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1 Introduction

In the past four decades, extreme value theory has been developed and used to
model rare events in many disciplines so as to assess the risks of those events. In
classical settings, the distributions under the general framework of extreme value
theory include a very large class of semi-parametric distributions, and estimators on
the tail index and high quantiles of these distributions can be found in the literature,
see, e.g., Hill [15], Pickands [32], Dekkers and de Haan [§], Dekkers et al. [9], de Haan
and Rootzén [6], Ferreira et al. [I1], Gong et al. [L3], and Allouche et al [I], among
others.

In this paper, we are interested in heavy-tailed distributions which are widely
used to model data in fields like meteorology, hydrology, climatology, environmental
science, telecommunications, insurance and finance. We refer the readers to Em-
brechts et al. [10] for details. Based on a random sample with n independent and
identically distributed (iid) data points from a heavy-tailed distribution, Hill’s es-
timator for the tail index and Weissman’s estimators for high quantiles, proposed
by Hill [15] and Weissman [38], respectively, are two popular ones in the literature.
These estimators are based on only a few of the largest observations. For some
recent methodologies for heavy-tailed distributions, see, e.g., Peng and Qi [31] and
Paulauskas and Vaiciulis [26, 27].

We consider the inference on heavy-tailed distributions from incomplete data in
this paper. In real world, some data are naturally divided into several groups or
blocks, and only a small proportion of the largest observations within blocks are
available for analysis. For example, for rainfall or snowfall, fire losses, frequently,
only a few of yearly largest observations are accessible publicly. See Qi [33] for more
examples.

For the block data, Paulauskas [23] introduced their estimators for the tail index
of a heavy-tailed distribution based on the ratios of the first largest and second
largest observations within blocks. Devydov et al. [4] also used the similar idea to
estimate the index of stable random vectors. Later on, Qi [33] proposed some Hill-
type estimators for block data, as given in ({2)), which have the smaller asymptotic
variance. Qi [33] also employed the empirical likelihood methods to constructing
confidence intervals for the tail index. More recent development can be found in the
literature; see, e.g., Paulauskas and Vaiciulis [24], 25], Vaiciulis [36] B7], Xiong and
Peng [39], and Hu et al. [16].

In this paper, we propose estimators for high quantiles of the heavy-tailed dis-



tribution from the block data and to construct confidence intervals under the same
settings as in Qi [33]. We also employ empirical likelihood method and adjusted em-
pirical likelihood method to construct confidence intervals. It is worth mentioning
that under the complete data setting for heavy-tailed distributions, several papers
have applied empirical likelihood methods to construct confidence intervals for the
tail index and high quantiles, see, e.g., Lu and Peng [19], Peng and Qi [29, [30].

The rest of the paper is organized as follows. In section [2] we introduce our
estimators for high quantiles and present their limiting distribution. In section [3]
we employ the empirical likelihood method to construct confidence intervals for the
logarithm of high quantiles. In section i we conduct a simulation study to compare
the confidence intervals based on the normal approximation of our estimators and
the empirical likelihood method. Finally, we give all the proofs in section [3}

2 Estimators of high quantiles

A cumulative distribution function F' is a heavy-tailed distribution function if it
satisfies the following condition

1— F(z)=2"Y7L(z) forz >0, (1)

where v > 0 is an unknown parameter and 1/ is called the tail index of the
distribution function F', and L is a slowly varying function at infinity satisfying
L

i (tx)

=1, >0

Assume a random sample of size n from F' is available. A p-th high quantile
of distribution F', denoted as z,, is defined as the (1 — p)-th quantile of F, i.e.,
z, = F~(1 —p), where F'~ denotes the generalized inverse of F' and p = p, € (0, 1)
satisfying lim,, . p, = 0 and lim,,_,., np, = ¢ € [0, 00).

The inference of index v and high quantile z, has attracted much attention in
past fifty years. When a full sample X7, --- , X, is available, Hill’s estimator for
and Weissman'’s estimator for x, are well known in the literature; see Hill [I5] and
Weissman [38]. Some recent developments on constructing confidence intervals of
and z, based on normal approximations and empirical likelihood methods can be
found in Peng and Qi [31].

In this paper, we consider the case when the data is not fully available. We de-
scribe our settings in this paper as follows. Without loss of generality we can always
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assume X; > 1 for 1 < ¢ < n, otherwise we can simply replace X; by max(X;,1).
First, divide the sample Xj,---, X, into k, blocks (or groups), Vi, -,V , and
each block contains m = m,, = [n/k,] observations, where [x] denotes the integer
part of x > 0. To be more specific, V; = {X—1)m+1, -+, Xim} for 1 <i < k,. Let
Xf,?l > 0 > Xr(ﬁ)m denote the order statistics of the m observations in the i-th
block.

Let » > 1 be an integer. Now we assume that the r + 1 largest random variables
within each of the k, blocks are observed, that is, only the observations {X,(;)j :
j=1,--- r+1,i=1,--- k,} are available for inference. From the data within
i-th block, Hill's estimator for 7 can be defined as * > i1 (log Xffgj —log Xﬁ?r 41) for
i=1,---k,. By using the average of all k, Hill’s estimators, Qi [33] proposed the
following estimator for ~:

k r
5= 30 (g X z‘
= (log an?j — log Xr(n?rﬂ)? )
nToi=1 j=1

where k,, satisfies

k
k, — oo and — — 0 asn — oo.
n

In order to extend the current setting conveniently, we express the above condition
as
k, oo and m, — 00 asn — oo.

Note that k, and m,, are the number of blocks and the number of observations
within each block, respectively, and n ~ k,m,, is approximately the total number of
observations in all k,, blocks.

To investigate the limiting distributions for the estimator, a condition stronger
than is required. Throughout this paper, we assume that there exists a measur-
able function A(t) with lim; ., A(t) = 0 such that

. Uto)/U(t) — 27 xwxp -1
A )

for all x > 0, where U(y) = F~(1 — %) is the inverse function of 15 and p < 0.

This condition is more general than the following condition
1—F(z)=ca /" +de™? +o(z™") asz — oo, (4)

where 0 < 77! < 8 < oo, which is used in Paulauskas [23]. In fact, if (4) holds, then
one can verify that holds with A(t) = —y(By — 1)dc Pt~ and p =1 — 3.



The asymptotic normality of 7, is as follows.

Theorem 2.1. (Qi [33]) Assume (3) holds. If

kn — 00, m, — oo and kY2A(m,) — 6 € (—o0,00) asn — oo, (5)
then
(ko) > G = 1) N (3b;,7°),
where

T

_ 1 I'Gj—p) Tlr+1-0p)
L (Z G- o) ) o

j=1

and I'(z) = [[7t" e dt is the Gamma function.

In this paper, we propose the following estimator for xz):

k

~ 1 & i ~

Tp = exp (k_ E 10g(X7(nl,r+1) — a(my, T, pn)%),
=1

where 7, is the estimator for v defined in (2)), and a(m,r,p) = PR % + log p.

The estimator 7, defined above is of the same nature as the Weissman'’s estimator
for high quantiles based on a full sample. In Weissman [38], the estimator for high
quantiles is a function of one extreme order statistic and an estimator for the tail
index, or more precisely, the estimator for log z, is the sum of the logarithm of one
extreme order statistic and the estimator of the tail index multiplied by a constant.
In our setting, we are able to define estimators for log z, by using the data from
each of k,, blocks, and thus we have k,, different estimators. Our estimator log z,, for
log x,, is the average of all these k,, estimators. The only difference is that we use
a slightly different coefficient a(m.,,r,p) of 7, in our estimation in order to reduce
the bias in the estimation.

Theorem 2.2. In addition to conditions in Theorem [2.1], if p = pn satisfies condi-

tion
Mppn — 0 and log(m,p,) = o(kY?)  asn — oo,
then ()2
T’kn ~ d
— (] —1 N(6b,,7?), 7
.t )] (log z — logxp) = N(dbr,77) (7)
where a(m,r,p) = Z;-n:mrl % + logp, and b, is defined in @
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Remark 1. Since k,, m,, — oo and k,m,, ~ n as n — oo, condition m,p — 0 in
Theorem [2.2] is trivial when np, — ¢ € [0,00). In fact, we allow in Theorem
that np, — oo as long as m,p, — 0 as n — oo.

Now we consider the situation when the numbers of random variables within the
blocks are different and the numbers of the observations available for inference are
also different, and all random variables are independent and identically distributed
with a heavy-tailed distribution . Assume there are k,, blocks of observations, V;,
1 <4 < k,, and in the ¢-th block Vj, there are m; random variables, but only the r;+1
largest order statistics Xﬁl) j»J=1,---,ri+1 are available for inference. The total
number of random variables within all k,, blocks is ZZ L M; =N or Zf;l m; ~ n.

Qi [33] proposed the following estimator for

ZZ log X, ; — log X, .. ).

zllzl]l

The asymptotic normality of 77 is obtained as follows.

Theorem 2.3. (Q: [33]) If (§) holds and

kn
k,, — o0, kﬁ — 00, and (Z )2 A(gn) — 0 as n — oo,
" i=1

where q, = gngi (m;/r;) = 00 as n — oo, then
K3 n

Zr W2 — —>N(O .

Under the above setting-up, we propose the following estimate for z,

7 = exp ( S i log(X), ) — an(pn)7; ).

]1]@1

where . .
p) = (Z rj) ! Zﬁa(mi,%p) (8)
j=1 i=1

with a(m,r,p) =377, 7 +logp.



Theorem 2.4. In addition to conditions in Theorem assume the following
condition

: _ N1/2
max mip, =0 and an(pn) = o((Q_7)"*) asn— oo,

Then we have
(Efil 7"1')1/2

s d
PREN] (log 7, — log w,) — N(0,~2).

Remark 2. Condition maxj<;<x, m;p, — 0 is very weak. For example, when
we consider a high quantile z,, under assumption that np, — ¢ € [0,00), where
n ~ Zf;l m;, condition maxj<;<k, m;/n — 0 implies max;<;<g, m;p, — 0. Under
the conditions in Theorem [2.4] we can also show that a,(p,) < 0 ultimately, see
Lemma [5.3] in Appendix.

Remark 3. In practice, handling the bias term in the limiting distribution in
Theorem is not easy. One may need to impose more restrictive conditions such
as the so-called third-order condition on F'. We usually consider only the case § =0
for convenience when we construct confidence intervals. A 100(1 — )% confidence
interval for log x,, based on the normal approximation of log ,, in Theorem when
0 = 0 is given by

|a(m, 7, p)[Fn
(rk,) /2

, log @, + 242

s g

In(1—a) = (log’x\p — Za/2 (k)12

where z,/2 is the critical value of the standard normal distribution at level a/2;
that is, 1 — ®(24/2) = /2, where ®(z) is the cumulative distribution function for
the standard normal random variable. According to Theorem [2.2] this confidence
interval has an asymptotically correct coverage probability, that is,

P(logzpg € IN(1 —a)) 21— as n— oo,
where log z, ¢ is the true value of the parameter log z,.

Remark 4. The second-order condition is a standard condition that has been
used for univariate extreme-value statistics in the literature. To verify condition ,
the information on the function A is required. It is known that A(¢) is regularly
varying at infinity with index p. Theoretically, we can show that there exists a
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function g(t) := t=2//(1=20)((t), where £(t) is slowly varying at infinity, such that
holds with § = 0 if &k, = o(g(n)). If a consistent estimator of p, say p,,, can be
obtained, then for any fixed e > 0, if k,, = o(n=2»/(1=272)=¢) "then () holds with
0 = 0. When a complete sample is available, consistent estlmators for p can be
obtained, see, e.g., Gomes et al. [12] and Peng and Qi [2§]. These estimators cannot
be applied directly to the incomplete data in the present paper. Since the solution
under our current setup requires much effort, we leave this important work for the
future study.

3 Empirical likelihood and adjusted empirical like-
lihood methods

In this section, we assume r > 1 is a fixed integer, and k,, and m,, satisfy condition

[®). Set

maog(mﬂ) v)

for j=1,---,rand i =1,---,k,. Under conditions in Theorem with § = 0,
{ZJ(-Z)(y), 1 <j5<rl1<i<k,} are approximately independent and identically

@) () —
Z] (y) J (log X log Xm ]Jrl)

distributed with mean 0 if y = log x,,. We apply Owen’s empirical likelihood method
(Owen [21]) to construct confidence intervals or to test the hypothesis for logarithm

of z).
Let q = (¢\", - gV, ¢™ o %)) be a probability vector satisfying
qu]_, V>0 for1<j<r 1<i<k,. (10)
=1 j=1

Then the empirical likelihood, evaluated at y = log x,,, is defined by

kn 7 kn r kn r
) =sup {any> S0 = 0,373 = 1w > o} |

i=1 j=1 i=1 j=1 i=1 j=1
(11)

By the method of Lagrange multipliers, we can easily get the maximizers for the
likelihood on the right-hand side of

i 1 D1 :
QJ():%{]-—'—AZJ()(y)} 17 ]:17"'7T7 Z:1""71{:717



where A is the solution to the equation

Z Z =0. (12)

11j11+)\z )

On the other hand, Hf;l H;Zl q§i), subject to constrains in , attains its
(1)

maximum (rk,) """ at ¢;” = (rk,)”'. So we define the empirical likelihood ratio at
Yo, the true value of log x,, by

~TIIIka® = TTTTE + 222 o,

i=1j=1 i=1j=1

and the corresponding empirical log-likelihood ratio statistic is defined as

L) = —2log (o) =23 S log{1 + A=(30)},

i=1 j=1

where A is the solution to .
The following theorem gives the asymptotic distribution of £(yq).

Theorem 3.1. Under the conditions of Theorem [2.9 with § = 0 we have

L(y0)5x3, (13)

where x? denotes a chi-squared random variable with one degree of freedom, and yo
is the true value of log ).

According to (13), a 100(1 — a)% confidence interval for logz, based on the
empirical likelihood ratio statistic is determined by

Ip(l—a)={y >0:L(y) < c(a)},

where c(a) is the « level critical value of a chi-squared distribution with one degree
of freedom.

When we define EL(y) in , we assume there is a probability vector q sat-
isfying such that Zf; > i q](-i)z](-i)(y) = 0, which is equivalent to that 0 is
contained in the the convex hull of the data points {zj(z) (y): 1<j<r1<i<k,}.
If this is not true, the empirical likelihood ratio statistics £(yp) is set as infinity. As
a result, this may cause a serious undercoverage for confidence intervals when the
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total number of data points, 7k, is relatively small. The same problem has been
discussed for the mean of iid random vectors in the literature, see, e.g., Owen [20],
Hall and La Scala [14], Qin and Lawless [34], and Tsao [35].

Chen et al. [3] proposed the so-called adjusted empirical likelihood method to
solve the undercoverage problem for the mean of a distribution. For a random sample
of size n, they added a pseudo-sample point and applied the ordinary empirical
likelihood method to the n+1 data points. Later on, Liu and Chen [I§] investigated
how to choose the correction factor for the pseudo-sample point so as to achieve
a better precision in terms of coverage probability for empirical likelihood based
confidence intervals. Recent work by Li and Qi [I7] applied the adjusted empirical
likelihood method to constructing confidence intervals for the tail index of a heavy-
tailed distribution.

Define a pseudo-data point as

(14)

’Lljl

where a,, is a Constant satisfying condition a, = 0(k2/ ). In our applications, we
will take a,, = ﬁ which is the optimal correction factor when the adjusted empirical
likelihood is applied to a random sample from an exponential distribution. See e.g.,
Li and Qi [I7] for more justifications. The so-called adjusted empirical likelihood
method is to apply the ordinary empirical likelihood method to the k,r + 1 data
points {ZJ(-i)(y),l <i <kl <j<r}u{z(y)} By following exactly the same
procedure as the above, the adjusted empirical likelihood ratio statistic at y = log x,,
is given by

kn r

AL(y) =2> > log{1+ A= ()} + 2log{1 + Az(y)}.

i=1 j=1
where A is the solution to the following equation

Ay)
Z Z 1 +Az(y)

ZIJ11+)\Z

Theorem 3.2. Assume the conditions of Theorem with 6 = 0 are satisfied and
an = 0(1{:72/3) as n — oo. Then we have

AL (y0) 52,
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where x? denotes a chi-squared random variable with one degree of freedom, and yo
is the true value of log ).

According to Theorem , a 100(1 — o) % confidence interval for log x,, based on
the adjusted empirical likelihood ratio statistic is determined by

Lip(1—a) = {y > 0: AL(y) < c(a)}, (15)

where ¢(«) is the a level critical value of a chi-squared distribution with one degree
of freedom.

4 Simulation study

In this section, we carry out a simulation study to compare the performance of the
confidence intervals based on the adjusted empirical likelihood (1% (1 — «) defined
in (15))) and the normal approximation (Iy(1—«) given in (9)) for high quantiles in
terms of coverage probability and interval length. We take a, = % for the weight
a, in (14)). We consider the following two types of cumulative distribution functions
(cdf):

(a). the Fréchet cdf given by F(z) = exp(—z~®) (x > 0), where a > 0 (notation:
Fréchet(a));

(b). the Burr cdf given by F(z) = 1 — (1 +2%)~° (z > 0), where a > 0, b > 0
(notation: Burr(a,b)).

In our simulation study, we choose r = 1, that is, we consider the case when
only two largest observations within blocks are used for the inference. We choose
the confidence level 1 — a = 95% in the study. The simulation is implemented by
Software R. We will use the following three distributions in our study: Fréchet (1),
Burr (0.5, 1) and Burr (1,0.5). Both Fréchet and Burr distributions can be expanded
in the form given in (4f), and their second-order function A(¢) is proportional to ¢*,
where p = —1 for Fréchet (1) and Burr (0.5,1) and p = —2 for Burr(1,0.5).

From each of three distributions, Fréchet(1), Burr(0.5,1) and Burr(1,0.5), we
generate k blocks of independent random variables with & = 10,15,---,100, and
each block contains m observations, where m can be selected under one of the
following two schemes. For each distribution and each combination of £ and m, the
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coverage probabilities and average lengths of two confidence intervals, [7,(0.95) and
In(0.95)), are estimated based on 5000 replicates.

Scheme 1. Set n = 1000 and p = p, = 1/n. For each k from {10,15,--- 100},
define m = [1000/k|, where [x] denotes the integer part of x. This setup applies
to all three distributions. The coverage probabilities and the average lengths of
confidence intervals based on the adjusted empirical likelihood method (AELM)
and normal approximation method (NORM) for log z,, are obtained and reported in
Tables [I] and [2] respectively.

Scheme 2. For each k from {10,15,--- 100}, we select m as a function k in the
form m = [50k"], where v € (0,1) depends on the distribution from which the
observations are sampled. In particular, we have selected v = 1/2 for Burr(0.5, 1),
v = 1/4 for Burr(1,0.5), and v = 1/2 for Fréchet(1). Notice that m increases with
k, and so does the total number, km, of observations within all £ blocks. For each
combination of k and m, we estimate logz, with p = 1/(km). Again, we estimate
the coverage probability and average length of two confidence intervals, I7,(0.95)
based on the adjusted empirical likelihood method (AELM) and Ix(0.95) based
normal approximation method (NORM). Simulation results are given in Tables
and [4

Under Scheme 2, with the specific selection m = [50k"] for each distribution,
kY 2A(m) is approximatively a constant as k gets larger, and the multiplier 50 is
selected so that the bias term of the limiting distribution in (7)) is relatively small.
Under Scheme 1, the total number of observations in the k& blocks is approximately
1000, and m decreases with k, for example, m = 100 if £ = 10, and m = 10 if
k = 100. Since |A(t)| is proportional to t” for some p < 0, we see that the bias term
in is getting larger when k is bigger under Scheme 1.

From Tables[I|and [3] the confidence intervals based on the normal approximation
have a significantly lower coverage for smaller values of k, and those based on the
adjusted empirical likelihood method achieve a much better coverage in this case.
The performance of the normal approximation is getting better when £ increases
under Scheme 1. For Burr(1,0.5), the performance of the adjusted empirical likeli-
hood method may be greatly influenced by the bias terms which are approximately
proportional to k'/?2m=2 ~ k?°/10002. Under Scheme 2, m increases with k and
the bias terms in (|7)) are reasonably small, and the coverage probabilities from Ta-
ble [3]indicate that the adjusted empirical likelihood method outperforms the normal
approximation method for all three distributions.
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Tables [2| and [4] reveal that the average lengths of the confidence intervals based
on the normal approximation are shorter than those based on the adjusted empirical
likelihood method under both Scheme 1 and Scheme 2 when £ is relatively small.
This is caused by the lower coverage of confidence intervals based on the normal
approximation. When £k is getting larger, the average lengths for both methods are
comparable.

In summary, we conclude that the adjusted empirical likelihood method results in
better coverage probability when k is small or when the bias term in ([7)) is relatively
small. When the bias term in (7)) is getting too large, theoretically, both methods
have an undercoverage problem, but the adjusted empirical likelihood method may
suffer more than the normal approximation method as we have observed in Table
for Burr(1,0.5) distribution.

Finally, we conclude this section with some comments on application of the
proposed methods in the paper. In general, a relatively large sample is required for
application of results under the framework of extreme value statistics since only a
few of largest observations in the sample can be used in the estimation. The accuracy
of the normal approximation for estimators of v and z, depends on the number of
observations used in the estimation (rk, ) and the asymptotic bias for the normalized
statistics rk,}l/zA(n/kn). We recommend that rk, > 30 and rkyll/2|A(n/kn)| < 0.2.
Since A(t) is proportional to t” in most applications, we can assume kL (n/kp)P <
0.2. Now consider the special case r = 1, we have n > 5~ 1/2k72/(72) a5 suggested
sample size for k, > 30. Since p is unknown, estimation of p seems important issue
for this purpose. See more comments in Remark 4 at the end of Section

5 Proofs

Before we prove the main results, we introduce some notations. As we have assumed
that X; > 1 for i > 1, we see that F'~(u) > 1 for all u € (0,1), and thus U(z) =
F~(1—2) > 1is well defined for « > 1. Note that U(x) is non-decreasing for z > 1.

From de Haan and Stadtmiiller [7], condition (3) implies that A(¢) is a regularly
varying function with index p, and |A(t)| is bounded away from 0 and co on every
compact subset of [cy,00), where ¢y > 0 is a constant. Without loss of generality,
we assume A(t) is bounded away from 0 and oo in (0, ¢ since redefining A(t) on

(0, co) doesn’t change condition (3)). Then using Potter’s bounds to A(x), for every
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Table 1: Coverage probabilities for adjusted empirical likelihood method with cor-
rection factor 19/12 (AELM) and normal approximation method for log 7, (NORM):
the number of observations within each block is set to be m = [1000/k] (Scheme 1)
Fréchet(1) Burr(0.5,1) Burr(1,0.5)

k, | AELM NORM | AELM NORM | AELM NORM

10 | 09630  0.8996 | 0.9602 0.9046 | 0.9612  0.9066

15 | 0.9420 0.9172 | 0.9342 0.9114 | 0.9354  0.9186

20 | 0.9372  0.9256 | 0.9360 0.9234 | 0.9384  0.9286

25 | 0.9408 0.9294 | 0.9410 0.9308 | 0.9438  0.9394

30 | 0.9440 0.9364 | 0.9406  0.9248 | 0.9448  0.9348

35 | 0.9438 09412 | 0.9494 0.9388 | 0.9524  0.9520

40 | 0.9448  0.9490 | 0.9442 0.9384 | 0.9434  0.9522

45 | 0.9490  0.9498 | 0.9430 0.9370 | 0.9440  0.9506

50 | 0.9490 0.9510 | 0.9462  0.9446 | 0.9440  0.9582

55 | 0.9446  0.9482 | 0.9374 0.9358 | 0.9364  0.9488

60 | 0.9484 0.9534 | 0.9460 0.9418 | 0.9418 0.9574

65 | 0.9498  0.9600 | 0.9470 0.9452 | 0.9414 0.9576

70 | 0.9464  0.9566 | 0.9488  0.9438 | 0.9348  0.9592

75 | 0.9494  0.9610 | 0.9470 0.9472 | 0.9300 0.9602

80 | 0.9458  0.9572 | 0.9420 0.9434 | 0.9258  0.9548

85 | 0.9436  0.9570 | 0.9458 0.9454 | 0.9146  0.9534

90 | 0.9498 0.9616 | 0.9446 0.9464 | 0.9192  0.9510

95 | 0.9408 0.9580 | 0.9468  0.9490 | 0.9044  0.9492
100 | 0.9384 0.9538 | 0.9462  0.9502 | 0.8988  0.9438

d > 0, there exists a constant ¢(d) > 0 such that

A
| Ag% < ¢(6) max ((g)m, (%)M) for all z,y > 0. (16)
See, e.g., Theorem 1.5.6 in Bingham et al. [2].

Next, we see that is equivalent to

. logU(tx) —logU(t) — ylogz af —1
lim = ,
=00 A(t) p

x> 0. (17)

Let h(z) =logU(z) — ylogx, x > 1. Then implies that for each x > 0,

h(tx) — h(t) _ logU(tx) —logU(t) — vlogx R -1
A(t) A(t) p

as t — oo.
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Table 2: Averages of lengths for confidence intervals based adjusted empirical like-
lihood method with correction factor 19/12 (AELM) and normal approximation
method for logZ, (NORM): the number of observations within each block is set to
be m = [1000/k] (Scheme 1)
Fréchet(1) Burr(0.5,1) Burr(1,0.5)

kn, | AELM NORM | AELM NORM | AELM NORM

10 5.014 3.393 9.985 6.754 | 10.052 6.834

15 3.622 3.193 7.163 6.343 7.184 6.373

20 3.284 3.015 6.525 5.979 6.550 6.027

25 3.082 2.875 6.159 5.702 6.170 5.761

30 2.946 2.780 5.846 5.470 5.854 5.526

35 2.818 2.683 5.605 5.276 5.608 5.317

40 2.702 2.588 5.386 5.095 5.392 5.126

45 2.623 2.524 5.199 4.937 5.216 4.979

50 2.537 2.451 5.040 4.801 5.060 4.841

55 2.471 2.401 4.895 4.682 4.909 4.707

60 2.429 2.369 4.806 4.609 4.784 4.594

65 2.363 2.315 4.670 4.494 4.672 4.489

70 2.307 2.265 4.560 4.396 4.564 4.399

75 2.263 2.228 4.468 4.321 4.466 4.316

80 2.228 2.201 4.393 4.259 4.380 4.233

85 2.199 2.181 4.322 4.204 4.294 4.160

90 2.135 2.119 4.198 4.086 4.219 4.092

95 2.118 2.111 4.165 4.070 4.145 4.023
100 2.062 2.057 4.056 3.967 4.079 3.962

Since p < 0, we have from Theorem B.2.18 in de Haan and Ferreira [5] that there
exists a constant ¢ such that lim, ,. h(x) = ¢, and hy(z) := h(t) — ¢ is a regularly
varying function with index p, i.e.,

hy(tz) — hy(t) _ log U(tzr) —logU(t) — ylogx . P —1
A(t) A(t) p

as t — oo.

In this case, we have A(x) ~ phi(x) as © — oo, hi(x) — 0 as x — oo, and hy(x) is
uniformly bounded in interval [1, 00). Meanwhile, we have |hi(y)/A(y)| is uniformly
bounded in (1, 00), and we assume |h;(y)/A(y)| < Cy for some Cy > 0.
Rewrite
logU(tx) —logU(t) — vlogz  hy(tx) A(tx)  hi(t)

A = Altx) A Ay 0L
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Table 3: Coverage probabilities for adjusted empirical likelihood method with cor-
rection factor 19/12 (AELM) and normal approximation method for log 7, (NORM):
the number of observations within each block is set to be m = [50k"] (Scheme 2),
where v = 1/2 for Burr(0.5,1), v = 1/4 for Burr(1,0.5), and v = 1/2 for Fréchet(1)
Fréchet(1) Burr(0.5,1) Burr(1,0.5)

k, | AELM NORM | AELM NORM | AELM NORM

10 | 0.9648  0.9020 | 0.9578  0.8966 | 0.9604  0.9036

15| 09416 0.9180 | 0.9378  0.9148 | 0.9402 0.9166

20 | 0.9366 0.9216 | 0.9388  0.9248 | 0.9370  0.9216

25 | 0.9422 09286 | 0.9360 0.9294 | 0.9398  0.9312

30 | 0.9422 09284 | 0.9386  0.9306 | 0.9410  0.9356

35 | 0.9410 0.9350 | 0.9388  0.9294 | 0.9392  0.9340

40 | 0.9456  0.9366 | 0.9418 0.9332 | 0.9406 0.9384

45 | 0.9470  0.9392 | 0.9434 0.9368 | 0.9462  0.9440

50 | 0.9472  0.9390 | 0.9436  0.9346 | 0.9462  0.9386

55 | 0.9440 0.9356 | 0.9460 0.9394 | 0.9422  0.9362

60 | 0.9464 0.9398 | 0.9456  0.9324 | 0.9448 0.9414

65 | 0.9480 0.9418 | 0.9434 0.9322 | 0.9416 0.9356

70 | 0.9492  0.9448 | 0.9458 0.9390 | 0.9456  0.9402

75 | 0.9464  0.9418 | 0.9460 0.9406 | 0.9480  0.9440

80 | 0.9474  0.9452 | 0.9474 0.9432 | 0.9510  0.9480

85 | 0.9536  0.9448 | 0.9488  0.9396 | 0.9486  0.9448

90 | 0.9448 09434 | 0.9442 0.9356 | 0.9524  0.9508

95 | 0.9500 0.9436 | 0.9508  0.9458 | 0.9518  0.9484

100 | 0.9464 0.9374 | 0.9468  0.9402 | 0.9478  0.9440

By substituting y for x in the above equation and subtracting it from the above
equation we have

|10g U(tz) —log U(ty) — y(logz — log y)| _ |h1(tx) Altz)  hai(ty) A(ty)l
A(t) - A(tr) At Alty) A()
< CO(’A(tI) A(ty)

AT [+ At) -

Now we apply Potter’s bounds to both
conclude that

ﬁ‘(ff)) and %tg) with 6 = —p/2 and

|10g U(tx) —logU(ty) — v(logx — logy)

A0 | < Cy(a”? + %% + yl2 % %)  (18)

forall t > 1, tx > 1, and ty > 1, where C; > 0 is a constant.
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Table 4: Averages of lengths for confidence intervals based adjusted empirical like-
lihood method with correction factor 19/12 (AELM) and normal approximation
method for logZ, (NORM): the number of observations within each block is set to
be m = [50k"] (Scheme 2), where v = 1/2 for Burr(0.5,1), v = 1/4 for Burr(1,0.5),
and v = 1/2 for Fréchet(1)

Fréchet(1) Burr(0.5,1) Burr(1,0.5)

k, | AELM NORM | AELM NORM | AELM NORM

10 5.008 3.386 9.933 6.701 | 10.052 6.834

15 3.591 3.172 7.160 6.311 7.184 6.373

20 3.280 2.994 6.529 5.986 6.550 6.027

25 3.078 2.856 6.141 5.700 6.170 5.761

30 2.919 2.733 5.832 5.469 5.854 5.526

35 2.798 2.637 5.586 5.271 5.608 5.317

40 2.690 2.547 5.376 5.090 5.392 5.126

45 2.603 2.475 5.186 4.935 5.216 4.979

50 2.524 2.404 5.032 4.800 5.060 4.841

59 2.452 2.343 4.895 4.676 4.909 4.707

60 2.395 2.293 4.768 4.557 4.784 4.594

65 2.333 2.238 4.652 4.463 4.672 4.489

70 2.280 2.192 4.544 4.375 4.564 4.399

75 2.235 2.149 4.449 4.287 4.466 4.316

80 2.190 2.109 4.356 4.204 4.380 4.233

85 2.150 2.073 4.274 4.127 4.294 4.160

90 2.110 2.036 4.201 4.057 4.219 4.092

95 2.071 2.001 4.126 3.989 4.145 4.023

100 2.037 1.970 4.059 3.936 4.079 3.962

As in Qi [33], our proofs rely on the distributional representations for the obser-
vations. We will use the same notation as in Qi [33].
Assume {Ej(-l), i,7 > 1} are iid random variables with a unit exponential distri-

bution. It is easy to see that {U(eEy)), i,j > 1} are iid random variables with the

distribution F.
Apparently, {XTSZJ, 1 < j <'m;} have the same joint distribution as {U(E,(q?j), 1<

Jj < m;}, where E,SQI > > Ev(qizmz are the order statistics of EJ(-i), 1 <5< m,.

Without loss of generality, we assume that

. (©)
X(l) — U(eEmi’j), 1<j<my, 1<i<k,. (19)

mi,J

For each i > 1, set IV = j(E(i) - Eﬁ?i’jﬂ) for j =1,---,m; — 1 and fr(ﬁ) =

J mi,J

17



mZET(,QmZ Then {I](i), 1 <j<m 1<i<k,} areiid random variables with a
unit exponential distribution. We also have

m,,r+1 - Z . (20)

j=r+1

It is easy to see that ET(,?N 41, © = 1 are independent random variables with their
means and variances given by

; US| ; 11
E(Ey )= Y = Var(Bl,)= D) 5< . (21)
j=r+1 J g=r+1 J
Lemma 5.1. Asn — oo,
1 o Jn ]
()
kn Zri<Emi,T’i+l - Z _) = Op(l)
(Do 7i i)1/2 i=1 j=rit+l J

Proof. The lemma is trivial since the variance or the second moment of the left-hand
side above is equal to

G
13 Led oyl

zlrlzl ]n+1 zlrlzl

from and . O

Lemma 5.2. For any 6 > 0 we have

2

E(l)
E((M)5> < exp(0 + %), 1<r<m, m>2.

m/r

Proof. Using representation and the moment-generating function of exponential

18



random variables we have

ex (1) 1 m
B ) = (B0 3
(m /)’
H;nzr+l<1+é)

= exp (510g m/r) — Z log(1 +

7o

J_
1 J

j=r+1
S B
< exp (dlog(m/r) = > (5 = 2)
. J 2]
Jj=r+1
m 1 52 m Ly
< exp (dlog(m/r) = > +5 D i)
J 7‘+1‘7 Jj=r+1
62
S exp((5+3)

In the above estimation we have used inequalities that log(1+y) > y— %yQ fory >0
and log(m/r) — > 7" r+1] <1<l O
Lemma 5.3. Under conditions mini<;<k, (m;/r;) — 0o and maxi<;<g, m;p, — 0,

we have miny <;<g, (—a(m;, 7, pn)) — 00 and —a,(p,) — 00 as n — oo.
Proof. Since

U B B

POERY R S ST DO

j=r+1 j=r ‘7 r j 1 J

for 1 <r < m, we have

log — - < Z - < log
j= r+1
which implies
mpy, 1 1 mpn
1 - - - .
og(= ") = < X - +logpy <log(= )
j=r+1
Therefore, for 1 <i < k,,,
1
1 < = iy iy Pn <1 —_
OB(-) < —alm, i pn) < log( o) + -

19



. . r 1 .
1mce ming<; i > 1n
Since 1<i<kn Topn 2 maxicien mipn T 00 We obta

r:
. _ ‘ ) -~ . 1 7 N
lg%%n( a(mi, i, pn))  lnin. Og(mipn) 00
as n — oo. This also implies —a,,(p,) — oo from definition (). ]

We will prove a general result which can be used in the proofs for Theorems [2.2

and 2.4]

Lemma 5.4. Under conditions q, = min<;<g, (m;/r;) — 00 and max<i<k, MipPn —
0, we have

kn k
1 i Zﬁ Tia(mivriap)
- g 7 log(X,Slz_’”H)—log z, = ==

1
Fn v o
D ima T i=1 Dol T (i ri)t/?
Proof. Write

Stz y) = log U(tx) — log UE;?ZZ)_ v(log x — log y)

Then from ((18) we have
le(t, )| < Cr(a?? + 2 4 P2 4 4y%)%) (22)
fort > 1, txr > 1, ty > 1, and
log U(tx) — logU(ty) = v(logx — logy) + A(t)e(t, z,y).
Review that z, = U (pin) For each i > 1, by using representation (|19) with

50 )
t =m;/r;, tx = e mimitt and ty = - we have
n

A (i) 1
log(XT(sz rq1) —logz, = log U(ePmiritt) —log U(=)
st p

(%) ©)
eEmi’Ti+1 7”7; ) + A(mz mi eEmi,Ti-‘rl Ti

— loo ——— ] )
7( o8 mi/Ti Ogmipn T3 )€< Ti, mi/ri ’mipn>

@
).

m; ePmiritt ri

— y(EY log py) + A(~
( myri+1 T 108D )+ (r,; Jel T my /T mpy,

Then

log(XTSZ,’I’i-‘rl) —logz;, — ya(mi, 7, pn)

(7)
i o1 m; m; eEmNi“ T
= YEY = Y A ). (23)

Y Y
PR T ri mi/ri mipy,
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We have from that

(©) () (%)
mi eEmi,r,le rr»i eEmi,riJrl p/2 eEmi,riJrl
N

(%2, N<al(

)
T mi/ Ty MyPn

)3,0/2 i 2)

mi/T‘z‘ mi/Ti

aslongas ™ > 1 and mT; > 1, which are true for all 1 <7 < k,, since max<;<, MipPn —
0 and ¢, = miny<;<g, (M;/r;) — 0o as n — oo.
From Lemmal 5.2, for any d > 0, E(|e(2, <= AR )|%) are uniformly bounded
T3 mz/rz mMiPn

for 1 <i <k, for all large n. We can conclude that

ms eEv(v?i,ri+1 r
max [e(—— )| = Op(k,/?) (24)

. ) bl
1<i<kn 1 my/r;  mip,

and .
1 o m eE’('?"“'“ r
i N
i —, 5 :O 1 25
f Do el = 0 (25)

for any ¢ =1, 2. is true since there exists a C' > 0 such that for any x > 0

(@)
m; eEmivri“ T

P e(— > gkl/?
(e e o 1> 2hal)
kn s eEf,?,mH .
< ZP e(— - : > gkl/?
< Do PUC S el kY
k m; eESL)iTi*l i 2
- ]E(g(T_iZ’ m; /7 7mi;n)>
< D> ;
— %k,
< ¢
S 3

is true since the mean of the left-hand side of is bounded.
Since |A(x)| is a regularly varying function with index p < 0, that is

LA
e TAD)

=z, x>0. (26)

It is known that |A(z)| can be written as |A(x)| = ¢(x) f(x), where lim,_,, c¢(z) =
¢ > 0 and f(x) is a continuous and strictly decreasing function on (0,00). This
implies

m;

max |[A(—)| = O( max f(—)) = O(f( min —)) = O(f(qn)) = O(|A(gn)])-

1<i<hn Ty 1<i<kn ” 1 1<i<kn T



Then it follows from , and Lemma that

1 kzn | (X(i) )—1 Zfﬁl ria(mg, i, p)
kn i Og mg,ri+1 - Og xp - kn 7
Dol o Dol i
v kn Mn 1 1 kn m m eE'r(rZL) r+1 r
(i) i i o i
= ri(Ey L — -+ riA(—)e(—, ,
g (0) 1. O(|A(gn)]) m; e mintl oy
< ri(Epy g — )+ =) rile(—, , )|
Zf;l Ti ; oritt j:;rl J Zf;l r; ; vy omyri My
1
= Oyl + [A(an)]),
(s 4G
proving the lemma. [

Proof of Theorem It follows from Lemma [5.4] that

k
. 1 - i o
logz;, —logx, = an - Z r; log(XﬁlzjriH) —logz, — an(pn)7;,
j=1Tj =1
e 1
= —an(p) (W — V) + Oplog—— + [A(a)|),

(> ri) /2

which yields

(i ra) 2 ST L ()
== (logz;,—logz,) = )23 —~)+0 e

| A(gn)])-

(27)
The big “O” term above converges to zero in probability since —a,(p,) — oo from
Lemma 5.3/ and (321", r;)/2|A(g,)| — 0 as a given condition in Theorem . There-
fore, the left-hand side of the above equation converges in distribution to N(0,~?)
by using Theorem [2.3] This completes the proof of Theorem [2.4] [

Proof of Theorem[2.3 Theorem[2.2)is the special case of Theorem[2.4]except we allow
a non-zero bias term in the limiting distribution. Under the setup in Theorem [2.2]
we have m; = m,, ~ e and r; = r is a fixed integer. In the proof of Theorem we
have obtained . We note that the left-hand side of is equal to the left-hand

side of (7), and |a,(pn)| = |a(my, 7, pa)] — co. Theorem together with
yields Theorem if we can show that v/k,|A(%=)| has a finite limit. In fact, we
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have from that

k2| A(ma/r)] | A(ma/7)]
kx/?| A(ms,)| |A(mn)|

r°, (28)

which coupled with assumption kn/ ?A(m,) = 6 € (=00, 00) implies k! | A(my /)| —
|6]r=*. This completes the proof of Theorem 2.2} O

Proof of Theorem[3.1]. In this proof, we will simply use m and p to denote m,, and
Pn, Tespectively.
Define
@) _ . (1) (1)
Z;" = j(log X, ; —log X )

m,j+1

fory=1,---,randit=1,---,k,. We have

1

—)<log<xéi?r+1> —y)

@y )
4 W =2 ~a(m,r,p

forj=1,---,randit=1,--- , k,.

Note that we have assumed that y, is the true value of logz,. Now we also
assume that - is the true value of 7. It follow from the proof of Theorem 4 in
Qi [33] that

@) _ 1/2
o ma 127 = 2] = 0,(K) 29
and .
1
Sp 1= T SN (2 =0 B g (30)
" oi=1 j=1

From now on we will write 2" (yo) as zj(»i) for convenience. It follows from ([23))

J
that

zj = Zy@ — Y+ )(1Og(X,(,f3T+1) = %)+

_a'(ma rp

i i i 1
= (2P )+ — (B - Y )
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We need to show the following three equations:

(@) _ 1/2
19;&6}1}{@9'% [ = 0p(Fi); (32)

1 i
WZZ(%(‘)V =3, (33)

WZZZ(Z 2 N(0,72). (34)

Using , with ¢ = 2, (28 . and the fact that —a(m,r,p) — oo as n — oo
from Lemma [5.3 we have

1 1
W max lc;] &0 and = Z 5 0. (35)
" 1<i<kn
We can show 1 1
7 b;] 0 and . > o bo (36)

1<i<kn
The second expression can be proved by using the estimation that

2 k 2
L (3 RS e~
B2 G v r{alm, np)
from (21)), and the ﬁrst one follows from the second one since
1 2 12,

We see that follows from and the ﬁrst expressions in both and
. follows from Theorem ﬂ with § = 0 since

\/_ZZ %(logfv\p —log ).

=1 j=1

Set d; = b; + ¢;. We have from the Cauchy-Schwarz inequality that

kn
%de = %(be-l—Zcf—i—ZZbiCz‘)
n i=1 n i—1 j— 1=

IN
F| =
o
_|_
|
™

Il
Do
_I_
[N}
> —
e
T =
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by using the second expressions in and . Now we have from that

T ICLIEETS B ITUSE SR SIS

=1 j=1 i=1 j=1 i=1 j5=1

On the right-hand side in the above equation, the first term converges in probability
to 72 from , the second term converges in probability to zero, and the third
term converges in probability to zero by using the Cauchy-Schwarz inequality. This
completes the proof of .

The proof for is quite standard under conditions , and ; see
e.g., Owen [22] for details. O

Proof of Theorem|[3.7 By following the same arguments in the proof of Theorem [3.1]
it suffices to verify the following three conditions

max ( max |z§i)|, |z(y0)|> = op(k}/Z), (37)

1<i<kn,1<j<r

" H(ZZ (5 + 2(0)”) B3, (39)

=1 j=1

(
Wi (ZJZ + 2(y0) ) 5 N(0.4) (39)
, and (39) follow from ., and . since

kn r
_ (0) _ Qn 1/6
2yo) = == D 2" (o) = Op(—7=) = 0p(k)/°)
Kt i=1 j=1 ’ Fon
from ({14]). This completes the proof of Theorem . [
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