells

(α = 0.05). The distributions under alternatives are from family (3.1) with parameter r and

from family (3.2) with parameter r′, respectively

Sample Power under family (3.1) Power under family (3.2)

Size (n) kn Tests Sizes r = 0.8 r = 1.2 r = 1.4 r′ = 0.8 r′ = 1.1 r′ = 1.2

100 100 R0 0.0531 0.0964 0.0900 0.3009 0.2013 0.3030 0.4264

100 100 R1 0.0593 0.1306 0.1262 0.4449 0.2544 0.3208 0.4656

100 200 R0 0.0691 0.0976 0.0973 0.2342 0.1830 0.2428 0.3349

100 200 R1 0.0604 0.1256 0.1140 0.3720 0.2084 0.2234 0.3450

1000 300 R0 0.0514 0.4804 0.4739 0.9999 0.9978 0.9998 1.0000

1000 300 R1 0.0556 0.6341 0.6264 1.0000 0.9990 0.9998 1.0000

1000 1000 R0 0.0530 0.2249 0.2238 0.9515 0.9501 0.9998 0.9945

1000 1000 R1 0.0552 0.5072 0.4986 0.9993 0.9604 0.9998 0.9988

1000 3000 R0 0.0565 0.1384 0.1435 0.6444 0.4710 0.6459 0.8444

1000 3000 R1 0.0561 0.5650 0.5587 0.9984 0.8342 0.7316 0.9675

1000 10000 R0 0.0567 0.0963 0.0972 0.3176 0.2268 0.3136 0.4599

1000 10000 R1 0.0494 0.7127 0.7153 1.0000 0.8199 0.4869 0.9097
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Table 5: Estimated Sizes and Powers of Tests R0 and R1 (α = 0.05): Probability

distributions under null hypotheses are from family (3.1) with parameter r and the distributions

under alternatives are from family (3.2) with parameter r′

Sample Distribution Sizes for Tests Distribution Powers for Tests

Size (n) kn under H0 R0 R1 under H1 R0 R1

100 100 r =0.6 0.0562 0.0612 r′ =0.6 0.1511 0.1844

100 100 1.4 0.0612 0.0665 1.4 0.3418 0.4478

100 200 r =0.6 0.0550 0.0515 r′ =0.6 0.1238 0.1525

100 200 1.4 0.0564 0.0606 1.4 0.2260 0.3704

1000 300 r =0.6 0.0518 0.0560 r′ =0.6 0.8739 0.9227

1000 300 1.4 0.0537 0.0548 1.4 1.0000 1.0000

1000 1000 r =0.6 0.0534 0.0547 r′ =0.6 0.4939 0.7565

1000 1000 1.4 0.0573 0.0560 1.4 0.9758 0.9995

1000 3000 r =0.6 0.0546 0.0542 r′ =0.6 0.2575 0.6527

1000 3000 1.4 0.0515 0.0547 1.4 0.7019 0.9949

1000 10000 r =0.6 0.0590 0.0497 r′ =0.6 0.1547 0.6164

1000 10000 1.4 0.0576 0.0505 1.4 0.3412 0.9947

couldn’t reject the null hypothesis and conclude that the 1000 possible winning numbers may

be drawn with equal probability.

Next, we test the hypothesis that p1 = · · · = p1000 = 1/1000 based on each of eight periods.

A period starts from August 14 in one year and ends next August 13. Namely, Period 1 is from

August 14, 1990 to August 13, 1991, and Period 2 is from August 14, 1991 to August 13, 1993,

so on. For each of the first seven periods, both tests result in large p-values. For Period 8, that

is, during Aug 14, 1997 to Aug 13, 1998, the p-value for test R is 0.00085, and the p-value from

test R1 is 0.002867. We identify that the data during August 14, 1997 and August 13, 1998

seem highly abnormal. We find out that both winning numbers (3, 7, 5) and (4, 4, 8) appeared 4

times, and each of the other 11 numbers appeared 3 times.

Our second test procedure consists of 8 individual tests. In order to control the overall type

I error at the 5% level, we use the Bonferroni inequality for multiple comparisons, that is, we

reject the null hypothesis that p1 = · · · = p1000 = 1/1000 at level 0.05 if any of the 8 individuals

tests is rejected at level 0.05/8 = 0.00625. Since both tests R and R1 have a p-value smaller

than 0.00625 for Period 8, we conclude that the hypothesis of equiprobability can be rejected at

level 0.05.
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Table 6: Estimated Sizes and Powers of Tests under Sparsity (Nominal Level α =

0.05): Probability distributions under null hypotheses and the true distributions that are used

to generate samples are from family (3.3) with different values for parameter r

Sample Distribution True Size or Probability of Rejecting H0 for Tests

Size(n) kn under H0 distribution power R R0 R1 R3 R5

100 100 r =2 r =2 size 0.0623 0.0607 0.0610 0.0547 0.0509

100 100 2 1 power 0.0000 0.0416 0.7327 0.8545 0.8613

100 100 2 3 power 0.6877 0.2145 0.6008 0.7410 0.7559

100 200 r =2 r =2 size 0.0609 0.0632 0.0597 0.0516 0.0520

100 200 2 1 power 0.0000 0.0331 0.7878 0.8529 0.8688

100 200 2 3 power 0.7450 0.1899 0.6616 0.7526 0.7626

100 400 2 2 size 0.0584 0.0617 0.0517 0.0476 0.0468

100 400 2 1 power 0.0000 0.0246 0.8237 0.8714 0.8712

100 400 2 3 power 0.7837 0.1690 0.6973 0.7543 0.7611

1000 300 r =2 r =2 size 0.0598 0.0559 0.0601 0.0547 0.0518

1000 300 2 1 power 0.0000 0.9779 1.0000 1.0000 1.0000

1000 300 2 3 power 0.9999 0.8164 0.9997 1.0000 1.0000

1000 1000 r =2 r =2 size 0.0582 0.0602 0.0579 0.0540 0.0544

1000 1000 2 1 power 0.0000 0.5604 1.0000 1.0000 1.0000

1000 1000 2 3 power 1.0000 0.5143 1.0000 1.0000 1.0000

1000 3000 r =2 r =2 size 0.0551 0.0597 0.0536 0.0515 0.0516

1000 3000 2 1 power 0.0000 0.1361 1.0000 1.0000 1.0000

1000 3000 2 3 power 1.0000 0.3219 1.0000 1.0000 1.0000

1000 10000 r =2 r =2 size 0.0511 0.0633 0.0520 0.0488 0.0487

1000 10000 2 1 power 0.0000 0.0384 1.0000 1.0000 1.0000

1000 10000 2 3 power 1.0000 0.2211 1.0000 1.0000 1.0000

5 Concluding remarks

In this paper, we investigate the performance of Pearson’s goodness-of-fit test when both the

number of cells and the sample size go to infinity. Under quite general conditions, we have

obtained the limiting distributions for Pearson’s goodness-of-fit test statistic and Zelterman’s

D2 test statistic. By decomposing Pearson’s test statistic, we propose new test statistics so as

to overcome the bias problem of Pearson’s chi-squared test. Our simulation study indicates that

test R1 is superior to Pearson’s goodness-of-fit test R in general. R1 gains a much larger power

than R in most cases and is no longer biased. Our new test R1 is also much more powerful than

R for testing the equiprobable cells. For small and moderate sample sizes, as pointed out by

a referee, one can apply permutation procedures (Drikvandi et al. [5]) or bootstrap procedures
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(Nordhausen et al. [14]) to conduct the tests.

Supplementary material

Proofs of the main results in the paper are given in the Supplement.
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Appendix: Proofs of the Main Results

For each j ∈ {1, · · · , n}, define random variable Xj = i if Ei occurs in the j-th trial of the

experiment. Then Xj , 1 ≤ j ≤ n, are independent and identically distributed random variables

with P (Xj = i) = pi for 1 ≤ i ≤ kn, 1 ≤ j ≤ n. Define

δi,j = I(Xj = i) − pi for 1 ≤ i ≤ kn, 1 ≤ j ≤ n

and set

∆i,ℓ =
ℓ∑︂

j=1

δi,j for 1 ≤ i ≤ kn, 1 ≤ ℓ ≤ n.

For convenience, set ∆i,0 = 0 for any 1 ≤ i ≤ kn.

From now on, we use E(·) to denote the expectation under the null hypothesis that P (Ei) = pi

for 1 ≤ i ≤ kn. When an alternative is specified as H1: P (Ei) = p′i for 1 ≤ i ≤ kn, where

(p′1, · · · , p′kn) ̸= (p1, · · · , pkn), E(·|H1) denotes the conditional expectation under H1.
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We can easily verify the following equations:

E(δi,j) = 0, E(δ2i,j) = pi(1 − pi); (A.1)

E(δi,jδi′,j′) = 0 if j ̸= j′; (A.2)

E(δi,jδi′,j) =

{︄
pi(1 − pi), if i = i′;

−pipi′ , if i ̸= i′,
(A.3)

kn∑︂
i=1

δi,j = 0 and

kn∑︂
i=1

∆i,j = 0, (A.4)

where 1 ≤ i, i′ ≤ kn, 1 ≤ j, j′ ≤ n in the above equations.

Since
∑︁ℓ

j=1 I(Xj = i) is the sum of ℓ independent Bernoulli random variables, its distribution

is binomial. We have

E(∆2
i,ℓ) = ℓpi(1 − pi), 1 ≤ ℓ ≤ n. (A.5)

We can also verify that

E(∆i1,ℓ∆i2,ℓ) = −ℓpi1pi2 , 1 ≤ i1 ̸= i2 ≤ kn, 1 ≤ ℓ ≤ n. (A.6)

For each i ∈ {1, · · · , kn}, we have

oi =

n∑︂
j=1

I(Xj = i) and oi − ei =

n∑︂
j=1

δi,j = ∆i,n. (A.7)

We also need the following expectations under the alternative H1

E(δi,j |H1) = p′i − pi and E(δi,jδi,j′ |H1) = (p′i − pi)
2 (A.8)

for 1 ≤ i ≤ kn, 1 ≤ j ̸= j′ ≤ n.

Lemma A.1. Let Sn1 and Sn2 be defined in (1.2). Then

Sn1 =
1

n

kn∑︂
i=1

1

pi

∑︂
1≤j1 ̸=j2≤n

δi,j1δi,j2 + kn − 1 (A.9)

and

Sn2 =
1

n

n∑︂
j=1

kn∑︂
i=1

δi,j
pi
. (A.10)
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Under the null hypothesis that P (X1 = i) = pi for 1 ≤ i ≤ kn, we have

E(Sn1 − (kn − 1)) = 0, E(Sn2) = 0; (A.11)

Under the alternative H1: P (X1 = i) = p′i for 1 ≤ i ≤ kn, we have

E
(︁
Sn1 − (kn − 1)|H1

)︁
= (n− 1)

kn∑︂
i=1

(p′i − pi)
2

pi
, E(Sn2|H1) =

kn∑︂
i=1

p′i − pi
pi

. (A.12)

Proof. With the notations in the beginning of the section, (A.10) can be verified easily by using

(A.7). To show (A.9), notice that

X 2
n =

kn∑︂
i=1

(
∑︁n

j=1 δi,j)
2

npi

=
1

n

kn∑︂
i=1

1

pi

n∑︂
j1=1

n∑︂
j2=1

δi,j1δi,j2

=
1

n

kn∑︂
i=1

1

pi

∑︂
1≤j1 ̸=j2≤n

δi,j1δi,j2 +
1

n

kn∑︂
i=1

1

pi

n∑︂
j=1

δ2i,j . (A.13)

Since δ2i,j = I(Xj = i) − 2I(Xj = i)pi + p2i ,
∑︁kn

i=1 I(Xj = i) = 1, and
∑︁kn

i=1 pi = 1, we have

1

n

kn∑︂
i=1

1

pi

n∑︂
j=1

δ2i,j =
1

n

kn∑︂
i=1

n∑︂
j=1

(︂I(Xj = i)

pi
− 2I(Xj = i) + pi

)︂

=
1

n

n∑︂
j=1

kn∑︂
i=1

(︂I(Xj = i)

pi
− 2I(Xj = i) + pi

)︂

=
1

n

n∑︂
j=1

(︂ kn∑︂
i=1

I(Xj = i)

pi
− 1

)︂

=
1

n

n∑︂
j=1

kn∑︂
i=1

I(Xj = i) − pi
pi

+ (kn − 1)

=
1

n

n∑︂
j=1

kn∑︂
i=1

δi,j
pi

+ (kn − 1)

= Sn2 + kn − 1,

which, together with (A.13), yields (A.9).

Equations (A.11) and (A.12) follow from (A.9), (A.10), (A.2) and (A.8). This completes the

proof.
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Lemma A.2. Let ci, 1 ≤ i ≤ kn, be non-negative numbers with
∑︁kn

i=1 ci = kn. Then for any

j ≥ 1

βnj :=

kn∑︂
i=1

cj+1
i

pji
− kj+1

n ≥ 0, (A.14)

and the equality holds only if for some c > 0, ci = cpi for 1 ≤ i ≤ kn.

Proof. We will prove (A.14) by induction. By using the Cauchy-Schwarz inequality we get

kn∑︂
i=1

c2i
pi

=

kn∑︂
i=1

(︁ ci

p
1/2
i

)︁2 kn∑︂
i=1

(p
1/2
i )2 ≥

(︂ kn∑︂
i=1

ci

p
1/2
i

p
1/2
i

)︂2
= k2n

and the equality holds only if ( c1√
p1
, · · · , ckn√

pkn
) = c(

√
p1, · · · ,

√
pkn) for some c > 0, and the latter

is equivalent to ci = cpi for 1 ≤ i ≤ kn. This implies (A.14) holds with j = 1. Now assume

(A.14) holds for all j ≤ j0 for some j0 ≥ 1. We need to show (A.14) holds with j = j0 + 1. If

j0 + 1 = 2k is an even number where k ≥ 1, then it follows from the Cauchy-Schwarz inequality

that

kn∑︂
i=1

cj0+2
i

pj0+1
i

=
1

kn

kn∑︂
i=1

(︁ck+1/2
i

pki

)︁2 kn∑︂
i=1

(c
1/2
i )2 ≥ 1

kn

(︂ kn∑︂
i=1

ck+1
i

pki

)︂2
≥ 1

kn
(kk+1

n )2 = kj0+2
n ,

and the equality holds only if ci = cpi for 1 ≤ i ≤ kn for some c > 0, proving (A.14) with

j = j0 + 1. If j0 + 1 = 2k+ 1 is an odd number with k ≥ 1, then again from the Cauchy-Schwarz

inequality

kn∑︂
i=1

cj0+2
i

pj0+1
i

=

kn∑︂
i=1

(︁ ck+1

p
(2k+1)/2
i

)︁2 kn∑︂
i=1

(p
1/2
i )2 ≥

(︂ kn∑︂
i=1

ck+1
i p

1/2
i

p
(2k+1)/2
i

)︂2

≥
(︂ kn∑︂

i=1

ck+1
i

pki

)︂2
≥

(︁
kk+1
n

)︁2
= kj0+2

n ,

i.e. (A.14) holds with j = j0 + 1. Similarly, we have the equality only if ci = cpi for 1 ≤ i ≤ kn

for some c > 0. This completes the proof.

Lemma A.3. Assume {nr, r ≥ 1} is an increasing sequence of positive integers. If (2.2) holds

with n = nr as r → ∞, then (2.4) holds with n = nr as r → ∞.

Proof. For brevity, we will drop the subscript r and write nr as n in the proof.
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To prove (2.4), we will employ a martingale technique. To this end, we first rewrite Sn1 as

Sn1 − (kn − 1) =
1

n

kn∑︂
i=1

1

pi

∑︂
1≤j1 ̸=j2≤n

δi,j1δi,j2

=
2

n

kn∑︂
i=1

1

pi

∑︂
1≤j1<j2≤n

δi,j1δi,j2

=
2

n

kn∑︂
i=1

1

pi

n∑︂
ℓ=2

ℓ−1∑︂
j=1

δi,jδi,ℓ

=
n∑︂

ℓ=2

(︂ 2

n

kn∑︂
i=1

1

pi

ℓ−1∑︂
j=1

δi,jδi,ℓ

)︂

=
n∑︂

ℓ=2

(︂ 2

n

kn∑︂
i=1

1

pi
∆i,ℓ−1δi,ℓ

)︂
.

Let Fnℓ = σ(X1, X2, · · · , Xℓ) denote the σ-algebra generated by {X1, X2, · · · , Xℓ} for 1 ≤
ℓ ≤ n, and Fn0 = {ϕ,Ω} is the trivial σ-algebra. Now set

znℓ =
2

n

kn∑︂
i=1

1

pi
∆i,ℓ−1δi,ℓ, 1 ≤ ℓ ≤ n. (A.15)

Note that zn1 = 0. By the independence of δi,ℓ and Fn(ℓ−1), we have

E(znℓ|Fn(ℓ−1)) =
2

n

kn∑︂
i=1

1

pi
∆i,ℓ−1E(δi,ℓ|Fn(ℓ−1)) = 0 for 1 ≤ ℓ ≤ n.

Therefore, {znℓ, Fnℓ, 1 ≤ ℓ ≤ n, n ≥ 2} form an array of martingale differences. Since

Sn1 =
∑︁n

ℓ=1 znℓ, it is sufficient to show that∑︁pn
ℓ=1 znℓ
σn1

d→ N(0, 1). (A.16)

In view of Corollary 3.1 in Hall and Heyde [1], the martingale central limit theorem (A.16) holds

if the following two conditions hold:

1

σ2n1

n∑︂
ℓ=1

E(z2nℓI(|znℓ| ≥ εσn1)|Fn(ℓ−1)) → 0 in probability (A.17)

for every ε > 0, and

1

σ2n1

n∑︂
ℓ=1

E(z2nℓ|Fn(ℓ−1)) → 1 in probability. (A.18)

5



Recall znℓ is defined in (A.15). We have

z2nℓ =
4

n2

∑︂
1≤i1,i2≤kn

∆i1,ℓ−1∆i2,ℓ−1

pi1pi2
δi1,ℓδi2,ℓ. (A.19)

By taking conditional expectations on Fn(ℓ−1), using the independence of δi1,ℓδi2,ℓ and Fn(ℓ−1)

we get

E(z2nℓ|Fn(ℓ−1))

=
4

n2

∑︂
1≤i1,i2≤kn

∆i1,ℓ−1∆i2,ℓ−1

pi1pi2
E
(︁
δi1,ℓδi2,ℓ|Fn(ℓ−1)

)︁
=

4

n2

∑︂
1≤i1,i2≤kn

∆i1,ℓ−1∆i2,ℓ−1

pi1pi2
E
(︁
δi1,ℓδi2,ℓ

)︁
=

4

n2

(︂ ∑︂
1≤i1=i2≤kn

∆i1,ℓ−1∆i2,ℓ−1

pi1pi2
E
(︁
δi1,ℓδi2,ℓ

)︁
+

∑︂
1≤i1 ̸=i2≤kn

∆i1,ℓ−1∆i2,ℓ−1

pi1pi2
E
(︁
δi1,ℓδi2,ℓ

)︁)︂
.

In view of (A.3) and (A.4), we get for 2 ≤ ℓ ≤ n

E(z2nℓ|Fn(ℓ−1))

=
4

n2

(︂ ∑︂
1≤i≤kn

∆2
i,ℓ−1

pi
(1 − pi) −

∑︂
1≤i1 ̸=i2≤kn

∆i1,ℓ−1∆i2,ℓ−1

)︂
=

4

n2

(︂ ∑︂
1≤i≤kn

∆2
i,ℓ−1

pi
(1 − pi) +

∑︂
1≤i1=i2≤kn

∆i1,ℓ−1∆i2,ℓ−1 −
∑︂

1≤i1,i2≤kn

∆i1,ℓ−1∆i2,ℓ−1

)︂
=

4

n2

(︂ ∑︂
1≤i≤kn

∆2
i,ℓ−1

pi
(1 − pi) +

∑︂
1≤i≤kn

∆2
i,ℓ−1 − (

∑︂
1≤i≤n

∆i,ℓ−1

)︁2)︂
=

4

n2

∑︂
1≤i≤kn

∆2
i,ℓ−1

pi
.

Therefore, we get the conditional variance for the martingale differences {znℓ, Fnℓ, 1 ≤ ℓ ≤
n, n ≥ 2}

σ2n|c :=

n∑︂
ℓ=2

E(z2nℓ|Fn(ℓ−1)) =
4

n2

n∑︂
ℓ=2

∑︂
1≤i≤kn

∆2
i,ℓ−1

pi
, (A.20)
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and from (A.5)

E(σ2n|c) =
4

n2

n∑︂
ℓ=2

∑︂
1≤i≤kn

(ℓ− 1)pi(1 − pi)

pi

=
4

n2

n∑︂
ℓ=2

(ℓ− 1)
∑︂

1≤i≤kn

(1 − pi)

=
4

n2
n(n− 1)

2
(kn − 1)

=
2(n− 1)(kn − 1)

n
= σ2n1, (A.21)

where σ2n1 is the variance defined in Theorem 2.1.

Taking into account the above computation, (A.17) and (A.18) follow if we can verify the

following equations
n∑︂

ℓ=1

E(z4nℓ) = o(σ4n1) as n→ ∞ (A.22)

and

E(σ2n|c − σ2n1)
2 = o(σ4n1) as n→ ∞. (A.23)

We will prove (A.23) first. Rewrite

σ2n|c =
4

n2

n∑︂
ℓ=2

∑︂
1≤i≤kn

∆2
i,ℓ−1

pi

=
4

n2

n∑︂
ℓ=2

kn∑︂
i=1

1

pi

∑︂
1≤j1,j2≤ℓ−1

δi,j1δi,j2

=
4

n2

n∑︂
ℓ=2

kn∑︂
i=1

1

pi

(︂ kn∑︂
j=1

δ2i,j + 2
∑︂

1≤j1<j2≤ℓ−1

δi,j1δi,j2

)︂

=
4

n2

n∑︂
ℓ=2

kn∑︂
i=1

1

pi

ℓ−1∑︂
j=1

δ2i,j + +
8

n2

n∑︂
ℓ=3

kn∑︂
i=1

1

pi

∑︂
1≤j1<j2≤ℓ−1

δi,j1δi,j2

= : In1 + In2.

Then (A.23) follows if

E
(︁
In1 − σ2n1

)︁2
= o(σ4n1) and E

(︁
I2n2

)︁
= o(σ4n1). (A.24)
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Note that

In1 =
4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

kn∑︂
i=1

1

pi
δ2i,j

=
4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

kn∑︂
i=1

(︁I(Xj = i)

pi
+ pi − 2I(Xj = i)

)︁
=

4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

(︂ kn∑︂
i=1

I(Xj = i)

pi
− 1

)︂

=
4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

(︂ kn∑︂
i=1

I(Xj = i) − pi
pi

+ kn − 1
)︂

=
4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

(︂ kn∑︂
i=1

δi,j
pi

+ kn − 1
)︂

=
4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

kn∑︂
i=1

δi,j
pi

+
4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

(kn − 1)

=
4

n2

n∑︂
ℓ=2

ℓ−1∑︂
j=1

kn∑︂
i=1

δi,j
pi

+ σ2n1

=
4

n2

n−1∑︂
j=1

kn∑︂
i=1

(n− j)δi,j
pi

+ σ2n1.

The last step is obtained from the previous one by taking summation over ℓ first. In view of

8



(A.2) and (A.3) we get

E
(︁
In1 − σ2n1

)︁2
=

16

n4
E
(︁ n−1∑︂
j=1

kn∑︂
i=1

(n− j)δi,j
pi

)︁2
=

16

n4

∑︂
1≤j1,j2≤n−1

∑︂
1≤i1,i2≤kn

(n− j1)(n− j2)E
(︁
δi1,j1δi2,j2

)︁
pi1pi2

=
16

n4

n−1∑︂
j=1

∑︂
1≤i1,i2≤kn

(n− j)2E
(︁
δi1,jδi2,j

)︁
pi1pi2

=
16

n4

n−1∑︂
j=1

(n− j)2
(︂ ∑︂

1≤i≤kn

pi(1 − pi)

p2i
+

∑︂
1≤i1 ̸=i2≤kn

−pi1pi2
pi1pi2

)︂

=
16

n4

n−1∑︂
j=1

(n− j)2
(︂ kn∑︂

i=1

1

pi
− k2n

)︂

=
O(k2n)

nk2n

(︂ kn∑︂
i=1

1

pi
− k2n

)︂
= o(σ4n1).

We have used the fact that limn→∞
1

nk2n
(
∑︁kn

i=1
1
pi

− k2n) = 0, which follows from condition (2.2)

since
kn∑︂
i=1

1

pi
≤

⌜⃓⃓⎷ kn∑︂
i=1

1

p2i

kn∑︂
i=1

1 = o(nkn)k1/2n = o(nk2n) (A.25)

from the Cauchy-Schwarz inequality. The first part of (A.24) is obtained.

To prove the second part of (A.24), we can take summation over ℓ first. Then we have

In2 =
8

n2

n∑︂
ℓ=3

kn∑︂
i=1

1

pi

∑︂
1≤j1<j2≤ℓ−1

δi,j1δi,j2

=
8

n2

kn∑︂
j=2

kn∑︂
i=1

n− j

pi
∆i,j−1δi,j .

We note that E
(︁
∆i1,j1−1δi1,j1∆i2,j2−1δi2,j2

)︁
= 0 if j1 ̸= j2 for any 1 ≤ i1, i2 ≤ kn. We thus have

9



from equations (A.1), (A.3), (A.5) and (A.6) that

E(I2n2) =
64

n4

∑︂
2≤j1,j2≤n

∑︂
1≤i1,i2≤kn

(n− j1)(n− j2)

pi1pi2
E
(︁
∆i1,j1−1δi1,j1∆i2,j2−1δi2,j2

)︁
=

64

n4

∑︂
2≤j≤n

∑︂
1≤i1,i2≤kn

(n− j)2

pi1pi2
E
(︁
∆i1,j−1δi1,j∆i2,j−1δi2,j

)︁
=

64

n4

∑︂
2≤j≤n

∑︂
1≤i1,i2≤kn

(n− j)2

pi1pi2
E
(︁
∆i1,j−1∆i2,j−1

)︁
E
(︁
δi1,jδi2,j

)︁
=

64

n4

∑︂
2≤j≤n

(n− j)2
(︂ ∑︂

1≤i≤kn

(j − 1)p2i (1 − pi)
2

p2i
+

∑︂
1≤i1 ̸=i2≤kn

(j − 1)p2i1p
2
i2

pi1pi2

)︂
=

64

n4

∑︂
2≤j≤n

(n− j)2(j − 1)
(︂ ∑︂

1≤i≤kn

(1 − pi)
2 +

∑︂
1≤i1 ̸=i2≤kn

pi1pi2

)︂
=

64(kn − 1)

n4

∑︂
2≤j≤n

(n− j)2(j − 1)

= O(kn − 1)

= o(σ4n1),

proving the second part of (A.24).

Finally, we show (A.22). To estimate E(z4nℓ), we need the following calculations which are

straightforward:

d4(i) : = E(δ4i,ℓ) = pi(1 − pi)
4 + p4i (1 − pi),

d3,1(i, j) : = E(δ3i,ℓδj,ℓ) = pipj(1 − pi − pj) − (1 − pi)
3pipj − p3i (1 − pj)pj ,

d2,2(i, j) : = E(δ2i,ℓδ
2
j,ℓ) = pipj(1 − pi − pj) + pip

2
j (1 − pi)

2 + p2i pj(1 − pj)
2,

d2,1,1(i, j,m) : = E(δ2i,ℓδj,ℓδm,ℓ) = p2i pjpm(1 − pi − pj − pm) + (1 − pi)
2pipjpm

−p2i pj(1 − pj)pm − p2i pjpm(1 − pm),

d1,1,1,1(i, j,m, r) : = E(δi,ℓδj,ℓδm,ℓδr,ℓ)

= pipjpmpr(1 − pi − pj − pm − pr) − pipjpmpr(1 − pi)

−pipjpmpr(1 − pj) − pipjpmpr(1 − pm) − pipjpmpr(1 − pr)

= −3pipjpmpr,

where integers i, j,m, r ∈ {1, · · · , kn} assume different values if they appear in the same equa-
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tions. Then it follows from the above equations that

d4(i) ≤ 2pi, |d3,1(i, j)| ≤ 3pipj , d2,2(i, j) ≤ 3pipj , |d2,1,1(i, j,m)| ≤ 4pipjpm

and

d1,1,1,1(i, j,m, r) = −3pipjpmpr.

Now we estimate E
(︁
∆i1,ℓ∆i2,ℓ∆i3,ℓ∆i4,ℓ

)︁
. Note that

E
(︁
∆i1,ℓ∆i2,ℓ∆i3,ℓ∆i4,ℓ

)︁
= E

(︁ ℓ∑︂
ℓ1=1

δi1,ℓ1

ℓ∑︂
ℓ2=1

δi2,ℓ2

ℓ∑︂
ℓ3=1

δi3,ℓ3

ℓ∑︂
ℓ4=1

δi4,ℓ4
)︁

= E
(︁ ∑︂
1≤ℓ1,ℓ2,ℓ3,ℓ4≤ℓ

δi1,ℓ1δi2,ℓ2δi3,ℓ3δi4,ℓ4
)︁

=
∑︂

1≤ℓ1,ℓ2,ℓ3,ℓ4≤ℓ

E
(︁
δi1,ℓ1δi2,ℓ2δi3,ℓ3δi4,ℓ4

)︁
.

It is easy to see that E
(︁
δi1,ℓ1δi2,ℓ2δi3,ℓ3δi4,ℓ4

)︁
̸= 0 only if ℓ1 = ℓ2 = ℓ3 = ℓ4, or ℓ1, ℓ2, ℓ3, ℓ4 form

two distinct matching pairs such as ℓ1 = ℓ2 ̸= ℓ3 = ℓ4. Therefore, we have

E
(︁
∆i1,ℓ∆i2,ℓ∆i3,ℓ∆i4,ℓ

)︁
=

∑︂
1≤j≤ℓ

E
(︁
δi1,jδi2,jδi3,jδi4,j

)︁
+

∑︂
1≤m ̸=r≤ℓ

E
(︁
δi1,mδi2,m

)︁
E
(︁
δi3,rδi4,r

)︁
+

∑︂
1≤m ̸=r≤j

E
(︁
δi1,mδi3,m

)︁
E
(︁
δi2,rδi4,r

)︁
+

∑︂
1≤m̸=r≤j

E
(︁
δi1,mδi4,m

)︁
E
(︁
δi2,rδi3,r

)︁
.

This, together with (A.3), yields

D
(ℓ)
4 (i) : = E(∆4

i,ℓ) = ℓd4(i) + 3ℓ(ℓ− 1)p2i (1 − pi)
2,

D
(ℓ)
3,1(i, j) : = E(∆3

i,ℓ∆j,ℓ) = ℓd3,1(i, j) − 3ℓ(ℓ− 1)p2i (1 − pi)pj ,

D
(ℓ)
2,2(i, j) : = E(∆2

i,ℓ∆
2
j,ℓ) = ℓd2,2(i, j) + ℓ(ℓ− 1)

(︁
pipj(1 − pi)(1 − pj) + 2p2i p

2
j

)︁
,

D
(ℓ)
2,1,1(i, j,m) : = E(∆2

i,ℓ∆j,ℓ∆m,ℓ) = ℓd2,1,1(i, j,m) + ℓ(ℓ− 1)(3p2i pjpm − pipjpm),

D
(ℓ)
1,1,1,1(i, j,m, r) : = E(∆i,ℓ∆j,ℓ∆m,ℓ∆r,ℓ) = ℓd1,1,1,1(i, j,m, r) + 3ℓ(ℓ− 1)pipjpmpr,

where i, j,m, r are different integers if they appear in the same equation. Therefore, we get
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2 ≤ ℓ ≤ n

D
(ℓ−1)
4 (i)d4(i) ≤ 4ℓp2i + 6ℓ2p3i ,

D
(ℓ−1)
3,1 (i, j)d3,1(i, j) ≤ 9ℓp2i p

2
j + 9ℓ2p3i p

2
j ,

D
(ℓ−1)
2,2 (i, j)d2,2(i, j) ≤ 9ℓ2p2i p

2
j ,

D
(ℓ−1)
2,1,1 (i, j,m)d2,1,1(i, j,m) ≤ 16ℓ2p2i p

2
jp

2
m,

D
(ℓ−1)
1,1,1,1(i, j,m, r)d1,1,1,1(i, j,m, r) ≤ 9ℓ2p2i p

2
jp

2
mp

2
r .

It follows from (A.19) that for 2 ≤ ℓ ≤ n

z4nℓ =
4

n4

∑︂
1≤i1,i2,i3,i4≤kn

∆i1,ℓ−1∆i2,ℓ−1∆i3,ℓ−1∆i4,ℓ−1

pi1pi2pi3pi4
δi1,ℓδi2,ℓδi3,ℓδi4,ℓ,

and thus

E(z4nℓ) =
4

n4

∑︂
1≤i1,i2,i3,i4≤kn

E
(︁
∆i1,ℓ−1∆i2,ℓ−1∆i3,ℓ−1∆i4,ℓ−1

)︁
pi1pi2pi3pi4

E
(︁
δi1,ℓδi2,ℓδi3,ℓδi4,ℓ

)︁
. (A.26)

We will divide {(i1, i2, i3, i4) : 1 ≤ i1, i2, i3, i4 ≤ n} into several subsets, and classify these subsets

into groups. The contributions to E(z4nℓ) from subsets within each group are the same, and we

will list only one representative subset within each group. The above inequalities will be used

in the following estimations.

� Group 1: i1, i2, i3, i4 are the same, that is, {(i1, i2, i3, i4) : 1 ≤ i1 = i2 = i3 = i4 ≤ n} =: G1.

The sum of the summands over G1 on the right-hand side of (A.26) is equal to

σ
(ℓ)
1 :=

∑︂
1≤i≤n

1

p4i
D

(ℓ−1)
4 (i)d4(i) ≤ 4(ℓ− 1)

kn∑︂
i=1

1

p2i
+ 6(ℓ− 1)2

kn∑︂
i=1

1

pi
.

� Group 2: Exactly three of i1, i2, i3, i4 are the same. A representative is {(i1, i2, i3, i4) : 1 ≤
i1 = i2 = i3 ̸= i4 ≤ n} =: G2. There are 4 such subsets. The sum of the summands over

G2 on the right-hand side of (A.26) is equal to

σ
(ℓ)
2 :=

∑︂
1≤i, ̸=j≤n

1

p3i pj
D

(ℓ−1)
3,1 (i, j)d3,1(i, j) ≤ 9(ℓ− 1)

kn∑︂
i=1

1

pi
+ 9(ℓ− 1)2kn.

� Group 3: i1, i2, i3, i4 form two distinct matching pairs. A representative is {(i1, i2, i3, i4) :

1 ≤ i1 = i2 ̸= i3 = i4 ≤ n} =: G3. There are 3 such subsets within this group. The sum

of the summands over G3 on the right-hand side of (A.26) is equal to

σ
(ℓ)
3 :=

∑︂
1≤i ̸=j≤n

1

p2i p
2
j

D
(ℓ−1)
2,2 (i, j)d2,2(i, j) ≤ 9(ℓ− 1)2k2n.
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� Group 4: Exactly two of i1, i2, i3, i4 are the same and there is only one matching pair. A

representative is {(i1, i2, i3, i4) : 1 ≤ i1 = i2 ̸= i3 ̸= i4 ≤ n} = G4. There are 6 subsets

within this group. The sum of the summands over G4 on the right-hand side of (A.26) is

equal to

σ
(ℓ)
4 :=

∑︂
1≤i ̸=j ̸=m≤n

1

p2i pjpm
D

(ℓ−1)
2,1,1 (i, j,m)d2,1,1(i, j,m) ≤ 16(ℓ− 1)2kn.

� Group 5: i1, i2, i3, i4 are distinct, that is, {(i1, i2, i3, i4) : 1 ≤ i1 ̸= i2 ̸= i3 ̸= i4 ≤ n} =: G5.

The sum of the summands over G5 on the right-hand side of (A.26) is equal to

σ
(ℓ)
5 :=

∑︂
1≤i ̸=j ̸=m̸=r≤n

1

pipjpmpr
D

(ℓ−1)
1,1,1,1(i, j,m, r)d1,1,1,1(i, j,m, r) ≤ 9(ℓ− 1)2.

Therefore, we have for 2 ≤ ℓ ≤ n

E(z4nℓ) ≤
4

n4

(︂
σ
(ℓ)
1 + 4σ

(ℓ)
2 + 3σ

(ℓ)
3 + 6σ

(ℓ)
4 + σ

(ℓ)
5

)︂
.

By summing up on both sides of the above inequality we have

n∑︂
ℓ=2

E(z4nℓ) ≤ 4

n4

(︂ n∑︂
ℓ=2

σ
(ℓ)
1 + 4

n∑︂
ℓ=2

σ
(ℓ)
2 + 3

n∑︂
ℓ=2

σ
(ℓ)
3 + 6

n∑︂
ℓ=2

σ
(ℓ)
4 +

n∑︂
ℓ=2

σ
(ℓ)
5

)︂
≤ (

2

n2

kn∑︂
i=1

1

p2i
+

8

n

kn∑︂
i=1

1

pi
) + (

72

n

kn∑︂
i=1

1

pi
+

48kn
n

)

+
36k2n
n

+
72kn
n

+
12

n

≤ 2

n2

kn∑︂
i=1

1

p2i
+

80

n

kn∑︂
i=1

1

pi
+

36(kn + 2)2

n
.

Since σ2n1 ∼ 2kn, equation (A.22) follows immediately from (A.25) and condition (2.2). This

completes the proof.

Lemma A.4. Let ci ≥ 0, 1 ≤ i ≤ kn, be given weights such that
∑︁kn

i=1 ci = kn. Assume

{nr, r ≥ 1} is an increasing sequence of positive integers. If

βnr3

nrβ2nr1

→ 0 and
k2nr

nrβnr1
→ 0 as r → ∞, (A.27)

where βnrj’s are defined in (A.14), then we have

Snr2

σnr2

d→ N(0, 1) as r → ∞, (A.28)
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where σn2 is defined in (2.12). If, additionally, (2.2) holds with n = nr as r → ∞, we have(︂Snr1 − (knr − 1)

σnr1
,
Snr2

σnr2

)︂
d→ (Z1, Z2), (A.29)

where Z1 and Z2 are i.i.d. standard normal random variables.

Proof. As in the proof of Lemma A.3, we denote nr as n for brevity.

It follows from (2.11) and (A.7) that

Sn2 =

kn∑︂
i=1

ci

(︂oi
ei

− 1
)︂

=
1

n

kn∑︂
i=1

(︂ ci
pi

n∑︂
j=1

I(Xj = i) − cin
)︂

=
1

n

n∑︂
j=1

(︂ kn∑︂
i=1

ciI(Xj = i)

pi
− kn

)︂
.

Set

ynj =

kn∑︂
i=1

ciI(Xj = i)

pi
− kn, 1 ≤ j ≤ n. (A.30)

Then Sn2 = 1
n

∑︁n
j=1 ynj . Note that yn1, · · · , ynn are n i.i.d. random variables with mean 0.

Since for any integer r ≥ 2

E
(︂ kn∑︂

i=1

ciI(Xj = i)

pi

)︂r
= E

(︂ kn∑︂
i=1

cri I(Xj = i)

pri

)︂
=

kn∑︂
i=1

cri
pr−1
i

,

we have

E(y2n1) = E
(︂ kn∑︂

i=1

ciI(Xj = i)

pi

)︂2
− k2n =

kn∑︂
i=1

c2i
pi

− k2n = βn1,

which implies

σ2n2 = Var(Sn2) =
βn1
n
. (A.31)
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Furthermore, we have

E(y4n1) = E
(︂ kn∑︂

i=1

ciI(Xj = i)

pi
− kn

)︂4

= E
(︂ kn∑︂

i=1

ciI(Xj = i)

pi

)︂4
− 4knE

(︂ kn∑︂
i=1

ciI(Xj = i)

pi

)︂3

+6k2nE
(︂ kn∑︂

i=1

ciI(Xj = i)

pi

)︂2
− 4k3nE

(︂ kn∑︂
i=1

ciI(Xj = i)

pi

)︂
+ k4n

=

kn∑︂
i=1

c4i
p3i

− k4n − 4kn

(︂ kn∑︂
i=1

c3i
p2i

− k3n

)︂
+ 6k2n

(︂ kn∑︂
i=1

c2i
pi

− k2n

)︂
≤

kn∑︂
i=1

c4i
p3i

− k4n + 6k2n

(︂ kn∑︂
i=1

c2i
pi

− k2n

)︂
= βn3 + 6k2nβn1

from (A.14).

Note that as n→ ∞

1

(
√
nβn1)4

n∑︂
j=1

E(y4nj) =
E(y4n1)

nβ2n1
≤ βn3
nβ2n1

+
6k2n
nβn1

→ 0 (A.32)

from (A.27). This is Lyapunov’s condition for the central limit theorem

Sn2

σn2
=

∑︁n
j=1 ynj√
nβn1

d→ N(0, 1).

Therefore, we have proved (A.28).

Since both Sn1−(kn−1)
σn1

and Sn2
σn2

converge in distribution to the standard normal, to show

(A.29), it suffices to show that for any s, t ∈ R

s
Sn1 − (kn − 1)

σn1
+ t

Sn2

σn2

d→ N(0, s2 + t2),

or equivalently

Tn(s, t) :=
s√

s2 + t2
Sn1 − (kn − 1)

σn1
+

t√
s2 + t2

Sn2

σn2

d→ N(0, 1). (A.33)

Now fix s, t ∈ R. Set

an =
s√

s2 + t2
1

σn1
, bn =

s√
s2 + t2

1√
nβn1

.
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Note that ynℓ =
∑︁kn

i=1
ciδi,ℓ
pi

. Define

xnℓ = anznℓ + bnynℓ,

where znℓ’s are defined in (A.15) in the proof of Lemma A.3. Then we have

Tn(s, t) =
n∑︂

ℓ=1

xnℓ.

Obviously, {xnℓ,Fnℓ, 1 ≤ ℓ ≤ n, n ≥ 1} is an array of martingale differences.

In view of (A.3) and (A.4), we have E(δi,ℓδi′,ℓ) = piI(i = i′) − pipi′ and
∑︁kn

i=1 ∆i,ℓ−1 = 0,

which imply

E(ynℓznℓ|Fn(ℓ−1)) =
2

n

kn∑︂
i=1

kn∑︂
i′=1

ci′

pipi′
∆i,ℓ−1E(δi,ℓδi′,ℓ)

=
2

n

∑︂
1≤i=i′≤kn

ci′

pipi′
∆i,ℓ−1pi −

2

n

kn∑︂
i=1

kn∑︂
i′=1

ci′

pipi′
∆i,ℓ−1pipi′

=
2

n

kn∑︂
i=1

ci∆i,ℓ−1

pi
− 2

n

kn∑︂
i′=1

ci′
kn∑︂
i=1

∆i,ℓ−1

=
2

n

kn∑︂
i=1

ci∆i,ℓ−1

pi
.

Therefore, we have

E
(︁
E(ynℓznℓ|Fn(ℓ−1))

)︁
= 0.

Define

τn =
n∑︂

ℓ=1

E(ynℓznℓ|Fn(ℓ−1)).

Then τn can be written as

τn =
2

n

n−1∑︂
j=1

(n− j)

kn∑︂
i=1

ciδi,j
pi

=
2

n

n−1∑︂
j=1

(n− j)ynj ,

where ynj ’s, as defined in (A.30), are iid random variables with mean 0 and variance βn1. We

conclude that

E(τ2n) ≤ 4nβn1. (A.34)
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By using the formula

x2nℓ = (anznℓ + bnynℓ)
2 = a2nz

2
nℓ + b2ny

2
nℓ + 2anbnznℓynℓ,

we get the conditional variance for the martingale differences {xnℓ}

λ2n|c : =

n∑︂
ℓ=1

E(x2nℓ|Fn(ℓ−1))

= a2n

n∑︂
ℓ=1

E(z2nℓ|Fn(ℓ−1)) + b2n

n∑︂
ℓ=1

E(y2nℓ|Fn(ℓ−1)) + 2anbn

n∑︂
ℓ=1

E(znℓynℓ|Fn(ℓ−1))

= a2nσ
2
n|c + nb2nβn1 + 2anbnτn.

Therefore, we have from (A.20) and (A.21) that

E(λ2n|c) = a2nσ
2
n1 + nb2nβn1 + 0 = 1.

By using the same argument as that in the proof of Lemma A.3, if we can show
n∑︂

ℓ=1

E(x4nℓ) = o(1) (A.35)

and

E(λ2n|c − 1)2 = o(1), (A.36)

then we can apply the martingale central limit theorem to obtain (A.33). In fact, since

λ2n|c − 1 = a2n(σ2n|c − σ2n1) + 2anbnτn,

we have from the cr-inequality

E(λ2n|c − 1)2 ≤ 2
(︂
a4nE(σ2n|c − σ2n1)

2 + 4a2nb
2
nE(τ2n)

)︂
≤ 2

(︂E(σ2n|c − σ2n1)
2

σ4n1
+

4E(τ2n)

σ2n1nβn1

)︂
→ 0

in view of (A.23) and (A.34). This proves (A.36). Again, by using the cr-inequality we have

that as n→ ∞
n∑︂

ℓ=1

E(x4nℓ) ≤ 8
n∑︂

ℓ=1

(︂
E(a4nz

4
nℓ) + b4nE(y4nℓ)

)︂
≤ 8

σ4n1

n∑︂
ℓ=1

E(z4nℓ) +
1

(
√
nβn1)4

n∑︂
ℓ=1

E(y4nℓ)

→ 0
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from (A.22) and (A.32), proving (A.35). This completes the proof of the lemma.

Proof of Theorem 2.1. Theorem 2.1 is a direct consequence of Lemma A.3 when nr is the entire

sequence of all positive integers.

Proof of Theorem 2.2. We will employ subsequence arguments, that is, (2.5) holds if and only

if for any increasing sequence of positive integers, there exists its further subsequence, say,

{nr, r ≥ 1} such that (2.5) holds along n = nr as r → ∞. Since σ2n2/σ
2
n ∈ [0, 1), nr can be

selected in a way that σ2nr2/σ
2
nr

has a limit in [0, 1]. Therefore, it suffices to show that (2.5)

holds for n = nr for any increasing sequence of integers {nr} as long as

lim
r→∞

σ2nr2

σ2nr1

= v for some v ∈ [0, 1].

First, consider the case v = 0. From Chebyshev’s inequality, we have that for every δ > 0

P (
|Snr2|
σnr

> δ) ≤ 1

δ2
E
(︂ |Snr2|
σnr

)︂2
=

1

δ2
σ2nr2

σ2nr

→ 0

as r → ∞. This implies Snr2/σnr converges to zero in probability as r → ∞. Since (2.2) implies

(2.4) from Theorem 2.1, we obtain

X 2
nr

− (knr − 1)

σnr

=
σnr1

σnr

Snr1 − (knr − 1)

σnr1
+
Snr2

σnr

= (1 + o(1))
Snr1 − (knr − 1)

σnr1
+ op(1)

d→ N(0, 1)

as r → ∞, i.e. (2.5) holds with n = nr.

Now consider the case v ∈ (0, 1]. We can use Lemma A.4 for c1 = · · · = ckn = 1. In this

case, Sn2 = Sn2, σn2 = σn2, and conditions (2.13) and (2.3) are the same.

Since σ2n1 ∼ 2kn, we have

σ2nr2

knr

∼
2σ2nr2

σ2nr1

=
2σ2nr2

σ2nr
− σ2nr2

→ 2v

1 − v
> 0.

The above limit is interpreted as infinity if v = 1. This, together with (2.3), implies that the

first term within the parentheses in (2.3) must tend to zero as n = nr goes to infinity, that is,

βnr3

nrβ2nr1

=

∑︁knr
i=1

1
p3i

− k4nr

n3rσ
4
nr2

→ 0
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as r → ∞. We have used (A.31) here. Furthermore, (2.2) and (A.14) with j = 2 imply that
kn
n2 → 0 as n→ ∞, and thus

k2nr

nrβnr1
=
knr

n2r

knr

σ2nr1

→ 0 as r → ∞.

Therefore, (A.27) is satisfied. In view of (A.29) we have

X 2
nr

− (knr − 1)

σnr

=
σnr1

σnr

Snr1 − (knr − 1)

σnr1
+
σnr2

σnr

Snr2

σnr2

d→
√
vZ1 +

√
1 − vZ2.

The above limit is a standard normal random variable. Thus, we have proved (2.5) with n =

nr.

Proof of Theorem 2.3. Theorem 2.3 is a special case of Theorem 2.4.

Proof of Theorem 2.4. When c = 0, the test statistic Sn1 + c|Sn2| is the same as Sn1, and

Theorem 2.1 ensures Theorem 2.4. Therefore, we focus on the case c > 0. We note that

sup
x

⃓⃓⃓
P
(︁Sn1 + c|Sn2|

σn1
≤ x

)︂
− P

(︂
Z1 +

cσn2
σn1

|Z2| ≤ x
)︂⃓⃓⃓

= sup
x

⃓⃓⃓
P
(︂ 1

1 + cσn2
σn1

Sn1 + c|Sn2|
σn1

≤ x
)︂
− P

(︂ 1

1 + cσn2
σn1

(Z1 +
cσn2
σn1

|Z2|) ≤ x
)︂⃓⃓⃓

=: Θn.

We will also use subsequence arguments as those in the proof of Theorem 2.2. To show that Θn

converges to zero, it suffices to prove that Θnr → 0 as r → ∞ for every increasing sequence of

integers {nr} such that
cσnr2

σnr1

1 +
cσnr2

σnr1

→ v for some v ∈ [0, 1].

The proof is similar to that in the proof of Theorem 2.2.

When v = 0, we have
cσnr2

σnr1
→ 0 as r → ∞. By using Chebyshev’s inequality we can show

that
cSnr2

σnr1
=
cσnr2

σnr1

Snr2

σnr2
converges to zero in probability,

which, coupled with Lemma A.3, yields that

1

1 +
cσnr2

σnr1

Snr1 + c|Snr2|
σnr1

=
1

1 +
cσnr2

σnr1

Snr1

σnr1
+
cSnr2

σnr1
= (1 + o(1))

Snr1

σnr1
+ op(1)

d→ N(0, 1).

19



Obviously, we have 1

1+
cσnr2
σnr1

(Z1 +
cσnr2

σnr1
|Z2|) → Z1. Therefore, we get

sup
x

|P
(︂ 1

1 +
cσnr2

σnr1

Snr1 + c|Snr2|
σnr1

≤ x
)︂
− Φ(x)| → 0 (A.37)

and

sup
x

|P
(︂ 1

1 +
cσnr2

σnr1

(Z1 +
cσnr2

σnr1
|Z2|) ≤ x

)︂
− Φ(x)| → 0 (A.38)

as r → ∞. By using the triangle inequality, Θnr is dominated by the sum of the two suprema

above and thus converges to zero.

When v ∈ (0, 1], by following the same arguments in the proof of Theorem 2.2, we can show

(A.27) is satisfied. Hence, we can have (A.29), and both 1

1+
cσnr2
σnr1

Snr1+c|Snr2|
σnr1

and 1

1+
cσnr2
σnr1

(Z1 +

cσnr2

σnr1
|Z2|) converge in distribution to (1 − v)Z1 + v|Z2| which is a continuous random variable.

Denote the cumulative distribution of this limit as Φv. Then (A.37) and (A.38) hold if Φ is

replaced by Φv. Again, by using the triangle inequality we get that Θnr converges to zero as

r → ∞.
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