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1 Introduction

In the past four decades, extreme value theory has been developed and used to

model rare events in many disciplines so as to assess the risks of those events. In

classical settings, the distributions under the general framework of extreme value

theory include a very large class of semi-parametric distributions, and estimators on

the tail index and high quantiles of these distributions can be found in the literature,

see, e.g., Hill [15], Pickands [32], Dekkers and de Haan [8], Dekkers et al. [9], de Haan

and Rootzén [6], Ferreira et al. [11], Gong et al. [13], and Allouche et al [1], among

others.

In this paper, we are interested in heavy-tailed distributions which are widely

used to model data in fields like meteorology, hydrology, climatology, environmental

science, telecommunications, insurance and finance. We refer the readers to Em-

brechts et al. [10] for details. Based on a random sample with n independent and

identically distributed (iid) data points from a heavy-tailed distribution, Hill’s es-

timator for the tail index and Weissman’s estimators for high quantiles, proposed

by Hill [15] and Weissman [38], respectively, are two popular ones in the literature.

These estimators are based on only a few of the largest observations. For some

recent methodologies for heavy-tailed distributions, see, e.g., Peng and Qi [31] and

Paulauskas and Vaiciulis [26, 27].

We consider the inference on heavy-tailed distributions from incomplete data in

this paper. In real world, some data are naturally divided into several groups or

blocks, and only a small proportion of the largest observations within blocks are

available for analysis. For example, for rainfall or snowfall, fire losses, frequently,

only a few of yearly largest observations are accessible publicly. See Qi [33] for more

examples.

For the block data, Paulauskas [23] introduced their estimators for the tail index

of a heavy-tailed distribution based on the ratios of the first largest and second

largest observations within blocks. Devydov et al. [4] also used the similar idea to

estimate the index of stable random vectors. Later on, Qi [33] proposed some Hill-

type estimators for block data, as given in (2), which have the smaller asymptotic

variance. Qi [33] also employed the empirical likelihood methods to constructing

confidence intervals for the tail index. More recent development can be found in the

literature; see, e.g., Paulauskas and Vaiciulis [24, 25], Vaiciulis [36, 37], Xiong and

Peng [39], and Hu et al. [16].

In this paper, we propose estimators for high quantiles of the heavy-tailed dis-
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tribution from the block data and to construct confidence intervals under the same

settings as in Qi [33]. We also employ empirical likelihood method and adjusted em-

pirical likelihood method to construct confidence intervals. It is worth mentioning

that under the complete data setting for heavy-tailed distributions, several papers

have applied empirical likelihood methods to construct confidence intervals for the

tail index and high quantiles, see, e.g., Lu and Peng [19], Peng and Qi [29, 30].

The rest of the paper is organized as follows. In section 2, we introduce our

estimators for high quantiles and present their limiting distribution. In section 3,

we employ the empirical likelihood method to construct confidence intervals for the

logarithm of high quantiles. In section 4, we conduct a simulation study to compare

the confidence intervals based on the normal approximation of our estimators and

the empirical likelihood method. Finally, we give all the proofs in section 5.

2 Estimators of high quantiles

A cumulative distribution function F is a heavy-tailed distribution function if it

satisfies the following condition

1− F (x) = x−1/γL(x) for x > 0, (1)

where γ > 0 is an unknown parameter and 1/γ is called the tail index of the

distribution function F , and L is a slowly varying function at infinity satisfying

lim
t→∞

L(tx)

L(t)
= 1, x > 0

Assume a random sample of size n from F is available. A p-th high quantile

of distribution F , denoted as xp, is defined as the (1 − p)-th quantile of F , i.e.,

xp = F−(1− p), where F− denotes the generalized inverse of F and p = pn ∈ (0, 1)

satisfying limn→∞ pn = 0 and limn→∞ npn = c ∈ [0,∞).

The inference of index γ and high quantile xp has attracted much attention in

past fifty years. When a full sample X1, · · · , Xn is available, Hill’s estimator for γ

and Weissman’s estimator for xp are well known in the literature; see Hill [15] and

Weissman [38]. Some recent developments on constructing confidence intervals of γ

and xp based on normal approximations and empirical likelihood methods can be

found in Peng and Qi [31].

In this paper, we consider the case when the data is not fully available. We de-

scribe our settings in this paper as follows. Without loss of generality we can always
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assume Xi ≥ 1 for 1 ≤ i ≤ n, otherwise we can simply replace Xi by max(Xi, 1).

First, divide the sample X1, · · · , Xn into kn blocks (or groups), V1, · · · , Vkn , and

each block contains m = mn = [n/kn] observations, where [x] denotes the integer

part of x > 0. To be more specific, Vi = {X(i−1)m+1, · · · , Xim} for 1 ≤ i ≤ kn. Let

X
(i)
m,1 ≥ · · · ≥ X

(i)
m,m denote the order statistics of the m observations in the i-th

block.

Let r ≥ 1 be an integer. Now we assume that the r+1 largest random variables

within each of the kn blocks are observed, that is, only the observations {X(i)
m,j :

j = 1, · · · , r + 1, i = 1, · · · , kn} are available for inference. From the data within

i-th block, Hill’s estimator for γ can be defined as 1
r

∑︁r
j=1(logX

(i)
m,j − logX

(i)
m,r+1) for

i = 1, · · · , kn. By using the average of all kn Hill’s estimators, Qi [33] proposed the

following estimator for γ:

ˆ︁γn =
1

knr

kn∑︂
i=1

r∑︂
j=1

(logX
(i)
m,j − logX

(i)
m,r+1), (2)

where kn satisfies

kn → ∞ and
kn
n

→ 0 as n → ∞.

In order to extend the current setting conveniently, we express the above condition

as

kn → ∞ and mn → ∞ as n → ∞.

Note that kn and mn are the number of blocks and the number of observations

within each block, respectively, and n ∼ knmn is approximately the total number of

observations in all kn blocks.

To investigate the limiting distributions for the estimator, a condition stronger

than (1) is required. Throughout this paper, we assume that there exists a measur-

able function A(t) with limt→∞A(t) = 0 such that

lim
t→∞

U(tx)/U(t)− xγ

A(t)
= xγ x

ρ − 1

ρ
(3)

for all x > 0, where U(y) = F−(1 − 1
y
) is the inverse function of 1

1−F
and ρ < 0.

This condition is more general than the following condition

1− F (x) = cx−1/γ + dx−β + o(x−β) as x → ∞, (4)

where 0 < γ−1 < β ≤ ∞, which is used in Paulauskas [23]. In fact, if (4) holds, then

one can verify that (3) holds with A(t) = −γ(βγ − 1)dc−βγt1−βγ and ρ = 1− βγ.
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The asymptotic normality of ˆ︁γn is as follows.

Theorem 2.1. (Qi [33]) Assume (3) holds. If

kn → ∞, mn → ∞ and k1/2
n A(mn) → δ ∈ (−∞,∞) as n → ∞, (5)

then

(rkn)
1/2(ˆ︁γn − γ)

d→N(δbr, γ
2),

where

br =
1

rρ

(︄
r∑︂

j=1

Γ(j − ρ)

(j − 1)!
− Γ(r + 1− ρ)

(r − 1)!

)︄
(6)

and Γ(x) =
∫︁∞
0

tx−1e−tdt is the Gamma function.

In this paper, we propose the following estimator for xp:

ˆ︁xp = exp
(︂ 1

kn

kn∑︂
i=1

log(X
(i)
mn,r+1)− a(mn, r, pn)ˆ︁γn)︂,

where ˆ︁γn is the estimator for γ defined in (2), and a(m, r, p) =
∑︁m

j=r+1
1
j
+ log p.

The estimator ˆ︁xp defined above is of the same nature as the Weissman’s estimator

for high quantiles based on a full sample. In Weissman [38], the estimator for high

quantiles is a function of one extreme order statistic and an estimator for the tail

index, or more precisely, the estimator for log xp is the sum of the logarithm of one

extreme order statistic and the estimator of the tail index multiplied by a constant.

In our setting, we are able to define estimators for log xp by using the data from

each of kn blocks, and thus we have kn different estimators. Our estimator log ˆ︁xp for

log xp is the average of all these kn estimators. The only difference is that we use

a slightly different coefficient a(mn, r, p) of ˆ︁γn in our estimation in order to reduce

the bias in the estimation.

Theorem 2.2. In addition to conditions in Theorem 2.1, if p = pn satisfies condi-

tion

mnpn → 0 and log(mnpn) = o(k1/2
n ) as n → ∞,

then
(rkn)

1/2

|a(mn, r, pn)|
(log ˆ︁xp − log xp)

d→ N(δbr, γ
2), (7)

where a(m, r, p) =
∑︁m

j=r+1
1
j
+ log p, and br is defined in (6).
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Remark 1. Since kn,mn → ∞ and knmm ∼ n as n → ∞, condition mnp → 0 in

Theorem 2.2 is trivial when npn → c ∈ [0,∞). In fact, we allow in Theorem 2.2

that npn → ∞ as long as mnpn → 0 as n → ∞.

Now we consider the situation when the numbers of random variables within the

blocks are different and the numbers of the observations available for inference are

also different, and all random variables are independent and identically distributed

with a heavy-tailed distribution (1). Assume there are kn blocks of observations, Vi,

1 ≤ i ≤ kn, and in the i-th block Vi, there aremi random variables, but only the ri+1

largest order statistics X
(i)
mi,j

, j = 1, · · · , ri + 1 are available for inference. The total

number of random variables within all kn blocks is
∑︁kn

i=1 mi = n or
∑︁kn

i=1mi ∼ n.

Qi [33] proposed the following estimator for γ

ˆ︁γ∗
n =

1∑︁kn
i=1 ri

kn∑︂
i=1

ri∑︂
j=1

(logX
(i)
mi,j

− logX
(i)
mi,ri+1).

The asymptotic normality of ˆ︁γ∗
n is obtained as follows.

Theorem 2.3. (Qi [33]) If (3) holds and

kn → ∞,
n

kn
→ ∞, and (

kn∑︂
i=1

ri)
1/2A(qn) → 0 as n → ∞,

where qn = min
1≤i≤kn

(mi/ri) → ∞ as n → ∞, then

(
kn∑︂
i=1

ri)
1/2(ˆ︁γ∗

n − γ)
d→N(0, γ2).

Under the above setting-up, we propose the following estimate for xp

ˆ︁x∗
p = exp

(︂ 1∑︁kn
j=1 rj

kn∑︂
i=1

ri log(X
(i)
mi,ri+1)− an(pn)ˆ︁γ∗

n

)︂
,

where

an(p) = (
kn∑︂
j=1

rj)
−1

kn∑︂
i=1

ria(mi, ri, p) (8)

with a(m, r, p) =
∑︁m

j=r+1
1
j
+ log p.
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Theorem 2.4. In addition to conditions in Theorem 2.3, assume the following

condition

max
1≤i≤kn

mipn → 0 and an(pn) = o((
kn∑︂
i=1

ri)
1/2) as n → ∞.

Then we have
(
∑︁kn

i=1 ri)
1/2

|an(pn)|
(log ˆ︁x∗

p − log xp)
d→ N(0, γ2).

Remark 2. Condition max1≤i≤kn mipn → 0 is very weak. For example, when

we consider a high quantile xpn under assumption that npn → c ∈ [0,∞), where

n ∼
∑︁kn

i=1mi, condition max1≤i≤kn mi/n → 0 implies max1≤i≤kn mipn → 0. Under

the conditions in Theorem 2.4, we can also show that an(pn) < 0 ultimately, see

Lemma 5.3 in Appendix.

Remark 3. In practice, handling the bias term in the limiting distribution in

Theorem 2.2 is not easy. One may need to impose more restrictive conditions such

as the so-called third-order condition on F . We usually consider only the case δ = 0

for convenience when we construct confidence intervals. A 100(1− α)% confidence

interval for log xp based on the normal approximation of log ˆ︁xp in Theorem 2.2 when

δ = 0 is given by

IN(1− α) =

(︃
log ˆ︁xp − zα/2

|a(m, r, p)|ˆ︁γn
(rkn)1/2

, log ˆ︁xp + zα/2
|a(m, r, p)|ˆ︁γn

(rkn)1/2

)︃
, (9)

where zα/2 is the critical value of the standard normal distribution at level α/2;

that is, 1 − Φ(zα/2) = α/2, where Φ(x) is the cumulative distribution function for

the standard normal random variable. According to Theorem 2.2, this confidence

interval has an asymptotically correct coverage probability, that is,

P (log xp,0 ∈ IN(1− α)) → 1− α as n → ∞,

where log xp,0 is the true value of the parameter log xp.

Remark 4. The second-order condition (3) is a standard condition that has been

used for univariate extreme-value statistics in the literature. To verify condition (5),

the information on the function A is required. It is known that A(t) is regularly

varying at infinity with index ρ. Theoretically, we can show that there exists a
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function g(t) := t−2ρ/(1−2ρ))ℓ(t), where ℓ(t) is slowly varying at infinity, such that

(5) holds with δ = 0 if kn = o(g(n)). If a consistent estimator of ρ, say ρ̂n, can be

obtained, then for any fixed ε > 0, if kn = o(n−2ρ̂n/(1−2ρ̂n)−ε), then (5) holds with

δ = 0. When a complete sample is available, consistent estimators for ρ can be

obtained, see, e.g., Gomes et al. [12] and Peng and Qi [28]. These estimators cannot

be applied directly to the incomplete data in the present paper. Since the solution

under our current setup requires much effort, we leave this important work for the

future study.

3 Empirical likelihood and adjusted empirical like-

lihood methods

In this section, we assume r ≥ 1 is a fixed integer, and kn and mn satisfy condition

(5). Set

z
(i)
j (y) = j(logX

(i)
m,j − logX

(i)
m,j+1)−

1

a(m, r, p)
(log(X

(i)
m,r+1)− y)

for j = 1, · · · , r and i = 1, · · · , kn. Under conditions in Theorem 2.2 with δ = 0,

{z(i)j (y), 1 ≤ j ≤ r, 1 ≤ i ≤ kn} are approximately independent and identically

distributed with mean 0 if y = log xp. We apply Owen’s empirical likelihood method

(Owen [21]) to construct confidence intervals or to test the hypothesis for logarithm

of xp.

Let q = (q
(1)
1 , · · · , q(1)r , · · · , q(kn)1 , · · · , q(kn)r ) be a probability vector satisfying

kn∑︂
i=1

r∑︂
j=1

q
(i)
j = 1, q

(i)
j ≥ 0 for 1 ≤ j ≤ r, 1 ≤ i ≤ kn. (10)

Then the empirical likelihood, evaluated at y = log xp, is defined by

EL(y) = sup

{︄
kn∏︂
i=1

r∏︂
j=1

q
(i)
j :

kn∑︂
i=1

r∑︂
j=1

q
(i)
j z

(i)
j (y) = 0,

kn∑︂
i=1

r∑︂
j=1

q
(i)
j = 1 with q

(i)
j ≥ 0

}︄
.

(11)

By the method of Lagrange multipliers, we can easily get the maximizers for the

likelihood on the right-hand side of (11)

q
(i)
j =

1

rkn
{1 + λz

(i)
j (y)}−1, j = 1, · · · , r, i = 1, · · · , kn,
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where λ is the solution to the equation

kn∑︂
i=1

r∑︂
j=1

z
(i)
j (y)

1 + λz
(i)
j (y)

= 0. (12)

On the other hand,
∏︁kn

i=1

∏︁r
j=1 q

(i)
j , subject to constrains in (10), attains its

maximum (rkn)
−rkn at q

(i)
j = (rkn)

−1. So we define the empirical likelihood ratio at

y0, the true value of log xp, by

l(y0) =
kn∏︂
i=1

r∏︂
j=1

(rknq
(i)
j ) =

kn∏︂
i=1

r∏︂
j=1

{1 + λz
(i)
j (y0)}−1,

and the corresponding empirical log-likelihood ratio statistic is defined as

L(y0) = −2 log l(y0) = 2
kn∑︂
i=1

r∑︂
j=1

log{1 + λz
(i)
j (y0)},

where λ is the solution to (12).

The following theorem gives the asymptotic distribution of L(y0).

Theorem 3.1. Under the conditions of Theorem 2.2 with δ = 0 we have

L(y0)
d→χ2

1, (13)

where χ2
1 denotes a chi-squared random variable with one degree of freedom, and y0

is the true value of log xp.

According to (13), a 100(1 − α)% confidence interval for log xp based on the

empirical likelihood ratio statistic is determined by

IE(1− α) = {y > 0 : L(y) < c(α)},

where c(α) is the α level critical value of a chi-squared distribution with one degree

of freedom.

When we define EL(y) in (11), we assume there is a probability vector q sat-

isfying (10) such that
∑︁kn

i=1

∑︁r
j=1 q

(i)
j z

(i)
j (y) = 0, which is equivalent to that 0 is

contained in the the convex hull of the data points {z(i)j (y) : 1 ≤ j ≤ r, 1 ≤ i ≤ kn}.
If this is not true, the empirical likelihood ratio statistics L(y0) is set as infinity. As
a result, this may cause a serious undercoverage for confidence intervals when the
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total number of data points, rkn, is relatively small. The same problem has been

discussed for the mean of iid random vectors in the literature, see, e.g., Owen [20],

Hall and La Scala [14], Qin and Lawless [34], and Tsao [35].

Chen et al. [3] proposed the so-called adjusted empirical likelihood method to

solve the undercoverage problem for the mean of a distribution. For a random sample

of size n, they added a pseudo-sample point and applied the ordinary empirical

likelihood method to the n+1 data points. Later on, Liu and Chen [18] investigated

how to choose the correction factor for the pseudo-sample point so as to achieve

a better precision in terms of coverage probability for empirical likelihood based

confidence intervals. Recent work by Li and Qi [17] applied the adjusted empirical

likelihood method to constructing confidence intervals for the tail index of a heavy-

tailed distribution.

Define a pseudo-data point as

z(y) = − an
knr

kn∑︂
i=1

r∑︂
j=1

z
(i)
j (y), (14)

where an is a constant satisfying condition an = o(k
2/3
n ). In our applications, we

will take an = 19
12

which is the optimal correction factor when the adjusted empirical

likelihood is applied to a random sample from an exponential distribution. See e.g.,

Li and Qi [17] for more justifications. The so-called adjusted empirical likelihood

method is to apply the ordinary empirical likelihood method to the knr + 1 data

points {z(i)j (y), 1 ≤ i ≤ kn, 1 ≤ j ≤ r} ∪ {z(y)}. By following exactly the same

procedure as the above, the adjusted empirical likelihood ratio statistic at y = log xp

is given by

AL(y) = 2
kn∑︂
i=1

r∑︂
j=1

log{1 + λz
(i)
j (y)}+ 2 log{1 + λz(y)},

where λ is the solution to the following equation

kn∑︂
i=1

r∑︂
j=1

z
(i)
j (y)

1 + λz
(i)
j (y)

+
z(y)

1 + λz(y)
= 0.

Theorem 3.2. Assume the conditions of Theorem 2.2 with δ = 0 are satisfied and

an = o(k
2/3
n ) as n → ∞. Then we have

AL(y0)
d→χ2

1,

10



where χ2
1 denotes a chi-squared random variable with one degree of freedom, and y0

is the true value of log xp.

According to Theorem 3.2, a 100(1−α)% confidence interval for log xp based on

the adjusted empirical likelihood ratio statistic is determined by

IAE(1− α) = {y > 0 : AL(y) < c(α)}, (15)

where c(α) is the α level critical value of a chi-squared distribution with one degree

of freedom.

4 Simulation study

In this section, we carry out a simulation study to compare the performance of the

confidence intervals based on the adjusted empirical likelihood (I∗AE(1− α) defined

in (15)) and the normal approximation (IN(1−α) given in (9)) for high quantiles in

terms of coverage probability and interval length. We take an = 19
12

for the weight

an in (14). We consider the following two types of cumulative distribution functions

(cdf):

(a). the Fréchet cdf given by F (x) = exp(−x−a) (x > 0), where a > 0 (notation:

Fréchet(a));

(b). the Burr cdf given by F (x) = 1 − (1 + xa)−b (x > 0), where a > 0, b > 0

(notation: Burr(a, b)).

In our simulation study, we choose r = 1, that is, we consider the case when

only two largest observations within blocks are used for the inference. We choose

the confidence level 1 − α = 95% in the study. The simulation is implemented by

Software R. We will use the following three distributions in our study: Fréchet (1),

Burr (0.5, 1) and Burr (1, 0.5). Both Fréchet and Burr distributions can be expanded

in the form given in (4), and their second-order function A(t) is proportional to tρ,

where ρ = −1 for Fréchet (1) and Burr (0.5, 1) and ρ = −2 for Burr(1, 0.5).

From each of three distributions, Fréchet(1), Burr(0.5, 1) and Burr(1, 0.5), we

generate k blocks of independent random variables with k = 10, 15, · · · , 100, and
each block contains m observations, where m can be selected under one of the

following two schemes. For each distribution and each combination of k and m, the
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coverage probabilities and average lengths of two confidence intervals, I∗E(0.95) and

IN(0.95)), are estimated based on 5000 replicates.

Scheme 1. Set n = 1000 and p = pn = 1/n. For each k from {10, 15, · · · , 100},
define m = [1000/k], where [x] denotes the integer part of x. This setup applies

to all three distributions. The coverage probabilities and the average lengths of

confidence intervals based on the adjusted empirical likelihood method (AELM)

and normal approximation method (NORM) for log xp are obtained and reported in

Tables 1 and 2, respectively.

Scheme 2. For each k from {10, 15, · · · , 100}, we select m as a function k in the

form m = [50kv], where v ∈ (0, 1) depends on the distribution from which the

observations are sampled. In particular, we have selected v = 1/2 for Burr(0.5, 1),

v = 1/4 for Burr(1, 0.5), and v = 1/2 for Fréchet(1). Notice that m increases with

k, and so does the total number, km, of observations within all k blocks. For each

combination of k and m, we estimate log xp with p = 1/(km). Again, we estimate

the coverage probability and average length of two confidence intervals, I∗E(0.95)

based on the adjusted empirical likelihood method (AELM) and IN(0.95) based

normal approximation method (NORM). Simulation results are given in Tables 3

and 4.

Under Scheme 2, with the specific selection m = [50kv] for each distribution,

k1/2A(m) is approximatively a constant as k gets larger, and the multiplier 50 is

selected so that the bias term of the limiting distribution in (7) is relatively small.

Under Scheme 1, the total number of observations in the k blocks is approximately

1000, and m decreases with k, for example, m = 100 if k = 10, and m = 10 if

k = 100. Since |A(t)| is proportional to tρ for some ρ < 0, we see that the bias term

in (7) is getting larger when k is bigger under Scheme 1.

From Tables 1 and 3, the confidence intervals based on the normal approximation

have a significantly lower coverage for smaller values of k, and those based on the

adjusted empirical likelihood method achieve a much better coverage in this case.

The performance of the normal approximation is getting better when k increases

under Scheme 1. For Burr(1, 0.5), the performance of the adjusted empirical likeli-

hood method may be greatly influenced by the bias terms which are approximately

proportional to k1/2m−2 ∼ k2.5/10002. Under Scheme 2, m increases with k and

the bias terms in (7) are reasonably small, and the coverage probabilities from Ta-

ble 3 indicate that the adjusted empirical likelihood method outperforms the normal

approximation method for all three distributions.
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Tables 2 and 4 reveal that the average lengths of the confidence intervals based

on the normal approximation are shorter than those based on the adjusted empirical

likelihood method under both Scheme 1 and Scheme 2 when k is relatively small.

This is caused by the lower coverage of confidence intervals based on the normal

approximation. When k is getting larger, the average lengths for both methods are

comparable.

In summary, we conclude that the adjusted empirical likelihood method results in

better coverage probability when k is small or when the bias term in (7) is relatively

small. When the bias term in (7) is getting too large, theoretically, both methods

have an undercoverage problem, but the adjusted empirical likelihood method may

suffer more than the normal approximation method as we have observed in Table 1

for Burr(1, 0.5) distribution.

Finally, we conclude this section with some comments on application of the

proposed methods in the paper. In general, a relatively large sample is required for

application of results under the framework of extreme value statistics since only a

few of largest observations in the sample can be used in the estimation. The accuracy

of the normal approximation for estimators of γ and xp depends on the number of

observations used in the estimation (rkn) and the asymptotic bias for the normalized

statistics rk
1/2
n A(n/kn). We recommend that rkn ≥ 30 and rk

1/2
n |A(n/kn)| ≤ 0.2.

Since A(t) is proportional to tρ in most applications, we can assume rk
1/2
n (n/kn)

ρ ≤
0.2. Now consider the special case r = 1, we have n ≥ 5−1/ρk

(1−2ρ)/(−2ρ)
n as suggested

sample size for kn ≥ 30. Since ρ is unknown, estimation of ρ seems important issue

for this purpose. See more comments in Remark 4 at the end of Section 2.

5 Proofs

Before we prove the main results, we introduce some notations. As we have assumed

that Xi ≥ 1 for i ≥ 1, we see that F−(u) ≥ 1 for all u ∈ (0, 1), and thus U(x) =

F−(1− 1
x
) ≥ 1 is well defined for x > 1. Note that U(x) is non-decreasing for x > 1.

From de Haan and Stadtmüller [7], condition (3) implies that A(t) is a regularly

varying function with index ρ, and |A(t)| is bounded away from 0 and ∞ on every

compact subset of [c0,∞), where c0 > 0 is a constant. Without loss of generality,

we assume A(t) is bounded away from 0 and ∞ in (0, c0] since redefining A(t) on

(0, c0) doesn’t change condition (3). Then using Potter’s bounds to A(x), for every

13



Table 1: Coverage probabilities for adjusted empirical likelihood method with cor-

rection factor 19/12 (AELM) and normal approximation method for log ˆ︁xp (NORM):

the number of observations within each block is set to be m = [1000/k] (Scheme 1)

Fréchet(1) Burr(0.5,1) Burr(1,0.5)

kn AELM NORM AELM NORM AELM NORM

10 0.9630 0.8996 0.9602 0.9046 0.9612 0.9066

15 0.9420 0.9172 0.9342 0.9114 0.9354 0.9186

20 0.9372 0.9256 0.9360 0.9234 0.9384 0.9286

25 0.9408 0.9294 0.9410 0.9308 0.9438 0.9394

30 0.9440 0.9364 0.9406 0.9248 0.9448 0.9348

35 0.9438 0.9412 0.9494 0.9388 0.9524 0.9520

40 0.9448 0.9490 0.9442 0.9384 0.9434 0.9522

45 0.9490 0.9498 0.9430 0.9370 0.9440 0.9506

50 0.9490 0.9510 0.9462 0.9446 0.9440 0.9582

55 0.9446 0.9482 0.9374 0.9358 0.9364 0.9488

60 0.9484 0.9534 0.9460 0.9418 0.9418 0.9574

65 0.9498 0.9600 0.9470 0.9452 0.9414 0.9576

70 0.9464 0.9566 0.9488 0.9438 0.9348 0.9592

75 0.9494 0.9610 0.9470 0.9472 0.9300 0.9602

80 0.9458 0.9572 0.9420 0.9434 0.9258 0.9548

85 0.9436 0.9570 0.9458 0.9454 0.9146 0.9534

90 0.9498 0.9616 0.9446 0.9464 0.9192 0.9510

95 0.9408 0.9580 0.9468 0.9490 0.9044 0.9492

100 0.9384 0.9538 0.9462 0.9502 0.8988 0.9438

δ > 0, there exists a constant c(δ) > 0 such that

|A(x)
A(y)

| ≤ c(δ)max
(︁
(
x

y
)ρ+δ, (

x

y
)ρ−δ

)︁
for all x, y > 0. (16)

See, e.g., Theorem 1.5.6 in Bingham et al. [2].

Next, we see that (3) is equivalent to

lim
t→∞

logU(tx)− logU(t)− γ log x

A(t)
=

xρ − 1

ρ
, x > 0. (17)

Let h(x) = logU(x)− γ log x, x > 1. Then (17) implies that for each x > 0,

h(tx)− h(t)

A(t)
=

logU(tx)− logU(t)− γ log x

A(t)
→ xρ − 1

ρ
as t → ∞.
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Table 2: Averages of lengths for confidence intervals based adjusted empirical like-

lihood method with correction factor 19/12 (AELM) and normal approximation

method for log ˆ︁xp (NORM): the number of observations within each block is set to

be m = [1000/k] (Scheme 1)

Fréchet(1) Burr(0.5,1) Burr(1,0.5)

kn AELM NORM AELM NORM AELM NORM

10 5.014 3.393 9.985 6.754 10.052 6.834

15 3.622 3.193 7.163 6.343 7.184 6.373

20 3.284 3.015 6.525 5.979 6.550 6.027

25 3.082 2.875 6.159 5.702 6.170 5.761

30 2.946 2.780 5.846 5.470 5.854 5.526

35 2.818 2.683 5.605 5.276 5.608 5.317

40 2.702 2.588 5.386 5.095 5.392 5.126

45 2.623 2.524 5.199 4.937 5.216 4.979

50 2.537 2.451 5.040 4.801 5.060 4.841

55 2.471 2.401 4.895 4.682 4.909 4.707

60 2.429 2.369 4.806 4.609 4.784 4.594

65 2.363 2.315 4.670 4.494 4.672 4.489

70 2.307 2.265 4.560 4.396 4.564 4.399

75 2.263 2.228 4.468 4.321 4.466 4.316

80 2.228 2.201 4.393 4.259 4.380 4.233

85 2.199 2.181 4.322 4.204 4.294 4.160

90 2.135 2.119 4.198 4.086 4.219 4.092

95 2.118 2.111 4.165 4.070 4.145 4.023

100 2.062 2.057 4.056 3.967 4.079 3.962

Since ρ < 0, we have from Theorem B.2.18 in de Haan and Ferreira [5] that there

exists a constant c such that limx→∞ h(x) = c, and h1(x) := h(t) − c is a regularly

varying function with index ρ, i.e.,

h1(tx)− h1(t)

A(t)
=

logU(tx)− logU(t)− γ log x

A(t)
→ xρ − 1

ρ
as t → ∞.

In this case, we have A(x) ∼ ρh1(x) as x → ∞, h1(x) → 0 as x → ∞, and h1(x) is

uniformly bounded in interval [1,∞). Meanwhile, we have |h1(y)/A(y)| is uniformly

bounded in (1,∞), and we assume |h1(y)/A(y)| ≤ C0 for some C0 > 0.

Rewrite

logU(tx)− logU(t)− γ log x

A(t)
=

h1(tx)

A(tx)

A(tx)

A(t)
− h1(t)

A(t)
, t > 0, tx > 1.
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Table 3: Coverage probabilities for adjusted empirical likelihood method with cor-

rection factor 19/12 (AELM) and normal approximation method for log ˆ︁xp (NORM):

the number of observations within each block is set to be m = [50kv] (Scheme 2),

where v = 1/2 for Burr(0.5, 1), v = 1/4 for Burr(1, 0.5), and v = 1/2 for Fréchet(1)

Fréchet(1) Burr(0.5,1) Burr(1,0.5)

kn AELM NORM AELM NORM AELM NORM

10 0.9648 0.9020 0.9578 0.8966 0.9604 0.9036

15 0.9416 0.9180 0.9378 0.9148 0.9402 0.9166

20 0.9366 0.9216 0.9388 0.9248 0.9370 0.9216

25 0.9422 0.9286 0.9360 0.9294 0.9398 0.9312

30 0.9422 0.9284 0.9386 0.9306 0.9410 0.9356

35 0.9410 0.9350 0.9388 0.9294 0.9392 0.9340

40 0.9456 0.9366 0.9418 0.9332 0.9406 0.9384

45 0.9470 0.9392 0.9434 0.9368 0.9462 0.9440

50 0.9472 0.9390 0.9436 0.9346 0.9462 0.9386

55 0.9440 0.9356 0.9460 0.9394 0.9422 0.9362

60 0.9464 0.9398 0.9456 0.9324 0.9448 0.9414

65 0.9480 0.9418 0.9434 0.9322 0.9416 0.9356

70 0.9492 0.9448 0.9458 0.9390 0.9456 0.9402

75 0.9464 0.9418 0.9460 0.9406 0.9480 0.9440

80 0.9474 0.9452 0.9474 0.9432 0.9510 0.9480

85 0.9536 0.9448 0.9488 0.9396 0.9486 0.9448

90 0.9448 0.9434 0.9442 0.9356 0.9524 0.9508

95 0.9500 0.9436 0.9508 0.9458 0.9518 0.9484

100 0.9464 0.9374 0.9468 0.9402 0.9478 0.9440

By substituting y for x in the above equation and subtracting it from the above

equation we have

| logU(tx)− logU(ty)− γ(log x− log y)

A(t)
| = |h1(tx)

A(tx)

A(tx)

A(t)
− h1(ty)

A(ty)

A(ty)

A(t)
|

≤ C0(|
A(tx)

A(t)
|+ |A(ty)

A(t)
|).

Now we apply Potter’s bounds (16) to both A(tx)
A(t)

and A(ty)
A(t)

with δ = −ρ/2 and

conclude that

| logU(tx)− logU(ty)− γ(log x− log y)

A(t)
| ≤ C1(x

ρ/2 + x3ρ/2 + yρ/2 + y3ρ/2) (18)

for all t > 1, tx > 1, and ty > 1, where C1 > 0 is a constant.
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Table 4: Averages of lengths for confidence intervals based adjusted empirical like-

lihood method with correction factor 19/12 (AELM) and normal approximation

method for log ˆ︁xp (NORM): the number of observations within each block is set to

be m = [50kv] (Scheme 2), where v = 1/2 for Burr(0.5, 1), v = 1/4 for Burr(1, 0.5),

and v = 1/2 for Fréchet(1)

Fréchet(1) Burr(0.5,1) Burr(1,0.5)

kn AELM NORM AELM NORM AELM NORM

10 5.008 3.386 9.933 6.701 10.052 6.834

15 3.591 3.172 7.160 6.311 7.184 6.373

20 3.280 2.994 6.529 5.986 6.550 6.027

25 3.078 2.856 6.141 5.700 6.170 5.761

30 2.919 2.733 5.832 5.469 5.854 5.526

35 2.798 2.637 5.586 5.271 5.608 5.317

40 2.690 2.547 5.376 5.090 5.392 5.126

45 2.603 2.475 5.186 4.935 5.216 4.979

50 2.524 2.404 5.032 4.800 5.060 4.841

55 2.452 2.343 4.895 4.676 4.909 4.707

60 2.395 2.293 4.768 4.557 4.784 4.594

65 2.333 2.238 4.652 4.463 4.672 4.489

70 2.280 2.192 4.544 4.375 4.564 4.399

75 2.235 2.149 4.449 4.287 4.466 4.316

80 2.190 2.109 4.356 4.204 4.380 4.233

85 2.150 2.073 4.274 4.127 4.294 4.160

90 2.110 2.036 4.201 4.057 4.219 4.092

95 2.071 2.001 4.126 3.989 4.145 4.023

100 2.037 1.970 4.059 3.936 4.079 3.962

As in Qi [33], our proofs rely on the distributional representations for the obser-

vations. We will use the same notation as in Qi [33].

Assume {E(i)
j , i, j ≥ 1} are iid random variables with a unit exponential distri-

bution. It is easy to see that {U(eE
(i)
j ), i, j ≥ 1} are iid random variables with the

distribution F .

Apparently, {X(i)
mi,j

, 1 ≤ j ≤ mi} have the same joint distribution as {U(E
(i)
mi,j

), 1 ≤
j ≤ mi}, where E

(i)
mi,1

≥ · · · ≥ E
(i)
mi,mi are the order statistics of E

(i)
j , 1 ≤ j ≤ mi.

Without loss of generality, we assume that

X
(i)
mi,j

= U(eE
(i)
mi,j), 1 ≤ j ≤ mi, 1 ≤ i ≤ kn. (19)

For each i ≥ 1, set I
(i)
j = j(E

(i)
mi,j

− E
(i)
mi,j+1) for j = 1, · · · ,mi − 1 and I

(i)
mi =

17



miE
(i)
mi,mi . Then {I(i)j , 1 ≤ j ≤ mi, 1 ≤ i ≤ kn} are iid random variables with a

unit exponential distribution. We also have

E
(i)
mi,r+1 =

mi∑︂
j=r+1

I
(i)
j

j
. (20)

It is easy to see that E
(i)
mi,r+1, i ≥ 1 are independent random variables with their

means and variances given by

E(E(i)
mi,r+1) =

mi∑︂
j=r+1

1

j
, Var(E

(i)
mi,r+1) =

mi∑︂
j=r+1

1

j2
≤ 1

r
. (21)

Lemma 5.1. As n → ∞,

1

(
∑︁kn

i=1 ri)
1/2

kn∑︂
i=1

ri(E
(i)
mi,ri+1 −

mn∑︂
j=ri+1

1

j
) = Op(1).

Proof. The lemma is trivial since the variance or the second moment of the left-hand

side above is equal to

1∑︁kn
i=1 ri

kn∑︂
i=1

r2i

mi∑︂
j=ri+1

1

j2
≤ 1∑︁kn

i=1 ri

kn∑︂
i=1

r2i
1

ri
= 1

from (20) and (21).

Lemma 5.2. For any δ > 0 we have

E
(︂
(
exp(E

(1)
m,r+1)

m/r
)−δ
)︂
≤ exp(δ +

δ2

2
), 1 ≤ r < m, m ≥ 2.

Proof. Using representation (20) and the moment-generating function of exponential

18



random variables we have

E
(︁
(
exp(E

(1)
m,r+1)

m/r
)−δ
)︁

= (m/r)δE(exp(−δ
m∑︂

j=r+1

I
(1)
j

j
))

=
(m/r)δ∏︁m

j=r+1(1 +
δ
j
)

= exp
(︁
δ log(m/r)−

m∑︂
j=r+1

log(1 +
δ

j
)
)︁

≤ exp
(︁
δ log(m/r)−

m∑︂
j=r+1

(
δ

j
− δ2

2j2
)
)︁

≤ exp
(︁
δ(log(m/r)−

m∑︂
j=r+1

1

j
) +

δ2

2

m∑︂
j=r+1

j−2)
)︁

≤ exp(δ +
δ2

2
).

In the above estimation we have used inequalities that log(1+y) ≥ y− 1
2
y2 for y > 0

and log(m/r)−
∑︁m

j=r+1
1
j
< 1

r
≤ 1.

Lemma 5.3. Under conditions min1≤i≤kn(mi/ri) → ∞ and max1≤i≤kn mipn → 0,

we have min1≤i≤kn(−a(mi, ri, pn)) → ∞ and −an(pn) → ∞ as n → ∞.

Proof. Since

m∑︂
j=r+1

1

j
<

∫︂ m

r

1

x
dx = log(

m

r
) <

m∑︂
j=r

1

j
=

1

r
+

m∑︂
j=r+1

1

j

for 1 ≤ r < m, we have

log(
m

r
)− 1

r
<

m∑︂
j=r+1

1

j
< log(

m

r
),

which implies

log(
mpn
r

)− 1

r
<

m∑︂
j=r+1

1

j
+ log pn < log(

mpn
r

).

Therefore, for 1 ≤ i ≤ kn,

log(
ri

mipn
) < −a(mi, ri, pn) < log(

ri
mipn

) +
1

ri
.
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Since min1≤i≤kn
ri

mipn
≥ 1

max1≤i≤kn mipn
→ ∞, we obtain

min
1≤i≤kn

(−a(mi, ri, pn)) ∼ min
1≤i≤kn

log(
ri

mipn
) → ∞

as n → ∞. This also implies −an(pn) → ∞ from definition (8).

We will prove a general result which can be used in the proofs for Theorems 2.2

and 2.4.

Lemma 5.4. Under conditions qn = min1≤i≤kn(mi/ri) → ∞ and max1≤i≤kn mipn →
0, we have

1∑︁kn
i=1 ri

kn∑︂
i=1

ri log(X
(i)
mi,ri+1)−log xp =

∑︁kn
i=1 ria(mi, ri, p)∑︁kn

i=1 ri
γ+Op(

1

(
∑︁kn

i=1 ri)
1/2

+|A(qn)|).

Proof. Write

ε(t, x, y) =
logU(tx)− logU(ty)− γ(log x− log y)

A(t)
.

Then from (18) we have

|ε(t, x, y)| ≤ C1(x
ρ/2 + x3ρ/2 + yρ/2 + y3ρ/2) (22)

for t > 1, tx > 1, ty > 1, and

logU(tx)− logU(ty) = γ(log x− log y) + A(t)ε(t, x, y).

Review that xp = U( 1
pn
). For each i ≥ 1, by using representation (19) with

t = mi/ri, tx = eE
(i)
mi,ri+1 and ty = 1

pn
we have

log(X
(i)
mi,ri+1)− log xp = logU(eE

(i)
mi,ri+1)− logU(

1

p
)

= γ(log
eE

(i)
mi,ri+1

mi/ri
− log

ri
mipn

) + A(
mi

ri
)ε(

mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)

= γ(E
(i)
mi,ri+1 + log pn) + A(

mi

ri
)ε(

mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

).

Then

log(X
(i)
mi,ri+1)− log xp − γa(mi, ri, pn)

= γ(E
(i)
mi,ri+1 −

m∑︂
j=ri+1

1

j
) + A(

mi

ri
)ε(

mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

). (23)
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We have from (22) that

|ε(mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)| ≤ C1

(︂(︁eE(i)
mi,ri+1

mi/ri

)︁ρ/2
+
(︁eE(i)

mi,ri+1

mi/ri

)︁3ρ/2
+ 2
)︂

as long as mi

ri
> 1 and ri

mipn
> 1, which are true for all 1 ≤ i ≤ kn since max1≤i≤kn mipn →

0 and qn = min1≤i≤kn(mi/ri) → ∞ as n → ∞.

From Lemma 5.2, for any d > 0, E
(︁
|ε(mi

ri
, e

E
(i)
mi,ri+1

mi/ri
, ri
mipn

)|d
)︁
are uniformly bounded

for 1 ≤ i ≤ kn for all large n. We can conclude that

max
1≤i≤kn

|ε(mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)| = Op(k
1/2
n ) (24)

and

1∑︁kn
i=1 ri

kn∑︂
i=1

ri|ε(
mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)|ℓ = Op(1) (25)

for any ℓ = 1, 2. (24) is true since there exists a C > 0 such that for any x > 0

P ( max
1≤i≤kn

|ε(mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)| > xk1/2
n )

≤
kn∑︂
i=1

P (|ε(mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)| > xk1/2
n )

≤
kn∑︂
i=1

E(ε(mi

ri
, e

E
(i)
mi,ri+1

mi/ri
, ri
mipn

))2

x2kn

≤ C

x2
.

(25) is true since the mean of the left-hand side of (25) is bounded.

Since |A(x)| is a regularly varying function with index ρ < 0, that is

lim
t→∞

|A(tx)|
|A(t)|

= xρ, x > 0. (26)

It is known that |A(x)| can be written as |A(x)| = c(x)f(x), where limx→∞ c(x) =

c > 0 and f(x) is a continuous and strictly decreasing function on (0,∞). This

implies

max
1≤i≤kn

|A(mi

ri
)| = O( max

1≤i≤kn
f(

mi

ri
)) = O(f( min

1≤i≤kn

mi

ri
)) = O(f(qn)) = O(|A(qn)|).
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Then it follows from (23), (25) and Lemma 5.1 that

1∑︁kn
i=1 ri

kn∑︂
i=1

ri log(X
(i)
mi,ri+1)− log xp −

∑︁kn
i=1 ria(mi, ri, p)∑︁kn

i=1 ri
γ

=
γ∑︁kn
i=1 ri

kn∑︂
i=1

ri(E
(i)
mi,ri+1 −

mn∑︂
j=ri+1

1

j
) +

1∑︁kn
i=1 ri

kn∑︂
i=1

riA(
mi

ri
)ε(

mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)

≤ γ∑︁kn
i=1 ri

kn∑︂
i=1

ri(E
(i)
mi,ri+1 −

mn∑︂
j=ri+1

1

j
) +

O(|A(qn)|)∑︁kn
i=1 ri

kn∑︂
i=1

ri|ε(
mi

ri
,
eE

(i)
mi,ri+1

mi/ri
,

ri
mipn

)|

= Op(
1

(
∑︁kn

i=1 ri)
1/2

+ |A(qn)|),

proving the lemma.

Proof of Theorem 2.4. It follows from Lemma 5.4 that

log ˆ︁x∗
p − log xp =

1∑︁kn
j=1 rj

kn∑︂
i=1

ri log(X
(i)
mi,ri+1)− log xp − an(pn)ˆ︁γ∗

n

= −an(pn)(ˆ︁γ∗
n − γ) +Op(

1

(
∑︁kn

i=1 ri)
1/2

+ |A(qn)|),

which yields

(
∑︁kn

i=1 ri)
1/2

−an(pn)

(︁
log ˆ︁x∗

p−log xp

)︁
= (

kn∑︂
i=1

ri)
1/2(ˆ︁γ∗

n−γ)+Op(
1

−an(pn)
+
(
∑︁kn

i=1 ri)
1/2

−an(pn)
|A(qn)|).

(27)

The big “O” term above converges to zero in probability since −an(pn) → ∞ from

Lemma 5.3 and (
∑︁kn

i=1 ri)
1/2|A(qn)| → 0 as a given condition in Theorem 2.3. There-

fore, the left-hand side of the above equation converges in distribution to N(0, γ2)

by using Theorem 2.3. This completes the proof of Theorem 2.4.

Proof of Theorem 2.2. Theorem 2.2 is the special case of Theorem 2.4 except we allow

a non-zero bias term in the limiting distribution. Under the setup in Theorem 2.2,

we have mi = mn ∼ n
kn
, and ri = r is a fixed integer. In the proof of Theorem 2.4 we

have obtained (27). We note that the left-hand side of (27) is equal to the left-hand

side of (7), and |an(pn)| = |a(mn, r, pn)| → ∞. Theorem 2.1 together with (27)

yields Theorem 2.2 if we can show that
√
kn|A(mn

r
)| has a finite limit. In fact, we

22



have from (26) that

k
1/2
n |A(mn/r)|
k
1/2
n |A(mn)|

=
|A(mn/r)|
|A(mn)|

→ r−ρ, (28)

which coupled with assumption k
1/2
n A(mn) → δ ∈ (−∞,∞) implies k

1/2
n |A(mn/r)| →

|δ|r−ρ. This completes the proof of Theorem 2.2.

Proof of Theorem 3.1. In this proof, we will simply use m and p to denote mn and

pn, respectively.

Define

Z
(i)
j = j(logX

(i)
m,j − logX

(i)
m,j+1)

for j = 1, · · · , r and i = 1, · · · , kn. We have

z
(i)
j (y) = Z

(i)
j − 1

a(m, r, p)
(log(X

(i)
m,r+1)− y)

for j = 1, · · · , r and i = 1, · · · , kn.
Note that we have assumed that y0 is the true value of log xp. Now we also

assume that γ0 is the true value of γ. It follow from the proof of Theorem 4 in

Qi [33] that

max
1≤j≤r

max
1≤i≤kn

|Z(i)
j − γ0| = op(k

1/2
n ) (29)

and

s2n :=
1

rkn

kn∑︂
i=1

r∑︂
j=1

(Z
(i)
j − γ0)

2 p→ γ2
0 . (30)

From now on we will write z
(i)
j (y0) as z

(i)
j for convenience. It follows from (23)

that

z
(i)
j = Z

(i)
j − γ0 +

1

−a(m, r, p)
(log(X

(i)
m,r+1)− y0) + γ0

= (Z
(i)
j − γ0) +

γ0
−a(m, r, p)

(E
(i)
m,r+1 −

m∑︂
j=r+1

1

j
)

+
A(m/r)

−a(m, r, p)
ε(m/r,

eE
(i)
m,r+1

m/r
,
r

mp
)

= : a
(i)
j + bi + ci. (31)
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We need to show the following three equations:

max
1≤i≤kn,1≤j≤r

|z(i)j | = op(k
1/2
n ), (32)

1

rkn

kn∑︂
i=1

r∑︂
j=1

(z
(i)
j )2

p→ γ2
0 , (33)

1√
rkn

kn∑︂
i=1

r∑︂
j=1

z
(i)
j

d→ N(0, γ2
0). (34)

Using (24), (25) with ℓ = 2, (28) and the fact that −a(m, r, p) → ∞ as n → ∞
from Lemma 5.3 we have

1

k
1/2
n

max
1≤i≤kn

|ci|
p→ 0 and

1

kn

∑︂
1≤i≤kn

c2i
p→ 0. (35)

We can show
1

k
1/2
n

max
1≤i≤kn

|bi|
p→ 0 and

1

kn

∑︂
1≤i≤kn

b2i
p→ 0. (36)

The second expression can be proved by using the estimation that

1

kn
E(
∑︂

1≤i≤kn

b2i ) ≤
γ2
0

kn(a(m, r, p))2
kn
r

=
γ2
0

r(a(m, r, p))2
→ 0

from (21), and the first one follows from the second one since

1

k
1/2
n

max
1≤i≤kn

|bi| ≤
(︁ 1
kn

∑︂
1≤i≤kn

b2i
)︁1/2

.

We see that (32) follows from (29) and the first expressions in both (35) and

(36). (34) follows from Theorem 2.2 with δ = 0 since

1√
knr

kn∑︂
i=1

r∑︂
j=1

z
(i)
j =

√
knr

−a(m, r, p)
(log ˆ︁xp − log xp).

Set di = bi + ci. We have from the Cauchy-Schwarz inequality that

1

kn

kn∑︂
i=1

d2i =
1

kn

(︂ kn∑︂
i=1

b2i +
kn∑︂
i=1

c2i + 2
kn∑︂
i=1

bici

)︂

≤ 1

kn

kn∑︂
i=1

b2i +
1

kn

kn∑︂
i=1

c2i + 2

⌜⃓⃓⎷ 1

kn

kn∑︂
i=1

b2i

⌜⃓⃓⎷ 1

kn

kn∑︂
i=1

c2i

p→ 0
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by using the second expressions in (35) and (36). Now we have from (31) that

1

rkn

kn∑︂
i=1

r∑︂
j=1

(z
(i)
j )2 =

1

rkn

kn∑︂
i=1

r∑︂
j=1

(a
(i)
j )2 +

1

kn

kn∑︂
i=1

d2i +
2

rkn

kn∑︂
i=1

r∑︂
j=1

a
(i)
j di.

On the right-hand side in the above equation, the first term converges in probability

to γ2
0 from (30), the second term converges in probability to zero, and the third

term converges in probability to zero by using the Cauchy-Schwarz inequality. This

completes the proof of (33).

The proof for (13) is quite standard under conditions (32), (33) and (34); see

e.g., Owen [22] for details.

Proof of Theorem 3.2. By following the same arguments in the proof of Theorem 3.1,

it suffices to verify the following three conditions

max
(︂

max
1≤i≤kn,1≤j≤r

|z(i)j |, |z(y0)|
)︂
= op(k

1/2
n ), (37)

1

rkn + 1

(︂ kn∑︂
i=1

r∑︂
j=1

(z
(i)
j )2 + z(y0)

2
)︂

p→ γ2
0 , (38)

1√
rkn + 1

(︂ kn∑︂
i=1

r∑︂
j=1

z
(i)
j + z(y0)

)︂
d→ N(0, γ2

0). (39)

(37), (38) and (39) follow from (32), (33) and (34) since

z(y0) = − an
knr

kn∑︂
i=1

r∑︂
j=1

z
(i)
j (y0) = Op(

an√
kn

) = op(k
1/6
n )

from (14). This completes the proof of Theorem 3.2.
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