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ABSTRACT. Significance: There is a significant need for the generation of virtual histological
information from coronary optical coherence tomography (OCT) images to better
guide the treatment of coronary artery disease (CAD). However, existing methods
either require a large pixel-wise paired training dataset or have limited capability to
map pathological regions.

Aim: The aim of this work is to generate virtual histological information from
coronary OCT images, without a pixel-wise paired training dataset while capable
of providing pathological patterns.

Approach: We design a structurally constrained, pathology-aware, transformer
generative adversarial network, namely structurally constrained pathology-aware
convolutional transformer generative adversarial network (SCPAT-GAN), to gener-
ate virtual stained H&E histology from OCT images. We quantitatively evaluate the
quality of virtual stained histology images by measuring the Fréchet inception dis-
tance (FID) and perceptual hash value (PHV). Moreover, we invite experienced
pathologists to evaluate the virtual stained images. Furthermore, we visually inspect
the virtual stained image generated by SCPAT-GAN. Also, we perform an ablation
study to validate the design of the proposed SCPAT-GAN. Finally, we demonstrate
3D virtual stained histology images.

Results: Compared to previous research, the proposed SCPAT-GAN achieves bet-
ter FID and PHV scores. The visual inspection suggests that the virtual histology
images generated by SCPAT-GAN resemble both normal and pathological features
without artifacts. As confirmed by the pathologists, the virtual stained images have
good quality compared to real histology images. The ablation study confirms the
effectiveness of the combination of proposed pathological awareness and structural
constraining modules.

Conclusions: The proposed SCPAT-GAN is the first to demonstrate the feasibility
of generating both normal and pathological patterns without pixel-wisely supervised
training. We expect the SCPAT-GAN to assist in the clinical evaluation of treating the
CAD by providing 2D and 3D histopathological visualizations.
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1 Introduction

Coronary artery disease (CAD) is the narrowing of coronary arteries caused by a build-up of
atherosclerotic plaques. As the most common type of heart disease, CAD leads to one in seven
deaths in the United States.' Optical coherence tomography (OCT) has been recognized as a
valuable tool for imaging coronary tissue structures due to its high-resolution capabilities.
However, real-time interpretation of OCT images requires a significant amount of expertise and
prior training. Additionally, the power of OCT interpretation, especially of the pathological
region, is hindered by the lack of histopathological correlation. At present, direct histopatholog-
ical analysis requires an invasive and time-consuming evaluation that involves post-mortem tis-
sue examination. The use of multiple reagents in histopathology can also lead to detrimental
effects on tissue imaging. Histopathological analysis is not suitable for clinical use in patients,
who require real-time tissue characterization of coronary arteries.

Incorporating histopathological visualization into real-time OCT imaging holds great poten-
tial to complement OCT with histopathological visualization. A typical example of generating
virtual stained histology images from OCT images of human coronary arteries is shown in Fig. 1.
To date, there are limited frameworks developed to generate virtual stained histology from OCT
images.>* Winetraub et al. used Pix2Pix Generative Adversarial Networks (GANSs) to generate
virtual stained hematoxylin and eosin (H&E) histology for human skin tissues.” However,
Pix2Pix GAN for virtual staining requires a pixel-wisely paired OCT and H&E image dataset.
The creation of a pixel-wisely paired dataset demands a significant investment of resources and
labor, including the embedding of samples in fluorescent gel, photo-bleaching, and manual fine
alignment.? Such a method also lacks generalizability to blood vessels, which are deformable soft
tissue. Our previous method* demonstrates the capability to segment the three-layer structure
(i.e., intima, media, and adventitia) in both OCT and H&E images, thereby generating virtual
stained images optimized for different layers in human coronary. However, current performance
has not been optimal if there are pathological patterns, such as calcium and lipid accumulation,
that alter the typical three-layer structure of human coronary arteries.

To generate pathological-related regions from an unpaired dataset, we propose a structurally
constrained pathology-aware convolutional transformer GAN (SCPAT-GAN) to generate virtu-
ally stained H&E histology images from OCT images. The proposed SCPAT-GAN incorporates
two key components to enhance image quality for both normal and pathological coronary sam-
ples: a structural constraining module and a pathology awareness module. In summary, our main
contributions include the following.

1. We propose a convolutional transformer-GAN structure for virtual H&E staining of human
coronary arteries based on OCT. This generative method does not require pixel-wise map-
ping in the training dataset.

2. We incorporate structural constraining and pathology awareness modules for virtually stain-
ing coronary arteries with both normal three-layer structures and pathological patterns.

3. We conduct extensive quantitative experiments, including a blind test involving patholo-
gist, to demonstrate that high-quality virtual histology images are generated.
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Fig. 1 (a) Example OCT image of a human coronary sample. (b) Virtual stained histology image
generated from the example OCT images in panel (a). The scale bar: 500 zm.

Journal of Biomedical Optics 036004-2 March 2024 e Vol. 29(3)



Li et al.: Structurally constrained and pathology-aware convolutional. ..

2 Methods
2.1 Design of SCPAT-GAN
2.1.1 Network architecture

The design of SCPAT-GAN is shown in Fig. 2. The SCPAT-GAN consists of two convolutional
transformer generators (Go_, gy and Gy_, o) and two discriminators (Dy and D). The transformer
structure possesses self-focus mechanisms that provide the global context of a given data sample
even at the lowest layer. G_,y transfers images from OCT domain to the histology domain;
Gy_ o transfers images from the histology domain to the OCT domain. The two generators share
a similar structure. Dy is the discriminator for histology images and D, is the discriminator for
OCT images. Symbols O and H stand for OCT and histology images respectively.

The convolutional transformer generators (G, and Gy_, o) take advantage of U-Net’ like
structure to extract multi-scale features. The multi-scale features are sent to Swin transformer
block (STB) and structural constraint and pathology aware (SCPA) module. The STB is a deep
neural network architecture that employs multiple residual Swin transformer sub-blocks
(RSTBs) to extract features from input data. The RSTBs contain various Swin transformer layers
(STLs)® that facilitate local attention and cross-window interaction learning. The feature extrac-
tion process of RSTBs is expressed as: TRSTB = Conv(FS™ + T™N), where FS™ denotes the
features generated from STLs, Conv represents 2D convolutional layer with a kernel size of
3 x 3, and T™ represents the input feature of RSTBs. Each STL comprises components including
layer normalization, multi-head self-attention (MHA) modules, residual connections, and a two-
level multilayer perceptron (MLP) with Gaussian error linear unit (GELU) non-linearity. Given
an input of size H X W x C, the STL will reshape the input to the feature map of % XNxC
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Fig. 2 (a) The design of the SCPAT-GAN. (b) The scheme of Go_ 4 and Dy. The Go_ 4 performs
virtual staining based on OCT images. The Dy distinguish the virtual histology images from real
histology images. The SCPA module guide the virtual staining process by performing structural
constraining and pathology awareness functions. (c) Details of the convolutional transformer gen-
erator (CTG). The multi-scale features are fed to STB and SCPA modules for virtual staining.
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by partitioning the input into non-overlapping windows of N patches, where W is the total num-
ber of the windows. For a local window feature X € R, the query Q, key K, and value V matrices
are computed as Q = XPy, K = XPg, and V = XPy, where 0, K,V € RN%d The Py, Pk, and
Py are projection matrices shared across different windows The self-attention of each head can
be calculated as: Attention(Q, K, V) = SoftMax (25 Wi i B)V, where d denotes the query dimen-

sion; N stands for the number of patches in a window; and B € RN-1x@N+1)_

2.1.2 Structural constraining and pathology awareness

The SCPA module is based on a transformer encoder-decoder architecture, which guides the
virtual staining procedure. The SCPA module performs structural constraining and pathology
awareness functions by segmenting the human coronary layers and classifying the types of coro-
nary samples (normal or pathological). The multi-scale features are split into a sequence of
patches x =[xy, ..., xy] € R¥*PXC_ \where (P, P) stands for the patch size, N represents for
the number of patches, and C is the number of channels of the multi-scale features. The patches
are flattened and then linearly projected to an embedding sequence xy = [E,,.....E, ] € RN*d,
where d is the embedding dimension. Learnable position embeddings pos = [pos, . .., posy] €
RV are added to the sequence of patch embeddings to generate the tokens z, = x, + pos for
Encoder. The Encoder maps the input sequence z, to z; = [z,....,2.,], which is an encoding
sequence containing contextualized information of multi-scale features.

The SCPA module is designed to be aware of pathology patterns as well as maintain and
constrain the normal structure of coronary samples. In the case of normal coronary samples, the
z;, is decoded to a segmentation map s € R7*WXK where K = 3 and represents the three-layer
structure of human coronary arteries. The segmentation map is acquired by the SCPA module,
taking the scalar production between patch embeddings z,, and class embeddings c:
Segmentaion = z,,¢T, where z,, is acquired by decoding z;, and ¢ is acquired by decoding
a set of three randomly initialized learnable class embeddings [ClSiima> CISMedia> €IS Adventitial COT-
responding to the three coronary layers. In the case of diseased coronary samples, the patch
embeddings z,, are sent to a two-level MLP for classification between normal and pathological
coronary images: Classification = MLP(z,,). Also, the patch embeddings z,, is concatenated to
the extracted features from STB and then merged and up-sampled for OCT — Histology and
Histology — OCT conversion.

2.1.3 Loss function

The loss function L of SCPAT-GAN consists of five terms, which are adversarial loss L4y, cycle-
consistency 10ss Ly, embedding 108S Leppedding Structural constraint loss Lge, pathology
awareness 1oss Lpy
L(Goop:Gho0-Dy. Do, Gy Gi 0. Gt Gt )

= Luav(Go-n- D) + Luav(Gr-0. Do)

+ aLcycle(GO—>Hv GH—>O) + ﬂLembedding(G0—>H’ GH—»O)

+7Lsc(GY s GH—o) + 1Lpa (G 1y, Giito)- M

We follow the definition of L,q, and L.y made by Zhu et al.” and the definition of

Lembedding made by Liu et al® a, B, y, and 1 are hyper-parameters. G,_ and Gy_ are two
generators that generate virtual histology images from OCT images and virtual OCT images
from histology images respectively. G-, G3<. 5, GP2 ., and GPA, ; are the SCPA modules

for performing structural constraining and pathology awareness functions in the generators.
The Lgc is implemented by segmentation loss

Lic = By -5; 2303 i log(GEE (0 ] +Eo|-53 Zzy log(GIE.o(H))|. @

n=1 c=1 n=1 c=
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n,c n,c

where Sy and Sy stand for the number of pixels in segmentation maps. y;;“ and y;° are the
ground-truth pixel labels of different coronary layers for H&E and OCT images, respectively.
C stands for the number of categories of the coronary layers (¢ = 3). The Lp, is implemented by
classification loss

Lpy = Ey[-y} log(GEL,(0)) + (1 = yj) log(1 = Gk 4 (0))]
+ Eo[-yp log(Gi. o (H)) + (1 = yp) log(1 = Gi2, o (H))]. 3)

where y}; and y}, are the ground-truth labels for pathology samples. We aim to solve the follow-
ing minmax optimization problem

_ . S PA PA
Gy Gio = arg min max L(Go_py,Gy_0. Dy, Do, G 1. G5, 0. GE2 1 GY2 ). (4)

3 Experiments
3.1 Experimental Settings
3.1.1 Experimental dataset

Human coronary samples were collected from the School of Medicine at the University of
Alabama at Birmingham (UAB). Specimens were imaged via a commercial OCT system
(Thorlabs Ganymede, Newton, New Jersey). A total of 194 OCT images were collected from
23 patients with an imaging depth of 2.56 mm.’ The pixel size was 2 gm X 2 um within a B-scan.
The width of the images ranged from 2 mm to 4 mm depending on the size of sample. After OCT
imaging, samples were processed for H&E histology at UAB.

We rescale the H&E images in the Aperio ImageScope software to enforce a pixel size of
2 ym X 2 ym. Among the dataset, 112 OCT images are from normal samples with the three-layer
structure (i.e., intima, media, and adventitia); 82 OCT and H&E images contain pathological
patterns. At the pixel level, we pixel-wisely label the structure (e.g., the layer structure) in a
subset of OCT and H&E images for training purposes. At the image level, we label each
OCT or H&E image as the pathological OCT or normal. The OCT and H&E images are divided
into non-overlap patches with a size of 368 x 368. We randomly flip the patches from left to right
for data augmentation. The training set contains 4297 OCT image patches and 4297 H&E image
patches.

3.1.2 Implementation details

We adopt three convolution and transpose convolution layers with a stride of two for building a
U-Net like structure for generating multi-scale feature maps. For the STB, we follow the design
in our previous work.® Our design of SCPA module is inspired by the Segmenter model.'” But
different from the Segmenter,'® we design the SCPA module to be capable of performing both
segmentation and classification tasks, which suits our need for structural constraining and path-
ology awareness functions during virtual staining. The SCPAT-GAN is implemented by Pytorch.
For training, the hyperparameters a, f3, y, and 1 are set to 1, 0.2, 5, and 5 empirically. The pixel
values of OCT and H&E images are scaled to [0, 1]. The batch size is 9. The learning rate is
initialized as 10~*, followed by a linearly decaying decay for every 2 epochs. In total, the SCPAT-
GAN is trained 10,000 epochs to ensure convergence. The experiments are carried out on an
RTX A6000 GPU.

3.1.3 Metrics

We measure the similarity of pairs of virtual stained histology and real histology images using
reference-free metrics including Fréchet inception distance (FID)!! and perceptual hash value
(PHV).® The FID is defined as
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FID = [4(Go—s(0)) - u(H)[* - Tr(z Goon(0)+ S H-2\/3 GM<0>2H),

®)

where u(Go_y(0)) and u(H) are the magnitudes of the virtual stained and real histology
images; Tr is the trace of the matrix; Y Go_y(O) and > H are the covariance matrix of the
virtual stained and real histology images. The PHV is defined as

PHV = =" Hllave(F,(Go-1(0))) ~ ave(F,(H)| ~ T. ©

where N is the total number of extracted featuremap, F; represents the featuremap extracted from
i’th layer of ResNet-101, avg is the average pooling operation that turns 3-D features into 1-D
features, H is the unit step function, and 7 is a preset threshold. We use the three variations of
PHYV scores (i = 1, PHV1), (i = 2, PHV2), and (i = 3, PHV3) which are extracted from differ-
ent levels i of ResNet-101. We set T to be 0.02.

Also, we designed a protocol to involve two pathologists (Dr. Silvio H. Litovsky, referred to
as pathologist A; and Dr. Charles C. Marboe, referred to as pathologist B) to evaluate the quality
of the virtual stained H&E images. Real and virtual stained H&E images are given to the path-
ologists, who are blinded to the true labels, to make predictions. The two pathologists work
independently from each other. We compare the prediction results from the pathologist with the
true labels, following the setup of the visual Turing test.'>!?

3.2 Results and Discussion
3.2.1 Quantitative analysis

The quantitative results (calculated by three-fold cross-validation) of SCPAT-GAN, as well as
two start-of-art methods, for generating virtual stained H&E are shown in Table 1. Compared to
our previous method (Coronary-GAN*) and Cycle-GAN, the SCPAT-GAN generates virtual

Table 1 The FID and PHV scores of SCPAT-GAN, Coronary-GAN, and Cycle-GAN. The PHV
scores calculated from different levels of the feature maps PHV1, PHV2, and PHV3. We report
evaluation results for normal, pathological, and the whole dataset. All the results are calculated
using three-fold cross-validation.

Method
Metrics SCPAT-GAN Coronary-GAN Cycle-GAN
FID} Normal 155.24 205.02 253.15
Pathological 196.16 275.47 315.92
Whole 175.70 238.74 284.53
PHV11 Normal 57.48 55.49 50.87
Pathological 57.35 40.87 40.09
Whole 57.41 48.18 45.48
PHV2t Normal 53.00 51.39 52.19
Pathological 71.85 58.69 56.44
Whole 62.42 55.17 54.31
PHV31t Normal 52.82 51.41 48.67
Pathological 53.05 47.17 48.68
Whole 52.93 49.29 48.67

Note: The best performance results are highlighted in bold.
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Fig. 3 Result of pathologist’s evaluation of real and virtual stained H&E images. The number of
images (N) in each quadrant is attached. (a) Evaluation results from pathologist A. (b) Evaluation
results from pathologist B.

stained H&E images of better quality, with lower FID scores and higher PHV scores, for normal,
pathological, and the whole dataset. Those scores indicate that virtual stained histology and real
histology are perceptually similar. Moreover, we have two experienced pathologists with more
than 30 years of experience to evaluate the quality of virtual stained H&E images. The pathol-
ogists, who are blind to the true labels, manually identify if an image is real or virtual.

The results of pathologists’ evaluation are shown in Fig. 3. Among the total 60 images (half
virtual and half real), over half of them (42 images by pathologist A and 33 images by pathologist
B) are deemed as “real.” For the virtual stained images, more than half (19 images) are deemed as
“real” by pathologist A and half (15 images) are deemed as “real” by pathologist B. We calcu-
lated the accuracy (pathologist A: 0.56; pathologist B: 0.55), precision (pathologist A: 0.54;
pathologist B: 0.54) values of the evaluation results from the two pathologists. We compare the
evaluation results with that of random guessing (in theory, accuracy and precision should be 0.5
for an observer who is making choices randomly). We found that the average accuracy (0.55) and
precision values (0.55) are close to that of random guessing. The average sensitivity (0.68) is
higher, which indicates that the pathologists are capable of identifying real histology images.
However, the average specificity (0.43) is lower, which means the virtually stained images are
less likely to be identified. Thus, the quality of virtually stained images is close to that of real
histology images according to pathologists’ justification. Moreover, the intraclass correlation
coefficient (ICC) between the evaluation results of the two pathologists is 0.014, which means
a low interreader agreement because the images are indistinguishable.

3.2.2 Ablation study

We perform an ablation study by removing the structural constraining (PAT-GAN) or pathology
awareness functions (SCT-GAN) or both (T-GAN). The models are retrained and compared with
the design of SCPAT-GAN. The results are reported in Table 2. When both structural constraining
and pathological awareness models are equipped, SCPAT-GAN reaches the best performance.
The ablated model without the structure constraining and pathological awareness modules (T-
GAN) reports a compromised performance.
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Table 2 The ablation study. We remove the pathological awareness module (SCT-GAN), struc-
tural constraining module (PAT-GAN), and both modules (T-GAN). The ablated models, SCT-
GAN, PAT-GAN, and T-GAN, are retrained.

Metrics FID| PHV1t PHV2t PHV3t
SCPAT-GAN 175.70 57.41 62.42 52.93
SCT-GAN 177.60 53.59 59.28 51.33
PAT-GAN 176.96 53.57 59.94 50.45
T-GAN 203.24 47.00 54.32 47.48

Note: The best performance results are highlighted in bold.

Fig. 4 Visual inspection of virtual stained H&E images generated by SCPAT-GAN, Coronary-
GAN,* and Cycle-GAN. (a) The normal coronary sample. The virtual stained H&E image is very
similar to the real H&E image with the three-layer structure resolved. In virtual stained H&E images,
the lipid-rich regions appear as white holes. (b) Coronary samples with lipid-rich regions.
(c) Coronary samples with calcified regions. The triangle and star represent different texture con-
trast. The calcified region has a color of dark purple. *The contrasts of OCT images in panels
(a)—(c) are enhanced to highlight the texture information for better visualization. The scale bar:
500 um.

3.2.3 Qualitative analysis

We visually inspect the virtual stained H&E images generated by SCPAT-GAN in Fig. 4. For
normal coronary samples, the SCPAT-GAN is capable of generating the three-layer structure; for
pathological coronary samples, the SCPAT-GAN is capable of resolving lipid-rich (red arrow)
and calcified patterns (yellow star). Compared to real H&E images, virtual stained H&E images
generated by SCPAT-GAN show similar patterns for lipid-rich and calcified regions. In contrast,
the Coronary-GAN* and Cycle-GAN fail to generate pathological patterns.

The proposed SCPAT-GAN allows the generation of 3D virtual H&E volume for both nor-
mal and pathological human coronary samples. As shown in Fig. 5, we demonstrate 3D virtual
H&E visualization for normal [Fig. 5(a)] and pathological [Fig. 5(d)] coronary samples. The 3D
H&E visualization is impossible to acquire from conventional biochemical staining process,
which provides an intuitive way of presenting histological information and reduces the random-
ness of the H&E sanctioning process.'*

4 Discussion

In this paper, we design a convolutional transformer-GAN, namely SCPAT-GAN, for generating
virtual stained H&E histology from OCT images. Our SCPAT-GAN algorithm is capable of vir-
tually staining OCT images for human coronary samples. The SCPAT-GAN does not require
pixel-wisely matched OCT and H&E datasets. By incorporating structural constraining and path-
ology awareness functions in the SCPAT-GAN, our method outperforms existing methods, which
is confirmed by both objective metrics and the pathologist’s evaluation. Compared to other
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Fig. 5 3D virtual stained H&E volumes generated by slice-by-slice from OCT volumes. (a) 3D OCT
and virtual stained H&E volumes for a normal human coronary sample. (b) and (c) Example 2D
cross-sectional views within (a). (d) 3D OCT and virtual stained H&E volumes for a pathological
human coronary sample. (e) and (f): example 2D cross-sectional views within (d). The scale bar:
500 um.

label-free'> or stain-to-stain® works for virtual staining of histology'® which focuses on top-view
images or other image modalities, our SCPAT-GAN is designed for cross-sectional, depth-
resolved OCT images and human coronary samples. Moreover, the proposed SCPAT-GAN is
capable of generating 3D virtual stained H&E visualization for coronary samples, which is
impossible to acquire using a conventional biochemical staining process.

As the first study to demonstrate the feasibility of virtual stained histology in OCT images
from non-paired training, our study does not focus on computational optimization. In the future,
we will further reduce the computational overhead of SCPAT-GAN via lightweight neural
network'” and implement parallel computing for 3D virtual histology. Also, we plan to enable
the SCAPT-GAN in intravascular OCT imaging, towards the assistance of percutaneous coronary
intervention. Furthermore, we will acquire more data and differentiate pathological patterns to
provide fine-grained image-wise labels. Moreover, our current approach still requires image level
labels of normal and pathological data and pixel-level layer annotation. We will explore self-
supervised approaches to address this issue. Besides, we will explore the other use-cases of the
SCPAT-GAN, such as generating multiple types of virtual staining (e.g. Van Gieson staining,
Toluidine blue staining, and Alcian blue staining), and virtual staining of other samples
(e.g., human skin and eye).

5 Conclusion

In this paper, we develop a deep learning model, namely SCPAT-GAN, for generating virtual
histology information. Our work is the first to generate virtual H&E images with pathological
patterns for coronary samples based on OCT. The proposed framework has great potential to
provide real-time histopathological information during an OCT imaging procedure.
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