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Abstract

Consider the product of m independent n by n Ginibre matrices and their inverses,
where m = p + ¢, p is the number of Ginibre matrices, and ¢ is the number of inverses
of Ginibre matrices. The maximum absolute value of the eigenvalues of the product
matrices is known as the spectral radius. In this paper, we explore the limiting spectral
radii of the product matrices as n tends to infinity and m varies with n. Specifically,
when ¢ > 1 is a fixed integer, we demonstrate that the limiting spectral radii display a
transition phenomenon when the limit of p/n changes from zero to infinity. When ¢ = 0,
the limiting spectral radii for Ginibre matrices have been obtained by Jiang and Qi [J.
Theor. Probab. 30, 326-364 (2017)]. When ¢ diverges to infinity as n approaches infinity,
we prove that the logarithmic spectral radii exhibit a normal limit, which reduces to the
limiting distribution for spectral radii for the spherical ensemble obtained by Chang et
al. [J. Math. Anal. Appl. 461, 1165-1176 (2018)] when p = q.
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1 Introduction

The study of the spectral properties of eigenvalues has been a focus in random matrix theory.
For example, Wigner [36], Jaynes [22], and Dyson [16] investigated the statistical behaviors
of energy levels in quantum mechanics for a system represented by a Hermitian operator.
In particular, Wigner proved the semicircle law, which states that the density of eigenvalues
for a large class of random Hermitian matrices is approximately semicircular in shape. This
law is a fundamental result in random matrix theory and has found numerous applications
in physics, statistics, and engineering. Furthermore, the statistical properties of the largest
eigenvalues of random matrices are also of great interest in random matrix theory. Tracy
and Widom [33] [34] investigated three important classes of Hermitian matrices, including the
Gaussian orthogonal ensemble, Gaussian unitary ensemble, and Gaussian symplectic ensem-
ble. Their work demonstrated that the largest eigenvalues of these three ensembles converge
weakly to the Tracy-Widom distributions. This result has had important implications for a
variety of applications, including the study of the stability of dynamical systems, combinato-
rial optimization, and statistical physics. Johnstone [26] showed that the limiting distribution
of the largest eigenvalue of Wishart matrices has the Tracey-Widom law of order 1. Dieng [14]
generalized the results of Tracy and Widom [33] 34] to the mth largest eigenvalues of Gaus-
sian orthogonal and Gaussian symplectic matrices. Further discussion on this topic can be
found in, for instance, Baik et al. [5], Jiang [23], and Ramirez et al. [32]. Meanwhile, for non-
Hermitian random matrices, Ginibre was the first to study the empirical spectral distribution
for some non-Hermitian random matrices which are known as Ginibre ensembles. He estab-
lished the circle law for these ensembles, including real, complex, or quaternionic Gaussian
random matrices [19].

In addition to the study of individual random matrices, the study of products of random
matrices is also of great interest. Bellman [6], who first investigated the behavior of systems
under non-commutative effects, pioneered the research in this area. Later on, Furstenberg
and Kesten [17] strengthened his result. A wide range of applications of products of random
matrices can be found in the literature, including the stability of chaotic dynamical systems,
the free energy of disordered systems, wireless communications, symplectic maps, Hamiltonian
mechanics, and quantum chromodynamics at non-zero chemical potential; see, e.g., Tulino
and Verdu [35], Crisanti et al. [13], Ipsen [21], Akemann and Ipsen [3]. Products of Hermitian
matrices are, in general, non-Hermitian, and they have been applied to various fields such as
chaotic quantum systems, growth processes, and dissipative systems; see, e.g., Akemann et
al. [1], Haake [20], Di Francesco et al. [15].

Gotze and Tikhomirov [I8] considered products of independent random matrices with in-
dependent and identically distributed entries having a mean of zero and a variance of one
when the number of multiplicands is fixed. They obtained the limit of the expected empirical
distribution. Under similar settings, O’'Rourke and Soshnikov [28] obtained the limiting em-
pirical spectral distribution. See also the work by Bordenave [7]. Later on, Burda et al. [8] and



O’Rourke et al. [29] demonstrated that the limiting empirical spectral distribution remains
unchanged even if the entries of multiplicands in the product are not identically distributed.
Kosters and Tikhomirov [27] considered sums of products of independent non-Hermitian ran-
dom matrices and their inverses and established the universality of the limiting singular value
and eigenvalue distributions. Akemann and Burda [2] obtained the correlation functions for
products of independent Ginibre matrices.

In recent years, the study of product of non-Hermitian matrices allows the number of
the multiplicands in the product to change with the dimension n of the product matrix.
For example, Jiang and Qi [25] investigated the limiting empirical spectral distribution for
products of Ginibre matrices, Zeng [37] and Chang and Qi [12] extended this work to the
product of spherical ensembles. Qi and Zhao [3I] generalized the results for products of
squared matrices to products of rectangular matrices.

For non-Hermitian matrices, the largest absolute values of their eigenvalues are referred
to as spectral radii. Jiang and Qi [24] obtained the limiting spectral radius for product of
m complex Ginibre matrices. They showed that the limiting distributions have a transition
phenomenon according to the limit of the ratio m/n when n tends to infinity and m changes
with n. Chang et al. [I1] investigated the limiting spectral radius for products of m spherical
ensembles. They demonstrated that, when m is a fixed integer, the spectral radius converges
weakly to distributions that depend on independent Gamma random variables, and when m
diverges with n as n tends to infinity, the logarithmic spectral radius has a normal limit. Qi
and Xie [30] investigated products of m independent rectangular matrices and obtained the
limiting spectral radius which depends on the limit of the ratio m/n, where n tends to infinity
and m changes with n.

In this paper, we are interested in products of Ginibre matrices and their inverses, and our
objective is to obtain the limiting spectral radius for the product matrices. The study of this
type of products of random matrices was initially discussed in Adhikari et al. [4], and the joint
density functions for eigenvalues of both products of Ginibre matrices and their inverses and
product of truncated Haar unitrary matrices and their inverses were obtained in the paper.
Very recently, Chang et al. [I0] obtained the limiting spectral distributions for the products.

More specifically, let Ay, As,---, A,, be independent n X n random matrices with inde-
pendent and identically distributed (i.i.d.) standard complex Gaussian entries. Define the

product matrix A = AT - Asm ) where {e;;1 < k < m} are either 1 or —1. We will in-
vestigate the limiting spectral radius of products matrices by allowing m to change with n.
When ¢, = 1 for 1 < k < m, Jiang and Qi [24] showed that the limiting spectral radii exhibit
a transition phenomenon depending on the limit of the ratio: m/n — 0, m/n — « € (0, 00)
and m/n — oo, respectively. In the present paper, we obtain similar results depending on the
ratio p/n when g > 1 is fixed integer, where p = #{k : ¢, = 1,1 < k < m} and ¢ = m — p.

When p = ¢ varies with n and lim ¢ = oo, our result can reduce to the conclusion obtained
n—o0

by Chang et al. [11] for the product of spherical ensembles, that is, the logarithmic spectral



radii have a normal limit.

The rest of the paper is organized as follows. In Section [2| we introduce the main results
of the paper. In Section [3] we present some preliminary lemmas and provide the proofs for
the main results.

2 Main Results

Let Ay, As,---, A, be independent n X n random matrices with i.i.d. complex standard
Gaussian entries whose real and imaginary parts are two i.i.d. normal random variables with
mean 0 and variance 1/2. Define A as the product of the m matrices Aj*’s, that is,

Agbm) — Ail o Al

where {¢x;1 < k < m} are 1 or —1. Let z,---,2, be the eigenvalues of A Note that
{z;;1 < j < n} are complex random variables. The joint density function for z,--- ,z,,

obtained in Theorem 1 of Adhikari et al. [4], is given as follows:

CHw(zl)H\zi -z (2.1)

=1 i<j

with respect to the Lebesgue measure on C", where C'is a normalizing constant, and function
w(z) is a weight function with

ds — - S o2 - m-DTT g 9.9
w(z)dz /afl-.-zfnm:ze ’H|a:k| ’[[1 T, (2.2)

1

and dz is Lebesgue measure on the complex plane and equivalent to dz = dxdy with z = x+vy:
on R? space. Note that w(z)dz is rotation-invariant and w(z) = w(|z|). Lemma 3.4 of Chang
et al. [I0] proved that

/OOO rtw(r)dr = ””;1 ]f[lr (% (n + 1+ et — n))) . >0, (2.3)

where I'(z) = [~ ¢*"'e~'dt for > 0 is the Gamma function. Moreover, the weight function
w(z) has a representation in terms of the so-called Meijer’s G-function from the formula (2.42)
of Akemann and Ipsen [3], and can be written as

).

m— ym— N, TN T )
w(z) = (27) 1G€n—p,§ { ( (0,0, - - 0)p) !




where p = #{k : ¢, = 1,1 <k < m}, ¢ = m—p, and the symbol G}, [ . ‘z} denotes Meijer’s
G-function.
The spectral radius of A is defined as the maximal absolute value of the n eigenvalues
Z1,: " ,Zp, 1.€.
M, = max |z,|. (2.4)
The goal of this paper is to investigate the limiting distribution of M,, as n tends to infinity.

Before the introduction of the main results, we will define some notations. Let ¢ be the
digamma function defined by

P(x) = %log ['(z)=T"(x)/T(z), x>0.

Then, we have

b
%=exp(1ogr<b>—logr<a>):exp( / Y@)de) fora>0b>0.  (25)

Moreover, we have from Lemma 3.2 in Chang et al. [11]

1 1 1
P(x) = log(z) — py + O(E), P'(z) = . + Py + O(E) as T — 00; (2.6)
n—1
(1) =—v, P(n)=—-y+ % for n > 2; (2.7)
k=1
) > 1 . 1 72
=D g w20 W)=Y =T 23)

where v = 0.57721 - - - is the Euler constant.
We need some notations for our main results and their proofs. Notations 4 and 2 denote

convergence in distribution and convergence in probability and £ denotes the equality in
distribution. N(u,0?) denotes a normal distribution or normal random variable with mean s
and variance o2,

Assume {X,,;n > 1} is a sequence of random variables and {a,;n > 1} is any sequence of

positive constants. Denote X, = 0,(a,) if X,,/a, = 0 as n — oo. If lim limsup P(|X,/a,| >

Cc—00 n—oo
¢) = 0, denote X,, = O,(a,). In particular, if X,, 5 0, then X,, = 0,(1). If X, converges in
distribution, we have X,, = O,(1).
We will first give the general results on the limiting distributions for the spectral radius,
and denote m = m,,, p = p,, and g, = m,, — p, when they change with n.
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Theorem 2.1 Assume that m = m, depends on n, and ¢, — oo as n — co. Then we have

log M,, — pip, kN
o

where 1, = pph(n)/2 — qu0(1)/2 and o = p,'(n) /4 + ¢,0'(1)/4.

Theorem 2.2 Assume {M;;; j > 1, k > 1} are independent random variables such that for
each j > 1 and k > 1, M;, has a Gamma(j) distribution; that is, M;y has a density function
yle ¥I(y > 0)/T(j). Suppose that m = m, depends on n and q > 1 is a fized integer. Set

N(0,1) as n — oo, (2.9)

ap = pp/n.
(a). If lim, o0 v, = 0, then
M, 4 1
oz ax A— as n — oo. (2.10)
: kl:[1 Mj’k

(b). If lim, o a,, =: v € (0,00), then for each a € (0, 00)
M, 4 S

a2 1 1/2

kl;Il Mj’k

as m — oo, (2.11)

where random variables {©; ;7 > 1} are independent random variables and ©;, has a log-

normal distribution with parameters —%(j = %)oz and /% /2 with the cumulative distribution

W) (a1/2/2 + 207 % logy + (7 — 1)041/2) fory € (0, 00),

where ®(x) = \/%7 ffoo e 24t is the cumulative distribution function of the standard normal
distribution, that is, log®;, has a N(—%(j — %)a,%) distribution, and {©;.;j > 1} are
independent of {M;; 7> 1, k> 1}.

(c). If lim,_, o, = 00, then

log M,, — ppp(n)/2 4 N as n — 0o
Vo o

Remark 1. The spectral radius for the product of Ginibre matrices and inverse Ginibre
matrices does not depend on their order but relies on the number of Ginibre matrices or
inverse Ginibre matrices from the above theorems.

Remark 2. The existence for the random variable on the right-hand side of in part
(a) of Theorem [2.2| can be found in Lemma The limiting distributions in part (b) of The-
orem is well defined. Note that max;<;<, % is non-decreasing in n with probability

q
k=1 "5k
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Lm«)o)—l The

k= 1

details are as follows. First, we have E(1/M7,) < j~'* from the Lemma 3. 3in Chang et al. [11]
when j > jo for some jo > 3. Note that {O;,;7 > 1} and {M; ;7 > 1,k > 1} are independent
for every o € (0,00), and E(01,) = exp (—3(j — 3)o+4%(/?/2)? /2) = exp(—2j + 3a) since

O, has a log-normal distribution with parameters —1(j — 1)a and a'/?/2. So we have

one, the limit exists and is larger than 0. We show that P(max;<j<c

%) 00 q -
Z H M2 = ZE(@;{Q)H E(]_/Mﬁk) < Zexp( 2] + 30[) —1.5¢ < 00,
J=jo ak Jj=Jo k=1 j=j0
4
yielding that P(> 72, VLN @ - < o0) = 1, which implies that P(max<;j<oo = Ojia TN < o0) =
k= 1
1 because

B S ST
Remark 3. Theorem covers three different types of the limiting spectral distributions
when g = #{k : e, = -1, 1 <k <m,} > lisafixed integer. When ¢ = 0, the product matrix
is the same as the production of m, independent Ginibre matrices, and the corresponding
limiting spectral radii were obtained by Jiang and Qi [24]. Although Theorem does not
cover the case when ¢ = 0, the expressions of the limiting spectral distributions when ¢ = 0
in parts (b) and (c) in Theorem [2.2| actually reduce to the limiting spectral distributions for
the production of Ginibre matrices; see Theorem 3 (b, ¢) in Jiang and Qi [24]. One should

interpret [[{_, M 1/ ® as 1 when ¢ = 0 in Theorem . We also notice that the limit on the
right-hand side of in part (a) of Theorem for ¢ = 0 is degenerate at 1. After re-
normalization, Mn converges in distribution to Gumbel distribution. In fact, it follows from
Theorem 3 (a) in Jiang and Qi [24] that

n , M,

n n 1 d
p—n log p_(npn/2 — 1) (logp—n — loglog o T3 log(?w)) — A,

where the cumulative distribution function A(x) = exp(—e™*) is the Gumbel distribution.

3 Proofs

In this section, we prove the main results given in Section [2] We will use the distributional
representations for the spectral radii in our proofs and then develop limit theorems for sums
of independent random variables. Some approaches are classical such as validating the central
limit theorem via the method of the moment generating functions. Some strategies for the
proofs are also close to those used in Chang et al. [I1] and Jiang and Qi [24].

Before proceeding with the proofs, we will introduce several lemmas.
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3.1 Some Preliminary Lemmas

Lemma 3.1 (Lemma 3.1 in Chang et al. [11)]) Let random wvariable Y have a Gamma(c)
distribution and X = log(Y'). Then the moment generating function of X is given by

['a+1)

E(eX)= 2TV 4o 4

Moreover, E(X) = () and Var(X) = ¢/(«).

Lemma 3.2 (Lemma 1.1 in Jiang and Qi [24)]) Let Y1, --- .Y, be independent random vari-
ables such that the density of Y; is proportional to y* *w(y)I(y > 0) for each 1 < j <n. As-

sume zy, -+ ,2zn, € C have joint density f(z1,-- -, 2z,) = C [ w(z1) [1]2i— 2|, where w(z) >0
=1 i<j

for all z >0, and C is a normalizing constant. Then g(|z1|, - ,|zn|) and g(Y1,---,Y,) have

the same distribution for any symmetric function g(yi, - ,Yn)-

Lemma 3.3 (Lemma 3.5 in Chang et al. [10]) Let Y1, --- Y, be independent random variables
defined in Lemma. Assume {sj; 1 < k <m,1 < j <n} areindependent random variables
such that s, has a Gamma(ay,) distribution with density function y®+~te vI(y > 0)/T (),
where

1
g =z(n+l+e2j—1-n), I<k<ml<j<n (3.1)

Then'Y; has the same distribution as [[,-, s;fk/Q for each 1 < j <mn.

Lemma 3.4 Let {s;;;1 < k < m,1 < j < n} be independent random variables defined in
Lemma . Then M,, maxi<;j<, Y; and maxi<j<, [ [1-, s;f“km have the same distribution.

Proof. 1t follows from Lemma [3.2] that M,, and max;<;<, Y; have the same distribution. Fur-
thermore, from Lemma {Y;;1 < j < n} and {[[]-, 5;%2; 1 < j < n} have the same

distribution function. Therefore, we conclude that M, max;<;<, Y; and max;<j<, [ [}, s;kk/ 2
have the same distribution. O
Lemma 3.5 Let Yy, -- .Y, be independent random variables defined in Lemma |3.4. Then

for any y € R, P(Y; > y) is non-decreasing in 1 < j < n.

Proof. Denote f; as the density function of Y; for 1 < j < n. Then all f;’s have a common
support, say D C R. Recall that f;(y) = ¢;y* 'w(y) > 0 for all y € D, where ¢; > 0 are
constants. For every 2 < j <mn, f;(y)/fj—1(y) = ¢;y/c;—1 is increasing in y € D. According
to Lemma 2.4 in Chang et al. [9], P(Y; > y) > P(Y;—1 > y) for all y € R. This proves that
P(Y; > y) is non-decreasing in j for any y € R. O



Lemma 3.6 (Lemma 2.1 in Jiang and Qi [24]) Let c,; € [0,1) be constants for j > 1,n > 1
and SUPy,>1 j>1 Cnj < 1. For each j > 1, ¢; = lim,, oo Cp;. Assume ¢, = Z;’;l Cnj < 00 for
eachn >1, c:=>Y "7 ¢; < oo and llrnn_>Oo ¢, = c. Then

nh—>noloH 1 —cpj) :ﬁ (1—c¢).
7=1

Review that random variables {M;;; j > 1, k > 1} are defined in Theorem . For the
rest of the paper, let {M;;; 7 > 1, kK > 1} be an independent copy of {M,;; j > 1, k> 1}.
With the above lemmas, we can develop a distributional representation for M,, = max;<;<, |z;|

as in (2.4)).
For the «a;y given in (3.1f), we have

7=1

, B if e =1;
ajr = (n+1+€k(2j—1—n)):{j g

n+1—yg, if ¢ =—1.

N | —

Also recall p, = #{k : e, = 1,1 <k <m} and ¢, = m, — p,. We have from Lemma that

~1/2

Y, = Hek/Qd%f0r1<j<nor

bl Mn Jj+1,k
VAL
d H n+1 -7,k .
Yoy, = - j=1,--n. (3.2)
n /2 M ) M
Zzl M
Then it follows from Lemma [3.4] that
Pn Ml/Q
d w=1 Y1k
M e P &

The above representation will greatly simplify our proofs in this paper. In particular, when

Gn =0, , Inax ( M:Lflf ;1 has the same distribution as that of the largest absolute value of
<j<n ’

the n eigenvalues of A, --- A, , the product of p,, independent n x n Ginibre ensembles. This is

the special case of AP when all €x = 1 and the corresponding limiting spectral distributions
were obtained by Jiang and Qi [24]. This fact will be used in the proofs for Theorem and
Lemma 3.9

Lemma 3.7 (Lemma 3.3 in Chang et al. [I1]) For each fized integer ¢ > 1, the random
variable

. 1
T, = lim max =%
n—oo 1<5<n
sisn [ Tiey M),

is well defined, and P(0 < T, < o0) = 1.



Lemma 3.8 For every j > 1, we have

P log M1 i — 1—j
_ Zk:l og n+1—jk pnw(n + j) i} N(O, 1) (34)
Vond'(n+1— )

as n — 0o, where p, is a sequence of positive integers.

le]' :

Proof. Denote the moment generating function of Ny ; as My, ;(t). It suffices to show that

: t?
nh_)nolo My, ,(t) = exp (5), lt] < 1. (3.5)

It follows from Lemma3.1|that the moment generating function of log(M,41-jx) — ¥ (n +
1 —7) is given by

AL+ 1—j+1) ,
- 1—j)t t>-—n—1+7.
(st =
Then we have from (2.5 that
: r 1 fjp——t )\
My, ,(t) = eXp<_ Y(n+1—j)t ) (n+ ”m)
K Von' (n+1 =) I(n+1-—j)

= [exp ( — \/z::;’?nl—i-_ljitj)) exp (/0 ) Pn+1—j+ s)ds))pn

bn+1— )t +/m

Vo' (n+1—35)  Jo

(p /\/pnw’znﬂ—j)
0

= exp(—

vn+1—7+ s)ds))pn

(w(n—l—l—j—i—s)—w(n—l—l—j))ds)

% 1
— exp (pn/\/pnw (n+1-7) 8/ wl(n+ 1 _] +S’U)d1)d8>
0 0

tuv

t2 1 1 . ‘
- eXp<¢’(n+1—j)/o u/o Vin =it \/pn¢’(n+1—j))dvdu>'

In the last step, we changed the variable s = tu/+/p,¥’'(n + 1 — j).
Fix ¢ within [t| < 1. In view of (2.6]), we have ¢/(n + 1 — j) > —2— for j > 1, which

n+1—j
implies
|tuv| < \/T
= > VN —J
Vo' (n+1— )

10

= exp




uniformly over |u| <1 and |v| < 1. Then we have

tuw ) = 1+ 0(1)
Vo' (n+1—5) ntl—j

holds uniformly over |u| < 1 and |v| <1 as n — oo. Thus, we get

(1 +
My, .(t) = exp( ol / / dvdu)
7 n+1—j n+1—]

2(1 4
— eXp(W(n—i—tl(—j Y+ 1—7) //udvdu
t2(1+0(1)) )
)

- =P <2¢/(n+1 —n+1—j

Y'(n+1-j+

tQ
_> J—
P ( 2 >
as n — 0o, that is, (3.5)) holds. Therefore, (3.4)) is proved. O

Lemma 3.9 Let p = p, be a sequence of positive integers. If lim,_,o 2 = 0, particularly for
Pn =D, then

Pn
1/2 p
112}&;; (Mnﬂ,],k/n) =1 asn — oo.
k=1
Pn —~1
Proof. Recall that max H M fl , and max [[ M, fl . are identically distributed. From
1<j<n; ntl=j, 1<j<n —Js

the statement in the paragraph after equation (|3 , max H Mnfl _;x has the same distribu-

tion as that of the largest absolute value of the n elgenvalues of Ay ---A,,, the product of p,
independent n x n random matrices with i.i.d. complex standard Gaussian entries. Then it
follows from Theorem 3(a) of Jiang and Qi [24] that

Pn 1/2
DPn nlaD( II ]V[ 1—4.k
A, = M V20 Ly g (S T Yy
1= oo (g TT Oencsafn) = 1) =t =00 (S50 1) = S0 00

which gives the asymptotic distribution for the largest spectral radius of the product of in-
dependent Ginibre ensembles when lim,,_,, 22 = 0, where A(z) = exp (—e™) is the standard
Gumbel distribution, and

1/2

1

(n = (E log E) . by=log - —loglog - —  log(2m).
Pn Pn Pn Pn 2

11



Therefore, we have from ((3.6))

maxpn (M, ~/n)1/2—1:b—n—|—&3>0
1<5<n n+1—j,k a, a, )

since

by,
a, oo and — — o0 asn — oo.
Qp,

This completes the proof of the lemma. a

Lemma 3.10 Define for every integer r € {1,2,--- ,n}

Pn

. 1/2
Wi, = gljlgr 11 (Mn+1—j,k/n) .

Assume lim,, o pp/n = 0. Then there exists a sequence of integer {r,} with 1 <r, <n and
Ty —» 00 as n — 0o such that W, . 2 1asn— .

Proof. Using the notation defined in (3.4)), we have for every j > 1

Pn
| ! |
H M2 = oxp (Gpato(n + 1= ) + 5Vt (n 1= j)N1,)

from Lemma . From equations and (2.7), we have log(n) = ¥(n) + 5=

L+
Y(n+1—7j)= n+§ﬂ+2(n+132+0(n+1j)and¢() Y(n+1—7)=LL1+0

n — 00. Then for every j > 1

Pn

[T (Mo sa/m) "

= oxp (Gpattn + 1= ) + 5 v/pd (0 1= )V:,) exp (~ palogn)
= e (Gpa((n+ 1) = 9(n) — o= +0()) + 5V a1 )M, )
- n(3(- 2o - o)

1 DPn Pn Dn 1/2
X 5 @) ) N, .
o (A i ) M

L1 asn— oo

12



since lim,,_, p,,/n = 0 and Ny ; AN (0,1) from Lemma This implies that for every r > 1
Wmil as n — 0o.

Hence, for every r > 1, there exists a positive integer n, such that

1 1
P(|Wp,—1>-) <= foralln>n,,
r r
where n, can be selected in such a way that n; < ns < nz < ---. Now for each n > ny, there
exists a unique r such that n, < n < n,;1, and we define r, = r for n, < n < n,.;. We see
that 1 <r, <n, and r, — 0o as n — oo, and

1 1
P(\Wy,, — 1| > —) < — forn >n,,
n T?’L
which yields W, ., % 1 as n — oo. This completes the proof. O

3.2 Proofs of Theorems [2.1] and [2.2]

Recall that we have assumed that {Mj,k; j > 1, k > 1} are independent random variables
and M, has a Gamma(j) distribution, and {M,; j > 1, kK > 1} is an independent copy of

Proof of Theorem [2.1, Define

Pn ]/\\4'/1/2
k=1 Mnr1-5k .
‘/j - Gn 1/2 ) 1 S j S na
k=1 "5k

which are independent random variables. Note that V 4 nt1—j, 1 < j < n from equation
(3-2). In view of (3.3) we have

P(llgjag% log |z;| < pi, + opx) = P(log M, < p, + 02) = Haw(a:) for every x € R,
<j< e

where a, j(x) = P(logV;, < p, + opx) for 1 < 5 < n, p, = p,1p(n)/2 — ¢,1(1)/2 and
02 = p,'(n)/4 + q,10'(1)/4. Therefore, Theorem is true if we can show

lim a,;(x) = () (3.7)

n—oo
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and
ggOHzan,j(ﬂf) =1 (3.8)
]:

for every x € R, where ®(x) is defined as the cumulative distribution of a standard normal
random variable.

Let us first prove (3.7)). Since

1 Pn _ qn
logV; = §<Zlog M1 — Zlog MMT), (3.9)
k=1 k=1
(3.7) is equivalent to
logVi — e 320" log My, s, — pn " log My — gutb(1
Og 1 ILL — Zk:l Og ,k p w(n) _ Zk:l Og ].,k‘ q w( ) i> N(O, 1) (310)
On \/PnW(n) + an/<1) \/an(n) + anl<1)
as n — oo.
For each integer j > 1, {logM,x: k = 1,---,¢g,} are i.i.d. random variables, and their

means and variances are equal to ¥(j) and ¢'(j), respectively, from Lemma Then we
have

_ i log Mk — gnth(j) d
¥ (J)
by the central limit theorem for each j > 1 when ¢, — oo as n — oc.
When j = 1, it follows from (3.11) and Lemma with the independence of {M;;} and

{Mn-i—l—j,k} that
log‘/l — Hn _ V pnwl<n)N1,1 B V qn¢/(1)N271 i> N(O 1)
Tn Vo' (n) + @' (1) /pad!(n) + ¢’ (1) -

which implies ({3.7]).
Now, we prove (3.8). Similarly, we have when j = 2

Ny j N(0,1) as n — o0 (3.11)

Ziil log Mn—l,k — pat(n — 1) . 2"21 log My, — 4t (2) g) N(0,1) (3.12)
Vo' (n = 1) + .9 (2) Vo' (= 1) + 4,0 (2) ’ '

as n — co. It follows from (2.6) and (2.7) that ¢¥(n) — ¢ (n —1) = L5, ¥(2) — (1) = 1, and

3=

14



W' (n) = 22U as p — co. Then we have from (3.12)

n—1

lOg ‘/2 — Hn _ Ziil log Mn—l,k - pn@b(n) _ Zznzl log MQ,k - Qn,lvb(l)
n Vo' () + g’ (1) Voat'(n) + .0 (1)
VPt (n) + ¢y’ (1) Vo' (n) + g2 (1)
Pty + dn
_ +0,(1
VPt (n) + ¢’ (1) W

= Vol ) (14 0(1) + 0,(1)

P
— —o00 asn — oo,

which implies 1 — a, 2(z) = P(log Vs > p, + 0,2) — 0 as n — oo for any x € R.

Since V; < Y, 4+1-j, we have from Lemma that P(V; > z) is non-increasing in j €
{1,---,n}. Then maxs<j<y, (1 — an;(z)) =1 — a,2(z) — 0 as n — oo. Moreover,

n

1-— Z (1—an;(z)) < H (1= (1= an;(2))) = Han,j(a:) <1

=2 j=2
Thus, in order to prove (3.8)), it suffices to show

nlg{;Z (1—an;(z)) =0, =€ (—o0,00). (3.13)

By applying inequality P(X > 0) < E(e¥) and noting that all the summands on right-
hand side of (3.9) are independent, we have from Lemma and ([2.5) that for any fixed

15



x € (—00,00)

1 —an;(x)
= P(logV; > p, + o,)

Pn dn
—p (Z log Mys1_j — > _1og My, — putb(n) + ¢utp(1) — v/put/(n) + gut'(D)z > 0)
k=1 k=1

IN

Pn gn
E (exp(ZIogMnHj,k—;logMj,k—pm ) + @ntp(1) = V/put'(n) +qnw'(1>x)>
k=1 =1

Fn4+2—=7)\p. (G —1)
(T e

= exp (pn/01¢(n+1—j+t)dt> exp —qn/o w(j—l—i—t)dt)
X exp ( = pat(n) + gu (1) = /pat' (n) + qnw’(l)w>
= exp ( — Pn /01 (¥(n) —wn+1—j+ t))dt> exp < — qn /01 (VG —141) - @D(l))dt)

X exp ( — /pat'(n) + qnw’(l)x>.
Note that 1(y) is increasing in y > 0 since ¢'(y) > 0 from (2.8). Therefore,
0 < b(n) — bl +2— j) < Bn) — Y(n+1—j+1)

)™ exp ( — pat(n) + guto(1) — /pat' (n) + qnw’(l)x>

and
0<9(G—1)—v@) <9H—-1+t)—v(1)
for t € [0,1] and j > 3. By using the trivial inequality \/p,1’'(n) + ¢,¢'(1) < \/pat'(n
¢’ (1), we have for any 3 < j <n

1 —an;(x)
1

< exp(—pn/; () = $(n+2 = j))dt) exp(—qn/o (W6 = 1) = v()ar)
X exp (s/pnw’(n)|$| + Qn¢/(1)|$|>
— exp ( —pu(¥(n) —(n+2—3)) + \/pnw’(n)\:v!)

xexp (= ga(0 — 1) = ¢() + v Da]).
Define jj as the smallest integer larger than 3 + 3|z|. In view of (2.7)), for all jo < j<n

n—1 1 _2 _2
b —vmt+2-j)= Y z=i—>% (3.14)

. n n
k=n+1—j

16



and
V(= 1) - (1) = Y 1 2 log). (3.15)
If p,¢'(n) <1, then
exp (= pa () = 0(n+2 = ) + Vo ()]2]) < .

If poit'(n) > 1, \/putt'(n) < ppt'(n) < 2p,/n for all large n from (2.6)), and we have from
(3.14))

exp (= pu(¥(n) = ¥(n +2 = ) + Vi (0l

w(jo—2)  pn2
< exp(_p(m ) P \xl)
n n
n(jo —2 —2
_ exp(_P(Jo \$|)>
n
< elel

for all large n. Therefore, by virtue of (3.15]), we obtain that for jo < j <n

L= any(e) < ellexp (= gu(¥( — 1) = v(1) + Va (D]
< ellexp (= gnlogj + a0 (1)]z])

for all large n. Since ¢, — o0 as n — 0o, we have /q,¥'(1)|z| < g, logjo/2 for all large n,
and hence we conclude that

1 1
L= an;(x) < elexp (= gulog j + Snlog jo) < el exp (= Sgalog j)
for all jo < j < n when large n is large. Therefore, we have

n

S (@) < (o= 21— ana(a)) + e D exp (~ 2qalog )

Jj=2 Jj=Jjo
= (o= 2)(1 = anala) + e 3 7%
J=Jjo
n+1 4
< (Jo—2)(1 — ana(x)) + el / t~ 2 dx
1
2¢ll

< (Jo—2)(1 — ana(2)) +

— 0

Qn_z

17



as n — 0o, which yields (3.13)). The proof of Theorem [2.1]is complete. O

Proof of Theorem . We show part (a) first. Assume lim,, o, a;, = 0.
Define for 1 <r <n

1
Z, = max —————-.
1<5< q 1/2
SIS ] gy My,
Then we have
—~ 1/2 on
" (My1—in/n ~ 1/2
Zp Wir < max ko (Mns1j/m) < Z, max (Mnﬂ,jk/n) / , (3.16)
’ 1<j<n a2 1<j<n ’
k=1""4,k k=1

where W, , is defined in Lemma and r, satisfies the conditions in Lemma such
that 7, —> oo and W, . % 1 asn — oo. From Lemma , we have Z, — T, =

max W and Z,, — T, as n — oo with probability one. From Lemma . we have that
<gy<oo ] k
max [ ( 1k /n) %1 as n — co. Therefore, we conclude that Z, W, - T, and
<j<n
r b4 . . .
Zn, n max [Ty (Mosa—jg /n) — T, as n — 0o, which together with (3.16) and (3.3) yield
o~ 1/2
My a oy (M1 /1) N
T T

proving (Z10).

Now we show the part (b) of Theorem under condition lim,,_,., a;, =: @ € (0, 00).
We have from ({3.3) that for any fixed = € (0, 00)

M k=1 Mi—/fl —7, k/npn/2
P (npn/Q - ) HP( 1/2 = a:)
j=1 Hk 1

Hence, to prove ([2.11)), it suffices to show

pn Ml/z /npn/Q

T <Hk1 mse) B

for z € (0, 00), where ©,,’s are independent random variables as defined in Theorem . We
see that ©;, has a cumulative distribution function ®(a'/?/2 4+ 2a2logy + (j — 1)a'/?);

that is, 04 < exp ( —3((—Da+a/2)) + %al/QZ), where Z is a standard normal random
variable.
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Now fix z > 0 and we prove (3.17). Note that (3.17)) is equivalent to

tim T =) = [T =e), (3.18)

J=1

where ) .
ey = 1= P(n 2T /T M <), 1<) <,
k=1 k=1

and ¢,; =0 for j >n,and ¢; =1 — P(@m/HZ:1 Mjlf < :1:), j>1.
We apply Lemma [3.6] to verify (3.18)]).

Let us first prove that lim,_, ¢,; = ¢; for each j > 1. It follows from Lemma that

DPn

—~ 1 , 1 :
[17, 5 = exp (§pn¢(” +1-j)+ 5\/1%1/"(” +1=j)Niy)
k=1

for every j > 1. It follows from (2.6) and ({2.7)) that logn = ¥ n)—i—%—i—O(n—lQ), V'(in+1—j) =
7;+11—j + 2(n+11_j)2 + O((n+11_j)3), and ¥(n) —yY(n+1—j) = 3%1(1 +0(%)) as n — oo for every
j > 1. Then we have

Pn
nfpn/Q H ]/\\4—/1/2
k=1

n+1—j3.k

= exp (%pnw(n +1—7)+ %mw'm +1—5)Nyy)exp (—%pn logn)

= exp (%p (V(n+1-7) =¥(n) - % + O(%)) + %%pnwn F1-))My)

- oo (5= 20 - 3 S G ) )
— oxp (- %((j —1)(1+ o(1))an + 0 /2) + %(ajﬂ +o(1))N;).

which implies [[i", Mifl_j’k/np”m < O as n — oo for each j > 1 by noting that

Ny 4 N(0,1) as n — oo. Since [[{_, Mjlf is independent of []¢", M:Lflfj’k/np"m and
its distribution is free of n, we further have

Pn q q
Tr1/2 1/2\ 4 1/2
(H Mnil—j,k/”pm’ H Mjé ) ~ (@j’a’ H Mapé )
k=1 k=1 k=1
Then by the continuous mapping theorem, we conclude that for each 7 > 1

P pgl/2 Pn/2
k=1 Mn+1—j,k;/n d Oj.a
q 1/2 q 1/2
k1 M, k1 M

as n — .
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Since all limits on the right-hand side above are continuous random variables, we have
lim,, o0 €nj = ¢; for each j > 1.

Since n~P2/2 TP :Lfl inl Tz ;22 and O, /[17_ ]122 are continuous random vari-
ables having density functlons with a common support (0, oo) cpj<landcj <lforallj>1
and n > 1.

Now we are ready to show SUPp>1 451 Cnj < 1. It follows from Lemmathat Cnj < cp1 for
all 1 < j <nandn>1, implying SUPp,>1 j>1 Cnj = SUDy>1 Cnl- Since ¢,; — ¢ < 1 asn — oo,
we have ¢,; < (1+¢1)/2 < 1 for all n > ng, where ny > 1 is an integer. Furthermore, since
cnj < 1, we obtain that

sup an = Sup Cn1 < maX( max Cpi, (1 + Cl)/2) 1
n>1,5>1 n>1 1<n<ng

Recall that 0 < ¢,; <1 for 1 < j <n and ¢, = 0 for j > n. Trivially, we obtain

r41 min(n,r+1)
chj = Z Cpj <min(n,r+1), r>1, n>1. (3.19)
j=1 j=1

By using Markov’s inequality P(X > 0) = P(e** > 1) < E(e?X) and the independence of
{M;p;7>1,k>1} and {M,,41_;;j > 1,k > 1}, we have from Lemma and ([2.5)) that for
any fixed z

C .

Rk /2
M5 ]k/np / >
IV =z

]k

= P

Pn 1/2 Pn/2
k=1 n—l—l ]k/nn

[T, M1
Pn

= P( logMnH Jk—ZIOg k—pnlogn—Zlog:U>O)

I
s

log > log :p)

k=1 k=1

IN

E exp ZlogMnH Jk—QZlog k—Qpnlogn—éllog:I:))

_ (”+3—J) I(j
- ((n+1—9)) ( I'(j

= exp pn/ w(n+1—j—|—t)dt)exp —q/ wj—2+t)dt)exp(—anlogn—éllogm)

)2))qexp ( — 2py, logn — 410gm)

2
- exp<—pn/0 (logn—w(n—i—l—j—i—t))dt—q/o w(j—2+t)dt—4logx>
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for 2 < j < n. Note that ¢ (y) is increasing in y > 0 since ¢'(y) > 0 from ({2.8)). Therefore,
0<logn—1v(n+3—7) <logn—1v(n+1—j+t)and 0 < Y(j—2) <P(j—2+t) from ([2.6)

for t € [0,2] and 3 < j < n. Then we have

an

< exp(—pn/:(logn—w(n—i—B—j))dt) exp(—q/OQz/J(j—Q)dt)exp(—élloga:)

< eXp<— 2pn(logn — (n+ 3 —j)) — 2q¥(j — 2) —410gx))
(

< exp (—2q¢(j —2) — 4logz).
Moreover, we have from (2.6)) that ¢ (j —2) > log(j —2) — 2(3 ) for all r +2 < j < n for large
r. Hence
sup Cpnyj < Sup Z Cn,j
n>r+2] —t n>r+2] —r12
< sup Z exp ( —2q¥(j —2) — 4logx)
n>r+2 .
Jj=r+2
< sup exp (—2qlog(j —2) + ——— —4logx
n>r+2 ;2 ( (] — 2) )
< ety (j-2)7
J=r+2
< eq/Tx_4/ (z —2) %dx
—4
< c (T‘ - 2)172q’
29 — 1
which is of order 1/r for all large r. This, coupled with (3.19)), yields that
= su Cn.i < 00.
n>1:1) Z J
Because lim,,_,o ¢,; = ¢; for j > 1, it follows that ZTH = hm ZTH cn; < C for all

r > 1. Therefore Z]‘; c¢; is a bounded and monotone increasing sequence, and Zj:l c; <

C < oo as it is convergent by the monotone convergence theorem. Consequently, we have
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nh_}nolo D iy Cnj = D50 ¢ since for all large r

r+1 r+1 00

o o
1o =3l < Jim (13 =3 el +| > - Y o)
J=1 J=1 j=r+2 j=r+2
=l > e Y

Jj=r+2 Jj=r42
o0
< sup E Cnj + E Cj
n>r+2j =r42 Jj=r+2
4 00
elx _
< (r —2)t27 4 E ¢
29 —1 A
Jj=r+2

which tends to zero by letting r tend to infinity.
Thus, we have proven (3.18) by using Lemma [3.6]
Now we show part (¢) of Theorem under condition lim,,_, o, = co. We have

_ 1/2 1
log M, = nax <logHM Yioj +log : 1Mj1£2>

1
< ax lo Ml/2 ax log ———— =:
- 11;1];% gH n+1 ]k—i_llgjél Z lM-1£2 Ry
=1

and
Pn . q
log M,, > log H M:L/,f — log H Mllf =:L,.
k=1 k=1

By using the two inequalities above we have

L, — pnw(n)/Q < log M,, — pn¢(n)/2 < R, — pnw(n)/2
VPa/n/2 \/Pn/1/2  /DPa/n/2

To prove ([2.12)), it suffices to show that both the left-hand side and the right-hand side in

(3.20) converge in distribution to the standard normal.

(3.20)

Pn
As we have pointed out in the paragraph after equation (3.3)) that Jnax H M:Lfl _jx has
SISN

the same distribution as that of the largest absolute value of the n eigenvalues for product of
p, independent n x n random matrices with i.i.d. complex standard Gaussian entries. From
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the part (c) in Theorem 3 of Jiang and Qi [24], we have

JVak
1@3a<X logH ”{Fl —j:k pnw(n)/Q
V pn/n/2

Meanwhile, from Lemma lim max log W = log T, is well defined. Therefore

i>N(O,1) as n — 00.

n—o00 1<5<n k=1 Mk
max lOg ﬁ
1<j<n k=1 M)

20 asn — oo.

V/ Dn/10/2

Then it follows that as n — oo

~1/2 I 412
Ru— putb(n)/2 max log H M,\\ i — Patb(n)/2 lrgjlgnlogkll M),

VPn/1/2 VPn/1/2

Now we apply Lemma with j =1 to get

Tr1/2
iz 108 My > /;W(n)/Q 4 N(0,1) as n — o0,
\ Pn/T

by noting that ¢'(n) = 1+°(1 from (2.6)). Trivially, we also have

log Hk M 1/2

V pn/n/2

4 N(0,1). (3.21)

—>0asn—>oo,

and conclude that

Lo — patb(n)/2  log[Tem, M, — pto(n)/2 — log TTi_, M7

V/ Dn/10/2 V/ Dn/10/2
By combining (3.20)), (3-21)) and ([3.22)), we have shown (2.12), that is, part (c) of Theorem [2.2)

is true. The proof of Theorem [2.2]is completed. ]

% N(0,1). (3.22)
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