Inference of high quantiles of a heavy-tailed distribution from block data

Yongcheng Qi^{1,2}, Mengzi Xie¹, Jingping Yang³

Abstract. In this paper we consider the estimation problem for high quantiles of a heavy-tailed distribution from block data when only a few largest values are observed within blocks. We propose estimators for high quantiles and prove that these estimators are asymptotically normal. Furthermore, we employ empirical likelihood method and adjusted empirical likelihood method to constructing the confidence intervals of high quantiles. Through a simulation study we also compare the performance of the normal approximation method and the adjusted empirical likelihood methods in terms of the coverage probability and length of the confidence intervals.

Keywords: Heavy tailed distribution; High quantile; Confidence interval; Coverage probability; Empirical likelihood; Adjusted empirical likelihood

2020 Mathematics Subject Classification: 62G32

¹Department of Mathematics and Statistics, University of Minnesota Duluth, 1117 University Drive, Duluth, MN 55812, USA.

² Corresponding author.

³Department of Financial Mathematics, School of Mathematical Sciences, Peking University, Beijing 100871, PR China.

^{*}This is an Accepted Manuscript version of the following article, accepted for publication in Statistics [https://doi.org/10.1080/02331888.2023.2228442]. It is deposited under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

1 Introduction

In the past four decades, extreme value theory has been developed and used to model rare events in many disciplines so as to assess the risks of those events. In classical settings, the distributions under the general framework of extreme value theory include a very large class of semi-parametric distributions, and estimators on the tail index and high quantiles of these distributions can be found in the literature, see, e.g., Hill [15], Pickands [32], Dekkers and de Haan [8], Dekkers et al. [9], de Haan and Rootzén [6], Ferreira et al. [11], Gong et al. [13], and Allouche et al [1], among others.

In this paper, we are interested in heavy-tailed distributions which are widely used to model data in fields like meteorology, hydrology, climatology, environmental science, telecommunications, insurance and finance. We refer the readers to Embrechts et al. [10] for details. Based on a random sample with n independent and identically distributed (iid) data points from a heavy-tailed distribution, Hill's estimator for the tail index and Weissman's estimators for high quantiles, proposed by Hill [15] and Weissman [38], respectively, are two popular ones in the literature. These estimators are based on only a few of the largest observations. For some recent methodologies for heavy-tailed distributions, see, e.g., Peng and Qi [31] and Paulauskas and Vaiciulis [26, 27].

We consider the inference on heavy-tailed distributions from incomplete data in this paper. In real world, some data are naturally divided into several groups or blocks, and only a small proportion of the largest observations within blocks are available for analysis. For example, for rainfall or snowfall, fire losses, frequently, only a few of yearly largest observations are accessible publicly. See Qi [33] for more examples.

For the block data, Paulauskas [23] introduced their estimators for the tail index of a heavy-tailed distribution based on the ratios of the first largest and second largest observations within blocks. Devydov et al. [4] also used the similar idea to estimate the index of stable random vectors. Later on, Qi [33] proposed some Hill-type estimators for block data, as given in (2), which have the smaller asymptotic variance. Qi [33] also employed the empirical likelihood methods to constructing confidence intervals for the tail index. More recent development can be found in the literature; see, e.g., Paulauskas and Vaiciulis [24, 25], Vaiciulis [36, 37], Xiong and Peng [39], and Hu et al. [16].

In this paper, we propose estimators for high quantiles of the heavy-tailed dis-

tribution from the block data and to construct confidence intervals under the same settings as in Qi [33]. We also employ empirical likelihood method and adjusted empirical likelihood method to construct confidence intervals. It is worth mentioning that under the complete data setting for heavy-tailed distributions, several papers have applied empirical likelihood methods to construct confidence intervals for the tail index and high quantiles, see, e.g., Lu and Peng [19], Peng and Qi [29, 30].

The rest of the paper is organized as follows. In section 2, we introduce our estimators for high quantiles and present their limiting distribution. In section 3, we employ the empirical likelihood method to construct confidence intervals for the logarithm of high quantiles. In section 4, we conduct a simulation study to compare the confidence intervals based on the normal approximation of our estimators and the empirical likelihood method. Finally, we give all the proofs in section 5.

2 Estimators of high quantiles

A cumulative distribution function F is a heavy-tailed distribution function if it satisfies the following condition

$$1 - F(x) = x^{-1/\gamma} L(x) \quad \text{for } x > 0,$$
 (1)

where $\gamma > 0$ is an unknown parameter and $1/\gamma$ is called the tail index of the distribution function F, and L is a slowly varying function at infinity satisfying

$$\lim_{t \to \infty} \frac{L(tx)}{L(t)} = 1, \quad x > 0$$

Assume a random sample of size n from F is available. A p-th high quantile of distribution F, denoted as x_p , is defined as the (1-p)-th quantile of F, i.e., $x_p = F^-(1-p)$, where F^- denotes the generalized inverse of F and $p = p_n \in (0,1)$ satisfying $\lim_{n\to\infty} p_n = 0$ and $\lim_{n\to\infty} np_n = c \in [0,\infty)$.

The inference of index γ and high quantile x_p has attracted much attention in past fifty years. When a full sample X_1, \dots, X_n is available, Hill's estimator for γ and Weissman's estimator for x_p are well known in the literature; see Hill [15] and Weissman [38]. Some recent developments on constructing confidence intervals of γ and x_p based on normal approximations and empirical likelihood methods can be found in Peng and Qi [31].

In this paper, we consider the case when the data is not fully available. We describe our settings in this paper as follows. Without loss of generality we can always

assume $X_i \geq 1$ for $1 \leq i \leq n$, otherwise we can simply replace X_i by $\max(X_i, 1)$. First, divide the sample X_1, \dots, X_n into k_n blocks (or groups), V_1, \dots, V_{k_n} , and each block contains $m = m_n = [n/k_n]$ observations, where [x] denotes the integer part of x > 0. To be more specific, $V_i = \{X_{(i-1)m+1}, \dots, X_{im}\}$ for $1 \leq i \leq k_n$. Let $X_{m,1}^{(i)} \geq \dots \geq X_{m,m}^{(i)}$ denote the order statistics of the m observations in the i-th block

Let $r \geq 1$ be an integer. Now we assume that the r+1 largest random variables within each of the k_n blocks are observed, that is, only the observations $\{X_{m,j}^{(i)}: j=1,\cdots,r+1, i=1,\cdots,k_n\}$ are available for inference. From the data within i-th block, Hill's estimator for γ can be defined as $\frac{1}{r}\sum_{j=1}^{r}(\log X_{m,j}^{(i)}-\log X_{m,r+1}^{(i)})$ for $i=1,\cdots,k_n$. By using the average of all k_n Hill's estimators, Qi [33] proposed the following estimator for γ :

$$\widehat{\gamma}_n = \frac{1}{k_n r} \sum_{i=1}^{k_n} \sum_{j=1}^r (\log X_{m,j}^{(i)} - \log X_{m,r+1}^{(i)}), \tag{2}$$

where k_n satisfies

$$k_n \to \infty$$
 and $\frac{k_n}{n} \to 0$ as $n \to \infty$.

In order to extend the current setting conveniently, we express the above condition as

$$k_n \to \infty$$
 and $m_n \to \infty$ as $n \to \infty$.

Note that k_n and m_n are the number of blocks and the number of observations within each block, respectively, and $n \sim k_n m_n$ is approximately the total number of observations in all k_n blocks.

To investigate the limiting distributions for the estimator, a condition stronger than (1) is required. Throughout this paper, we assume that there exists a measurable function A(t) with $\lim_{t\to\infty} A(t) = 0$ such that

$$\lim_{t \to \infty} \frac{U(tx)/U(t) - x^{\gamma}}{A(t)} = x^{\gamma} \frac{x^{\rho} - 1}{\rho}$$
 (3)

for all x > 0, where $U(y) = F^{-}(1 - \frac{1}{y})$ is the inverse function of $\frac{1}{1-F}$ and $\rho < 0$. This condition is more general than the following condition

$$1 - F(x) = cx^{-1/\gamma} + dx^{-\beta} + o(x^{-\beta}) \quad \text{as } x \to \infty,$$
 (4)

where $0 < \gamma^{-1} < \beta \le \infty$, which is used in Paulauskas [23]. In fact, if (4) holds, then one can verify that (3) holds with $A(t) = -\gamma(\beta\gamma - 1)dc^{-\beta\gamma}t^{1-\beta\gamma}$ and $\rho = 1 - \beta\gamma$.

The asymptotic normality of $\widehat{\gamma}_n$ is as follows.

Theorem 2.1. $(Qi \ [33]) \ Assume \ (3) \ holds.$ If

$$k_n \to \infty$$
, $m_n \to \infty$ and $k_n^{1/2} A(m_n) \to \delta \in (-\infty, \infty)$ as $n \to \infty$, (5)

then

$$(rk_n)^{1/2}(\widehat{\gamma}_n - \gamma) \xrightarrow{d} N(\delta b_r, \gamma^2),$$

where

$$b_r = \frac{1}{r\rho} \left(\sum_{j=1}^r \frac{\Gamma(j-\rho)}{(j-1)!} - \frac{\Gamma(r+1-\rho)}{(r-1)!} \right)$$
 (6)

and $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ is the Gamma function.

In this paper, we propose the following estimator for x_p :

$$\widehat{x}_p = \exp\left(\frac{1}{k_n} \sum_{i=1}^{k_n} \log(X_{m_n,r+1}^{(i)}) - a(m_n,r,p_n)\widehat{\gamma}_n\right),$$

where $\widehat{\gamma}_n$ is the estimator for γ defined in (2), and $a(m,r,p) = \sum_{j=r+1}^m \frac{1}{j} + \log p$.

The estimator \hat{x}_p defined above is of the same nature as the Weissman's estimator for high quantiles based on a full sample. In Weissman [38], the estimator for high quantiles is a function of one extreme order statistic and an estimator for the tail index, or more precisely, the estimator for $\log x_p$ is the sum of the logarithm of one extreme order statistic and the estimator of the tail index multiplied by a constant. In our setting, we are able to define estimators for $\log x_p$ by using the data from each of k_n blocks, and thus we have k_n different estimators. Our estimator $\log \hat{x}_p$ for $\log x_p$ is the average of all these k_n estimators. The only difference is that we use a slightly different coefficient $a(m_n, r, p)$ of $\hat{\gamma}_n$ in our estimation in order to reduce the bias in the estimation.

Theorem 2.2. In addition to conditions in Theorem 2.1, if $p = p_n$ satisfies condition

$$m_n p_n \to 0$$
 and $\log(m_n p_n) = o(k_n^{1/2})$ as $n \to \infty$,

then

$$\frac{(rk_n)^{1/2}}{|a(m_n, r, p_n)|} (\log \widehat{x}_p - \log x_p) \xrightarrow{d} N(\delta b_r, \gamma^2), \tag{7}$$

where $a(m,r,p) = \sum_{j=r+1}^{m} \frac{1}{j} + \log p$, and b_r is defined in (6).

Remark 1. Since $k_n, m_n \to \infty$ and $k_n m_m \sim n$ as $n \to \infty$, condition $m_n p \to 0$ in Theorem 2.2 is trivial when $n p_n \to c \in [0, \infty)$. In fact, we allow in Theorem 2.2 that $n p_n \to \infty$ as long as $m_n p_n \to 0$ as $n \to \infty$.

Now we consider the situation when the numbers of random variables within the blocks are different and the numbers of the observations available for inference are also different, and all random variables are independent and identically distributed with a heavy-tailed distribution (1). Assume there are k_n blocks of observations, V_i , $1 \le i \le k_n$, and in the *i*-th block V_i , there are m_i random variables, but only the r_i+1 largest order statistics $X_{m_i,j}^{(i)}$, $j=1,\cdots,r_i+1$ are available for inference. The total number of random variables within all k_n blocks is $\sum_{i=1}^{k_n} m_i = n$ or $\sum_{i=1}^{k_n} m_i \sim n$.

Qi [33] proposed the following estimator for γ

$$\widehat{\gamma}_n^* = \frac{1}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} \sum_{j=1}^{r_i} (\log X_{m_i,j}^{(i)} - \log X_{m_i,r_i+1}^{(i)}).$$

The asymptotic normality of $\hat{\gamma}_n^*$ is obtained as follows.

Theorem 2.3. (Qi [33]) If (3) holds and

$$k_n \to \infty$$
, $\frac{n}{k_n} \to \infty$, and $(\sum_{i=1}^{k_n} r_i)^{1/2} A(q_n) \to 0$ as $n \to \infty$,

where $q_n = \min_{1 \le i \le k_n} (m_i/r_i) \to \infty$ as $n \to \infty$, then

$$(\sum_{i=1}^{k_n} r_i)^{1/2} (\widehat{\gamma}_n^* - \gamma) \stackrel{d}{\to} N(0, \gamma^2).$$

Under the above setting-up, we propose the following estimate for x_p

$$\widehat{x}_{p}^{*} = \exp\left(\frac{1}{\sum_{j=1}^{k_{n}} r_{j}} \sum_{i=1}^{k_{n}} r_{i} \log(X_{m_{i}, r_{i}+1}^{(i)}) - a_{n}(p_{n}) \widehat{\gamma}_{n}^{*}\right),$$

where

$$a_n(p) = (\sum_{i=1}^{k_n} r_i)^{-1} \sum_{i=1}^{k_n} r_i a(m_i, r_i, p)$$
(8)

with $a(m, r, p) = \sum_{j=r+1}^{m} \frac{1}{j} + \log p$

Theorem 2.4. In addition to conditions in Theorem 2.3, assume the following condition

$$\max_{1 \le i \le k_n} m_i p_n \to 0 \quad and \quad a_n(p_n) = o((\sum_{i=1}^{k_n} r_i)^{1/2}) \quad as \ n \to \infty.$$

Then we have

$$\frac{(\sum_{i=1}^{k_n} r_i)^{1/2}}{|a_n(p_n)|} (\log \widehat{x}_p^* - \log x_p) \xrightarrow{d} N(0, \gamma^2).$$

Remark 2. Condition $\max_{1 \leq i \leq k_n} m_i p_n \to 0$ is very weak. For example, when we consider a high quantile x_{p_n} under assumption that $np_n \to c \in [0, \infty)$, where $n \sim \sum_{i=1}^{k_n} m_i$, condition $\max_{1 \leq i \leq k_n} m_i / n \to 0$ implies $\max_{1 \leq i \leq k_n} m_i p_n \to 0$. Under the conditions in Theorem 2.4, we can also show that $a_n(p_n) < 0$ ultimately, see Lemma 5.3 in Appendix.

Remark 3. In practice, handling the bias term in the limiting distribution in Theorem 2.2 is not easy. One may need to impose more restrictive conditions such as the so-called third-order condition on F. We usually consider only the case $\delta = 0$ for convenience when we construct confidence intervals. A $100(1-\alpha)\%$ confidence interval for $\log x_p$ based on the normal approximation of $\log \hat{x}_p$ in Theorem 2.2 when $\delta = 0$ is given by

$$I_N(1-\alpha) = \left(\log \widehat{x}_p - z_{\alpha/2} \frac{|a(m,r,p)|\widehat{\gamma}_n}{(rk_n)^{1/2}}, \log \widehat{x}_p + z_{\alpha/2} \frac{|a(m,r,p)|\widehat{\gamma}_n}{(rk_n)^{1/2}}\right),$$
(9)

where $z_{\alpha/2}$ is the critical value of the standard normal distribution at level $\alpha/2$; that is, $1 - \Phi(z_{\alpha/2}) = \alpha/2$, where $\Phi(x)$ is the cumulative distribution function for the standard normal random variable. According to Theorem 2.2, this confidence interval has an asymptotically correct coverage probability, that is,

$$P(\log x_{p,0} \in I_N(1-\alpha)) \to 1-\alpha \text{ as } n \to \infty,$$

where $\log x_{p,0}$ is the true value of the parameter $\log x_p$.

Remark 4. The second-order condition (3) is a standard condition that has been used for univariate extreme-value statistics in the literature. To verify condition (5), the information on the function A is required. It is known that A(t) is regularly varying at infinity with index ρ . Theoretically, we can show that there exists a

function $g(t) := t^{-2\rho/(1-2\rho)}\ell(t)$, where $\ell(t)$ is slowly varying at infinity, such that (5) holds with $\delta = 0$ if $k_n = o(g(n))$. If a consistent estimator of ρ , say $\hat{\rho}_n$, can be obtained, then for any fixed $\varepsilon > 0$, if $k_n = o(n^{-2\hat{\rho}_n/(1-2\hat{\rho}_n)-\varepsilon})$, then (5) holds with $\delta = 0$. When a complete sample is available, consistent estimators for ρ can be obtained, see, e.g., Gomes et al. [12] and Peng and Qi [28]. These estimators cannot be applied directly to the incomplete data in the present paper. Since the solution under our current setup requires much effort, we leave this important work for the future study.

3 Empirical likelihood and adjusted empirical likelihood methods

In this section, we assume $r \geq 1$ is a fixed integer, and k_n and m_n satisfy condition (5). Set

$$z_j^{(i)}(y) = j(\log X_{m,j}^{(i)} - \log X_{m,j+1}^{(i)}) - \frac{1}{a(m,r,p)}(\log(X_{m,r+1}^{(i)}) - y)$$

for $j=1,\dots,r$ and $i=1,\dots,k_n$. Under conditions in Theorem 2.2 with $\delta=0$, $\{z_j^{(i)}(y), 1 \leq j \leq r, 1 \leq i \leq k_n\}$ are approximately independent and identically distributed with mean 0 if $y=\log x_p$. We apply Owen's empirical likelihood method (Owen [21]) to construct confidence intervals or to test the hypothesis for logarithm of x_p .

Let $\mathbf{q} = (q_1^{(1)}, \dots, q_r^{(1)}, \dots, q_1^{(k_n)}, \dots, q_r^{(k_n)})$ be a probability vector satisfying

$$\sum_{i=1}^{k_n} \sum_{j=1}^r q_j^{(i)} = 1, \quad q_j^{(i)} \ge 0 \quad \text{for } 1 \le j \le r, \ 1 \le i \le k_n.$$
 (10)

Then the empirical likelihood, evaluated at $y = \log x_p$, is defined by

$$EL(y) = \sup \left\{ \prod_{i=1}^{k_n} \prod_{j=1}^r q_j^{(i)} : \sum_{i=1}^{k_n} \sum_{j=1}^r q_j^{(i)} z_j^{(i)}(y) = 0, \sum_{i=1}^{k_n} \sum_{j=1}^r q_j^{(i)} = 1 \text{ with } q_j^{(i)} \ge 0 \right\}.$$
(11)

By the method of Lagrange multipliers, we can easily get the maximizers for the likelihood on the right-hand side of (11)

$$q_j^{(i)} = \frac{1}{rk_n} \{1 + \lambda z_j^{(i)}(y)\}^{-1}, \quad j = 1, \dots, r, \ i = 1, \dots, k_n,$$

where λ is the solution to the equation

$$\sum_{i=1}^{k_n} \sum_{j=1}^r \frac{z_j^{(i)}(y)}{1 + \lambda z_j^{(i)}(y)} = 0.$$
 (12)

On the other hand, $\prod_{i=1}^{k_n} \prod_{j=1}^r q_j^{(i)}$, subject to constrains in (10), attains its maximum $(rk_n)^{-rk_n}$ at $q_j^{(i)} = (rk_n)^{-1}$. So we define the empirical likelihood ratio at y_0 , the true value of $\log x_p$, by

$$l(y_0) = \prod_{i=1}^{k_n} \prod_{j=1}^r (rk_n q_j^{(i)}) = \prod_{i=1}^{k_n} \prod_{j=1}^r \{1 + \lambda z_j^{(i)}(y_0)\}^{-1},$$

and the corresponding empirical log-likelihood ratio statistic is defined as

$$\mathcal{L}(y_0) = -2\log l(y_0) = 2\sum_{i=1}^{k_n} \sum_{j=1}^r \log\{1 + \lambda z_j^{(i)}(y_0)\},\,$$

where λ is the solution to (12).

The following theorem gives the asymptotic distribution of $\mathcal{L}(y_0)$.

Theorem 3.1. Under the conditions of Theorem 2.2 with $\delta = 0$ we have

$$\mathcal{L}(y_0) \stackrel{d}{\to} \chi_1^2, \tag{13}$$

where χ_1^2 denotes a chi-squared random variable with one degree of freedom, and y_0 is the true value of $\log x_p$.

According to (13), a $100(1-\alpha)\%$ confidence interval for $\log x_p$ based on the empirical likelihood ratio statistic is determined by

$$I_E(1-\alpha) = \{y > 0 : \mathcal{L}(y) < c(\alpha)\},\$$

where $c(\alpha)$ is the α level critical value of a chi-squared distribution with one degree of freedom.

When we define EL(y) in (11), we assume there is a probability vector \mathbf{q} satisfying (10) such that $\sum_{i=1}^{k_n} \sum_{j=1}^r q_j^{(i)} z_j^{(i)}(y) = 0$, which is equivalent to that 0 is contained in the convex hull of the data points $\{z_j^{(i)}(y): 1 \leq j \leq r, 1 \leq i \leq k_n\}$. If this is not true, the empirical likelihood ratio statistics $\mathcal{L}(y_0)$ is set as infinity. As a result, this may cause a serious undercoverage for confidence intervals when the

total number of data points, rk_n , is relatively small. The same problem has been discussed for the mean of iid random vectors in the literature, see, e.g., Owen [20], Hall and La Scala [14], Qin and Lawless [34], and Tsao [35].

Chen et al. [3] proposed the so-called adjusted empirical likelihood method to solve the undercoverage problem for the mean of a distribution. For a random sample of size n, they added a pseudo-sample point and applied the ordinary empirical likelihood method to the n+1 data points. Later on, Liu and Chen [18] investigated how to choose the correction factor for the pseudo-sample point so as to achieve a better precision in terms of coverage probability for empirical likelihood based confidence intervals. Recent work by Li and Qi [17] applied the adjusted empirical likelihood method to constructing confidence intervals for the tail index of a heavy-tailed distribution.

Define a pseudo-data point as

$$z(y) = -\frac{a_n}{k_n r} \sum_{i=1}^{k_n} \sum_{j=1}^{r} z_j^{(i)}(y),$$
(14)

where a_n is a constant satisfying condition $a_n = o(k_n^{2/3})$. In our applications, we will take $a_n = \frac{19}{12}$ which is the optimal correction factor when the adjusted empirical likelihood is applied to a random sample from an exponential distribution. See e.g., Li and Qi [17] for more justifications. The so-called adjusted empirical likelihood method is to apply the ordinary empirical likelihood method to the $k_n r + 1$ data points $\{z_j^{(i)}(y), 1 \leq i \leq k_n, 1 \leq j \leq r\} \cup \{z(y)\}$. By following exactly the same procedure as the above, the adjusted empirical likelihood ratio statistic at $y = \log x_p$ is given by

$$\mathcal{AL}(y) = 2\sum_{i=1}^{k_n} \sum_{j=1}^r \log\{1 + \lambda z_j^{(i)}(y)\} + 2\log\{1 + \lambda z(y)\},$$

where λ is the solution to the following equation

$$\sum_{i=1}^{k_n} \sum_{j=1}^r \frac{z_j^{(i)}(y)}{1 + \lambda z_j^{(i)}(y)} + \frac{z(y)}{1 + \lambda z(y)} = 0.$$

Theorem 3.2. Assume the conditions of Theorem 2.2 with $\delta = 0$ are satisfied and $a_n = o(k_n^{2/3})$ as $n \to \infty$. Then we have

$$\mathcal{AL}(y_0) \xrightarrow{d} \chi_1^2$$
,

where χ_1^2 denotes a chi-squared random variable with one degree of freedom, and y_0 is the true value of $\log x_p$.

According to Theorem 3.2, a $100(1-\alpha)\%$ confidence interval for $\log x_p$ based on the adjusted empirical likelihood ratio statistic is determined by

$$I_{AE}(1-\alpha) = \{y > 0 : \mathcal{AL}(y) < c(\alpha)\},\tag{15}$$

where $c(\alpha)$ is the α level critical value of a chi-squared distribution with one degree of freedom.

4 Simulation study

In this section, we carry out a simulation study to compare the performance of the confidence intervals based on the adjusted empirical likelihood $(I_{AE}^*(1-\alpha))$ defined in (15)) and the normal approximation $(I_N(1-\alpha))$ given in (9) for high quantiles in terms of coverage probability and interval length. We take $a_n = \frac{19}{12}$ for the weight a_n in (14). We consider the following two types of cumulative distribution functions (cdf):

- (a). the Fréchet cdf given by $F(x) = \exp(-x^{-a})$ (x > 0), where a > 0 (notation: Fréchet(a));
- **(b).** the Burr cdf given by $F(x) = 1 (1 + x^a)^{-b}$ (x > 0), where a > 0, b > 0 (notation: Burr(a, b)).

In our simulation study, we choose r=1, that is, we consider the case when only two largest observations within blocks are used for the inference. We choose the confidence level $1-\alpha=95\%$ in the study. The simulation is implemented by Software **R**. We will use the following three distributions in our study: Fréchet (1), Burr (0.5, 1) and Burr (1, 0.5). Both Fréchet and Burr distributions can be expanded in the form given in (4), and their second-order function A(t) is proportional to t^{ρ} , where $\rho = -1$ for Fréchet (1) and Burr (0.5, 1) and $\rho = -2$ for Burr(1, 0.5).

From each of three distributions, Fréchet(1), Burr(0.5, 1) and Burr(1, 0.5), we generate k blocks of independent random variables with $k = 10, 15, \dots, 100$, and each block contains m observations, where m can be selected under one of the following two schemes. For each distribution and each combination of k and m, the

coverage probabilities and average lengths of two confidence intervals, $I_E^*(0.95)$ and $I_N(0.95)$, are estimated based on 5000 replicates.

<u>Scheme 1</u>. Set n = 1000 and $p = p_n = 1/n$. For each k from $\{10, 15, \dots, 100\}$, define m = [1000/k], where [x] denotes the integer part of x. This setup applies to all three distributions. The coverage probabilities and the average lengths of confidence intervals based on the adjusted empirical likelihood method (AELM) and normal approximation method (NORM) for $\log x_p$ are obtained and reported in Tables 1 and 2, respectively.

<u>Scheme 2</u>. For each k from $\{10, 15, \dots, 100\}$, we select m as a function k in the form $m = [50k^v]$, where $v \in (0,1)$ depends on the distribution from which the observations are sampled. In particular, we have selected v = 1/2 for Burr(0.5,1), v = 1/4 for Burr(1,0.5), and v = 1/2 for Fréchet(1). Notice that m increases with k, and so does the total number, km, of observations within all k blocks. For each combination of k and m, we estimate $\log x_p$ with p = 1/(km). Again, we estimate the coverage probability and average length of two confidence intervals, $I_E^*(0.95)$ based on the adjusted empirical likelihood method (AELM) and $I_N(0.95)$ based normal approximation method (NORM). Simulation results are given in Tables 3 and 4.

Under Scheme 2, with the specific selection $m = [50k^v]$ for each distribution, $k^{1/2}A(m)$ is approximatively a constant as k gets larger, and the multiplier 50 is selected so that the bias term of the limiting distribution in (7) is relatively small. Under Scheme 1, the total number of observations in the k blocks is approximately 1000, and m decreases with k, for example, m = 100 if k = 10, and m = 10 if k = 100. Since |A(t)| is proportional to t^ρ for some $\rho < 0$, we see that the bias term in (7) is getting larger when k is bigger under Scheme 1.

From Tables 1 and 3, the confidence intervals based on the normal approximation have a significantly lower coverage for smaller values of k, and those based on the adjusted empirical likelihood method achieve a much better coverage in this case. The performance of the normal approximation is getting better when k increases under Scheme 1. For Burr(1,0.5), the performance of the adjusted empirical likelihood method may be greatly influenced by the bias terms which are approximately proportional to $k^{1/2}m^{-2} \sim k^{2.5}/1000^2$. Under Scheme 2, m increases with k and the bias terms in (7) are reasonably small, and the coverage probabilities from Table 3 indicate that the adjusted empirical likelihood method outperforms the normal approximation method for all three distributions.

Tables 2 and 4 reveal that the average lengths of the confidence intervals based on the normal approximation are shorter than those based on the adjusted empirical likelihood method under both Scheme 1 and Scheme 2 when k is relatively small. This is caused by the lower coverage of confidence intervals based on the normal approximation. When k is getting larger, the average lengths for both methods are comparable.

In summary, we conclude that the adjusted empirical likelihood method results in better coverage probability when k is small or when the bias term in (7) is relatively small. When the bias term in (7) is getting too large, theoretically, both methods have an undercoverage problem, but the adjusted empirical likelihood method may suffer more than the normal approximation method as we have observed in Table 1 for Burr(1,0.5) distribution.

Finally, we conclude this section with some comments on application of the proposed methods in the paper. In general, a relatively large sample is required for application of results under the framework of extreme value statistics since only a few of largest observations in the sample can be used in the estimation. The accuracy of the normal approximation for estimators of γ and x_p depends on the number of observations used in the estimation (rk_n) and the asymptotic bias for the normalized statistics $rk_n^{1/2}A(n/k_n)$. We recommend that $rk_n \geq 30$ and $rk_n^{1/2}|A(n/k_n)| \leq 0.2$. Since A(t) is proportional to t^ρ in most applications, we can assume $rk_n^{1/2}(n/k_n)^\rho \leq 0.2$. Now consider the special case r = 1, we have $n \geq 5^{-1/\rho}k_n^{(1-2\rho)/(-2\rho)}$ as suggested sample size for $k_n \geq 30$. Since ρ is unknown, estimation of ρ seems important issue for this purpose. See more comments in Remark 4 at the end of Section 2.

5 Proofs

Before we prove the main results, we introduce some notations. As we have assumed that $X_i \geq 1$ for $i \geq 1$, we see that $F^-(u) \geq 1$ for all $u \in (0,1)$, and thus $U(x) = F^-(1-\frac{1}{x}) \geq 1$ is well defined for x > 1. Note that U(x) is non-decreasing for x > 1. From de Haan and Stadtmüller [7], condition (3) implies that A(t) is a regularly varying function with index ρ , and |A(t)| is bounded away from 0 and ∞ on every compact subset of $[c_0, \infty)$, where $c_0 > 0$ is a constant. Without loss of generality, we assume A(t) is bounded away from 0 and ∞ in $(0, c_0]$ since redefining A(t) on $(0, c_0)$ doesn't change condition (3). Then using Potter's bounds to A(x), for every

Table 1: Coverage probabilities for adjusted empirical likelihood method with correction factor 19/12 (AELM) and normal approximation method for $\log \hat{x}_p$ (NORM): the number of observations within each block is set to be m = [1000/k] (Scheme 1)

	Fréchet(1)		Burr(0.5,1)		Burr(1,0.5)	
k_n	AELM	NORM	AELM	NORM	AELM	NORM
10	0.9630	0.8996	0.9602	0.9046	0.9612	0.9066
15	0.9420	0.9172	0.9342	0.9114	0.9354	0.9186
20	0.9372	0.9256	0.9360	0.9234	0.9384	0.9286
25	0.9408	0.9294	0.9410	0.9308	0.9438	0.9394
30	0.9440	0.9364	0.9406	0.9248	0.9448	0.9348
35	0.9438	0.9412	0.9494	0.9388	0.9524	0.9520
40	0.9448	0.9490	0.9442	0.9384	0.9434	0.9522
45	0.9490	0.9498	0.9430	0.9370	0.9440	0.9506
50	0.9490	0.9510	0.9462	0.9446	0.9440	0.9582
55	0.9446	0.9482	0.9374	0.9358	0.9364	0.9488
60	0.9484	0.9534	0.9460	0.9418	0.9418	0.9574
65	0.9498	0.9600	0.9470	0.9452	0.9414	0.9576
70	0.9464	0.9566	0.9488	0.9438	0.9348	0.9592
75	0.9494	0.9610	0.9470	0.9472	0.9300	0.9602
80	0.9458	0.9572	0.9420	0.9434	0.9258	0.9548
85	0.9436	0.9570	0.9458	0.9454	0.9146	0.9534
90	0.9498	0.9616	0.9446	0.9464	0.9192	0.9510
95	0.9408	0.9580	0.9468	0.9490	0.9044	0.9492
100	0.9384	0.9538	0.9462	0.9502	0.8988	0.9438

 $\delta > 0$, there exists a constant $c(\delta) > 0$ such that

$$\left|\frac{A(x)}{A(y)}\right| \le c(\delta) \max\left(\left(\frac{x}{y}\right)^{\rho+\delta}, \left(\frac{x}{y}\right)^{\rho-\delta}\right) \quad \text{for all } x, y > 0.$$
 (16)

See, e.g., Theorem 1.5.6 in Bingham et al. [2].

Next, we see that (3) is equivalent to

$$\lim_{t \to \infty} \frac{\log U(tx) - \log U(t) - \gamma \log x}{A(t)} = \frac{x^{\rho} - 1}{\rho}, \quad x > 0.$$

$$(17)$$

Let $h(x) = \log U(x) - \gamma \log x$, x > 1. Then (17) implies that for each x > 0,

$$\frac{h(tx) - h(t)}{A(t)} = \frac{\log U(tx) - \log U(t) - \gamma \log x}{A(t)} \to \frac{x^{\rho} - 1}{\rho} \text{ as } t \to \infty.$$

Table 2: Averages of lengths for confidence intervals based adjusted empirical likelihood method with correction factor 19/12 (AELM) and normal approximation method for $\log \hat{x}_p$ (NORM): the number of observations within each block is set to be m = [1000/k] (Scheme 1)

/		/				
	Fréchet(1)		Burr(0.5,1)		Burr(1,0.5)	
k_n	AELM	NORM	AELM	NORM	AELM	NORM
10	5.014	3.393	9.985	6.754	10.052	6.834
15	3.622	3.193	7.163	6.343	7.184	6.373
20	3.284	3.015	6.525	5.979	6.550	6.027
25	3.082	2.875	6.159	5.702	6.170	5.761
30	2.946	2.780	5.846	5.470	5.854	5.526
35	2.818	2.683	5.605	5.276	5.608	5.317
40	2.702	2.588	5.386	5.095	5.392	5.126
45	2.623	2.524	5.199	4.937	5.216	4.979
50	2.537	2.451	5.040	4.801	5.060	4.841
55	2.471	2.401	4.895	4.682	4.909	4.707
60	2.429	2.369	4.806	4.609	4.784	4.594
65	2.363	2.315	4.670	4.494	4.672	4.489
70	2.307	2.265	4.560	4.396	4.564	4.399
75	2.263	2.228	4.468	4.321	4.466	4.316
80	2.228	2.201	4.393	4.259	4.380	4.233
85	2.199	2.181	4.322	4.204	4.294	4.160
90	2.135	2.119	4.198	4.086	4.219	4.092
95	2.118	2.111	4.165	4.070	4.145	4.023
100	2.062	2.057	4.056	3.967	4.079	3.962

Since $\rho < 0$, we have from Theorem B.2.18 in de Haan and Ferreira [5] that there exists a constant c such that $\lim_{x\to\infty} h(x) = c$, and $h_1(x) := h(t) - c$ is a regularly varying function with index ρ , i.e.,

$$\frac{h_1(tx) - h_1(t)}{A(t)} = \frac{\log U(tx) - \log U(t) - \gamma \log x}{A(t)} \to \frac{x^{\rho} - 1}{\rho} \text{ as } t \to \infty.$$

In this case, we have $A(x) \sim \rho h_1(x)$ as $x \to \infty$, $h_1(x) \to 0$ as $x \to \infty$, and $h_1(x)$ is uniformly bounded in interval $[1, \infty)$. Meanwhile, we have $|h_1(y)/A(y)|$ is uniformly bounded in $(1, \infty)$, and we assume $|h_1(y)/A(y)| \le C_0$ for some $C_0 > 0$.

Rewrite

$$\frac{\log U(tx) - \log U(t) - \gamma \log x}{A(t)} = \frac{h_1(tx)}{A(tx)} \frac{A(tx)}{A(t)} - \frac{h_1(t)}{A(t)}, \quad t > 0, tx > 1.$$

Table 3: Coverage probabilities for adjusted empirical likelihood method with correction factor 19/12 (AELM) and normal approximation method for $\log \hat{x}_p$ (NORM): the number of observations within each block is set to be $m = [50k^v]$ (Scheme 2), where v = 1/2 for Burr(0.5, 1), v = 1/4 for Burr(1, 0.5), and v = 1/2 for Fréchet(1)

	Fréchet(1)		Burr(0.5,1)		Burr(1,0.5)	
k_n	AELM	NORM	AELM	NORM	AELM	NORM
10	0.9648	0.9020	0.9578	0.8966	0.9604	0.9036
15	0.9416	0.9180	0.9378	0.9148	0.9402	0.9166
20	0.9366	0.9216	0.9388	0.9248	0.9370	0.9216
25	0.9422	0.9286	0.9360	0.9294	0.9398	0.9312
30	0.9422	0.9284	0.9386	0.9306	0.9410	0.9356
35	0.9410	0.9350	0.9388	0.9294	0.9392	0.9340
40	0.9456	0.9366	0.9418	0.9332	0.9406	0.9384
45	0.9470	0.9392	0.9434	0.9368	0.9462	0.9440
50	0.9472	0.9390	0.9436	0.9346	0.9462	0.9386
55	0.9440	0.9356	0.9460	0.9394	0.9422	0.9362
60	0.9464	0.9398	0.9456	0.9324	0.9448	0.9414
65	0.9480	0.9418	0.9434	0.9322	0.9416	0.9356
70	0.9492	0.9448	0.9458	0.9390	0.9456	0.9402
75	0.9464	0.9418	0.9460	0.9406	0.9480	0.9440
80	0.9474	0.9452	0.9474	0.9432	0.9510	0.9480
85	0.9536	0.9448	0.9488	0.9396	0.9486	0.9448
90	0.9448	0.9434	0.9442	0.9356	0.9524	0.9508
95	0.9500	0.9436	0.9508	0.9458	0.9518	0.9484
_100	0.9464	0.9374	0.9468	0.9402	0.9478	0.9440

By substituting y for x in the above equation and subtracting it from the above equation we have

$$\frac{|\log U(tx) - \log U(ty) - \gamma(\log x - \log y)|}{A(t)} = \frac{|h_1(tx) - h_1(ty)|}{A(tx)} \frac{A(tx)}{A(t)} - \frac{h_1(ty)}{A(ty)} \frac{A(ty)}{A(t)} | \\
\leq C_0(\frac{A(tx)}{A(t)} + \frac{A(ty)}{A(t)} |).$$

Now we apply Potter's bounds (16) to both $\frac{A(tx)}{A(t)}$ and $\frac{A(ty)}{A(t)}$ with $\delta = -\rho/2$ and conclude that

$$\left|\frac{\log U(tx) - \log U(ty) - \gamma(\log x - \log y)}{A(t)}\right| \le C_1(x^{\rho/2} + x^{3\rho/2} + y^{\rho/2} + y^{3\rho/2}) \quad (18)$$

for all t > 1, tx > 1, and ty > 1, where $C_1 > 0$ is a constant.

Table 4: Averages of lengths for confidence intervals based adjusted empirical likelihood method with correction factor 19/12 (AELM) and normal approximation method for $\log \hat{x}_p$ (NORM): the number of observations within each block is set to be $m = [50k^v]$ (Scheme 2), where v = 1/2 for Burr(0.5, 1), v = 1/4 for Burr(1, 0.5), and v = 1/2 for Fréchet(1)

	Fréchet(1)		Burr(0.5,1)		Burr(1,0.5)	
k_n	AELM	NORM	AELM	NORM	AELM	NORM
10	5.008	3.386	9.933	6.701	10.052	6.834
15	3.591	3.172	7.160	6.311	7.184	6.373
20	3.280	2.994	6.529	5.986	6.550	6.027
25	3.078	2.856	6.141	5.700	6.170	5.761
30	2.919	2.733	5.832	5.469	5.854	5.526
35	2.798	2.637	5.586	5.271	5.608	5.317
40	2.690	2.547	5.376	5.090	5.392	5.126
45	2.603	2.475	5.186	4.935	5.216	4.979
50	2.524	2.404	5.032	4.800	5.060	4.841
55	2.452	2.343	4.895	4.676	4.909	4.707
60	2.395	2.293	4.768	4.557	4.784	4.594
65	2.333	2.238	4.652	4.463	4.672	4.489
70	2.280	2.192	4.544	4.375	4.564	4.399
75	2.235	2.149	4.449	4.287	4.466	4.316
80	2.190	2.109	4.356	4.204	4.380	4.233
85	2.150	2.073	4.274	4.127	4.294	4.160
90	2.110	2.036	4.201	4.057	4.219	4.092
95	2.071	2.001	4.126	3.989	4.145	4.023
100	2.037	1.970	4.059	3.936	4.079	3.962

As in Qi [33], our proofs rely on the distributional representations for the observations. We will use the same notation as in Qi [33].

Assume $\{E_j^{(i)},\ i,j\geq 1\}$ are iid random variables with a unit exponential distribution. It is easy to see that $\{U(e^{E_j^{(i)}}),\ i,j\geq 1\}$ are iid random variables with the distribution F.

Apparently, $\{X_{m_i,j}^{(i)}, 1 \leq j \leq m_i\}$ have the same joint distribution as $\{U(E_{m_i,j}^{(i)}), 1 \leq j \leq m_i\}$, where $E_{m_i,1}^{(i)} \geq \cdots \geq E_{m_i,m_i}^{(i)}$ are the order statistics of $E_j^{(i)}, 1 \leq j \leq m_i$. Without loss of generality, we assume that

$$X_{m_{i},j}^{(i)} = U(e^{E_{m_{i},j}^{(i)}}), \quad 1 \le j \le m_{i}, \ 1 \le i \le k_{n}.$$

$$(19)$$

For each $i \ge 1$, set $I_j^{(i)} = j(E_{m_i,j}^{(i)} - E_{m_i,j+1}^{(i)})$ for $j = 1, \dots, m_i - 1$ and $I_{m_i}^{(i)} = 1$

 $m_i E_{m_i,m_i}^{(i)}$. Then $\{I_j^{(i)}, 1 \leq j \leq m_i, 1 \leq i \leq k_n\}$ are iid random variables with a unit exponential distribution. We also have

$$E_{m_i,r+1}^{(i)} = \sum_{j=r+1}^{m_i} \frac{I_j^{(i)}}{j}.$$
 (20)

It is easy to see that $E_{m_i,r+1}^{(i)}$, $i \geq 1$ are independent random variables with their means and variances given by

$$\mathbb{E}(E_{m_i,r+1}^{(i)}) = \sum_{j=r+1}^{m_i} \frac{1}{j}, \quad \text{Var}(E_{m_i,r+1}^{(i)}) = \sum_{j=r+1}^{m_i} \frac{1}{j^2} \le \frac{1}{r}.$$
 (21)

Lemma 5.1. As $n \to \infty$,

$$\frac{1}{(\sum_{i=1}^{k_n} r_i)^{1/2}} \sum_{i=1}^{k_n} r_i (E_{m_i, r_i+1}^{(i)} - \sum_{j=r_i+1}^{m_n} \frac{1}{j}) = O_p(1).$$

Proof. The lemma is trivial since the variance or the second moment of the left-hand side above is equal to

$$\frac{1}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i^2 \sum_{j=r_i+1}^{m_i} \frac{1}{j^2} \le \frac{1}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i^2 \frac{1}{r_i} = 1$$

from (20) and (21).

Lemma 5.2. For any $\delta > 0$ we have

$$\mathbb{E}\left(\left(\frac{\exp(E_{m,r+1}^{(1)})}{m/r}\right)^{-\delta}\right) \le \exp(\delta + \frac{\delta^2}{2}), \quad 1 \le r < m, \ m \ge 2.$$

Proof. Using representation (20) and the moment-generating function of exponential

random variables we have

$$\mathbb{E}\left(\left(\frac{\exp(E_{m,r+1}^{(1)})}{m/r}\right)^{-\delta}\right) = (m/r)^{\delta} \mathbb{E}\left(\exp(-\delta \sum_{j=r+1}^{m} \frac{I_{j}^{(1)}}{j}\right)\right)$$

$$= \frac{(m/r)^{\delta}}{\prod_{j=r+1}^{m} (1 + \frac{\delta}{j})}$$

$$= \exp\left(\delta \log(m/r) - \sum_{j=r+1}^{m} \log(1 + \frac{\delta}{j})\right)$$

$$\leq \exp\left(\delta \log(m/r) - \sum_{j=r+1}^{m} (\frac{\delta}{j} - \frac{\delta^{2}}{2j^{2}})\right)$$

$$\leq \exp\left(\delta(\log(m/r) - \sum_{j=r+1}^{m} \frac{1}{j}) + \frac{\delta^{2}}{2} \sum_{j=r+1}^{m} j^{-2}\right)$$

$$\leq \exp\left(\delta + \frac{\delta^{2}}{2}\right).$$

In the above estimation we have used inequalities that $\log(1+y) \ge y - \frac{1}{2}y^2$ for y > 0 and $\log(m/r) - \sum_{j=r+1}^m \frac{1}{j} < \frac{1}{r} \le 1$.

Lemma 5.3. Under conditions $\min_{1 \le i \le k_n} (m_i/r_i) \to \infty$ and $\max_{1 \le i \le k_n} m_i p_n \to 0$, we have $\min_{1 \le i \le k_n} (-a(m_i, r_i, p_n)) \to \infty$ and $-a_n(p_n) \to \infty$ as $n \to \infty$.

Proof. Since

$$\sum_{j=r+1}^{m} \frac{1}{j} < \int_{r}^{m} \frac{1}{x} dx = \log(\frac{m}{r}) < \sum_{j=r}^{m} \frac{1}{j} = \frac{1}{r} + \sum_{j=r+1}^{m} \frac{1}{j}$$

for $1 \le r < m$, we have

$$\log(\frac{m}{r}) - \frac{1}{r} < \sum_{j=r+1}^{m} \frac{1}{j} < \log(\frac{m}{r}),$$

which implies

$$\log(\frac{mp_n}{r}) - \frac{1}{r} < \sum_{j=r+1}^{m} \frac{1}{j} + \log p_n < \log(\frac{mp_n}{r}).$$

Therefore, for $1 \leq i \leq k_n$,

$$\log(\frac{r_i}{m_i p_n}) < -a(m_i, r_i, p_n) < \log(\frac{r_i}{m_i p_n}) + \frac{1}{r_i}.$$

Since $\min_{1 \le i \le k_n} \frac{r_i}{m_i p_n} \ge \frac{1}{\max_{1 \le i \le k_n} m_i p_n} \to \infty$, we obtain

$$\min_{1 \le i \le k_n} (-a(m_i, r_i, p_n)) \sim \min_{1 \le i \le k_n} \log(\frac{r_i}{m_i p_n}) \to \infty$$

as $n \to \infty$. This also implies $-a_n(p_n) \to \infty$ from definition (8).

We will prove a general result which can be used in the proofs for Theorems 2.2 and 2.4.

Lemma 5.4. Under conditions $q_n = \min_{1 \le i \le k_n} (m_i/r_i) \to \infty$ and $\max_{1 \le i \le k_n} m_i p_n \to 0$, we have

$$\frac{1}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i \log(X_{m_i, r_i + 1}^{(i)}) - \log x_p = \frac{\sum_{i=1}^{k_n} r_i a(m_i, r_i, p)}{\sum_{i=1}^{k_n} r_i} \gamma + O_p(\frac{1}{(\sum_{i=1}^{k_n} r_i)^{1/2}} + |A(q_n)|).$$

Proof. Write

$$\varepsilon(t, x, y) = \frac{\log U(tx) - \log U(ty) - \gamma(\log x - \log y)}{A(t)}.$$

Then from (18) we have

$$|\varepsilon(t, x, y)| \le C_1(x^{\rho/2} + x^{3\rho/2} + y^{\rho/2} + y^{3\rho/2})$$
 (22)

for t > 1, tx > 1, ty > 1, and

$$\log U(tx) - \log U(ty) = \gamma(\log x - \log y) + A(t)\varepsilon(t, x, y).$$

Review that $x_p = U(\frac{1}{p_n})$. For each $i \geq 1$, by using representation (19) with $t = m_i/r_i$, $tx = e^{E_{m_i,r_i+1}^{(i)}}$ and $ty = \frac{1}{p_n}$ we have

$$\log(X_{m_{i},r_{i}+1}^{(i)}) - \log x_{p} = \log U(e^{E_{m_{i},r_{i}+1}^{(i)}}) - \log U(\frac{1}{p})$$

$$= \gamma(\log \frac{e^{E_{m_{i},r_{i}+1}^{(i)}}}{m_{i}/r_{i}} - \log \frac{r_{i}}{m_{i}p_{n}}) + A(\frac{m_{i}}{r_{i}})\varepsilon(\frac{m_{i}}{r_{i}}, \frac{e^{E_{m_{i},r_{i}+1}^{(i)}}}{m_{i}/r_{i}}, \frac{r_{i}}{m_{i}p_{n}})$$

$$= \gamma(E_{m_{i},r_{i}+1}^{(i)} + \log p_{n}) + A(\frac{m_{i}}{r_{i}})\varepsilon(\frac{m_{i}}{r_{i}}, \frac{e^{E_{m_{i},r_{i}+1}^{(i)}}}{m_{i}/r_{i}}, \frac{r_{i}}{m_{i}p_{n}}).$$

Then

$$\log(X_{m_i,r_i+1}^{(i)}) - \log x_p - \gamma a(m_i, r_i, p_n)$$

$$= \gamma(E_{m_i,r_i+1}^{(i)} - \sum_{j=r_i+1}^{m} \frac{1}{j}) + A(\frac{m_i}{r_i}) \varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i,r_i+1}^{(i)}}}{m_i/r_i}, \frac{r_i}{m_i p_n}). \tag{23}$$

We have from (22) that

$$|\varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i + 1}^{(i)}}}{m_i/r_i}, \frac{r_i}{m_i p_n})| \le C_1 \left(\left(\frac{e^{E_{m_i, r_i + 1}^{(i)}}}{m_i/r_i}\right)^{\rho/2} + \left(\frac{e^{E_{m_i, r_i + 1}^{(i)}}}{m_i/r_i}\right)^{3\rho/2} + 2 \right)$$

as long as $\frac{m_i}{r_i} > 1$ and $\frac{r_i}{m_i p_n} > 1$, which are true for all $1 \le i \le k_n$ since $\max_{1 \le i \le k_n} m_i p_n \to 0$ and $q_n = \min_{1 \le i \le k_n} (m_i/r_i) \to \infty$ as $n \to \infty$.

From Lemma 5.2, for any d > 0, $\mathbb{E}(|\varepsilon(\frac{m_i}{r_i}, \frac{e^{E^{(i)}_{m_i, r_i+1}}}{m_i/r_i}, \frac{r_i}{m_i p_n})|^d)$ are uniformly bounded for $1 \le i \le k_n$ for all large n. We can conclude that

$$\max_{1 \le i \le k_n} |\varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i+1}^{(i)}}}{m_i/r_i}, \frac{r_i}{m_i p_n})| = O_p(k_n^{1/2})$$
(24)

and

$$\frac{1}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i |\varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i+1}^{(i)}}}{m_i/r_i}, \frac{r_i}{m_i p_n})|^{\ell} = O_p(1)$$
(25)

for any $\ell = 1, 2$. (24) is true since there exists a C > 0 such that for any x > 0

$$P(\max_{1 \le i \le k_n} |\varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i+1}^{(i)}}}{m_i/r_i}, \frac{r_i}{m_i p_n})| > x k_n^{1/2})$$

$$\le \sum_{i=1}^{k_n} P(|\varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i+1}^{(i)}}}{m_i/r_i}, \frac{r_i}{m_i p_n})| > x k_n^{1/2})$$

$$\le \sum_{i=1}^{k_n} \frac{\mathbb{E}(\varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i+1}^{(i)}}}{m_i/r_i}, \frac{r_i}{m_i p_n}))^2}{x^2 k_n}$$

$$\le \frac{C}{x^2}.$$

(25) is true since the mean of the left-hand side of (25) is bounded. Since |A(x)| is a regularly varying function with index $\rho < 0$, that is

$$\lim_{t \to \infty} \frac{|A(tx)|}{|A(t)|} = x^{\rho}, \quad x > 0.$$
 (26)

It is known that |A(x)| can be written as |A(x)| = c(x)f(x), where $\lim_{x\to\infty} c(x) = c > 0$ and f(x) is a continuous and strictly decreasing function on $(0, \infty)$. This implies

$$\max_{1 \le i \le k_n} |A(\frac{m_i}{r_i})| = O(\max_{1 \le i \le k_n} f(\frac{m_i}{r_i})) = O(f(\min_{1 \le i \le k_n} \frac{m_i}{r_i})) = O(f(q_n)) = O(|A(q_n)|).$$

Then it follows from (23), (25) and Lemma 5.1 that

$$\frac{1}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i \log(X_{m_i, r_i+1}^{(i)}) - \log x_p - \frac{\sum_{i=1}^{k_n} r_i a(m_i, r_i, p)}{\sum_{i=1}^{k_n} r_i} \gamma$$

$$= \frac{\gamma}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i (E_{m_i, r_i+1}^{(i)} - \sum_{j=r_i+1}^{m_n} \frac{1}{j}) + \frac{1}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i A(\frac{m_i}{r_i}) \varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i+1}^{(i)}}, \frac{r_i}{m_i / r_i}, \frac{r_i}{m_i p_n})$$

$$\leq \frac{\gamma}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i (E_{m_i, r_i+1}^{(i)} - \sum_{j=r_i+1}^{m_n} \frac{1}{j}) + \frac{O(|A(q_n)|)}{\sum_{i=1}^{k_n} r_i} \sum_{i=1}^{k_n} r_i |\varepsilon(\frac{m_i}{r_i}, \frac{e^{E_{m_i, r_i+1}^{(i)}}, \frac{r_i}{m_i / r_i}, \frac{r_i}{m_i p_n})|$$

$$= O_p(\frac{1}{(\sum_{i=1}^{k_n} r_i)^{1/2}} + |A(q_n)|),$$

proving the lemma.

Proof of Theorem 2.4. It follows from Lemma 5.4 that

$$\log \widehat{x}_{p}^{*} - \log x_{p} = \frac{1}{\sum_{j=1}^{k_{n}} r_{j}} \sum_{i=1}^{k_{n}} r_{i} \log(X_{m_{i}, r_{i}+1}^{(i)}) - \log x_{p} - a_{n}(p_{n}) \widehat{\gamma}_{n}^{*}$$

$$= -a_{n}(p_{n}) (\widehat{\gamma}_{n}^{*} - \gamma) + O_{p} (\frac{1}{(\sum_{i=1}^{k_{n}} r_{i})^{1/2}} + |A(q_{n})|),$$

which yields

$$\frac{\left(\sum_{i=1}^{k_n} r_i\right)^{1/2}}{-a_n(p_n)} \left(\log \widehat{x}_p^* - \log x_p\right) = \left(\sum_{i=1}^{k_n} r_i\right)^{1/2} (\widehat{\gamma}_n^* - \gamma) + O_p\left(\frac{1}{-a_n(p_n)} + \frac{\left(\sum_{i=1}^{k_n} r_i\right)^{1/2}}{-a_n(p_n)} |A(q_n)|\right). \tag{27}$$

The big "O" term above converges to zero in probability since $-a_n(p_n) \to \infty$ from Lemma 5.3 and $(\sum_{i=1}^{k_n} r_i)^{1/2} |A(q_n)| \to 0$ as a given condition in Theorem 2.3. Therefore, the left-hand side of the above equation converges in distribution to $N(0, \gamma^2)$ by using Theorem 2.3. This completes the proof of Theorem 2.4.

Proof of Theorem 2.2. Theorem 2.2 is the special case of Theorem 2.4 except we allow a non-zero bias term in the limiting distribution. Under the setup in Theorem 2.2, we have $m_i = m_n \sim \frac{n}{k_n}$, and $r_i = r$ is a fixed integer. In the proof of Theorem 2.4 we have obtained (27). We note that the left-hand side of (27) is equal to the left-hand side of (7), and $|a_n(p_n)| = |a(m_n, r, p_n)| \to \infty$. Theorem 2.1 together with (27) yields Theorem 2.2 if we can show that $\sqrt{k_n} |A(\frac{m_n}{r})|$ has a finite limit. In fact, we

have from (26) that

$$\frac{k_n^{1/2}|A(m_n/r)|}{k_n^{1/2}|A(m_n)|} = \frac{|A(m_n/r)|}{|A(m_n)|} \to r^{-\rho},\tag{28}$$

which coupled with assumption $k_n^{1/2}A(m_n) \to \delta \in (-\infty, \infty)$ implies $k_n^{1/2}|A(m_n/r)| \to |\delta|r^{-\rho}$. This completes the proof of Theorem 2.2.

Proof of Theorem 3.1. In this proof, we will simply use m and p to denote m_n and p_n , respectively.

Define

$$Z_j^{(i)} = j(\log X_{m,j}^{(i)} - \log X_{m,j+1}^{(i)})$$

for $j = 1, \dots, r$ and $i = 1, \dots, k_n$. We have

$$z_j^{(i)}(y) = Z_j^{(i)} - \frac{1}{a(m, r, p)} (\log(X_{m, r+1}^{(i)}) - y)$$

for $j = 1, \dots, r$ and $i = 1, \dots, k_n$.

Note that we have assumed that y_0 is the true value of $\log x_p$. Now we also assume that γ_0 is the true value of γ . It follow from the proof of Theorem 4 in Qi [33] that

$$\max_{1 \le j \le r} \max_{1 \le i \le k_n} |Z_j^{(i)} - \gamma_0| = o_p(k_n^{1/2})$$
(29)

and

$$s_n^2 := \frac{1}{rk_n} \sum_{i=1}^{k_n} \sum_{j=1}^r (Z_j^{(i)} - \gamma_0)^2 \xrightarrow{p} \gamma_0^2.$$
 (30)

From now on we will write $z_j^{(i)}(y_0)$ as $z_j^{(i)}$ for convenience. It follows from (23) that

$$z_{j}^{(i)} = Z_{j}^{(i)} - \gamma_{0} + \frac{1}{-a(m,r,p)} (\log(X_{m,r+1}^{(i)}) - y_{0}) + \gamma_{0}$$

$$= (Z_{j}^{(i)} - \gamma_{0}) + \frac{\gamma_{0}}{-a(m,r,p)} (E_{m,r+1}^{(i)} - \sum_{j=r+1}^{m} \frac{1}{j})$$

$$+ \frac{A(m/r)}{-a(m,r,p)} \varepsilon(m/r, \frac{e^{E_{m,r+1}^{(i)}}}{m/r}, \frac{r}{mp})$$

$$= : a_{j}^{(i)} + b_{i} + c_{i}.$$
(31)

We need to show the following three equations:

$$\max_{1 \le i \le k_n, 1 \le j \le r} |z_j^{(i)}| = o_p(k_n^{1/2}), \tag{32}$$

$$\frac{1}{rk_n} \sum_{i=1}^{k_n} \sum_{j=1}^r (z_j^{(i)})^2 \stackrel{p}{\to} \gamma_0^2, \tag{33}$$

$$\frac{1}{\sqrt{rk_n}} \sum_{i=1}^{k_n} \sum_{j=1}^r z_j^{(i)} \xrightarrow{d} N(0, \gamma_0^2). \tag{34}$$

Using (24), (25) with $\ell = 2$, (28) and the fact that $-a(m,r,p) \to \infty$ as $n \to \infty$ from Lemma 5.3 we have

$$\frac{1}{k_n^{1/2}} \max_{1 \le i \le k_n} |c_i| \xrightarrow{p} 0 \text{ and } \frac{1}{k_n} \sum_{1 \le i \le k_n} c_i^2 \xrightarrow{p} 0.$$
 (35)

We can show

$$\frac{1}{k_n^{1/2}} \max_{1 \le i \le k_n} |b_i| \xrightarrow{p} 0 \text{ and } \frac{1}{k_n} \sum_{1 \le i \le k_n} b_i^2 \xrightarrow{p} 0.$$
 (36)

The second expression can be proved by using the estimation that

$$\frac{1}{k_n} \mathbb{E}(\sum_{1 \le i \le k} b_i^2) \le \frac{\gamma_0^2}{k_n (a(m, r, p))^2} \frac{k_n}{r} = \frac{\gamma_0^2}{r (a(m, r, p))^2} \to 0$$

from (21), and the first one follows from the second one since

$$\frac{1}{k_n^{1/2}} \max_{1 \le i \le k_n} |b_i| \le \left(\frac{1}{k_n} \sum_{1 < i < k} b_i^2\right)^{1/2}.$$

We see that (32) follows from (29) and the first expressions in both (35) and (36). (34) follows from Theorem 2.2 with $\delta = 0$ since

$$\frac{1}{\sqrt{k_n r}} \sum_{i=1}^{k_n} \sum_{j=1}^r z_j^{(i)} = \frac{\sqrt{k_n r}}{-a(m, r, p)} (\log \widehat{x}_p - \log x_p).$$

Set $d_i = b_i + c_i$. We have from the Cauchy-Schwarz inequality that

$$\frac{1}{k_n} \sum_{i=1}^{k_n} d_i^2 = \frac{1}{k_n} \left(\sum_{i=1}^{k_n} b_i^2 + \sum_{i=1}^{k_n} c_i^2 + 2 \sum_{i=1}^{k_n} b_i c_i \right)$$

$$\leq \frac{1}{k_n} \sum_{i=1}^{k_n} b_i^2 + \frac{1}{k_n} \sum_{i=1}^{k_n} c_i^2 + 2 \sqrt{\frac{1}{k_n} \sum_{i=1}^{k_n} b_i^2} \sqrt{\frac{1}{k_n} \sum_{i=1}^{k_n} c_i^2}$$

$$\stackrel{p}{\longrightarrow} 0$$

by using the second expressions in (35) and (36). Now we have from (31) that

$$\frac{1}{rk_n} \sum_{i=1}^{k_n} \sum_{j=1}^r (z_j^{(i)})^2 = \frac{1}{rk_n} \sum_{i=1}^{k_n} \sum_{j=1}^r (a_j^{(i)})^2 + \frac{1}{k_n} \sum_{i=1}^{k_n} d_i^2 + \frac{2}{rk_n} \sum_{i=1}^{k_n} \sum_{j=1}^r a_j^{(i)} d_i.$$

On the right-hand side in the above equation, the first term converges in probability to γ_0^2 from (30), the second term converges in probability to zero, and the third term converges in probability to zero by using the Cauchy-Schwarz inequality. This completes the proof of (33).

The proof for (13) is quite standard under conditions (32), (33) and (34); see e.g., Owen [22] for details.

Proof of Theorem 3.2. By following the same arguments in the proof of Theorem 3.1, it suffices to verify the following three conditions

$$\max\left(\max_{1 \le i \le k_n, 1 \le j \le r} |z_j^{(i)}|, |z(y_0)|\right) = o_p(k_n^{1/2}), \tag{37}$$

$$\frac{1}{rk_n+1} \left(\sum_{i=1}^{k_n} \sum_{j=1}^r (z_j^{(i)})^2 + z(y_0)^2 \right) \xrightarrow{p} \gamma_0^2, \tag{38}$$

$$\frac{1}{\sqrt{rk_n+1}} \left(\sum_{i=1}^{k_n} \sum_{j=1}^r z_j^{(i)} + z(y_0) \right) \stackrel{d}{\to} N(0, \gamma_0^2). \tag{39}$$

(37), (38) and (39) follow from (32), (33) and (34) since

$$z(y_0) = -\frac{a_n}{k_n r} \sum_{i=1}^{k_n} \sum_{j=1}^{r} z_j^{(i)}(y_0) = O_p(\frac{a_n}{\sqrt{k_n}}) = o_p(k_n^{1/6})$$

from (14). This completes the proof of Theorem 3.2.

Acknowledgements.

The authors would like to thank two anonymous referees for their constructive suggestions that led to improvement of the paper. The research of Yongcheng Qi was supported in part by NSF Grant DMS-1916014. The research of Jingping Yang was supported by the National Natural Science Foundation of China (Grants No. 12071016).

Disclosure statement.

The authors report there are no competing interests to declare.

References

- [1] Allouche, M., El Methni, J. and Girard, S. (2022). A refined Weissman estimator for extreme quantiles. *Extremes*. https://doi.org/10.1007/s10687-022-00452-8
- [2] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. New York: Cambridge University.
- [3] Chen, J., Variyath, A. M. and Abraham, B. (2008). Adjusted empirical likelihood and its properties. *Journal of Computational and Graphical Statistics*, 17, 426–443.
- [4] Davydov, Yu., Paulauskas, V. and Račkauskas, A.(2000). More on *P*-stable convex sets in Banach spaces. *Journal of Theoretical Probability*, **13**, 39–64.
- [5] De Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An Introduction. Springer, New York.
- [6] De Haan, L. and Rootzń, H. (1993). On the estimation of high quantiles. Journal of Statistical Planning and Inference, 35, 1–13.
- [7] De Haan, L. and Stadtmüller, U. (1996). Generalized regular variation of second order. *Journal of the Australian Mathematical Society (Series A)*, **61**, 381–395.
- [8] Dekkers, A. L. M. and de Haan, L. (1989). On the estimation of the extreme-value index and large quantile estimation. *The Annals of Statistics*, **17**, 1795–1832.
- [9] Dekkers, A. L. M., Einmahl, J. H. J. and de Haan, L. (1989). A moment estimator for the index of an extreme-value distribution. *The Annals of Statistics*, 17, 1833–1855.
- [10] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). *Modelling Extremal Events for Insurance and Finance*. Berlin: Springer.
- [11] Ferreira, A., de Haan, L. and Peng, L. (2003). On optimising the estimation of high quantiles of a probability distribution. *Statistics*, **37**, 401–434.
- [12] Gomes, M.I., de Haan, L. and Peng, L. (2002). Semi-parametric estimation of the second order parameter in statistics of extremes. *Extremes* 5, 387–414.
- [13] Gong, J., Li, Y., Peng, L. and Yao, Q. (2015). Estimation of extreme quantiles for functions of dependent random variables. *Journal of the Royal Statistical Society B*, 77, 1001–1024.
- [14] Hall, P. and La Scala, L. (1990). Methodology and algorithms of empirical likelihood. *International Statistical Review*, **58**, 109–127.

- [15] Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. *The Annals of Statistics*, **3**, 1163–1174.
- [16] Hu, S., Peng Z., and Nadarajah, S. (2022). Location invariant heavy tail index estimation with block method. *Statistics*, **56**, 479-497.
- [17] Li, Y. and Qi, Y. (2019). Adjusted empirical likelihood method for the tail index of a heavy-tailed distribution. Statistics and Probability Letters, 152, 50–58.
- [18] Liu, Y. and Chen, J. (2010). Adjusted empirical likelihood with high-order precision. *Annals of Statistics*, **38**, 1341–1362.
- [19] Lu, J. and Peng, L. (2002). Likelihood based confidence intervals for the tail index. *Extremes*, **5(4)**, 337–352
- [20] Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. *Biometrika*, **75**, 237–249.
- [21] Owen, A. (1990). Empirical likelihood regions. The Annals of Statistics, 18, 90–120.
- [22] Owen, A. (2001). Empirical Likelihood. Chapman and Hall.
- [23] Paulauskas, V. (2003). A new estimator for a tail index, Acta Applicandae Mathematicae, 79, 55–67.
- [24] Paulauskas, V. and Vaiciulis, M. (2011). Several modifications of DPR estimator of the tail index. *Lithuanian Mathematical Journal*, **51**, 36–50.
- [25] Paulauskas, V. and Vaiciulis, M. (2012). Estimation of the tail index in the max-aggregation scheme. *Lithuanian Mathematical Journal*, **52**, 297–315.
- [26] Paulauskas, V. and Vaiciulis, M. (2013). On an improvement of Hill and some other estimators. *Lithuanian Mathematical Journal*, **53**, 336–355.
- [27] Paulauskas, V. and Vaiciulis, M. (2017). A class of new tail index estimators. Annals of the Institute of Statistical Mathematics, 69, 461–487.
- [28] Peng, L. and Qi, Y. (2004). Estimating the first and second order parameters of a heavy tailed distribution. Australian & New Zealand Journal of Statistics 46, no 2, 305–312.
- [29] Peng, L. and Qi, Y. (2006a). A new calibration method of constructing empirical likelihood-based confidence intervals for the tail index. *Australian and New Zealand Journal of Statistics*, **48**, 59–66.
- [30] Peng, L. and Qi, Y. (2006b). Confidence regions for high quantiles of a heavy-tailed distribution. *The Annals of Statistics*, **34** (4), 1964–1986.

- [31] Peng, L. and Qi, Y. (2017). Inference for Heavy-Tailed Data: Applications in Insurance and Finance Accdemic Press.
- [32] Pickands, J. (1975). Statistical inference using extreme order statistics. *The Annals of Statistics*, **3**, 119–131.
- [33] Qi, Y. (2010). On the tail index of a heavy tailed distribution. Annals of the Institute of Statistical Mathematics, 62, 277–298.
- [34] Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. *The Annals of Statistics*, **22**, 300–325.
- [35] Tsao, M. (2004). A new method of calibration for the empirical loglikelihood ratio. Statistics and Probability Letters, **68**, 305–314.
- [36] Vaiciulis, M. (2012). Asymptotic properties of generalized DPR statistic. *Lithuanian Mathematical Journal*, **52**, 95–110.
- [37] Vaiciulis, M. (2014). Local-maximum-based tail index estimator. *Lithuanian Mathematical Journal*, **54**, 503–526.
- [38] Weissman, I. (1978). Estimation of parameters and large quantiles based on the k largest observations. J. Am. Stat. Assoc., 73, 812–815.
- [39] Xiong, L. and Peng, Z. (2020). Heavy tail index estimation based on block order statistics. *Journal of Statistical Computation and Simulation*, **90**, 2198–2208.