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1 Introduction

In classical theory for inference, many statistical methods have been developed to test parametric hypotheses
in the last few decades. One of the most popular methods is the so-called likelihood ratio test (LRT). It is
known that the distribution functions of LRT statistics can be well approximated by a chi-square distribution
under certain regularity conditions when the dimension of the data or the number of the parameters of
interest are fixed. This means that one does not have to estimate the variance of the test statistics based
on the likelihood ratio.

Many modern data sets such as financial data and modern manufacturing data are high-dimensional.
Classical methods may not be adequate for high dimensional data anymore, especially when the dimension
of data is relatively large compared with the sample size. Some recent papers have investigated the limiting
distribution of the LRT statistics concerning the dependence structures of the multivariate normal distribu-
tions. It turns out that the chi-square approximation fails while the dimension of the data increases with
the sample size. Instead, the normal approximation to the LRT statistics works well under high dimension
setting. See, e.g., Bai et al. [?], Jiang et al. [?], Jiang and Yang [?], Jiang and Qi [?], Qi et al. [?], Dette
and Doérnemann [?], and Guo and Qi [?]. Several approaches other than likelihood ratio method have been
developed in the literature; See, e.g., Schott [?, 7, ?], Ledoit and Wolf [?], Bao et al. [?], Chen et al. [?], Sri-
vastava and Reid [?], Jiang et al [?], Li et al. [?], and Bodnar et al. [?]. A very recent work by Dérnemann [?]
also established the central limit theorems for some LRT statistics under non-normality.

In this paper, we consider a p-variate normal random vector and study the limiting distributions of the
LRT for testing the independence of its grouped components based on a random sample of size n. For a
p-dimensional multivariate normal distribution with mean vector u and covariance matrix 3, denoted by
Np(p, %), we partition its p components into k subsets and test whether the k sub-vectors are mutually
independent, or equivalently, we test whether the covariance matrix ¥ is block diagonal. In this paper, both
p and k can depend on n and diverge with the sample size. On the condition that the lengths of the k
sub-vectors are relatively balanced, Qi et al. [?] proved the asymptotic normality and proposed an adjusted
test statistic that usually has a chi-square limit when the dimension p goes to infinity with the sample size.

The aim of this paper is to give a complete description for the limiting distributions of the LRT statistic
for independence for multivariate normal random vectors. We obtain all possible limiting distributions and
give the necessary and sufficient conditions for the central limit theorem. We also investigate the limiting
distributions of the adjusted test statistic proposed by Qi et al. [?], which performs better than the normal
approximation and chi-square approximation to the LRT statistics in general.

The rest of the paper is organized as follows. In Section 77, we present our main results and establish

the necessary and sufficient conditions for the central limit theorem as well as the conditions for non-normal



limits. In Section ?7?, we present some simulation results to compare the performance of four methods
including the chi-square approximation to the LRT statistic, the normal and non-normal approximation to
the LRT statistic and the chi-square approximation to the adjusted LRT statistic proposed in Qi et al. [?].
In Section 7?7, we present some preliminary lemmas which are used in Section ?? to prove the main results

of the paper.

2 Main results

Let X% denote the random variables following chi-square distribution with f degrees of freedom and N (0, 1)
the standard normal variables.

For k > 2, let ¢q1,--- , qx be k positive integers. Denote p = ¢1 + ¢2 + ... + g and let
2 = (Zy)i<ij<k

be a positive definite matrix, where ¥;; is a ¢; x g; sub-matrix. Assume &; is a ¢;-dimensional normal
random vector for each 1 < ¢ < k, and the p-dimensional random vector (§,---,&;.) has a multivariate
normal distribution N, (u, X). We are interested in testing the independence of k random vectors &1, - - -, &,

or equivalently the following hypotheses
Hy:¥;;=0forall 1<i<j<k vs Hp:Hpisnot true. (2.1)

Assume that x1,--- , X, are n independent and identically distributed random vectors from distribution

Np(p,%). Define
A=Y (i-R-%), £=-3x,
n
i=1 =1

and partition A as follows

A A - Agp
Ay Ay - Ay
Api A - Apg

where A;; is a ¢; X g matrix. According to Theorem 11.2.3 from Muirhead [?], the likelihood ratio statistic
for testing (?7) is given by
Al
Ay = ——— = W)
[Ty [Aul2
Note that the likelihood ratio statistic A, is well defined only if p < n. When p > n, the determinant

|3

(2.2)

|A| is zero since A is singular. Therefore, we can only consider the case p < n in the paper.



We introduce some notations before we give the main results. Let g be any function defined over (0, c0).

For integers ¢ and n with 1 < ¢ < n, define

n—1 n—q

Agng®) =3 9(—5—+1), t>-—5—. (2.3)

Let I'(x) denote the Gamma function, given by

I'(x) :/ t"le7tdt, x>0,
0

and define the digamma function v

dlogT'(x) T'(x)

V() = dz - T(2)

, o> 0. (2.4)

Theorem 2.1. Assume p = p,, satisfy 2 < p <n and p, — 0o as n — oo. Assume that q1,q2, - ,qr are
k positive integers such that p = Zle qi, where k =k, may depend on n. Set ¢max = max{qi,--- ,qr} and
assume n — gmax — 00 as n — 0o. A, is the Wilks likelihood ratio statistic defined in (??). Then, under the

null hypothesis in (77)
—2 log An —Hn d

Ty := . — N(0,1) (2.5)
as n — 0o, where
,U"I’L Aw’n P ZAd),n QJ (26)
p k
2 - .

" (Z n_ ZZ p— ) +2n?(b(n, p) — Zb(n,qz)), (2.7)

Jj=1 i=1 j=1 —_

O |

b(n,q) = —, 1<g<mn, 2.8
(. 9) ; (n—j)? (2:8)

and symbol 4, denotes convergence in distribution.

Now we consider the situation when n — g¢uax is bounded. In this case, both n — p and p — quax are
bounded because n — p+ P — ¢max = 7 — ¢max. Lhe following theorem gives non-normal limits for —2log A,,

when both n — p and p — gmax are fixed integers.

Theorem 2.2. Assume p = p, satisfy 2 < p < n. Assume q1,q2, - ,qr are k positive integers such that
p = Zle qi, where k = k,, is an integer that may depend on n. Set qmax = max{qi, - ,qr} and assume
P — Gmax =T and n —p = v for some fixed integers r > 1 and v > 1 for all large n. Then, under the null

hypothesis in (7?) we have
r+v—1

—2log A, —nlogn d,
— logY; 2.9
n Z 0g Xy, ( )

j =v
where Yj, j > 1 are independent random variables and the Y; has a chi-square distribution with j degrees of

freedom.



Remark 1. The classical likelihood method considers the case when both p and k are fixed integers. Assume

that q1,qo, - , g are fixed for all large n, then
—2p,log Ay -5 X2, (2.10)

where

1 2 é 2
F=5" =Y 4), (2.11)

i=1

2(p3 — Sk 3 9(p2 — Sk 2

PP =201 G ) 9Pt - G
6"( 2 _Z§:1 %2)

py=1— : (2.12)

See, e.g., Theorem 11.2.5 in Muirhead [?].
Remark 2. Under conditions that gmax < Jdp for some § € (0,1) and p — oo as n — oo, Qi et al. [?]

established the following central limit theorem for —2log A,

—2 logAn — My d

T = — N(O, 1)
Tn
as n — 0o, where
b 3 Qi 3 P n b
My = n;(qZ —n+ 5) log(1 — E) —n(p—n+ 5) log(1 — E) + g(b(n,p) - ; b(n,q)), (2.13)
k
Zlog (1—-=)—1log(1— —)) + 2n? (b(n,p) — Z b(n, ql))

i=1

Remark 3. Theorem ?7 is still true if p, is replaced by fi, defined in (??) and o2 is replaced by 72

n%ﬁén —}2}2 (2.14)

j=1 zljl

In fact, we have

Hn — p‘n 5-721

lim =0 and lim — =1 (2.15)

n—oo oy n—00 g2
if 7 — gmax — 00 as n — 0o. The proof of (?7) is given in Lemma ??. In practice, y, and o2 should be used
since they give better approximation to the mean and variance of —2log A, and this selection can achieve
a better accuracy for the normal approximation even when n — ¢max is not very large.
Remark 4. The distribution of the random variable on the right-hand side of (??) is non-normal. This can
be verified by using the moment-generating functions. The moment generating function of ZHU ! logy; is

equal to
r4+v— 1

rt .7/2+t
? II r'@j/2) ~

which cannot be equal to exp(ut + 0*t?/2), the moment generating function of a normal random variable

with a mean ; and variance 0. Otherwise, after taking the logarithm, it implies that the third derivative of



Z;ﬂj 11 (j(ﬁ;)t) is identically equal to zero. We can show this cannot be true by using some properties

of the gamma function. The details are omitted here.
Now we are ready to establish the necessary and sufficient conditions under which the central limit

theorem holds for —2log A,,.

Theorem 2.3. There exist constants a, € R and b, > 0 such that under the null hypothesis in (77?)

—2log A, — an

» N(0,1) (2.16)

if and only if p, — 00 and N — Gumax — 00 as N —> Q.

From (77), (??) and (??), we have only three different types of limiting distributions for —2log A,,, in-
cluding chi-square distributions, normal distributions and distributions of linear combinations of logarithmic
chi-square random variables. Theoretically, for any p and ¢;’s one can use one of the three limiting distribu-
tions to approach the distribution of —2log A, when n is large. Since the convergence in (?7?), (??) or (?7)
does not provide clear cutoff values for p and n — ¢max, it may be difficult to select a limiting distribution in
practice even if n is very large.

Qi et al. [?] proposed an adjusted log-likelihood ratio test statistic (ALRT) which can be approximated
by a chi-square distribution when (??) or (??) holds. The ALRT is a linear function of —2log A,, defined as

/ 2fn
Zn = (—2logAy,) 2t fr = tin f (2.17)
) and (

with f,, pn and o2 being defined in (??), ( ), respectively. We have the following result on

chi-square approximation to the distribution of Z,,.

Theorem 2.4. Let p = p, be a sequence of integers with 2 < p < n. Assume k = k,, is also a sequence of
positive integers, and qi,--- ,qr are k positive integers such that p = Zle q;. Assume n — Quax — 00 as

n — oo. Then, under the null hypothesis in (??7), we have

lim  sup |P(Z, <) - P(xj, <a)|=0. (2.18)

N—=00 _co<xr<oo o
We note that the chi-square approximation in (??) does not impose any restriction on dimension p and

the number of degrees of freedom of the chi-square distribution changes with n.

3 Simulation study

3.1 Comparison of LRT related tests

In this subsection, we carry out a finite-sample simulation study to compare the performance of three

different approaches to the likelihood ratio test statistic —2log A,, under condition n — ¢max — 00 and the



null hypothesis in (??), including the classical chi-square approximation (??), the normal approximation
(??), and the adjusted chi-square approximation in (??). The three approaches are denoted by “Chisq”,
“CLT” and “ALRT”, respectively. We will also compare the performance of the normal approximation (?7?),
the adjusted chi-square approximation in (?7?) and the non-normal approximation given in (??) (denoted by
“LogChi”), and the comparison is made under conditions that both r = p — gmax and v = n — p are fixed
integers.

For all four approaches, we will demonstrate how well the proposed limiting distributions fit the his-
tograms of the four test statistics. From (??) in Lemma ?7?, the moment-generating function of log W), is
distribution-free under the null hypothesis in (?7?). Since the four test statistics are functions of A, and
hence they are also functions of log W, from (??), they are distribution-free as well under the null hypothesis
in (?7?). Therefore, the underlying distribution in our study is set to be a multivariate normal distribution
with independent standard normal components.

In our simulation study, we choose sample size n = 101. For each of selected combinations of p and ¢;’s
under the regimes of the chi-square and normal limiting distributions, we repeat the sampling for 10,000
times and obtain 10,000 replicates for the four test statistics given in (??), (??), (??), and (?7). We plot
the histogram for each test statistic and its corresponding theoretical density function in one graph.

In the simulation study we consider the following four cases.

Case a. We set k = 3, p =10, 30,60 and 90 and use the ratio q; : g2 : g3 =3 : 1: 1. Figure 7?7 contains 12
plots in an array with four rows and three columns, and each row corresponds to one value of p = 10, 30, 60,
and 90.

Case b. Weset k=2,¢q1 =p—1and ¢o = 1 for p = 10, 30, 60, and 90, respectively. Figure 7?7 contains 12
plots in an array with four rows and three columns, and each row corresponds to one value of p = 10, 30, 60,
and 90.

Case c. We set k = 2, p = 100 and choose (q1,¢2) = (50,50), (60,40), (80,20), and (90, 10), respectively.
Figure 7?7 contains 12 plots in an array with four rows and three columns, and each row corresponds to one
combination of (g, g2) with gmax = 50,60, 80, and 90, respectively.

Cased. Weset n=101, k=2, r=p—@max =1 and and v=n—p=1, 3, 5 and 10.

For the first three cases above, we select parameters to maintain a reasonably large value for n — gmax
so that we compare the performance of classical chi-square approximation (?7), the normal approximation
(??7), and the adjusted chi-square approximation in (??). Under Case a, the values of ¢;’s are proportional.
Under Cases b and c, two extreme situations, either gn.x = p — 1 or p =n — 1, are considered.

Case d is used to compare the performance of the normal approximation (??), the adjusted chi-square
approximation in (??) and the non-normal approximation in (??). Since we take r = 1, the limit on the

right-hand side of (??) has only one term, that is, the limit is — log Y,, where Y}, is a random variable having



a chi-square distribution with v degrees of freedom.
The results under Cases a to d are given in Figures 7?7 to 77, respectively.

Now we summarize our findings from Figures 77 to ?77.

1. The classical chi-square approximation (Chisq) works very well for small p, but it becomes worse with

the increase of p and finally departs from the histograms of the test statistic.

2. When p is small such as p = 10, the normal approximation (CLT) shows lack of fit to the histograms

and it is getting better with the increase of p.

3. The adjusted likelihood ratio method (ALRT) works very well for all cases, that is, for small p, the
ALRT behaves like the classical chi-square approximation, while for large p, it performs very well too

like the normal approximation.

4. In Figure 7?7, we select p = n — 1. Both the normal approximation and the adjusted likelihood method
show a little bit departure from the histograms since p is too close to n and sample size n = 101 is not
a large sample size. In this case, both the normal approximation and the adjusted likelihood method

can improve when n is getting larger.

5. From Figure 7?7, when v is small, the non-normal approximation works much better than the normal
approximation and the adjusted chi-square approximation. When the value of v increases from 5 to 10,
both the normal approximation and the adjusted chi-square approximation improve significantly. This
implies that one can use the normal approximation or the adjusted chi-square approximation when
T 4+ U = N — Pmax 1S NOt too small. We note that the exact distribution of the limit on the right-hand

side of (?77) is not easy to obtain if r = p — gmax > 1.
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Figure 1: Plots of histograms and theoretical density curves (smooth curves in graphs) for three test statistics
based on the classical chi-square approximation (?7), the normal approximation (?7), and the adjusted chi-

square approximation in (??) with selection of k = 3 and ratio g1 : g2 : g3 =3 :1: 1.
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Figure 3: Plots of histograms and theoretical density curves (smooth curves in graphs) for three test statistics
based on the classical chi-square approximation (??), the normal approximation (??), and the adjusted chi-
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Figure 4: Plots of histograms and theoretical density curves (smooth curves in graphs) for three test statistics
based on non-normal approximation (??), the normal approximation (?7), and the adjusted chi-square
approximation in (??) with selection of n =101, k = 2, 7 = p — ¢max = 1, and v = n — p = 1,3,5 and 10.

For the plots in the first column above, LogChi denotes the non-normal approximation in (77?).



3.2 Comparison of adjusted log-LRT and other methods

In this subsection, we compare our adjusted log-likelihood ratio test statistic, i.e., Z, in (??) with other
three test statistics, including two trace criterion test statistics by Jiang et al. [?] and Li et al. [?] and Schott
type statistics by Bao et al. [?]. We notice that Jiang et al. [?] and Bao et al. [?] investigate their test
statistics for test (??) for any fixed k£ > 2 while Li et al. [?] consider test (??) for k = 2 only. Given that Li
et al. [?]’s test statistics are suitable for k = 2 only, we set k = 2 for the comparison in this section.

In Jiang et al. [?], a large-dimensional trace criterion test statistic is defined as
Ln = tr(AglAl_llAlgAQ_zl),

where tr(A) denotes the trace of matrix A. Under conditions r,1 := g2/q1 — 1 € (0,00), ™2 = q2/(n —
1—q2) = re € (0,00), and g2 < n, it is shown that

L, —an

on 4 N(0,1) as n — oo (3.1)

T2 =

under the null hypothesis in (??), where

2,2 .2
2hyri Ty _ @2Tp2
—RBLAL gy = ———
(Tnl + rn2) Tnl + T2

by, = , hp = \/Tnl + T2 — Tn1Tn2-

Some calculation shows that a, = q1q2/(n — 1) and b, = 2q1g2(n — 1 — q1)(n — 1 — q2)/(n — 1)%.

When k = 2, the test statistic in Bao et al. [?] is equal to
tr(Agy* A A A12 A, %) = tr(Ag A A1 A,

which is the same as L,,. Meanwhile, Theorem 3.1 in [?] also implies (?7).

To introduce Li et al. [?]’s test statistic, set for 4,5 = 1,2

T =2+ 1)

1 1 tI‘(Am)tI‘(AjJ)> .

(tI‘(AijAji) — —
The trace criterion test statistic by [?] is defined as 712. Under the null hypothesis in (??) for k = 2, it is

shown in Li et al. [?] that

T3 := (n=2)n+1) o 4 N(0,1) asn — oo (3.2)

2 V1122

given that p = q1 + ¢ — co as n — oo and

1 .
0< lim —tr(¥') <oo fori=1,24.

n—o0 p

We notice that the test statistic T3 works only for the case k = 2, but condition p = g1 + g2 — oo is less

restrictive than those required for other statistics we just discussed.
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For any fixed size o € (0, 1), test Ty (or T3) rejects the null hypothesis in (?7?) if 75 > z, (or T3 > z4),
where z, denotes the a-level critical value of the standard normal distribution.

To compare our adjusted log-likelihood ratio test statistic Z,, and test statistics To and T3, we assume
q1 > g2 > 1 and p=q1 + g2 < n. Our samples are generated from the populations similar to those in Jiang
et al. [?] and Qi et al. [?]. Let z = (21, --,2p) be a random vector whose components are independent
normal random variables with mean 0 and variance 1.

Model 1. x = (1, - ,zp)', where z; = (1 +¢)z; for i = 1,--- ,p1, Tp,+j = 2p14j + ¢z for j =1,--- po,
and c is a constant;

Model 2. x = (z1,--- ,xp)/, where z; = (1+c¢)z; fori=1,--- ,p1, Tp,+j = 2p4j+czjfor j=1,--- ,pp—1,
Tp = p_1/4zp, and c is a constant.

With different selections of (g1, g2, n, ¢), we draw 10000 random samples of size n from each model above
(Model 1 and Model 2) and then we calculate the empirical sizes of the tests (when ¢ = 0) or the powers of
the tests (when ¢ # 0). The nominal level of size a (type I error) is set to be 0.05 in the simulation.

Tables 77 and 77 present results for the numerical comparisons on the three test statistics. From the two
tables, the adjusted log-likelihood ratio test statistic Z, is constantly accurate in terms of type I error, and
T3 has larger type I errors than the nominal level 0.05 for small values of p. In terms of empirical powers, Z,
and T5 are comparable in most cases while T3 is better than both Z,, and T5 under Model 1. Under Model

2, Zy, has a slightly larger power than 75 in most cases and both are significantly better than T5.

4 Some lemmas

The multivariate gamma function, denoted by I'y(z), is defined as

p
1
T, () := 7PP~D/4 Hr(a; —5(—1)) (4.1)
=1
with 2 > 221 from Muirhead [?].
For any positive integers n and p with 1 < p < n, let g1,---,q; be k positive integers such that

p= Zle gi, where k > 2 is an integer which may depend on n. Denote gmax = maxi<j< ¢;-

For any function g defined over (0, c0), set

k P
Wg,n,p(2) = Agn,p(z) — Z Ag,n,q () = Zg(i + ) (4.2)
i=1 j=1 i=1 j=1
for & > —"52, where Ay ,, 4, is defined in (??). For brevity, we omit g1, - - - , g in the definition of ¥y ,, ,(x).

Let g be a differentiable function. Both Ay, 4 and ¥, , , are linear functionals in g with following
property

d d
%Ag,nyq(x) = Agﬂn,q(x)’ %W97n7q($) = \Ijgﬂmq(x)‘ (4.3)
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Table 1: Comparisons on Size and Power under Model 1. The sizes and powers are estimated based on
10,000 simulations under Model 1, and the nominal type I errors for all tests are set to be 0.05.
Size (¢ = 0) Power (¢ =0.1) Power (¢ = 0.2)

(91, 92) n| Zn T T Zn, T T Zn, b 15

(6, 4) 20 | 0.0507 0.0514 0.0645 | 0.0605 0.0583 0.0806 | 0.0909 0.0923 0.1394
50 | 0.0507 0.0593 0.0641 | 0.0857 0.0999 0.1128 | 0.2400 0.2654 0.3044

100 | 0.0527 0.0615 0.0645 | 0.1350 0.1570 0.1690 | 0.5643 0.6028 0.6262

(8,2) 20 | 0.0498 0.0501 0.0609 | 0.0532 0.0547 0.0705 | 0.0717 0.0704 0.1029
50 | 0.0487 0.0581 0.0641 | 0.0699 0.0838 0.0927 | 0.1499 0.1719 0.1983

100 | 0.0530 0.0665 0.0646 | 0.0957 0.1154 0.1251 | 0.3086 0.3461 0.3709

(18,12) 50 | 0.0499 0.0542 0.0545 | 0.1897 0.1983 0.2255 | 0.8617 0.8732 0.9147
100 | 0.0506 0.0528 0.0554 | 0.1233 0.1289 0.1482 | 0.5492 0.5702 0.6757
150 | 0.0499 0.0542 0.0545 | 0.1897 0.1983 0.2255 | 0.8617 0.8732 0.9147
(24, 6) o0 | 0.0499 0.0472 0.0562 | 0.0647 0.0614 0.0777 | 0.1133 0.1115 0.1811
100 | 0.0478 0.0519 0.0540 | 0.0854 0.0881 0.1096 | 0.2990 0.3128 0.3855
150 | 0.0547 0.0595 0.0588 | 0.1214 0.1334 0.1482 | 0.5393 0.5587 0.6210

(36, 24) 100 | 0.0511 0.0543 0.0519 | 0.1053 0.1112 0.1495 | 0.4243 0.4599 0.6915
150 | 0.0493 0.0494 0.0527 | 0.1619 0.1629 0.2224 | 0.8144 0.8361 0.9328
200 | 0.0538 0.0554 0.0562 | 0.2428 0.2498 0.3138 | 0.9715 0.9756 0.9915
(48, 12) 100 | 0.0519 0.0523 0.0509 | 0.0771 0.0795 0.1039 | 0.2235 0.2325 0.3836
150 | 0.0503 0.0496 0.0568 | 0.1115 0.1137 0.1368 | 0.4657 0.4793 0.6399
200 | 0.0473 0.0503 0.0513 | 0.1471 0.1493 0.1817 | 0.7222 0.7334 0.8261

(60, 40) 150 | 0.0499 0.0495 0.0502 | 0.1248 0.1362 0.2202 | 0.6453 0.7046 0.9407
200 | 0.0524 0.0552 0.0555 | 0.2036 0.2140 0.3101 | 0.9358 0.9497 0.9940
300 | 0.0532 0.0547 0.0526 | 0.4046 0.4153 0.5247 | 1.0000 1.0000 1.0000
(80, 20) 150 | 0.0501 0.0514 0.0553 | 0.0907 0.0959 0.1343 | 0.3269 0.3543 0.6420
200 | 0.0521 0.0529 0.0527 | 0.1287 0.1325 0.1795 | 0.6093 0.6287 0.8362
300 | 0.0507 0.0519 0.0502 | 0.2162 0.2203 0.2791 | 0.9453 0.9500 0.9844

Now we set S (2) = Vg n,p(x) when g(z) = 1/2" for r > 1, that is, we define

ZZ x>—";p. (4.4)

n—j n]
( —|—$ 11]1 +ZL‘

p

/Bnr(x) = Z

J=1

Note that (B,,(x) > 0 since g(x) = 1/z", x > 0 is a decreasing function over (0, c0).
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Table 2: Comparisons on Size and Power under Model 2. The sizes and powers are estimated based on

10,000 simulations under Model 2, and the nominal type I errors for all tests are set to be 0.05.

Size (¢ =0) Power (¢ =0.1) Power (¢ =0.2)
(q1,92) n| Zn Ty T Zn Ty T3 Zn Ty T3

(6, 4) 20 | 0.0507 0.0514 0.0658 | 0.0797 0.0798 0.0834 | 0.1965 0.1991 0.1525
50 | 0.0507 0.0593 0.0658 | 0.1916 0.2083 0.1175 | 0.7428 0.7472 0.3532

100 | 0.0527 0.0615 0.0647 | 0.4467 0.4774 0.1880 | 0.9938 0.9945 0.7142

(8,2) 20 | 0.0498 0.0501 0.0626 | 0.0787 0.0763 0.0749 | 0.1855 0.1805 0.1214
50 | 0.0487 0.0581 0.0695 | 0.1966 0.2178 0.1057 | 0.7311 0.7443 0.2567

100 | 0.0530 0.0665 0.0654 | 0.4261 0.4626 0.1456 | 0.9901 0.9921 0.5237

(18,12) 50 | 0.0494 0.0492 0.0579 | 0.1365 0.1330 0.1000 | 0.5468 0.4722 0.3095
100 | 0.0506 0.0528 0.0564 | 0.4118 0.3876 0.1582 | 0.9961 0.9841 0.7051
150 | 0.0499 0.0542 0.0571 | 0.7148 0.6869 0.2317 | 1.0000 1.0000 0.9343
(24, 6) 50 | 0.0499 0.0472 0.0570 | 0.1378 0.1279 0.0852 | 0.5213 0.4103 0.1983
100 | 0.0478 0.0519 0.0536 | 0.4234 0.3949 0.1132 | 0.9937 0.9718 0.4257
150 | 0.0547 0.0595 0.0601 | 0.7320 0.6968 0.1587 | 1.0000 1.0000 0.6789

(36, 24) 100 | 0.0511 0.0543 0.0517 | 0.2865 0.2672 0.1492 | 0.9389 0.8449 0.7075
150 | 0.0493 0.0494 0.0535 | 0.6008 0.5303 0.2269 | 0.9999 0.9979 0.9392
200 | 0.0538 0.0554 0.0576 | 0.8552 0.7843 0.3194 | 1.0000 1.0000 0.9926
(48, 12) 100 | 0.0519 0.0523 0.0511 | 0.2822 0.2407 0.1048 | 0.9086 0.7314 0.4058
150 | 0.0503 0.0496 0.0553 | 0.6079 0.5098 0.1447 | 0.9998 0.9906 0.6671
200 | 0.0473 0.0503 0.0519 | 0.8579 0.7741 0.1913 | 1.0000 0.9999 0.8484

(60, 40) 150 | 0.0499 0.0495 0.0493 | 0.3966 0.3446 0.2209 | 0.9915 0.9530 0.9460
200 | 0.0524 0.0552 0.0560 | 0.7092 0.5988 0.3147 | 1.0000 0.9993 0.9962
300 | 0.0532 0.0547 0.0535 | 0.9768 0.9346 0.5361 | 1.0000 1.0000 1.0000
(80, 20) 150 | 0.0501 0.0514 0.0564 | 0.3863 0.3046 0.1403 | 0.9766 0.8280 0.6582
200 | 0.0521 0.0529 0.0528 | 0.7005 0.5473 0.1865 | 1.0000 0.9924 0.8517
300 | 0.0507 0.0519 0.0510 | 0.9791 0.9093 0.2885 | 1.0000 1.0000 0.9886

Define

and set
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Then we can verify that

1 1 1 1 1
/ _ I/ _ = " _ - =
S (.17) - logx 2$7 S (:E) T + 2$2’ S (l’) .%'2 1’3’ (46)
and for some constant C > 0
C 1
|h"(z)] < e x> 1 (4.7)

See Lemma 4.4 in Guo and Qi [?].

For the digamma function v defined in (?7?), it follows from Formula 6.3.18 in Abramowitz and Stegun [?]
that
1 1

1

as & — 00.

From now on, we adopt the following notation in our lemmas and our proofs. For any two sequences,
{a,} and {b,} with b, > 0, notation a,, = o(b,,) implies lim,,_,~ ay /b, = 0, and notation a,, = O(b,) means
ap, /by, is uniformly bounded.

We first introduce the formula for the A-th moment of W,.

Lemma 4.1. (Theorem 11.2.3 in Muirhead [?]) Let p = Zle qr. and W, be Wilk’s likelihood ratio statistics

defined in (??). Then, under the null hypothesis in (77?), we have

(4.9)

for any h > B5=, where T'y(x) is defined in (77).

Next, we introduce a distributional representation for W,,.

Lemma 4.2. (Theorem 11.2.4 in Muirhead [?]) Let p = Zle qr. and W, be Wilk’s likelihood ratio statistics
defined in (??). Then, under the null hypothesis in (??7), Wy, has the same distribution as

ka4
i=2j=1
where ¢ = Z;;ll qj for2 <@ <k, the Vj;’s are independent random variables and Vi; has a beta(%(n—q;-"—j),

%q;‘) distribution.

Lemma 4.3. (Lemma 5 in Qi et al. [?]) Asn — oo,

Z(nl_i - nil)Z*%*log(lf%HO(L), (4.10)
=1

q

5™ (1og(n — i) ~log(n — 1)) = (g —n + ) log(1 — 1) -

=1

(n—1)q

uniformly over 1 < q < n.
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Lemma 4.4. With (3, defined in (??7), we have

2p P — @max 4p 2(17 — QmaX)
Zlog (14— < 0) < —log(1+ —"—"—- 4.12
3n Og( +3(n—p))_ﬁn1()_n og( * n—p )’ ( )
32 0
ua(w) < 2280, (4.13)
8192p(p — Gmax)
) S o p) () 41
and
Bn3(z) < g~ 4.15
() (n—p)? (419
for all |x| < 2.
Proof. Without loss of generality, assume q; > g2 > --- > qi. Therefore, ¢1 = gmax = maxj<i<r q;. Set
q = 23;11 gj for 2 <i < k4 1. Then we see that
p
CAUISE DELE 5) Dt
j=1 =1 j=1
ka4
1 1
) D) DI ———
S n-g -] n—j
k q; *
= 2} % (4.16)

< (n—qf —j)(n—7j)

Note that ¢ > ¢1 = ¢max, and ¢f +¢; < p for all 2 < i < k. Moreover, ¢; < p/2 < n/2 for all 2 <i <k, and

thusn>n—j>n/2for 1 <j<g,2<i<k Wehave

4p P&
ﬁnl(o) S 722 _(] _]
=27
—Qqm

7

4 1
= _Qmax_j
medx+05 1
< p/ —dx
n N — Qmax — T
_ (n max — 05)
n n—p—0.5
4 2(p —
= Py 0 Qmax))7
n n—op

which gives the upper bound in (?7).

To verify the lower bound in (??), define m = min{i > 2 : ¢/ > p/3}. We see that m = 2 if ¢; =
Gmax > p/3. If ¢ < p/3, then ¢ < -+ < ¢ < 1 < p/3, which implies that £ > 4, 2 < m < k,
a1 <p/3,p/3 < g <2p/3, and thus, p — ¢, > p/3 > (P — Gmax)/3. When ¢; < p/3, it is trivial that

18



P—q5 > /3> (P — Gmax)/3. Then we conclude from (?7) that

Bn1(0) >

Y

proving (77).

We can also verify that

222

zmjl

£ 3) ppaa—

i=m j=1

n—q — (nf J)

G —J

3n 4
7=1

1
n—qmn—J
o2p [P 9m 1
3n
2

P 1og
3n

mdw
(%)

% P log (1+ pn__q]i")
o log (1+ 5ty

1

) =14 - . 4.17
Prala ;; n—qz—]—l—Zx) (n—]—|—2x)2) (4.17)
and
1
_8 — . 4.18
Forany:rwith|ac]S(n—p)/4,wehaveforany1§j§qi,2§i§k;
1 B 1 ¢ (2n — ¢ —2j +4x)
(n—gf —j+2z)> (n—j+2z)? (n—q —j+2x)2(n — j + 2x)2
< 2q;
T (n—gf—j+2z)*(n—j+2z)
16q;
- - 4.19
=@ =)= 7) (4.19)
< 16 q;

which, together with (?7), implies

n—p(n—qg —j)n-j)

R @ ~320,1(0)
Bl S T L T =) e

proving (77).
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Likewise, for any = with |z| < (n — p)/4, we have for any 1 < j < ¢;,2<i<k

1 B 1 - 3q;
(n—qf —j+22) (n—j+22)* = (n—q —j+22)*(n—j+2z)
48¢;
(n—qf —j)*(n—7)
. 48 4

(n—p?2n—gqg —j)n-7)

which coupled with (??) yields (?7?).

Now we will show (??). We see that maxo<i<i ¢; < n/2 since maxo<;<i ¢ + ¢1 < p < n. This implies

n—j>n/2forl<j<gq,2<i<k Then it follows from (??) and (?7?) that

p

16 2048 2048
) 3 S D) DI I )yt
i=2 j= 1 1=2 j= 1 Jj= q1+1
Since the sum in the last expression is dominated by the integral
/P+0'5 1 dy < 1 B 1 _ b—q1 < 4(29 - Qmax)
a+0s (M=y)? " " n-p=05 n—-q-05 (n—p—05)(n—q—05) " (n—p)(n— gmax)’
we obtain (77?). O
Lemma 4.5. There exists a universal constant D such that
Dp
79 < — 4.20
W0 < (4:20)
and
326,1(0
W ()| < nil;) (4.21)
uniformly over |x| < *32 for all large n.
Proof. For integers ¢ and n with 1 < ¢ < n,
zq: /q+05 1 dle( 1 1 ) < q __ 84
= (n—j5)3 05 (n—x)3 2'(n—q—05)2 (n—05)2" " (n—¢—0.5)2(n—-0.5) ~ nn—q)?
We apply the above inequality to ¢ = q1,--- ,qx and p. Then we obtain that
P
1 8p
< 4.22
2= < - (422
and . N
qi
1 8q2 8(]1 8p
< < = 4.23
DI B oD D e D Dl gy b ey (429)

where we have used the fact that p = Zle G-
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In view of (?7), we have

p
(Whrnp(x)] < CZ (i

=1
P
< C) =
uniformly over || < *52. In the last step above, we have used the inequality n — j + 2z > (n — j)/2 for all
1<j<pand |z| < (n —p)/4. By combining (??) and (??), we obtain (??) with D = 1024C.
(?7?) can be verified by using Lemma 7?7 and (?7) and the fact that [Ugn ,, ,(2)] < Bna(x) + Bns(x). This

completes the proof of the lemma. O

Lemma 4.6. Assume n — qmax — 00 as n — 0o0. Then as n — o

(TL — Qmax)(n - p) P — qmax 1
log (1+=————=) > = log(l+n — @max) — 0© 4.24
P — Qmax g( S(n_p)) 3 g( ) ( )
and
(n—p)*log (1 + m) — 00. (4.25)
3(n —p)
In addition, if p — oo, then
D — dmax
p(n—p)log (1 + —7——) — . 4.26
(n ) log (1-+ £t (1.26)
Proof. Define f(x) = M x > 0. We can verify that
f’(x):—i(log(1+w)+ —1):—i Tt ——dt <0,
x? 1+ 22 Jo 142

that is, f(z) is decreasing in = > 0. Now set x,, = (p — gmax)/3(n — p). Then z, < n — ¢max. We get

(n ;fizfn(i P jog(1 + ) = (1~ ) £ )
> %(n — Gmax) f (N — Gmax)
— % log(1 + 1 — Gmax)
— 00,

proving (?7). (??) follows from (??) since

(n_Qmax)(n_p)/(n_p)Q _ N — (max . 1 1

= = + < 2.
P — qmax (p - Qmax)(n - p) P—Qmax N —DP
One can easily verify that for any y > 0, the function zlog(1 + y/z) is increasing in x > 1. Therefore,

we have

P — Ymax
3(n —p)

Plog (14 p = gma) >

p_Qmax> :]Z
3 3

p(n—p)log (1 + 30n —p) x 3(n —p)log (1 + ) > log(2) — oo

w3
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since p — oo as n — oo. This proves (77). O

Lemma 4.7. If n — quax — 00 as n — 0o, then

b(n,p) — Z?:l b(n7 Qi> b(n,p) - Z?:l b(nv Qi)

4.2
5.1 (0) — 0, 0 — 0, (4.27)
P p
— 0, —0 4.28
n(n = p)y/Bni(0) n(n —p)*v/Fn1(0) 2
and
- 2

lim PP g gy Oy (4.29)

n—o00 On n—o00 o5

as n — oo, where b(n,q) is defined in (?7?). Moreover, (?7) implies (77).

Proof. We have b(n,p) — Zle b(n,q;) = +Bn2(0), where B2 is defined in (??). From (??), (??) and (??)

we get,

b(n, p) —57121:(%)1 b(n, q;) -0 <<(n — gmax)(n — p) log (1 + p—qmax)>_1> Lo

P — Qmax 3(n —p)
Similarly, from (??7), (??) and (??) we have

b(n,p) — Z?:l b(nv Qi) O( \/ﬁ(p - Qmax) >
Bt (0) Vi~ ) (1 — ) flog (1 + B8

_ 1
) O(wn—p)uog(l%zsm;;))

— 0.

This completes the proof of (77).

By using (??7) and (77?) we get

p p/n 1
=0( ) =0( ) =0,
n(n —p)y/Bn1 (0) /(0 — k)2 log(1 + frimss) /(0 = k)2 log(1 + frimss)
and
p < b — 0,

n(n —p)*y/Bn1(0) — n(n —p)y/Bn(0)

proving (?7).

The second limit in (??) follows from (??) since o7 = n?8,1(0) + 2n?(b(n, p) — Zle b(n,q)).

Set {(x) = logz — i — 1213:2 for x > 0.

It follows from (?7) that
g(x) = ¢(x) —L(z) =0(z™) asx — oo.

Since g(x) is a smooth function in x > 0, it is easy to show that

C

3 T >

| =

l9(z)] <
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for some constant C. Following the same lines in the proof of (??) we have

[Wg,n,p(0)] < n(n—p)2

for some D > 0, which together with (??) implies

Wy n,p(0) — Wy pn 5(0) _ Uy n,p(0) = Vo0 p(0) Wy n,p(0)

T B/ T RV mT R Y
In virtue of (?77?),
log(n — 7) ZZlog (n—7)

j=1 =1 j=1
= 3" (log(n — j) — log(n — 1)) ZZ log(n — j) —log(n — 1))

j=1 i=1 j=1

k
= (-t losl - L)~ (g —n+ Hlog(l - Ly 1o L)
[ n(n=p)

We have used the condition p = Zle ¢; to simplify the expression. We skip the details here. Similarly, by

using (??), we obtain

k
Zn —Zzi —log(l—%)+Zlog(1—%)JrO(L).

Jj=1 i=1 j=1 i=1 n n(n—p)

Therefore, we have from (??) that

‘I’f n p(o)
k  q p 1 k g 1 1 k
=1 j=1 7j=1 n J =1 j=1 n J =1
3 i 3 g, 1 u D
= (p—n+3)log(1~ E) =D (i —n+3)log(l =) = 2 (b(n,p) = > b(n, a)) + oG =)
i=1 i=1

_ —%n +0(v/Bum (0)),
that is,
nWo, 5 p(0) = — i, + 0(/126n1(0)),

which coupled with (??), (??) and the fact that p, = —nVy , ,(0) proves the first limit in (77).
Finally, (??) follows from (?7) since 2 = n?B,1(0) in view of (??). This completes the proof of the

lemma. O
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5 Proofs of the main results

Proof of Theorem ?7.
We will prove (??) under conditions n — gmax — 00 and p — oc.
Set V,, = —2log A,,. Then it follows from (?7) that V,, = —nlog W,, and
V=) gy E
On on n
In order to prove (77), it is sufficient to show the moment-generating function of —(V;, — puy,)/oy, converges

to that of the standard normal, that is, for any z,

22

lim (log E(Wne/ony 4 HnZy 2 1
Jm, (g POV + 20 = 5 oY
In view of (??), (??) and (??), we have for ¢ > 25"
D (%L +t
log o ) )—Alogr,n,q(t) AlogT,n,q(0)
Ly("57)
and
D"z +0) 11 Ta(3h)
log E(Wﬁb) = log P 2n_ Zn_2
( ) ( I Z»Ulfqz(zlﬂ))
(L) S Ty (25t + )
= log -2 2n_ — log —Z 2n_
n5n 2T, ()
Plogr,n,p(t) = Yiogr,n,p(0).- (5.2)

Now we apply Taylor’s theorem to expand Wy, ,(t) with a second order remainder. For any ¢ with

[t| < (n — p)/4, there exists a ¢; with |¢;] <t < (n — p)/4 such that
2

t
\Ifh’ n,p(t) — \I]h,n,p(o) = \Ifh/7n7p(0)t + \I’h”,n,p(ct)g' (5.3)

Note that we have used the property given in (?7). Similarly, we expand ¥y, ,, ,(t) to the third order

Us n,p(t) = Us,n,p(0) = ‘11517,171)(0)75 + \I'S”,n,p(o)t; + ‘1’8”’7n7p(0t)§7 (5.4)
where |¢;| < |t| < (n —p)/4.
We will show
n2
A o2(n—p)2 0 (5:5)
Note that
on > 12 B (0). (5.6)

Then it follows from (?7?) that



which coupled with Lemma 77 implies that

n? 2n 2 2
< e + — 0,

oi(n—=p)> 7 p(n—p)?log (1 + Grlmes)  p(n—p)log (1+ Bri=s)  (n—p)?log (1 + Grilmes)

proving (?7).
Now we proceed to prove (??) for any fixed z. For fixed z, set t = ¢, = o=. Then it follows from (7?)
that ¢, = o(n — p), which implies |t,| < (n — p)/4 for all large n. Therefore, we can apply (??), (??) and

(??) with t = t,. From Lemma ?? and (??) we have

Dp

WO(W —p)?) = o(1)

|\I’h”,n,p(ctn)‘ti <

and

armplen Ml < 2O o — ) = o230y — o),

Then by combining (?7), (??), (?7) and (?7?) that

log (E(W#z/an)> = \IjlogI‘ n p( ) \Illogf‘ n p(O)
= \Ils,n,p(tn) + \I/h, n,p(tn) - (\Ils,n,p(o) + lIlh7 n,p(o))

= \Ilsvn,p(tﬁ - \I’s,n,p(o) + \Ilh n p( ) \I’h n p(0>

2 43 42
= (\I]s’,n,p(o) + \Ilh’,n,p(o))tn + \I]s”,n,p(o) 9 + \II ", (ctn) g + \I]h”,n,p(ctn)gn
2

t

= Wenp©) 202 )
On 0721 2

2
= o,
On 2

where we have used the following facts
nq]d},n,p(o) = —Hn, nzlps”7n7p(0) = 0'721.

This proves (7). O

Proof of Theorem ?7. Without loss of generality, assume ¢ = ¢uax- When n — gumax =7 and n — p = v are
fixed integers, k is bounded and ¢;, 2 < ¢ < k are also bounded. We can employ the subsequence argument
to prove (77?), that is, for any subsequence of n, we will show that there exists its further subsequence along
which (??) holds. Our criterion for selection of subsequences is first to choose a subsequence of the given
subsequence of n, along which k = k,, converges to a finite limit, which implies &, is ultimately a constant,
and then to select its further subsequence along which ga converges. We repeat the same procedure until we
find a subsequence along which g; converges. The last sub-sequence will be the one along which k and ¢;’s

are ultimately constant integers. The proof of (??) along such a subsequence is essentially the same as the
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proof when k = k,, is fixed and all ¢; for 2 < i < k are also fixed integers. For brevity, we will prove (??) by
assuming k and ¢; for 2 <1 < k are constants for all large n.

We first work on W,, defined in (??). From Lemma ?7, log W,, — rlogn has the same distribution as

k  q kg
ZZlogVU —rlogn = Zzlogn‘/z‘j,

i=2 j=1 i=2 j=1
where ¢f = Z;;ll gj for 2 < i <k, the Vj;’s are independent random variables and Vj; has a beta(%(n—q;‘ -7,
3q;) distribution.

Set ¢; =q¢f —q1=q¢ —(p—r)=q¢ —n+v+rfor 2 <i<k Wehave g, =0, and g; = Zé;lij
if 4+ > 2. This implies g;’s are fixed integers for all large n. For any 1 < j < ¢;, 2 < i < k, V;; has a
beta(5(r +v—q; — j), 3(n —r —v+g;)) distribution.

It follows from Section 8.5 in Blitzstein and Hwang [?] that a beta(a, b) random variable has the same
distribution as X(a)/(X(a) + Y (b)), where X (a) and Y (b) are two independent random variables, X (a)
has a Gamma(a, 2) distribution with density function f(z) = z* 'e~*/2/2°T'(a), > 0, and Y (b) has a
Gamma(b, 2) distribution.

Now for each pair of (i,7) with 1 < j < ¢, and 2 <i < k, set a = %(7‘—1—1} g;,—7j)and b= (n r—v4q;).
Then a+b = 1(n—j). Note that X(a) = X(3(r+v—g;—7)) and Y(b) = Y(2(n—r—v+g;)) are independent
chi-square random variables with r + v — g, — j and n — r — v + g; degrees of freedom, respectively, and
X(%(r +v—q;—7))+ Y(%(n —r—wv+g;)) is also a chi-square random variable with n — j degrees of freedom.

By using the law of large numbers,

X(Gr+v—g - +YGn-—r—v+g) n—jXGr+v-g-j)+Y(G0n-—r—v+7))

n n n—j
converges in probability to 1 as n — oo. Since nV;; has the same distribution as

1 . "
X(= r+v—qi—J))X(%(T+U_qi_j))+Y(%(n—r—v+é_li))

5(
which converges in distribution to a chi-square random variable with r + v —q; — j degrees of freedom, that
is

d
nVij — Yrpo—g,—j>

we have
r4+v—1

ZZIOng rlogn—ZZlognVZJHZZngr% @G—j = Z log Y},

=2 j=1 1=2 j=1 =2 j=1

which is the limiting distribution of log W,, — rlogn. We obtain (?7?) by noting that

—2log A, 1
8 An ¥ 110 Ogn:—(loan—rlogn).

n

This completes the proof of Theorem 77. d
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Proof of Theorem ?77.

The sufficiency follows from Theorem 7?7, that is, under conditions p — oo and 17 — gmax — 00 as N — 00,
the central limit theorem (??) holds with a,, = u, and b, = o,.

Now assume (77) holds. We need to show p — 0o and n — gmax — 00. If any one of the two conditions
is not true, there must exist a subsequence of {n}, say {n'}, along which
a. p is fixed, k is fixed and all ¢;’s are fixed, or
b. p — gmax = 7 and n — p = v for some fixed integers » > 1 and v > 1.

Condition b holds when n — ¢nax is bounded because both ¢ — gmax and n — p are bounded.

The subsequence {n'} along which condition a holds can be embedded in an entire sequence along
which condition a holds. Since the limiting distribution of —2log A,, is a chi-square distribution according
to (?7?), its subsequential limit along {n’} cannot be normal. For the same reason, under condition b,
the subsequential limit is also non-normal from Theorem ?7; See Remark 4. Under either condition a or
condition b, it results in a contradiction to the central limit theorem in (??7). This completes the proof of

the necessity. O

Proof of Theorem 77.

Similar to the proof of Theorem 2 in Qi et al. [?], we use the subsequence argument to prove the theorem.
It suffices to proved (??) under each of the following two assumptions:

Case 1: p, = p and k, = k and all ¢;’s are fixed integers for all large n;
Case 2: p, = o0 and n — @uax — 00 as . — 0.

Under Case 1, f,, = f is a constant for all large n, and (?7) holds. Since p,, defined in (?7?) converges to
one, —2log A,, converges in distribution to a chi-square distribution with f degrees of freedom. Note that
Zy, is defined in (?7?). To prove (?7), it suffices to verify that
) =0. (5.7)

n—o0 g2

lim ﬁ =1and lim (f—,un
n—oo

Using the notation in the proof of Lemma ?7, we have ¢;’s are fixed integers. it follows form (?7?) that
2(1 + o( 2(1 —l— o( 1 —|— o( +o(1))f
Bn1(0) = ZZ quqz ) (p? - Zqz 7,
=2 j=1

which together with (??) implies 2f/02 — 1 and proves the first limit in (??). To prove the second limit, it
suffices to show lim,, o pn, = f or equivalently lim,, o, fi,, = f by using (77).

From (??) and (??), n(b(n,p) — Zle b(n,q;)) = 0o(nBp1(0)) = o(1). Then by using Taylor’s expansion
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we have from (77) that

_ b 3 qi 3 1
= 3 Dogll = )~ g1 = ) of)
k
= (M-t DELE - S ER+0G) - p-n+ HE+FER+0(5)) + o)
i=1
1 2 ‘ 2
= 307X+
= [,

This proves the second limit in (?7?).
The proof under Case 2 is the same as that in Qi et al. [?], and it is outlined as follows. First, rewrite
(?7) as

. Zn — fn X?f - fn
lim su P < S
n—00 —oo<JI;)<oo | ( vV 2fn - 2fn

We can show f,, — oo under assumption lim,, oo (n — gmax) = 00. Since X?cn can be written as a sum of f,

z) — P( <) =0. (5.8)

independent chi-square random variables with one degree of freedom, we have from the central limit theorem

that )
im sup (PO < () =0
N—=00 _oo<Lr<00 2fn
To show (?7), it suffices to prove that
Z\”/%” -4 N(0, 1),
which is a direct consequence of Theorem 77 since Z”Q_f{l" = _Qloggﬁ”_“". This completes the proof of
Theorem ?7. g
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