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ABSTRACT: Chiral N-cyclopropyl pyrazoles and structurally related heterocycles are prepared using an earth-abundant copper
catalyst under mild reaction conditions with high regio-, diastereo-, and enantiocontrol. The observed N2:N1 regioselectivity favors
the more hindered nitrogen of the pyrazole. Experimental and DFT studies support a unique mechanism that features a five-centered
aminocupration.

Catalytic functionalization of heterocycles presents a
challenge with implications for the discovery and

preparation of medcines.1,2 Pyrazoles, a type of nitrogen-
containing heterocycle,3 rank fourth in occurrence among the
most recent FDA-approved drugs (Figure 1A).2d Given that
hydroamination is an efficient approach to form C−N
bonds,4,5 variants that feature nitrogen-containing heterocycles
warrant development.6 To date, pyrazoles undergo addition to

allenes,6a,c alkynes,6b and dienes,6d,e albeit using precious
metals (namely, Rh and Pd). As a promising alternative, Cu−
amido complexes7 (first isolated and characterized by
Gunnoe8a) catalyze the addition of amines to electron-deficient
olefins,8c,d allenes,9b nitrostyrenes,9c and azabenzonorborna-
dienes.9d Despite this reactivity, no asymmetric variants were
yet achieved (Figure 1B). In this study, we report a Cu-
catalyzed hydroamination with pyrazoles that provides chiral
cyclopropyl motifs with high regio-, diastereo-, and enantio-
control (Figure 1C).
The hydrofunctionalization of cyclopropenes represents a

versatile strategy for accessing chiral cyclopropanes.10−12 Most
relevant to our current study, Hou and co-workers disclosed
the asymmetric coupling of cyclopropenes with secondary
amines (e.g., morpholine, pyrrolidine, and dibenzylamines) by
using a rare-earth metal catalyst (Sm).12d Buchwald and co-
workers developed an enantioselective hydroamination of 1-
silyl- or 1-aryl-substituted cyclopropenes using Cu−H
catalysis,12h with O-benzoylhydroxylamines as oxidants13 and
silanes as the stoichiometric reductant.14 We hypothesized that
the deprotonation of pyrazole with a catalytic amount of base
would generate a Cu−pyrazolate catalyst, which would
undergo aminocupration to cyclopropenes (Figure 1C).15

Subsequent protodemetalation would produce cyclopropyl
pyrazoles. If successful, this method would enable a novel and
late-stage16 cyclopropylation of pyrazoles with high atom
economy.17

To begin this study, we focused on the desymmetrization of
achiral cyclopropene 1a with pyrazole (2a) to generate
cyclopropyl pyrazole 3a, which bears two stereogenic centers.
An initial experiment with Cu in the absence of ligands
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Figure 1. Asymmetric hydroamination of cyclopropenes with
pyrazoles.
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resulted in the formation of allylic pyrazole 5a (Figure 2A).
Achiral ligands, such as rac-BINAP, led to the exclusive

formation of the same undesired isomer 5a, likely via a ring-
opening pathway12h,18 involving N−H bond insertion into
allylic carbene 5a′.19 Using commercial (IPr)CuCl offered high
chemoselectivity to 3a (see the Supporting Information
(SI)).9d However, efforts to generate chiral NHC−Cu
complexes in situ from imidazolium salts provided 5a more
favorably; we presume that the ring-opening pathway with
CuCl outcompetes NHC carbene formation and ligation.
Gunnoe observed enhanced Cu−N nucleophilicity with bulky
electron-rich phosphine ligands compared to NHC ligands.8b,d

We wondered whether bulky phosphine ligands would favor
Cu−amido insertion over ring opening (Figure 2B). We found
that bulky chiral phosphines (L1−L7) gave promising results.
Among them, high enantioselectivity (90:10 er) and yield
(90%) of 3a were observed using (R,R)-i-Pr-Duphos (L3). We
observed improved enantioselectivity (94:6 er) with CH3CN
as the solvent (see the SI). Although lowering the temperature
to 0 °C improved the enantiomeric ratio, a longer reaction
time (4 days) was necessary. Therefore, we chose to explore
the substrate scope at 30 °C.
With this mild protocol in hand, we evaluated the

enantioselective coupling of various pyrazoles to cyclopropene
1a (Table 1). In general, high diastereoselectivity (>20:1) was
observed, likely due to the large steric difference between
methyl and phenyl substituents.20 Symmetric pyrazoles
afforded 3b−3i with high enantioselectivity (91:9−99:1 er)
in 40−94% yield. Introducing a methyl substituent on the

pyrazole showed no significant effect on reactivity (3b),
whereas more hindered dimethylated pyrazoles gave decreased
yields (3h, 3i). Electron-withdrawing groups on pyrazoles were
accommodated (3c−3f), although we observed more un-
desired allylic pyrazole with cyano substitution (3e). In the
case of unsymmetric pyrazoles, 65−90% yield, 92:8−99:1 er,
and nitrogen regioselectivity (N2:N1 > 20:1) were observed
(3j−3o). X-ray crystallographic analysis of 3j confirmed the
coupling of cyclopropene with the more sterically hindered
nitrogen of the pyrazole; this regioselectivity is rare in pyrazole
functionalization.9d,21,22 Further NOE experiments confirmed
similar regiocontrol for related pyrazole substrates (see the SI).
Despite the presence of a competing amino group, 3l was
isolated exclusively, showing a highly chemoselective cyclo-
propylation for pyrazole nitrogens.
Next, we investigated hydroamination using other hetero-

cycles under the standard conditions. Pyridazinone (2p), a
nitrogen-rich and medicinally relevant heterocycle,23 provided
3p in 55% yield, 87:13 er, and >20:1 nitrogen regioselectivity.
Indazole, a heterocycle used as an indole bioisostere,24 showed
promising results. Chiral indazoles (3q−3t) were prepared in
up to 66% yield with 89:11−92:8 er and nitrogen
regioselectivity (3.1:1 to >20:1 rr).25 The coupling of 1a
with indazoles required higher temperatures and resulted in

Figure 2. Reaction optimization using bisphosphine ligands. aRea-
ction conditions: 1a (0.12 mmol), 2 (0.10 mmol), Cu(CH3CN)4PF6
(5 mol%), chiral ligand (6 mol%), toluene (0.4 mL), 30 °C, 6−24 h.
Yields of isolated products are given. Enantiomeric ratios (er) were
determined by SFC analysis on a chiral stationary phase. bThe
reaction was performed using CH3CN at 30 °C for 6 h. cThe reaction
was performed using CH3CN at 0 °C for 4 days.

Table 1. Scope of Pyrazoles and Other N-Heterocycles.

aReaction conditions: 1a (0.12 mmol), 2 (0.10 mmol), Cu-
(CH3CN)4PF6 (5 mol%), L3 (6 mol%), CH3CN (0.4 mL), 30 °C,
6−12 h. Yields of isolated products are given. Nitrogen regioisomeric
ratios (N2:N1) were determined based on isolated yields and NOE
experiments. Diastereomeric ratios (dr) were determined from 1H
NMR analysis of the reaction mixtures. Enantiomeric ratios (er) were
determined by SFC analysis on a chiral stationary phase. b24 h. cThe
reaction was performed at 60 °C.
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lower regioselectivity, except for electron-withdrawing ester
substitution (3t). Other nitrogen nucleophiles, such as
imidazole, triazole, and aniline, exhibited no desired reactivity
under standard conditions and warrant further development.9a

In addition, we studied the enantioselective hydroamination
of pyrazole 2a with various cyclopropenes 1 (Table 2). The

electronic properties of the phenyl ring on 1 have a negligible
impact on the enantioselectivity and reactivity. Good yields
(60−89%) and enantioselectivity (92:8−94:6 er) were
observed with both electron-rich (4b, 4c, 4f, and 4g) and
electron-deficient (4d, 4e) substrates. Replacing the phenyl
ring on 1 with other aromatic rings afforded the desired results.
Both thiophenyl- (1h) and naphthyl-substituted (1i) cyclo-
propenes resulted in high yields (74 and 96%, respectively)
and enantioselectivities (93:7 er). The absolute configuration
of compound 4i was confirmed by X-ray crystallographic
analysis. An enhancement in enantioselectivity was observed
with the incorporation of a methoxy substituent (1j, 96:4 er)
or an amide substituent (1k, 99:1 er) on the cyclopropene. X-
ray crystallographic analysis of 4k suggested a potential
directing group effect because pyrazole added cis to the
amide substituent.12a Cyclopropenes with a spirocycle (1l) and
an ethyl substituent (1m) both exhibited high reactivity (63−
80%) and enantioselectivity (94:6−95:5 er). Furthermore, a

dialkyl-substituted cyclopropene (1n) provided product 4n in
80% yield with 89:11 er, although as a 1:1 mixture of
diastereomers.12c,d,i

On the basis of our own observations and literature
precedent, we propose a mechanism for this Cu-catalyzed
hydroamination (Figure 3). The catalyst resting state is

inactive off-cycle copper dipyrazolate V. Dissociation of one
pyrazolate releases active copper−amido catalyst I, which
enters the catalytic cycle and binds to cyclopropene 1a. A
subsequent cis-aminocupration of π complex II forges the key
C−N bond and provides cyclopropylcopper intermediate
III.12e,15 Protodemetalation of III with DBU−H+ affords
copper complex IV,26 which then undergoes ligand exchange
with pyrazole 2a to restart the catalytic cycle. Mechanistic
studies that led to the proposed mechanism are discussed
below.
To probe the mechanism, we studied the kinetic profile

using variable-time normalization analysis (VTNA) (see the
SI).27 We observed a first-order dependence on both
cyclopropene (1a) and the copper catalyst. We found an
inverse-first-order dependence on pyrazole (2a), and a
fractional order (0.5) for DBU. Our lab has previously
identified negative fractional orders of thiols in Rh-catalyzed
hydrothiolations, which we attributed to the coordination of
multiple thiols to an off-cycle catalyst resting state.12g,28 Given
the coordinating ability of pyrazoles, we propose that pyrazole
(1a) is involved in the formation of the off-cycle copper resting
state with a 2:1 relative ratio of pyrazole per copper center. In
the Heck coupling, Blackmond and co-workers observed that
the order in Pd catalyst varied between first order and
fractional order (0.5), depending on the amount of catalyst
monomer released from an off-cycle dimer.29 By performing
VTNA at higher copper loadings, we observed an apparent
fractional order (0.5) in copper (Figure 4A), which suggests
the possibility of a Cu dimer off-cycle resting state.30

We then performed 31P NMR studies to study the catalyst
resting state (see the SI). Through monitoring the chemical
shift of L3 in the reaction of cyclopropene 1a with pyrazole 2a,

Table 2. Scope of Cyclopropenes

aReaction conditions: 1 (0.12 mmol), 2a (0.10 mmol), Cu-
(CH3CN)4PF6 (5 mol%), L3 (6 mol%), CH3CN (0.4 mL), 30 °C,
6−12 h. Yields of isolated products are given. Diastereomeric ratios
(dr) were determined from 1H NMR analysis of the unpurified
reaction mixtures. Enantiomeric ratios (er) were determined by SFC
analysis on a chiral stationary phase. b1:1 dr.

Figure 3. Proposed catalytic cycle.
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we identified a plausible catalyst resting state at −2.4 ppm,
which was replaced by another species bearing a singlet at −4.7
ppm when the transformation was near completion. NMR
titrations31 using stoichiometric catalyst, DBU, and pyrazole
suggest the former resonance to be a Cu−Duphos−pyrazolate
species32 and the latter to be a Cu−Duphos−DBU complex.
These NMR studies provide evidence for the dual role of
DBU, acting as a base to deprotonate the pyrazole and as a
ligand to copper.26 The apparent fractional order of DBU may
arise from its multiple roles in proton transfer and ligation.
Efforts to characterize the resting state under high copper

concentrations led us to the serendipitous observation of
trimeric copper species VI. X-ray crystallographic analysis
revealed the unique structure where the central copper bridges
two neighboring Cu−Duphos complexes via four pyrazolates
(Figure 4B). The reactivity of this crystal was then tested
under otherwise standard conditions, where the desired
product was isolated in 20% yield with 94:6 er. Due to an
unexpected partial oxidation during crystallization, the central
copper appears divalent, which accounts for the lowered
reactivity. The structure of VI supports the feasibility of
copper−pyrazolates.32

A deuterium labeling experiment was conducted under the
standard conditions using deuterated cyclopropene d-1a and
indazole 2q (Figure 4C). Analysis of d-3q shows exclusively
syn proton incorporation relative to indazole. The results
support the idea that C−N bond formation is an inner-sphere
cis-aminocupration, as opposed to an outer-sphere nucleophilic
addition,7e followed by a retentive protodemetalation.
Although a four-centered 1,2-migratory insertion of cyclo-

propene into the Cu−N bond was initially envisioned, the
N2:N1 regioselectivity observed suggests that aminocupration
may occur via a 1′,6′-migratory insertion (Figure 5A). In the
proposed five-centered mechanism,33 the less-hindered nitro-

gen (N1) coordinates with copper, and the C−N bond is
forged between the cyclopropane and the more-hindered
nitrogen atom (N2). Moreover, this mechanistic rationale is in
line with Lee’s observations on pyrazole hydroamination.9d

To explore the unique regioselectivity, we performed a
density functional theory (DFT) analysis of the Cu−L3-
catalyzed coupling of cyclopropene 1a and pyrazole 2j to yield
3j. DFT calculations were performed at the M06-2X/6-
311+G** PCM(MeCN)//M06-2X/6-31G* level of
theory,34−36 as implemented in Gaussian 16.37 The transition
structures (TSs) for aminocupration, namely, the five-centered
TS versus the four-centered TS, were pursued for formation of
both the N2 and N1 isomers of 3j (Figure 5B). We discovered
that the five-centered aminocupration leading to addition at N2

represents the lowest-energy TS (Figure 5B, TSCA‑N2). This
favorable transition structure (TSCA‑N2) has a C−Cu bond
forming at 2.22 Å, a C−N bond occurring at 2.31 Å, and a
Cu−N bond remaining intact at 1.99 Å. An analogous TS
leading to the minor N1 regioisomer shows the coordination of
N2 to copper and C−N bond formation from N1 (TSCA‑N1);
this pathway is 2.7 kcal/mol higher in energy than TSCA‑N2.
These predictions are consistent with the experimentally

Figure 4. Mechanistic studies.

Figure 5. Proposed C−N bond formation pathways and TSs for the
favored five-centered 1′,6′-migratory insertion of N2 (TSCA‑N2) and
the higher energy, disfavored four-centered 1,2-migratory insertion of
N2 (TSMI‑N2).
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observed N2:N1 regioselectivity. Finally, addition of pyrazole 2j
into cyclopropane 1a via a 1,2-migratory insertion mechanism
is disfavored for the TSs leading to both regioisomers of 3j; the
TSs for insertion of N1 and N2 (TSMI‑N1 and TSMI‑N2) are
higher in energy than TSCA‑N2 by 13.6 and 16.1 kcal/mol,
respectively.
In summary, hydroamination presents an attractive approach

for the enantioselective coupling of cyclopropenes and
pyrazoles. Chiral N-cyclopropyl pyrazoles and structurally
related heterocycles are prepared using an earth-abundant
copper catalyst under mild reaction conditions with high
regio-, diastereo-, and enantiocontrol. Mechanistic studies
suggest a unique 1′,6′-migratory insertion. This Cu−amido
strategy complements the Cu−hydride approach to hydro-
amination and will guide future studies of N-heterocycle
functionalization.
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