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Abstract

Consider the product of m independent n by n Ginibre matrices and their inverses,
where m = p + q, p is the number of Ginibre matrices, and q is the number of inverses
of Ginibre matrices. The maximum absolute value of the eigenvalues of the product
matrices is known as the spectral radius. In this paper, we explore the limiting spectral
radii of the product matrices as n tends to infinity and m varies with n. Specifically,
when q ≥ 1 is a fixed integer, we demonstrate that the limiting spectral radii display a
transition phenomenon when the limit of p/n changes from zero to infinity. When q = 0,
the limiting spectral radii for Ginibre matrices have been obtained by Jiang and Qi [J.
Theor. Probab. 30, 326–364 (2017)]. When q diverges to infinity as n approaches infinity,
we prove that the logarithmic spectral radii exhibit a normal limit, which reduces to the
limiting distribution for spectral radii for the spherical ensemble obtained by Chang et
al. [J. Math. Anal. Appl. 461, 1165–1176 (2018)] when p = q.
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1 Introduction

The study of the spectral properties of eigenvalues has been a focus in random matrix theory.
For example, Wigner [36], Jaynes [22], and Dyson [16] investigated the statistical behaviors
of energy levels in quantum mechanics for a system represented by a Hermitian operator.
In particular, Wigner proved the semicircle law, which states that the density of eigenvalues
for a large class of random Hermitian matrices is approximately semicircular in shape. This
law is a fundamental result in random matrix theory and has found numerous applications
in physics, statistics, and engineering. Furthermore, the statistical properties of the largest
eigenvalues of random matrices are also of great interest in random matrix theory. Tracy
and Widom [33, 34] investigated three important classes of Hermitian matrices, including the
Gaussian orthogonal ensemble, Gaussian unitary ensemble, and Gaussian symplectic ensem-
ble. Their work demonstrated that the largest eigenvalues of these three ensembles converge
weakly to the Tracy-Widom distributions. This result has had important implications for a
variety of applications, including the study of the stability of dynamical systems, combinato-
rial optimization, and statistical physics. Johnstone [26] showed that the limiting distribution
of the largest eigenvalue of Wishart matrices has the Tracey-Widom law of order 1. Dieng [14]
generalized the results of Tracy and Widom [33, 34] to the mth largest eigenvalues of Gaus-
sian orthogonal and Gaussian symplectic matrices. Further discussion on this topic can be
found in, for instance, Baik et al. [5], Jiang [23], and Ramirez et al. [32]. Meanwhile, for non-
Hermitian random matrices, Ginibre was the first to study the empirical spectral distribution
for some non-Hermitian random matrices which are known as Ginibre ensembles. He estab-
lished the circle law for these ensembles, including real, complex, or quaternionic Gaussian
random matrices [19].

In addition to the study of individual random matrices, the study of products of random
matrices is also of great interest. Bellman [6], who first investigated the behavior of systems
under non-commutative effects, pioneered the research in this area. Later on, Furstenberg
and Kesten [17] strengthened his result. A wide range of applications of products of random
matrices can be found in the literature, including the stability of chaotic dynamical systems,
the free energy of disordered systems, wireless communications, symplectic maps, Hamiltonian
mechanics, and quantum chromodynamics at non-zero chemical potential; see, e.g., Tulino
and Verdú [35], Crisanti et al. [13], Ipsen [21], Akemann and Ipsen [3]. Products of Hermitian
matrices are, in general, non-Hermitian, and they have been applied to various fields such as
chaotic quantum systems, growth processes, and dissipative systems; see, e.g., Akemann et
al. [1], Haake [20], Di Francesco et al. [15].

Götze and Tikhomirov [18] considered products of independent random matrices with in-
dependent and identically distributed entries having a mean of zero and a variance of one
when the number of multiplicands is fixed. They obtained the limit of the expected empirical
distribution. Under similar settings, O’Rourke and Soshnikov [28] obtained the limiting em-
pirical spectral distribution. See also the work by Bordenave [7]. Later on, Burda et al. [8] and
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O’Rourke et al. [29] demonstrated that the limiting empirical spectral distribution remains
unchanged even if the entries of multiplicands in the product are not identically distributed.
Kösters and Tikhomirov [27] considered sums of products of independent non-Hermitian ran-
dom matrices and their inverses and established the universality of the limiting singular value
and eigenvalue distributions. Akemann and Burda [2] obtained the correlation functions for
products of independent Ginibre matrices.

In recent years, the study of product of non-Hermitian matrices allows the number of
the multiplicands in the product to change with the dimension n of the product matrix.
For example, Jiang and Qi [25] investigated the limiting empirical spectral distribution for
products of Ginibre matrices, Zeng [37] and Chang and Qi [12] extended this work to the
product of spherical ensembles. Qi and Zhao [31] generalized the results for products of
squared matrices to products of rectangular matrices.

For non-Hermitian matrices, the largest absolute values of their eigenvalues are referred
to as spectral radii. Jiang and Qi [24] obtained the limiting spectral radius for product of
m complex Ginibre matrices. They showed that the limiting distributions have a transition
phenomenon according to the limit of the ratio m/n when n tends to infinity and m changes
with n. Chang et al. [11] investigated the limiting spectral radius for products of m spherical
ensembles. They demonstrated that, when m is a fixed integer, the spectral radius converges
weakly to distributions that depend on independent Gamma random variables, and when m
diverges with n as n tends to infinity, the logarithmic spectral radius has a normal limit. Qi
and Xie [30] investigated products of m independent rectangular matrices and obtained the
limiting spectral radius which depends on the limit of the ratio m/n, where n tends to infinity
and m changes with n.

In this paper, we are interested in products of Ginibre matrices and their inverses, and our
objective is to obtain the limiting spectral radius for the product matrices. The study of this
type of products of random matrices was initially discussed in Adhikari et al. [4], and the joint
density functions for eigenvalues of both products of Ginibre matrices and their inverses and
product of truncated Haar unitrary matrices and their inverses were obtained in the paper.
Very recently, Chang et al. [10] obtained the limiting spectral distributions for the products.

More specifically, let A1, A2, · · · , Am be independent n × n random matrices with inde-
pendent and identically distributed (i.i.d.) standard complex Gaussian entries. Define the

product matrix A
(m)
n = Aϵ11 · · ·Aϵmm , where {ϵk; 1 ≤ k ≤ m} are either 1 or −1. We will in-

vestigate the limiting spectral radius of products matrices by allowing m to change with n.
When ϵk = 1 for 1 ≤ k ≤ m, Jiang and Qi [24] showed that the limiting spectral radii exhibit
a transition phenomenon depending on the limit of the ratio: m/n → 0, m/n → α ∈ (0,∞)
and m/n→ ∞, respectively. In the present paper, we obtain similar results depending on the
ratio p/n when q ≥ 1 is fixed integer, where p = #{k : ϵk = 1, 1 ≤ k ≤ m} and q = m − p.
When p = q varies with n and lim

n→∞
q = ∞, our result can reduce to the conclusion obtained

by Chang et al. [11] for the product of spherical ensembles, that is, the logarithmic spectral
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radii have a normal limit.
The rest of the paper is organized as follows. In Section 2, we introduce the main results

of the paper. In Section 3, we present some preliminary lemmas and provide the proofs for
the main results.

2 Main Results

Let A1, A2, · · · , Am be independent n × n random matrices with i.i.d. complex standard
Gaussian entries whose real and imaginary parts are two i.i.d. normal random variables with
mean 0 and variance 1/2. Define A

(m)
n as the product of the m matrices Aϵkk ’s, that is,

A(m)
n = Aϵ11 · · ·Aϵmm ,

where {ϵk; 1 ≤ k ≤ m} are 1 or −1. Let z1, · · · , zn be the eigenvalues of A
(m)
n . Note that

{zj; 1 ≤ j ≤ n} are complex random variables. The joint density function for z1, · · · , zn,
obtained in Theorem 1 of Adhikari et al. [4], is given as follows:

C
n∏︂
l=1

ω(zl)
n∏︂
i<j

|zi − zj|2 (2.1)

with respect to the Lebesgue measure on Cn, where C is a normalizing constant, and function
ω(z) is a weight function with

ω(z)dz =

∫︂
x
ϵ1
1 ···xϵmm =z

e−
∑︁m
k=1|xk|2

m∏︂
k=1

|xk|(1−ϵk)(n−1)

m∏︂
k=1

dxk, (2.2)

and dz is Lebesgue measure on the complex plane and equivalent to dz = dxdy with z = x+yi
on R2 space. Note that ω(z)dz is rotation-invariant and ω(z) = ω(|z|). Lemma 3.4 of Chang
et al. [10] proved that∫︂ ∞

0

rtω(r)dr =
πm−1

2

m∏︂
k=1

Γ

(︃
1

2

(︂
n+ 1 + ϵk(t− n)

)︂)︃
, t > 0, (2.3)

where Γ(x) =
∫︁∞
0
tx−1e−tdt for x > 0 is the Gamma function. Moreover, the weight function

ω(z) has a representation in terms of the so-called Meijer’s G-function from the formula (2.42)
of Akemann and Ipsen [3], and can be written as

ω(z) = (2π)m−1Gp,m−p
m−p,p

[︃
(−n,−n, · · · ,−n)m−p

(0, 0, · · · , 0)p

⃓⃓⃓⃓
|z|2
]︃
,
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where p = #{k : ϵk = 1, 1 ≤ k ≤ m}, q = m−p, and the symbol Gm,n
p,q

[︁
· · ·
⃓⃓
z
]︁
denotes Meijer’s

G-function.
The spectral radius of A

(m)
n is defined as the maximal absolute value of the n eigenvalues

z1, · · · , zn, i.e.

Mn := max
1≤j≤n

|zj|. (2.4)

The goal of this paper is to investigate the limiting distribution of Mn as n tends to infinity.
Before the introduction of the main results, we will define some notations. Let ψ be the

digamma function defined by

ψ(x) =
d

dx
log Γ(x) = Γ′(x)/Γ(x), x > 0.

Then, we have

Γ(b)

Γ(a)
= exp

(︁
log Γ(b)− log Γ(a)

)︁
= exp

(︁ ∫︂ b

a

ψ(x)dx
)︁

for a > 0, b > 0. (2.5)

Moreover, we have from Lemma 3.2 in Chang et al. [11]

ψ(x) = log(x)− 1

2x
+O(

1

x2
), ψ′(x) =

1

x
+

1

2x2
+O(

1

x3
) as x→ ∞; (2.6)

ψ(1) = −γ, ψ(n) = −γ +
n−1∑︂
k=1

1

k
for n ≥ 2; (2.7)

ψ′(x) =
∞∑︂
k=0

1

(k + x)2
, x > 0 and ψ′(1) =

∞∑︂
k=1

1

k2
=
π2

6
, (2.8)

where γ = 0.57721 · · · is the Euler constant.

We need some notations for our main results and their proofs. Notations
d→ and

p→ denote

convergence in distribution and convergence in probability and
d
= denotes the equality in

distribution. N(µ, σ2) denotes a normal distribution or normal random variable with mean µ
and variance σ2.

Assume {Xn;n ≥ 1} is a sequence of random variables and {an;n ≥ 1} is any sequence of

positive constants. Denote Xn = op(an) if Xn/an
p→ 0 as n→ ∞. If lim

c→∞
lim sup
n→∞

P (|Xn/an| >

c) = 0, denote Xn = Op(an). In particular, if Xn
p→ 0, then Xn = op(1). If Xn converges in

distribution, we have Xn = Op(1).
We will first give the general results on the limiting distributions for the spectral radius,

and denote m = mn, p = pn, and qn = mn − pn when they change with n.
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Theorem 2.1 Assume that m = mn depends on n, and qn → ∞ as n→ ∞. Then we have

logMn − µn
σn

d→ N(0, 1) as n→ ∞, (2.9)

where µn = pnψ(n)/2− qnψ(1)/2 and σ2
n = pnψ

′(n)/4 + qnψ
′(1)/4.

Theorem 2.2 Assume {Mj,k; j ≥ 1, k ≥ 1} are independent random variables such that for
each j ≥ 1 and k ≥ 1, Mj,k has a Gamma(j) distribution; that is, Mj,k has a density function
yj−1e−yI(y > 0)/Γ(j). Suppose that m = mn depends on n and q ≥ 1 is a fixed integer. Set
αn = pn/n.

(a). If limn→∞ αn = 0, then

Mn

npn/2
d→ max

1≤j<∞

1
q∏︁

k=1

M
1/2
j,k

as n→ ∞. (2.10)

(b). If limn→∞ αn =: α ∈ (0,∞), then for each α ∈ (0,∞)

Mn

npn/2
d→ max

1≤j<∞

Θj,α
q∏︁

k=1

M
1/2
j,k

as n→ ∞, (2.11)

where random variables {Θj,α; j ≥ 1} are independent random variables and Θj,α has a log-
normal distribution with parameters −1

2
(j − 1

2
)α and α1/2/2 with the cumulative distribution

Φ
(︁
α1/2/2 + 2α−1/2 log y + (j − 1)α1/2

)︁
for y ∈ (0,∞),

where Φ(x) = 1√
2π

∫︁ x
−∞ e−t

2/2dt is the cumulative distribution function of the standard normal

distribution, that is, log Θj,α has a N(−1
2
(j − 1

2
)α, α

4
) distribution, and {Θj,α; j ≥ 1} are

independent of {Mj,k; j ≥ 1, k ≥ 1}.
(c). If limn→∞ αn = ∞, then

logMn − pnψ(n)/2√︁
pn/n/2

d→ N(0, 1) as n→ ∞. (2.12)

Remark 1. The spectral radius for the product of Ginibre matrices and inverse Ginibre
matrices does not depend on their order but relies on the number of Ginibre matrices or
inverse Ginibre matrices from the above theorems.
Remark 2. The existence for the random variable on the right-hand side of (2.10) in part
(a) of Theorem 2.2 can be found in Lemma 3.7. The limiting distributions in part (b) of The-

orem 2.2 is well defined. Note that max1≤j<n
Θj,α∏︁q

k=1M
1/2
j,k

is non-decreasing in n with probability
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one, the limit exists and is larger than 0. We show that P (max1≤j<∞
Θj,α∏︁q

k=1M
1/2
j,k

<∞) = 1. The

details are as follows. First, we have E(1/M2
j,k) ≤ j−1.5 from the Lemma 3.3 in Chang et al. [11]

when j ≥ j0 for some j0 ≥ 3. Note that {Θj,α; j ≥ 1} and {Mj,k; j ≥ 1, k ≥ 1} are independent
for every α ∈ (0,∞), and E(Θ4

j,α) = exp
(︁
− 4

2
(j− 1

2
)α+42(α1/2/2)2/2

)︁
= exp(−2j+3α) since

Θj,α has a log-normal distribution with parameters −1
2
(j − 1

2
)α and α1/2/2. So we have

E
(︁ ∞∑︂
j=j0

Θ4
j,α∏︁q

k=1M
2
j,k

)︁
=

∞∑︂
j=j0

E(Θ4
j,α)

q∏︂
k=1

E(1/M2
j,k) ≤

∞∑︂
j=j0

exp (−2j + 3α)j−1.5q <∞,

yielding that P (
∑︁∞

j=1

Θ4
j,α∏︁q

k=1M
2
j,k
<∞) = 1, which implies that P (max1≤j<∞

Θj,α∏︁q
k=1M

1/2
j,k

<∞) =

1 because

max
1≤j<∞

Θ4
j,α∏︁q

k=1M
2
j,k

≤
∞∑︂
j=1

Θ4
j,α∏︁q

k=1M
2
j,k

.

Remark 3. Theorem 2.2 covers three different types of the limiting spectral distributions
when q = #{k : εk = −1, 1 ≤ k ≤ mn} ≥ 1 is a fixed integer. When q = 0, the product matrix
is the same as the production of mn independent Ginibre matrices, and the corresponding
limiting spectral radii were obtained by Jiang and Qi [24]. Although Theorem 2.2 does not
cover the case when q = 0, the expressions of the limiting spectral distributions when q = 0
in parts (b) and (c) in Theorem 2.2 actually reduce to the limiting spectral distributions for
the production of Ginibre matrices; see Theorem 3 (b, c) in Jiang and Qi [24]. One should

interpret
∏︁q

k=1M
1/2
j,k as 1 when q = 0 in Theorem 2.2. We also notice that the limit on the

right-hand side of (2.10) in part (a) of Theorem 2.2 for q = 0 is degenerate at 1. After re-
normalization, Mn converges in distribution to Gumbel distribution. In fact, it follows from
Theorem 3 (a) in Jiang and Qi [24] that√︃

n

pn
log

n

pn

(︁ Mn

npn/2
− 1
)︁
−
(︁
log

n

pn
− log log

n

pn
− 1

2
log(2π)

)︁ d→ Λ,

where the cumulative distribution function Λ(x) = exp(−e−x) is the Gumbel distribution.

3 Proofs

In this section, we prove the main results given in Section 2. We will use the distributional
representations for the spectral radii in our proofs and then develop limit theorems for sums
of independent random variables. Some approaches are classical such as validating the central
limit theorem via the method of the moment generating functions. Some strategies for the
proofs are also close to those used in Chang et al. [11] and Jiang and Qi [24].

Before proceeding with the proofs, we will introduce several lemmas.
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3.1 Some Preliminary Lemmas

Lemma 3.1 (Lemma 3.1 in Chang et al. [11]) Let random variable Y have a Gamma(α)
distribution and X = log(Y ). Then the moment generating function of X is given by

E(etX) =
Γ(α + t)

Γ(α)
, t > −α.

Moreover, E(X) = ψ(α) and Var(X) = ψ′(α).

Lemma 3.2 (Lemma 1.1 in Jiang and Qi [24]) Let Y1, · · · , Yn be independent random vari-
ables such that the density of Yj is proportional to y

2j−1ω(y)I(y ≥ 0) for each 1 ≤ j ≤ n. As-

sume z1, · · · , zn ∈ C have joint density f(z1, · · · , zn) = C
n∏︁
l=1

ω(zl)
n∏︁
i<j

|zi−zj|2, where ω(x) ≥ 0

for all x ≥ 0, and C is a normalizing constant. Then g(|z1|, · · · , |zn|) and g(Y1, · · · , Yn) have
the same distribution for any symmetric function g(y1, · · · , yn).

Lemma 3.3 (Lemma 3.5 in Chang et al. [10]) Let Y1, · · · , Yn be independent random variables
defined in Lemma 3.2. Assume {sj,k; 1 ≤ k ≤ m, 1 ≤ j ≤ n} are independent random variables
such that sj,k has a Gamma(αj,k) distribution with density function yαj,k−1e−yI(y ≥ 0)/Γ(αj,k),
where

αj,k =
1

2

(︁
n+ 1 + ϵk(2j − 1− n)

)︁
, 1 ≤ k ≤ m, 1 ≤ j ≤ n. (3.1)

Then Yj has the same distribution as
∏︁m

k=1 s
ϵk/2
j,k for each 1 ≤ j ≤ n.

Lemma 3.4 Let {sj,k; 1 ≤ k ≤ m, 1 ≤ j ≤ n} be independent random variables defined in

Lemma 3.3. Then Mn, max1≤j≤n Yj and max1≤j≤n
∏︁m

k=1 s
ϵk/2
j,k have the same distribution.

Proof. It follows from Lemma 3.2 that Mn and max1≤j≤n Yj have the same distribution. Fur-

thermore, from Lemma 3.3, {Yj; 1 ≤ j ≤ n} and {
∏︁m

k=1 s
ϵk/2
j,k ; 1 ≤ j ≤ n} have the same

distribution function. Therefore, we conclude that Mn, max1≤j≤n Yj and max1≤j≤n
∏︁m

k=1 s
ϵk/2
j,k

have the same distribution. □

Lemma 3.5 Let Y1, · · · , Yn be independent random variables defined in Lemma 3.2. Then
for any y ∈ R, P (Yj > y) is non-decreasing in 1 ≤ j ≤ n.

Proof. Denote fj as the density function of Yj for 1 ≤ j ≤ n. Then all fj’s have a common
support, say D ⊂ R. Recall that fj(y) = cjy

2j−1ω(y) > 0 for all y ∈ D, where cj > 0 are
constants. For every 2 ≤ j ≤ n, fj(y)/fj−1(y) = cjy/cj−1 is increasing in y ∈ D. According
to Lemma 2.4 in Chang et al. [9], P (Yj > y) ≥ P (Yj−1 > y) for all y ∈ R. This proves that
P (Yj > y) is non-decreasing in j for any y ∈ R. □
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Lemma 3.6 (Lemma 2.1 in Jiang and Qi [24]) Let cnj ∈ [0, 1) be constants for j ≥ 1, n ≥ 1
and supn≥1,j≥1 cnj < 1. For each j ≥ 1, cj = limn→∞ cnj. Assume cn =

∑︁∞
j=1 cnj < ∞ for

each n ≥ 1, c :=
∑︁∞

j=1 cj <∞ and limn→∞ cn = c. Then

lim
n→∞

∞∏︂
j=1

(1− cnj) =
∞∏︂
j=1

(1− cj).

Review that random variables {Mj,k; j ≥ 1, k ≥ 1} are defined in Theorem 2.2. For the

rest of the paper, let {˜︂Mj,k; j ≥ 1, k ≥ 1} be an independent copy of {Mj,k; j ≥ 1, k ≥ 1}.
With the above lemmas, we can develop a distributional representation forMn = max1≤j≤n |zj|
as in (2.4).

For the αj,k given in (3.1), we have

αj,k =
1

2

(︁
n+ 1 + ϵk(2j − 1− n)

)︁
=

{︄
j, if ϵk = 1;

n+ 1− j, if ϵk = −1.

Also recall pn = #{k : ϵk = 1, 1 ≤ k ≤ m} and qn = mn − pn. We have from Lemma 3.3 that

Yj
d
=

mn∏︁
k=1

s
ϵk/2
j,k

d
=

∏︁pn
k=1

˜︂M1/2
j,k∏︁qn

k=1M
1/2
n−j+1,k

for 1 ≤ j ≤ n, or

Yn+1−j
d
=

∏︁pn
k=1

˜︂M1/2
n+1−j,k∏︁qn

k=1M
1/2
j,k

, j = 1, · · · , n. (3.2)

Then it follows from Lemma 3.4 that

Mn
d
= max

1≤j≤n

∏︁pn
k=1

˜︂M1/2
n+1−j,k∏︁qn

k=1M
1/2
j,k

. (3.3)

The above representation will greatly simplify our proofs in this paper. In particular, when
qn = 0, max

1≤j≤n

∏︁pn
k=1

˜︂M1/2
n+1−j,k has the same distribution as that of the largest absolute value of

the n eigenvalues of A1 · · ·Apn , the product of pn independent n×n Ginibre ensembles. This is

the special case of A
(pn)
n when all ϵk = 1 and the corresponding limiting spectral distributions

were obtained by Jiang and Qi [24]. This fact will be used in the proofs for Theorem 2.2 and
Lemma 3.9.

Lemma 3.7 (Lemma 3.3 in Chang et al. [11]) For each fixed integer q ≥ 1, the random
variable

Tq := lim
n→∞

max
1≤j≤n

1∏︁q
k=1M

1/2
j,k

is well defined, and P (0 < Tq <∞) = 1.
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Lemma 3.8 For every j ≥ 1, we have

N1,j :=

∑︁pn
k=1 log

˜︂Mn+1−j,k − pnψ(n+ 1− j)√︁
pnψ′(n+ 1− j)

d→ N(0, 1) (3.4)

as n→ ∞, where pn is a sequence of positive integers.

Proof. Denote the moment generating function of N1,j as MN1,j
(t). It suffices to show that

lim
n→∞

MN1,j
(t) = exp

(︂t2
2

)︂
, |t| ≤ 1. (3.5)

It follows from Lemma 3.1 that the moment generating function of log(˜︂Mn+1−j,k)−ψ(n+
1− j) is given by

exp
(︁
− ψ(n+ 1− j)t

)︁Γ(n+ 1− j + t)

Γ(n+ 1− j)
, t > −n− 1 + j.

Then we have from (2.5) that

MN1,j
(t) =

⎛⎝exp
(︂
− ψ(n+ 1− j)t√︁

pnψ′(n+ 1− j)

)︂Γ(︁n+ 1− j + t√
pnψ′(n+1−j)

)︁
Γ(n+ 1− j)

⎞⎠pn

=

(︄
exp

(︂
− ψ(n+ 1− j)t√︁

pnψ′(n+ 1− j)

)︂
exp

(︂∫︂ t√
pnψ′(n+1−j)

0

ψ(n+ 1− j + s)ds
)︂)︄pn

=

(︄
exp

(︂
− ψ(n+ 1− j)t√︁

pnψ′(n+ 1− j)
+

∫︂ t√
pnψ′(n+1−j)

0

ψ(n+ 1− j + s)ds
)︂)︄pn

= exp
(︂
pn

∫︂ t√
pnψ′(n+1−j)

0

(︁
ψ(n+ 1− j + s)− ψ(n+ 1− j)

)︁
ds
)︂

= exp
(︂
pn

∫︂ t√
pnψ′(n+1−j)

0

s

∫︂ 1

0

ψ′(n+ 1− j + sv)dvds
)︂

= exp
(︂ t2

ψ′(n+ 1− j)

∫︂ 1

0

u

∫︂ 1

0

ψ′(︁n+ 1− j +
tuv√︁

pnψ′(n+ 1− j)

)︁
dvdu

)︂
.

In the last step, we changed the variable s = tu/
√︁
pnψ′(n+ 1− j).

Fix t within |t| ≤ 1. In view of (2.6), we have ψ′(n + 1 − j) ≥ 1
n+1−j for j ≥ 1, which

implies
|tuv|√︁

pnψ′(n+ 1− j)
≤
√︁
n+ 1− j

10



uniformly over |u| ≤ 1 and |v| ≤ 1. Then we have

ψ′(︁n+ 1− j +
tuv√︁

pnψ′(n+ 1− j)

)︁
=

1 + o(1)

n+ 1− j

holds uniformly over |u| ≤ 1 and |v| ≤ 1 as n→ ∞. Thus, we get

MN1,j
(t) = exp

(︂ t2(︁1 + o(1)
)︁

ψ′(n+ 1− j)

∫︂ 1

0

∫︂ 1

0

u

n+ 1− j
dvdu

)︂
= exp

(︂ t2
(︁
1 + o(1)

)︁
ψ′(n+ 1− j)(n+ 1− j)

∫︂ 1

0

∫︂ 1

0

udvdu
)︂

= exp
(︂ t2

(︁
1 + o(1)

)︁
2ψ′(n+ 1− j)(n+ 1− j)

)︂
→ exp

(︂t2
2

)︂
as n→ ∞, that is, (3.5) holds. Therefore, (3.4) is proved. □

Lemma 3.9 Let p = pn be a sequence of positive integers. If limn→∞
pn
n
= 0, particularly for

pn ≡ p, then

max
1≤j≤n

pn∏︂
k=1

(︁
Mn+1−j,k/n

)︁1/2 p→ 1 as n→ ∞.

Proof. Recall that max
1≤j≤n

pn∏︁
k=1

M
1/2
n+1−j,k and max

1≤j≤n

pn∏︁
k=1

˜︂M1/2
n+1−j,k are identically distributed. From

the statement in the paragraph after equation (3.3), max
1≤j≤n

pn∏︁
k=1

M
1/2
n+1−j,k has the same distribu-

tion as that of the largest absolute value of the n eigenvalues of A1 · · ·Apn , the product of pn
independent n × n random matrices with i.i.d. complex standard Gaussian entries. Then it
follows from Theorem 3(a) of Jiang and Qi [24] that

Λn := an

(︂
max
1≤j≤n

pn∏︂
k=1

(︁
Mn+1−j,k/n

)︁1/2− 1
)︂
− bn = an

(︂ max
1≤j≤n

pn∏︁
k=1

M
1/2
n+1−j,k

npn/2
− 1
)︂
− bn

d→ Λ, (3.6)

which gives the asymptotic distribution for the largest spectral radius of the product of in-
dependent Ginibre ensembles when limn→∞

pn
n
= 0, where Λ(x) = exp (−e−x) is the standard

Gumbel distribution, and

an =

(︃
n

pn
log

n

pn

)︃1/2

, bn = log
n

pn
− log log

n

pn
− 1

2
log(2π).

11



Therefore, we have from (3.6)

max
1≤j≤n

pn∏︂
k=1

(︁
Mn+1−j,k/n

)︁1/2 − 1 =
bn
an

+
Λn
an

p→ 0,

since

an → ∞ and
bn
an

→ ∞ as n→ ∞.

This completes the proof of the lemma. □

Lemma 3.10 Define for every integer r ∈ {1, 2, · · · , n}

Wn,r = min
1≤j≤r

pn∏︂
k=1

(︁
Mn+1−j,k/n

)︁1/2
.

Assume limn→∞ pn/n = 0. Then there exists a sequence of integer {rn} with 1 ≤ rn ≤ n and

rn → ∞ as n→ ∞ such that Wn,rn

p→ 1 as n→ ∞.

Proof. Using the notation defined in (3.4), we have for every j ≥ 1

pn∏︂
k=1

M
1/2
n+1−j,k = exp

(︁1
2
pnψ(n+ 1− j) +

1

2

√︁
pnψ′(n+ 1− j)N1,j

)︁
from Lemma 3.8. From equations (2.6) and (2.7), we have log(n) = ψ(n) + 1

2n
+ O( 1

n2 ),

ψ′(n+ 1− j) = 1
n+1−j +

1
2(n+1−j)2 +O( 1

(n+1−j)3 ), and ψ(n)− ψ(n+ 1− j) = j−1
n

(︁
1 +O( j

n
)
)︁
as

n→ ∞. Then for every j ≥ 1

pn∏︂
k=1

(︁
Mn+1−j,k/n

)︁1/2
= exp

(︂1
2
pnψ(n+ 1− j) +

1

2

√︁
pnψ′(n+ 1− j)N1,j

)︂
exp (−1

2
pn log n)

= exp
(︂1
2
pn
(︁
ψ(n+ 1− j)− ψ(n)− 1

2n
+O(

1

n2
)
)︁
+

1

2

√︁
pnψ′(n+ 1− j)N1,j

)︂
= exp

(︃
1

2

(︂
− pn(j − 1)

n
(1 +O(

j

n
))− pn

2n
+O(

pn
n2

)
)︂)︃

× exp

(︃
1

2

(︂ pn
n+ 1− j

+
pn

2(n+ 1− j)2
+O(

pn
(n+ 1− j)3

)
)︂1/2

N1,j

)︃
p→ 1 as n→ ∞

12



since limn→∞ pn/n = 0 and N1,j
d→ N(0, 1) from Lemma 3.8. This implies that for every r ≥ 1

Wn,r
p→ 1 as n→ ∞.

Hence, for every r ≥ 1, there exists a positive integer nr such that

P (|Wn,r − 1| > 1

r
) <

1

r
for all n ≥ nr,

where nr can be selected in such a way that n1 < n2 < n3 < · · · . Now for each n ≥ n1, there
exists a unique r such that nr ≤ n < nr+1, and we define rn = r for nr ≤ n < nr+1. We see
that 1 ≤ rn < n, and rn → ∞ as n→ ∞, and

P (|Wn,rn − 1| > 1

rn
) <

1

rn
for n ≥ nr,

which yields Wn,rn

p→ 1 as n→ ∞. This completes the proof. □

3.2 Proofs of Theorems 2.1 and 2.2

Recall that we have assumed that {Mj,k; j ≥ 1, k ≥ 1} are independent random variables

and Mj,k has a Gamma(j) distribution, and {˜︂Mj,k; j ≥ 1, k ≥ 1} is an independent copy of
{Mj,k; j ≥ 1, k ≥ 1}.

Proof of Theorem 2.1. Define

Vj =

∏︁pn
k=1

˜︂M1/2
n+1−j,k∏︁qn

k=1M
1/2
j,k

, 1 ≤ j ≤ n,

which are independent random variables. Note that Vj
d
= Yn+1−j, 1 ≤ j ≤ n from equation

(3.2). In view of (3.3) we have

P ( max
1≤j≤n

log |zj| ≤ µn + σnx) = P (logMn ≤ µn + σnx) =
n∏︂
j=1

an,j(x) for every x ∈ R,

where an,j(x) = P (log Vj ≤ µn + σnx) for 1 ≤ j ≤ n, µn = pnψ(n)/2 − qnψ(1)/2 and
σ2
n = pnψ

′(n)/4 + qnψ
′(1)/4. Therefore, Theorem 2.1 is true if we can show

lim
n→∞

an,1(x) = Φ(x) (3.7)
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and

lim
n→∞

n∏︂
j=2

an,j(x) = 1 (3.8)

for every x ∈ R, where Φ(x) is defined as the cumulative distribution of a standard normal
random variable.

Let us first prove (3.7). Since

log Vj =
1

2

(︂ pn∑︂
k=1

log˜︂Mn+1−j,k −
qn∑︂
k=1

logMj,k

)︂
, (3.9)

(3.7) is equivalent to

log V1 − µn
σn

=

∑︁pn
k=1 log

˜︂Mn,k − pnψ(n)√︁
pnψ′(n) + qnψ′(1)

−
∑︁qn

k=1 logM1,k − qnψ(1)√︁
pnψ′(n) + qnψ′(1)

d→ N(0, 1) (3.10)

as n→ ∞.
For each integer j ≥ 1, {logMj,k; k = 1, · · · , qn} are i.i.d. random variables, and their

means and variances are equal to ψ(j) and ψ′(j), respectively, from Lemma 3.1. Then we
have

N2,j :=

∑︁qn
k=1 logMj,k − qnψ(j)√︁

qnψ′(j)

d→ N(0, 1) as n→ ∞ (3.11)

by the central limit theorem for each j ≥ 1 when qn → ∞ as n→ ∞.
When j = 1, it follows from (3.11) and Lemma 3.8 with the independence of {Mj,k} and

{˜︂Mn+1−j,k} that

log V1 − µn
σn

=

√︁
pnψ′(n)N1,1√︁

pnψ′(n) + qnψ′(1)
−

√︁
qnψ′(1)N2,1√︁

pnψ′(n) + qnψ′(1)

d→ N(0, 1),

which implies (3.7).
Now, we prove (3.8). Similarly, we have when j = 2

N3 :=

∑︁pn
k=1 log

˜︂Mn−1,k − pnψ(n− 1)√︁
pnψ′(n− 1) + qnψ′(2)

−
∑︁qn

k=1 logM2,k − qnψ(2)√︁
pnψ′(n− 1) + qnψ′(2)

d→ N(0, 1) (3.12)

as n→ ∞. It follows from (2.6) and (2.7) that ψ(n)− ψ(n− 1) = 1
n−1

, ψ(2)− ψ(1) = 1, and

14



ψ′(n) = 1+o(1)
n−1

as n→ ∞. Then we have from (3.12)

log V2 − µn
σn

=

∑︁pn
k=1 log

˜︂Mn−1,k − pnψ(n)√︁
pnψ′(n) + qnψ′(1)

−
∑︁qn

k=1 logM2,k − qnψ(1)√︁
pnψ′(n) + qnψ′(1)

= −pnψ(n)− pnψ(n− 1) + qnψ(2)− qnψ(1)√︁
pnψ′(n) + qnψ′(1)

+

√︁
pnψ′(n− 1) + qnψ′(2)√︁
pnψ′(n) + qnψ′(1)

N3

= −
pn

1
n−1

+ qn√︁
pnψ′(n) + qnψ′(1)

+Op(1)

= −
√︁
pnψ′(n) + qn

(︁
1 + o(1)

)︁
+Op(1)

p→ −∞ as n→ ∞,

which implies 1− an,2(x) = P (log V2 > µn + σnx) → 0 as n→ ∞ for any x ∈ R.
Since Vj

d
= Yn+1−j, we have from Lemma 3.5 that P (Vj ≥ x) is non-increasing in j ∈

{1, · · · , n}. Then max2≤j≤n
(︁
1− an,j(x)

)︁
= 1− an,2(x) → 0 as n→ ∞. Moreover,

1−
n∑︂
j=2

(︁
1− an,j(x)

)︁
≤

n∏︂
j=2

(︁
1− (1− an,j(x))

)︁
=

n∏︂
j=2

an,j(x) ≤ 1.

Thus, in order to prove (3.8), it suffices to show

lim
n→∞

n∑︂
j=2

(︁
1− an,j(x)

)︁
= 0, x ∈ (−∞,∞). (3.13)

By applying inequality P (X > 0) ≤ E(eX) and noting that all the summands on right-
hand side of (3.9) are independent, we have from Lemma 3.1 and (2.5) that for any fixed
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x ∈ (−∞,∞)

1− an,j(x)

= P (log Vj > µn + σnx)

= P

(︄
pn∑︂
k=1

log˜︂Mn+1−j,k −
qn∑︂
k=1

logMj,k − pnψ(n) + qnψ(1)−
√︁
pnψ′(n) + qnψ′(1)x > 0

)︄

≤ E

(︄
exp

(︂ pn∑︂
k=1

log˜︂Mn+1−j,k −
qn∑︂
k=1

logMj,k − pnψ(n) + qnψ(1)−
√︁
pnψ′(n) + qnψ′(1)x

)︂)︄

=
(︁Γ(n+ 2− j)

Γ(n+ 1− j)

)︁pn(︁Γ(j − 1)

Γ(j)

)︁qn
exp

(︂
− pnψ(n) + qnψ(1)−

√︁
pnψ′(n) + qnψ′(1)x

)︂
= exp

(︂
pn

∫︂ 1

0

ψ(n+ 1− j + t)dt
)︂
exp

(︂
− qn

∫︂ 1

0

ψ(j − 1 + t)dt
)︂

× exp
(︂
− pnψ(n) + qnψ(1)−

√︁
pnψ′(n) + qnψ′(1)x

)︂
= exp

(︂
− pn

∫︂ 1

0

(︁
ψ(n)− ψ(n+ 1− j + t)

)︁
dt
)︂
exp

(︂
− qn

∫︂ 1

0

(︁
ψ(j − 1 + t)− ψ(1)

)︁
dt
)︂

× exp
(︂
−
√︁
pnψ′(n) + qnψ′(1)x

)︂
.

Note that ψ(y) is increasing in y > 0 since ψ′(y) > 0 from (2.8). Therefore,

0 ≤ ψ(n)− ψ(n+ 2− j) ≤ ψ(n)− ψ(n+ 1− j + t)

and
0 ≤ ψ(j − 1)− ψ(1) ≤ ψ(j − 1 + t)− ψ(1)

for t ∈ [0, 1] and j ≥ 3. By using the trivial inequality
√︁
pnψ′(n) + qnψ′(1) ≤

√︁
pnψ′(n) +√︁

qnψ′(1), we have for any 3 ≤ j ≤ n

1− an,j(x)

≤ exp
(︂
− pn

∫︂ 1

0

(︁
ψ(n)− ψ(n+ 2− j)

)︁
dt
)︂
exp

(︂
− qn

∫︂ 1

0

(︁
ψ(j − 1)− ψ(1)

)︁
dt
)︂

× exp
(︂√︁

pnψ′(n)|x|+
√︁
qnψ′(1)|x|

)︂
= exp

(︂
− pn

(︁
ψ(n)− ψ(n+ 2− j)

)︁
+
√︁
pnψ′(n)|x|

)︂
× exp

(︂
− qn

(︁
ψ(j − 1)− ψ(1)

)︁
+
√︁
qnψ′(1)|x|

)︂
.

Define j0 as the smallest integer larger than 3 + 3|x|. In view of (2.7), for all j0 ≤ j ≤ n

ψ(n)− ψ(n+ 2− j) =
n−1∑︂

k=n+1−j

1

k
≥ j − 2

n
≥ j0 − 2

n
(3.14)
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and

ψ(j − 1)− ψ(1) =

j−1∑︂
k=1

1

k
≥ log j. (3.15)

If pnψ
′(n) ≤ 1, then

exp
(︂
− pn

(︁
ψ(n)− ψ(n+ 2− j)

)︁
+
√︁
pnψ′(n)|x|

)︂
≤ e|x|.

If pnψ
′(n) ≥ 1,

√︁
pnψ′(n) ≤ pnψ

′(n) ≤ 2pn/n for all large n from (2.6), and we have from
(3.14)

exp
(︂
− pn

(︁
ψ(n)− ψ(n+ 2− j)

)︁
+
√︁
pnψ′(n)|x|

)︂
≤ exp

(︂
− pn(j0 − 2)

n
+
pn2|x|
n

)︂
= exp

(︂
− pn(j0 − 2− 2|x|)

n

)︂
≤ e|x|

for all large n. Therefore, by virtue of (3.15), we obtain that for j0 ≤ j ≤ n

1− an,j(x) ≤ e|x| exp
(︂
− qn

(︁
ψ(j − 1)− ψ(1)

)︁
+
√︁
qnψ′(1)|x|

)︂
≤ e|x| exp

(︁
− qn log j +

√︁
qnψ′(1)|x|

)︁
for all large n. Since qn → ∞ as n → ∞, we have

√︁
qnψ′(1)|x| ≤ qn log j0/2 for all large n,

and hence we conclude that

1− an,j(x) ≤ e|x| exp
(︁
− qn log j +

1

2
qn log j0

)︁
≤ e|x| exp

(︁
− 1

2
qn log j

)︁
for all j0 ≤ j ≤ n when large n is large. Therefore, we have

n∑︂
j=2

(︁
1− an,j(x)

)︁
≤ (j0 − 2)(1− an,2(x)) + e|x|

n∑︂
j=j0

exp
(︁
− 1

2
qn log j

)︁
= (j0 − 2)(1− an,2(x)) + e|x|

n∑︂
j=j0

j−
qn
2

≤ (j0 − 2)(1− an,2(x)) + e|x|
∫︂ n+1

1

t−
qn
2 dx

≤ (j0 − 2)(1− an,2(x)) +
2e|x|

qn − 2
→ 0
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as n→ ∞, which yields (3.13). The proof of Theorem 2.1 is complete. □

Proof of Theorem 2.2. We show part (a) first. Assume limn→∞ αn = 0.
Define for 1 ≤ r ≤ n

Zr = max
1≤j≤r

1∏︁q
k=1M

1/2
j,k

.

Then we have

ZrnWn,rn ≤ max
1≤j≤n

∏︁pn
k=1 (

˜︂Mn+1−j,k/n)
1/2∏︁q

k=1M
1/2
j,k

≤ Zn max
1≤j≤n

pn∏︂
k=1

(︁˜︂Mn+1−j,k/n
)︁1/2

, (3.16)

where Wn,r is defined in Lemma 3.10 and rn satisfies the conditions in Lemma 3.10 such

that rn → ∞ and Wn,rn

p→ 1 as n → ∞. From Lemma 3.7, we have Zn → Tq =
max

1≤j<∞
1∏︁q

k=1M
1/2
j,k

and Zrn → Tq as n→ ∞ with probability one. From Lemma 3.9, we have that

max
1≤j≤n

∏︁pn
k=1

(︁˜︂Mn+1−j,k/n
)︁1/2 p→ 1 as n → ∞. Therefore, we conclude that ZrnWn,rn

p→ Tq and

Zn max
1≤j≤n

∏︁pn
k=1

(︁˜︂Mn+1−j,k/n
)︁1/2 p→ Tq as n→ ∞, which together with (3.16) and (3.3) yield

Mn

npn/2
d
= max

1≤j≤n

∏︁pn
k=1 (

˜︂Mn+1−j,k/n)
1/2∏︁q

k=1M
1/2
j,k

p→ Tq,

proving (2.10).
Now we show the part (b) of Theorem 2.2 under condition limn→∞ αn =: α ∈ (0,∞).
We have from (3.3) that for any fixed x ∈ (0,∞)

P

(︃
Mn

npn/2
≤ x

)︃
=

n∏︂
j=1

P
(︂∏︁pn

k=1
˜︂M1/2
n+1−j,k/n

pn/2∏︁q
k=1M

1/2
j,k

≤ x
)︂
.

Hence, to prove (2.11), it suffices to show

lim
n→∞

n∏︂
j=1

P
(︂∏︁pn

k=1
˜︂M1/2
n+1−j,k/n

pn/2∏︁q
k=1M

1/2
j,k

≤ x
)︂
=

∞∏︂
j=1

P
(︂ Θj,α∏︁q

k=1M
1/2
j,k

≤ x
)︂

(3.17)

for x ∈ (0,∞), where Θj,α’s are independent random variables as defined in Theorem 2.2. We
see that Θj,α has a cumulative distribution function Φ

(︁
α1/2/2 + 2α−1/2 log y + (j − 1)α1/2

)︁
;

that is, Θj,α
d
= exp

(︂
− 1

2

(︁
(j − 1)α + α/2)

)︁
+ 1

2
α1/2Z

)︂
, where Z is a standard normal random

variable.
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Now fix x > 0 and we prove (3.17). Note that (3.17) is equivalent to

lim
n→∞

∞∏︂
j=1

(1− cnj) =
∞∏︂
j=1

(1− cj), (3.18)

where

cnj = 1− P
(︂
n−pn/2

pn∏︂
k=1

˜︂M1/2
n+1−j,k/

q∏︂
k=1

M
1/2
j,k ≤ x

)︂
, 1 ≤ j ≤ n,

and cnj = 0 for j > n, and cj = 1− P
(︁
Θj,α/

∏︁q
k=1M

1/2
j,k ≤ x

)︁
, j ≥ 1.

We apply Lemma 3.6 to verify (3.18).
Let us first prove that limn→∞ cnj = cj for each j ≥ 1. It follows from Lemma 3.8 that

pn∏︂
k=1

˜︂M1/2
n+1−j,k = exp

(︁1
2
pnψ(n+ 1− j) +

1

2

√︁
pnψ′(n+ 1− j)N1,j

)︁
for every j ≥ 1. It follows from (2.6) and (2.7) that log n = ψ(n)+ 1

2n
+O( 1

n2 ), ψ
′(n+1−j) =

1
n+1−j +

1
2(n+1−j)2 +O( 1

(n+1−j)3 ), and ψ(n)−ψ(n+1− j) = j−1
n
(1+O( j

n
)) as n→ ∞ for every

j ≥ 1. Then we have

n−pn/2
pn∏︂
k=1

˜︂M1/2
n+1−j,k

= exp
(︁1
2
pnψ(n+ 1− j) +

1

2

√︁
pnψ′(n+ 1− j)N1,j

)︁
exp (−1

2
pn log n)

= exp
(︂1
2
pn
(︁
ψ(n+ 1− j)− ψ(n)− 1

2n
+O(

1

n2
)
)︁
+

1

2

√︁
pnψ′(n+ 1− j)N1,j

)︂
= exp

(︂1
2

(︁
− pn(j − 1)

n
(1 +O(

j

n
))− pn

2n

)︁
+

1

2

(︁ pn
n+ 1− j

+
pn

2(n+ 1− j)2
)︁1/2

N1,j

)︂
= exp

(︂
− 1

2

(︁
(j − 1)(1 + o(1))αn + αn/2

)︁
+

1

2
(α1/2

n + o(1))N1,j

)︂
,

which implies
∏︁pn

k=1
˜︂M1/2
n+1−j,k/n

pn/2 d→ Θj,α as n → ∞ for each j ≥ 1 by noting that

N1,j
d→ N(0, 1) as n → ∞. Since

∏︁q
k=1M

1/2
j,k is independent of

∏︁pn
k=1

˜︂M1/2
n+1−j,k/n

pn/2 and
its distribution is free of n, we further have(︂ pn∏︂

k=1

˜︂M1/2
n+1−j,k/n

pn/2,

q∏︂
k=1

M
1/2
j,k

)︂
d→
(︂
Θj,α,

q∏︂
k=1

M
1/2
j,k

)︂
.

Then by the continuous mapping theorem, we conclude that for each j ≥ 1∏︁pn
k=1

˜︂M1/2
n+1−j,k/n

pn/2∏︁q
k=1M

1/2
j,k

d→ Θj,α∏︁q
k=1M

1/2
j,k

as n→ ∞.
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Since all limits on the right-hand side above are continuous random variables, we have
limn→∞ cnj = cj for each j ≥ 1.

Since n−pn/2
∏︁pn

k=1
˜︂M1/2
n+1−j,k/

∏︁q
k=1M

1/2
j,k and Θj,α/

∏︁q
k=1M

1/2
j,k are continuous random vari-

ables having density functions with a common support (0,∞), cnj < 1 and cj < 1 for all j ≥ 1
and n ≥ 1.

Now we are ready to show supn≥1,j≥1 cnj < 1. It follows from Lemma 3.5 that cnj ≤ cn1 for
all 1 ≤ j ≤ n and n ≥ 1, implying supn≥1,j≥1 cnj = supn≥1 cn1. Since cn1 → c1 < 1 as n→ ∞,
we have cnj < (1 + c1)/2 < 1 for all n ≥ n0, where n0 > 1 is an integer. Furthermore, since
cnj < 1, we obtain that

sup
n≥1,j≥1

cnj = sup
n≥1

cn1 ≤ max( max
1≤n<n0

cn1, (1 + c1)/2) < 1.

Recall that 0 ≤ cnj < 1 for 1 ≤ j ≤ n and cnk = 0 for j > n. Trivially, we obtain

r+1∑︂
j=1

cnj =

min(n,r+1)∑︂
j=1

cnj < min(n, r + 1), r ≥ 1, n ≥ 1. (3.19)

By using Markov’s inequality P (X > 0) = P (e2X ≥ 1) ≤ E(e2X) and the independence of

{Mj,k; j ≥ 1, k ≥ 1} and {˜︂Mn+1−j; j ≥ 1, k ≥ 1}, we have from Lemma 3.1 and (2.5) that for
any fixed x

cnj

= P
(︂∏︁pn

k=1
˜︂M1/2
n+1−j,k/n

pn/2∏︁q
k=1M

1/2
j,k

≥ x
)︂

= P
(︂
log

∏︁pn
k=1

˜︂M1/2
n+1−j,k/n

pn/2∏︁q
k=1M

1/2
j,k

≥ log x
)︂

= P
(︂ pn∑︂
k=1

log˜︂Mn+1−j,k −
q∑︂

k=1

logMj,k − pn log n− 2 log x > 0
)︂

≤ E
(︂
exp

(︁
2

pn∑︂
k=1

log˜︂Mn+1−j,k − 2

q∑︂
k=1

logMj,k − 2pn log n− 4 log x
)︁)︂

=
(︁Γ(n+ 3− j)

Γ(n+ 1− j)

)︁pn(︁Γ(j − 2)

Γ(j)

)︁q
exp

(︁
− 2pn log n− 4 log x

)︁
= exp

(︁
pn

∫︂ 2

0

ψ(n+ 1− j + t)dt
)︁
exp

(︁
− q

∫︂ 2

0

ψ(j − 2 + t)dt
)︁
exp

(︁
− 2pn log n− 4 log x

)︁
= exp

(︂
− pn

∫︂ 2

0

(︁
log n− ψ(n+ 1− j + t)

)︁
dt− q

∫︂ 2

0

ψ(j − 2 + t)dt− 4 log x
)︂
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for 2 ≤ j ≤ n. Note that ψ(y) is increasing in y > 0 since ψ′(y) > 0 from (2.8). Therefore,
0 ≤ log n−ψ(n+3− j) ≤ log n−ψ(n+1− j + t) and 0 ≤ ψ(j− 2) ≤ ψ(j− 2+ t) from (2.6)
for t ∈ [0, 2] and 3 ≤ j ≤ n. Then we have

cnj

≤ exp
(︂
− pn

∫︂ 2

0

(︁
log n− ψ(n+ 3− j)

)︁
dt
)︂
exp

(︁
− q

∫︂ 2

0

ψ(j − 2)dt
)︁
exp

(︁
− 4 log x

)︁
≤ exp

(︂
− 2pn

(︁
log n− ψ(n+ 3− j)

)︁
− 2qψ(j − 2)− 4 log x)

)︂
≤ exp

(︁
− 2qψ(j − 2)− 4 log x

)︁
.

Moreover, we have from (2.6) that ψ(j− 2) ≥ log(j− 2)− 1
2(j−2)

for all r+2 ≤ j ≤ n for large
r. Hence

sup
n≥r+2

∞∑︂
j=r+2

cn,j ≤ sup
n≥r+2

n∑︂
j=r+2

cn,j

≤ sup
n≥r+2

n∑︂
j=r+2

exp
(︁
− 2qψ(j − 2)− 4 log x

)︁
≤ sup

n≥r+2

n∑︂
j=r+2

exp
(︁
− 2q log(j − 2) +

q

(j − 2)
− 4 log x

)︁
≤ eq/rx−4

∞∑︂
j=r+2

(j − 2)−2q

≤ eq/rx−4

∫︂ ∞

r

(x− 2)−2qdx

≤ eqx−4

2q − 1
(r − 2)1−2q,

which is of order 1/r for all large r. This, coupled with (3.19), yields that

C := sup
n≥1

∞∑︂
j=1

cn,j <∞.

Because limn→∞ cnj = cj for j ≥ 1, it follows that
∑︁r+1

j=1 cj = lim
n→∞

∑︁r+1
j=1 cnj ≤ C for all

r ≥ 1. Therefore
∑︁r+1

j=1 cj is a bounded and monotone increasing sequence, and
∑︁∞

j=1 cj ≤
C < ∞ as it is convergent by the monotone convergence theorem. Consequently, we have
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lim
n→∞

∑︁∞
j=1 cnj =

∑︁∞
j=1 cj since for all large r

lim
n→∞

|
∞∑︂
j=1

cnj −
∞∑︂
j=1

cj| ≤ lim
n→∞

(︂
|
r+1∑︂
j=1

cnj −
r+1∑︂
j=1

cj|+ |
∞∑︂

j=r+2

cnj −
∞∑︂

j=r+2

cj|
)︂

= lim
n→∞

|
∞∑︂

j=r+2

cnj −
∞∑︂

j=r+2

cj|

≤ sup
n≥r+2

∞∑︂
j=r+2

cnj +
∞∑︂

j=r+2

cj

≤ eqx−4

2q − 1
(r − 2)1−2q +

∞∑︂
j=r+2

cj

which tends to zero by letting r tend to infinity.
Thus, we have proven (3.18) by using Lemma 3.6.
Now we show part (c) of Theorem 2.2 under condition limn→∞ αn = ∞. We have

logMn = max
1≤j≤n

(︄
log

pn∏︂
k=1

˜︂M1/2
n+1−j,k + log

1∏︁q
k=1M

1/2
j,k

)︄

≤ max
1≤j≤n

log

pn∏︂
k=1

˜︂M1/2
n+1−j,k + max

1≤j≤n
log

1∏︁q
k=1M

1/2
j,k

=: Rn

and

logMn ≥ log

pn∏︂
k=1

˜︂M1/2
n,k − log

q∏︂
k=1

M
1/2
1,k =: Ln.

By using the two inequalities above we have

Ln − pnψ(n)/2√︁
pn/n/2

≤ logMn − pnψ(n)/2√︁
pn/n/2

≤ Rn − pnψ(n)/2√︁
pn/n/2

. (3.20)

To prove (2.12), it suffices to show that both the left-hand side and the right-hand side in
(3.20) converge in distribution to the standard normal.

As we have pointed out in the paragraph after equation (3.3) that max
1≤j≤n

pn∏︁
k=1

˜︂M1/2
n+1−j,k has

the same distribution as that of the largest absolute value of the n eigenvalues for product of
pn independent n× n random matrices with i.i.d. complex standard Gaussian entries. From
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the part (c) in Theorem 3 of Jiang and Qi [24], we have

max
1≤j≤n

log
∏︁pn

k=1
˜︂M1/2
n+1−j,k − pnψ(n)/2√︁
pn/n/2

d→ N(0, 1) as n→ ∞.

Meanwhile, from Lemma 3.7, lim
n→∞

max
1≤j≤n

log 1∏︁q
k=1M

1/2
j,k

= log Tq is well defined. Therefore

max
1≤j≤n

log 1∏︁q
k=1M

1/2
j,k√︁

pn/n/2

p→ 0 as n→ ∞.

Then it follows that as n→ ∞

Rn − pnψ(n)/2√︁
pn/n/2

=

max
1≤j≤n

log
pn∏︁
k=1

˜︂M1/2
n+1−j,k − pnψ(n)/2− min

1≤j≤n
log

q∏︁
k=1

M
1/2
j,k√︁

pn/n/2

d→ N(0, 1). (3.21)

Now we apply Lemma 3.8 with j = 1 to get∑︁pn
k=1 log

˜︂M1/2
n,k − pnψ(n)/2√︁
pn/n/2

d→ N(0, 1) as n→ ∞,

by noting that ψ′(n) = 1+o(1)
n

from (2.6). Trivially, we also have

log
∏︁q

k=1M
1/2
1,k√︁

pn/n/2

p→ 0 as n→ ∞,

and conclude that

Ln − pnψ(n)/2√︁
pn/n/2

=
log
∏︁pn

k=1
˜︂M1/2
n,k − pnψ(n)/2− log

∏︁q
k=1M

1/2
1,k√︁

pn/n/2

d→ N(0, 1). (3.22)

By combining (3.20), (3.21) and (3.22), we have shown (2.12), that is, part (c) of Theorem 2.2
is true. The proof of Theorem 2.2 is completed. □
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