
Happy Ending: An Empty Hexagon

in Every Set of 30 Points

Marijn J. H. Heule1,2 and Manfred Scheucher3

1 Carnegie Mellon University, Pittsburgh, USA
marijn@cmu.edu

2 Amazon Scholar
3 Institute of Mathematics, Technische Universität Berlin, Germany

scheucher@math.tu-berlin.de

Abstract. Satisfiability solving has been used to tackle a range of long-
standing open math problems in recent years. We add another success by
solving a geometry problem that originated a century ago. In the 1930s,
Esther Klein’s exploration of unavoidable shapes in planar point sets in
general position showed that every set of five points includes four points
in convex position. For a long time, it was open if an empty hexagon,
i.e., six points in convex position without a point inside, can be avoided.
In 2006, Gerken and Nicolás independently proved that the answer is no.
We establish the exact bound: Every 30-point set in the plane in gen-
eral position contains an empty hexagon. Our key contributions include
an effective, compact encoding and a search-space partitioning strategy
enabling linear-time speedups even when using thousands of cores.

Keywords: Erdős–Szekeres problem · empty hexagon theorem · planar
point set · cube-and-conquer · proof of unsatisfiability

1 Introduction

In 1932, Esther Klein showed that every set of five points in the plane in general
position (i.e., no three points on a common line) has a subset of four points in
convex position. Shortly after, Erdős and Szekeres [8] generalized this result by
showing that, for every integer k, there exists a smallest integer g(k) such that
every set of g(k) points in the plane in general position contains a k-gon (i.e., a
subset of k points that form the vertices of a convex polygon). As the research
led to the marriage of Szekeres and Klein, Erdős named it the happy ending
problem. Erdős and Szekeres constructed witnesses of g(k) > 2k�2 [9], which
they conjectured to be maximal. The best upper bound is g(k)  2k+o(k) [20,30].

Determining the value g(5) = 9 requires a more involved case distinction
compared to g(4) = 5 [23]. It took until 2006 to determine that g(6) = 17
via an exhaustive computer search by Szekeres and Peters [31] using 1500 CPU
hours. Marić [25] and Scheucher [28] independently verified g(6) = 17 using
satisfiability (SAT) solving in a few CPU hours. This was later reduced to 10
CPU minutes [29]. The approach presented in this paper computes it in 8.53 CPU
seconds, showing the effectiveness of SAT compared to the original method.

https://orcid.org/0000-0002-5587-8801
https://orcid.org/0000-0002-1657-9796

2 M.J.H. Heule and M. Scheucher

Fig. 1. An illustration for the proof of h(4) = 5: The three possibilities of how five
points can be placed. Each possibility implies a 4-hole.

Erdős also asked whether every sufficiently large point set contains a k-hole:
a k-gon without a point inside. We denote by h(k) the smallest integer—if it
exists—such that every set of h(k) points in general position in the plane contains
a k-hole. Both h(3) = 3 and h(4) = 5 are easy to compute (see Fig. 1 for an
illustration) and coincide with the original setting. Yet the answer can differ a
lot, as Horton [21] constructed arbitrarily large point sets without 7-holes.

While Harborth [14] showed in 1978 that h(5) = 10, the existence of 6-
holes remained open until the late 2000s, when Gerken [12]4 and Nicolás [26]
independently proved that h(6) is finite. Gerken proved that every 9-gon yields
a 6-hole, thereby showing that h(6)  g(9)  1717 [33]. The best-known lower
bound h(6) � 30 is witnessed by a set of 29 points without 6-holes which was
found by Overmars [27] using a local search approach.

We close the gap between the upper and lower bound and ultimately answer
Erdős’ question by proving that every set of 30 points yields a 6-hole.

Theorem 1. h(6) = 30.

Our result is actually stronger and shows that the bounds for 6-holes in point sets
coincide with the bounds for 6-holes in counterclockwise systems [24]. This rep-
resents another success of solving long-standing open problems in mathematics
using SAT, similar to results on Schur number five [16] and Keller’s conjecture [4].

We also investigate the combination of 6-holes and 7-gons and show

Theorem 2. Every set of 24 points in the plane in general position contains a
6-hole or a 7-gon.

We achieve these results through the following contributions:

– We develop a compact and effective SAT encoding for k-gon and k-hole
problems that uses O(n4) clauses, while existing encodings use O(nk) clauses.

– We construct a partitioning of k-gon and k-hole problems that allows us to
solve them with linear-time speedups even when using thousands of cores.

– We present a novel method of validating SAT-solving results that checks the
proof while solving the problem using substantially less overhead.

– We verify most of the presented results using clausal proof checking.
4 Gerken’s groundbreaking work was awarded the Richard-Rado prize by the German

Mathematical Society in 2008.

Happy Ending: An Empty Hexagon in Every Set of 30 Points 3

2 Preliminaries

The SAT problem. The satisfiability problem (SAT) asks whether a Boolean
formula can be satisfied by some assignment of truth values to its variables.
The Handbook of Satisfiability [2] provides an overview. We consider formulas
in conjunctive normal form (CNF), which is the default input of SAT solvers.
As such, a formula � is a conjunction (logical “AND”) of clauses. A clause is a
disjunction (logical “OR”) of literals, where a literal is a Boolean variable or its
negation. We sometimes write (sets of) clauses using other logical connectives.

If a formula � is found to be satisfiable, modern SAT solvers commonly
output a truth assignment of the variables. Additionally, if a formula turns out
to be unsatisfiable, sequential SAT solvers produce an independently-checkable
proof that there exists no assignment that satisfies the formula.

Verification. The most commonly-used proofs for SAT problems are expressed
in the DRAT clausal proof system [15]. A DRAT proof of unsatisfiability is a
list of clause addition and clause deletion steps. Formally, a clausal proof is a
list of pairs hs1, C1i, . . . , hsm, Cmi, where for each i 2 {1, . . . ,m}, si 2 {a, d} and
Ci is a clause. If si = a, the pair is called an addition, and if si = d, it is called
a deletion. For a given input formula �0, a clausal proof gives rise to a set of
accumulated formulas �i (i 2 {1, . . . ,m}) as follows:

�i =

(
�i�1 [{Ci} if si = a

�i�1 \ {Ci} if si = d

Each clause addition must preserve satisfiability, which is usually guaranteed
by requiring the added clauses to fulfill some efficiently decidable syntactic cri-
terion. Deletions help to speed up proof checking by keeping the accumulated
formula small. A valid proof of unsatisfiability must add the empty clause.

Cube And Conquer. The cube-and-conquer approach [18] aims to split a SAT
instance � into multiple instances �1, . . . ,�m in such a way that � is satisfiable
if and only if at least one of the instances �i is satisfiable, thus allowing work
on the different instances �i in parallel. A cube is a conjunction of literals. Let
 = (c1 _ · · · _ cm) be a disjunction of cubes. When is a tautology, we have

� () � ^ ()
m_

i=1

(� ^ ci) ()
m_

i=1

�i,

where the different �i := (� ^ ci) are the instances resulting from the split.
Intuitively, each cube ci represents a case, i.e., an assumption about a sat-

isfying assignment to � , and soundness comes from being a tautology, which
means that the split into cases is exhaustive. If the split is well designed, then
each �i is a particular case that is substantially easier to solve than � , and thus
solving them all in parallel can give significant speed-ups, especially considering
the sequential nature of CDCL at the core of most solvers.

However, the quality of the split () has an enormous impact on the effec-
tiveness of the approach. A key challenge is figuring out a high-quality split.

4 M.J.H. Heule and M. Scheucher

a b

c

i

a b

c

i

a b

c

i

a b

c

i

Fig. 2. The four ways a point pi can be inside triangle {pa, pb, pc} based on whether
i < b (left two images) and whether pc is above the line papb (first and third image).

3 Trusted Encoding

To obtain an upper-bound result using a SAT-based approach, we need to show
that every set of n points contains a k-hole. We will do this by constructing
a formula based on n points that asks whether a k-hole can be avoided. If this
formula is unsatisfiable, then we obtain the bound h(k)  n. Instead of reasoning
directly whether an empty k-gon can be avoided, we ask whether every k points
contain at least one triangle with a point inside. The latter implies the former.

We only need to know for each triple of points whether it is empty. Through-
out the paper, we assume that points are sorted with strictly increasing x-
coordinates. This gives us only four options for a point pi to be inside the triangle
formed by points pa, pb, pc, see Fig. 2. For example, the left image shows that
pi is inside if a < i < b, pc and pi are above the line papb , and pi is below
the line papc . So we need some machinery to express that points are above or
below certain lines. That is what the encoding will provide. For readability, we
sometimes identify points by their indices, that is, we refer to pa by its index a.

We first present what we call the trusted encoding to determine whether a
6-hole can be avoided. The encoding needs to be trusted in the sense that we
do not provide a mechanically verified proof of its correctness. Building upon
existing work [28], our primary focus is on 6-holes, which constitute our main
result. The encoding of 6-gons and 7-gons is similar and more simple. During an
initial study, the estimated runtime for showing h(6)  30 using this encoding
and off-the-shelf partitioning was roughly 1000 CPU years. The optimizations
in Sections 4 and 5 reduce the computational costs to about 2 CPU years.

3.1 Orientation Variables

a
b

c

d

+

�

Fig. 3. An illustration
of triple orientations.

We formulate the problem in such a way that all rea-
soning is based solely on the relative positions of points.
Thus, we do not encode coordinates but only orienta-
tions of point triples. For a point set S = {p1, . . . , pn}
with pi = (xi, yi), the triple (pa, pb, pc) with a < b < c

is positively oriented (resp. negatively oriented) if pc lies
above (resp. below) the line papb through pa and pb. The
notion of positive orientation corresponds to Knuth’s
counterclockwise relation [24]. Fig. 3 illustrates a posi-
tively-oriented triple (pa, pb, pc) and a negatively-oriented triple (pa, pb, pd).

Happy Ending: An Empty Hexagon in Every Set of 30 Points 5

To search for point sets without k-gons and k-holes, we introduce a Boolean
orientation variable oa,b,c for each triple (pa, pb, pc) with a < b < c. Intuitively,
oa,b,c is supposed to be true if the triple is positively oriented. Since we assume
general position, no three points lie on a common line, so oa,b,c being false means
that the triple is negatively oriented.

3.2 Containment Variables, 3-Hole Variables, and Constraints

Using orientation variables, we can now express what it means for a triangle to
be empty. We define containment variables ci;a,b,c to encode whether point pi

lies inside the triangle spanned by {pa, pb, pc}. Since the points have increasing
x-coordinates, containment is only possible if a < i < c. We use two kinds of
definitions, depending on whether i is smaller or larger than b (see Fig. 2). The
first definition is for the case a < i < b. Note that if oa,b,c is true, we only need to
know whether i is above the line papb and below the line papc . Earlier work [28]
used an extended definition that included the redundant variable oi,b,c. Avoiding
this variable makes the definition more compact (six instead of eight clauses)
and the resulting formula is easier to solve.

ci;a,b,c $
⇣�

oa,b,c ! (oa,i,b ^ oa,i,c)
�
^
�
oa,b,c ! (oa,i,b ^ oa,i,c)

�⌘
(1)

The second definition is for b < i < c, which avoids using the variable oa,b,i:

ci;a,b,c $
⇣�

oa,b,c ! (oa,i,c ^ ob,i,c)
�
^
�
oa,b,c ! (oa,i,c ^ ob,i,c)

�⌘
(2)

Each definition translates into six clauses (without using Tseitin variables).
Additionally, we introduce definitions ha,b,c of 3-hole variables that express

whether the triangle spanned by {pa, pb, pc} is a 3-hole. The triangle {pa, pb, pc}
forms a 3-hole if and only if no point pi lies in its interior. A point pi can only
be an inner point if it lies in the vertical strip between pa and pc and if it is
distinct from pb. Since the points are sorted, the index i of an interior point pi

must therefore fulfill a < i < c and i 6= b. Logically, the definition is as follows:

ha,b,c $
^

a<i<c
i 6=b

ci;a,b,c. (3)

Finally, we encode the “forbid k-hole” constraint as follows: For each subset
X ✓ S of size k, at least one of the triangles formed by three points in X must
not be a 3-hole. So for k = 6, each clause consists of

�k
3

�
= 20 literals.

^

X✓S
|X|=k

� _

a,b,c2X
a<b<c

ha,b,c
�

(4)

In Section 4, we will optimize the encoding. Most optimizations aim to im-
prove the encoding of the constraint (4).

6 M.J.H. Heule and M. Scheucher

a

b

c

d oa,b,c oa,b,d oa,c,d ob,c,d

+ + + +
+ + + �
+ + � �
+ � � �
� � � �
� � � +
� � + +
� + + +

Fig. 4. All possibilities to place four points, when points are sorted from left to right.

3.3 Forbidding Non-Realizable Patterns

Only a small fraction of all assignments to the
�n
3

�
orientation variables, 2⇥(n logn),

actually describe point sets [3]. However, we can reduce the search space from
2⇥(n3) to 2⇥(n2) by forbidding non-realizable patterns [24]. Consider four points
pa, pb, pc, pd in a sorted point set with a < b < c < d. The leftmost three
points determine three lines papb , papc , pbpc , which partition the open half-
plane {(x, y) 2 R2 : x > xc} into four regions (see Fig. 4). After placing pa,
pb, pc, observe that all realizable positions of point pd obey the following im-
plications: oa,b,c ^ oa,c,d) oa,b,d and oa,b,c ^ ob,c,d) oa,c,d. Similarly for the
negations, oa,b,c ^ oa,c,d) oa,b,d and oa,b,c ^ ob,c,d) oa,c,d. These implications
are equivalent to the following clauses (grouping positive and negative):

(oa,b,c _ oa,c,d _ oa,b,d) ^ (oa,b,c _ oa,c,d _ oa,b,d) (5)
(oa,b,c _ ob,c,d _ oa,c,d) ^ (oa,b,c _ ob,c,d _ oa,c,d) (6)

Forbidding these non-realizable assignments was also used for g(6)  17 [31].
Some call the restriction signotope axioms [10]. The counterclockwise system
axioms [24] achieve the same effect, but require ⇥(n5) clauses instead of ⇥(n4).

3.4 Initial Symmetry Breaking

To further reduce the search space, we ensure that p1 lies on the boundary of the
convex hull (i.e., it is an extremal point) and that p2, . . . , pn appear around p1 in
counterclockwise order, thus providing us the unit clauses (o1,a,b) for 1 < a < b.
Without loss of generality, we can label points to satisfy the above, because the
labeling doesn’t affect gons and holes. However, we also want points to be sorted
from left to right. One can satisfy both orderings at the same time using the
lemma below. We attach a proof in the extended version [19].

Lemma 1 ([28, Lemma 1]). Let S = {p1, . . . , pn} be a point set in the plane
in general position such that p1 is extremal and p2, . . . , pn appear (clockwise or
counterclockwise) around p1. Then there exists a point set S̃ = {p̃1, . . . , p̃n} with
the same triple orientations (in particular, p̃1 is extremal and p̃2, . . . , p̃n appear
around p̃1) such that the points p̃1, . . . , p̃n have increasing x-coordinates.

Happy Ending: An Empty Hexagon in Every Set of 30 Points 7

4 Optimizing the Encoding

An ideal SAT encoding has the following three properties:

1) it is compact to reduce the cost of unit propagation (and cache misses);
2) it detects conflicts as early as possible (i.e., is domain consistent [11]); and
3) it contains variables that can generalize conflicts effectively.

The trusted encoding lacks these properties because it has O(n6) clauses,
cannot quickly detect holes, and has no variables that can generalize conflicts.
In this section, we show how to modify the trusted encoding to obtain all three
properties. All the modifications are expressible in a proof to ensure correctness.

4.1 Toward Domain Consistency

The effectiveness of an encoding depends on how quickly the solver can determine
a conflict. Given an assignment, we want to derive as much as possible via unit
propagation. This is known as domain consistency [11]. The trusted encoding
does not have this property. We modify the encoding below to boost propagation.

We borrow from the method by Szekeres and Peters that a k-gon can be de-
tected by looking at assignments to k�2 orientation variables [31]. For example,
if oa,b,c, ob,c,d, oc,d,e, and od,e,f with a<b<c<d<e<f are assigned to the same
truth value, then this implies that the points form a 6-gon. An illustration of
this assignment is shown in Fig. 5 (left). We combine this with our observation
below that only a specific triangle has to be empty to infer a 6-hole somewhere.

Consider a scenario involving six points, a, b, c, d, e, and f , that are arranged
from left to right. In this scenario, the orientation variables oa,b,c, ob,c,d, oc,d,e,
and od,e,f are all set to false, while the 3-hole variable ha,c,e is set to true. As
mentioned above, this implies that the points form of a 6-gon. Together with 3-
hole variable ha,c,e being set to true, we can deduce the existence of a 6-hole: The
6-gon is either a 6-hole or it contains a 6-hole. The reasoning will be explained
in the next paragraph. Note that in the trusted encoding of this scenario, only
one out of the twenty literals in the corresponding ‘forbid 6-hole’ clause is false.
This suggests that the solver is still quite far from detecting a conflict.

A crucial insight underpinning our efficient encoding is the understanding
that the truth of the variable ha,c,e alone is sufficient to infer the existence of
a 6-hole. Consider the following rationale: If the triangle {a, b, c} contains any
points, then there must be at least one point inside the triangle that is closer to
the line ac than point b is. Let’s denote the nearest point as i. The proximity of
i to the line ac guarantees that the triangle {a, i, c} is empty. We can substitute
b with i to create a smaller but similarly shaped hexagon. This logic extends to
other triangles as well; specifically, the truth values of hc,d,e and ha,e,f are not
necessary to infer the presence of a 6-hole.

Our insight emerged when we noticed that the SAT solver eliminated 3-hole
literals from previous encodings. This elimination occurred primarily when only
a few points existed between the leftmost and rightmost points of a triangle. On

8 M.J.H. Heule and M. Scheucher

a

b

c d
e

f

a

b

c

d
e

f

a

b

c

d

e

f

Fig. 5. Three types of 6-gons: left, all points are on one side of line af (2 cases);
middle, three points are on one side and one point is on the other side of line af

(8 cases); and right, two points are on either side of line af (6 cases). If the marked
triangle is empty, we can conclude that there exists is a 6-hole.

the other hand, the solver struggles significantly to identify the redundancy of
these 3-hole literals when the leftmost and rightmost points of a triangle were
far apart. Therefore, to enhance the encoding’s effectiveness, we chose to omit
these 3-hole literals (instead of letting the solver figure it out).

Blocking the existence of a 6-hole within the 6-gon described above can be
achieved with the following clause (which simply negates the assignment):

oa,b,c _ ob,c,d _ oc,d,e _ od,e,f _ ha,c,e (7)

For each set of six points, 16 different configurations can result in a 6-hole.
These configurations depend on which points are positioned left or right the line
connecting the leftmost and rightmost points among the six. The three types of
such configurations are illustrated in Fig. 5, while the remaining configurations
are symmetrical to these. It is important to note that this adds 16⇥

�n
6

�
clauses

to the formula, significantly increasing its size.
We can reduce the number of clauses by about a 30% by strategically selecting

which triangle within a 6-gon is checked to be empty (i.e., which 3-hole literal
will be used). The two options are the triangle that includes the leftmost point
(as depicted in Fig. 5) and the triangle with the second-leftmost point. If the
leftmost point is p1, we opt for the second-leftmost point; otherwise, we choose
the leftmost point. After propagating the unit clauses o1,a,b, the clauses that
describe configurations with three points below the line af become subsumed
by the clause for the configuration with four points below the line 1f .

4.2 An O(n4) Encoding

This section is rather technical. It introduces auxiliary variables to reduce our
encoding to O(n4) clauses. The process is known as structured bounded vari-
able addition (SBVA) [13], which in each step adds a new auxiliary variable to
encode a subset of the formula more compactly. SBVA heuristically selects the
auxiliary variables. Instead, we select them manually because it is more effective,
the new variables have meaning, and SBVA is extremely slow on this problem.
Eliminating the auxiliary variables results in the encoding of Section 4.1.

Happy Ending: An Empty Hexagon in Every Set of 30 Points 9

The first type of these variables, u4a,c,d, represents the presence of a 4-gon
{a, b, c, d} such that points a, b, c, d appear in this order from left to right and
b and c are above the line ad. Furthermore, the variables u5a,d,e indicate the
existence of a 5-gon {a, b, c, d, e} with the property that the points a, b, c, d, e

appear in this order from left to right, the points b, c, and d are above the line
ae, and the triangle {a, c, e} is empty. This configuration implies the existence of
a 5-hole within {a, b, c, d, e} using similar reasoning as described in Section 4.1.
The clauses enforcing these properties are outlined below.

u4a,c,d _ oa,b,c _ ob,c,d with a < b < c < d (8)

u5a,d,e _ u4a,c,d _ oc,d,e _ ha,c,e with a < c < d < e (9)

In the following we distinguish five types of 6-holes by the number of its
points that lie above/below the line connecting its leftmost and rightmost points.
Fig. 5 shows the three configurations with four, three, and two points above the
line, respectively. The two cases with three and four points below the line are
symmetric but will be handled in a different and more efficient manner below.

To block all 6-holes with configurations having three or four points above the
line connecting the leftmost and rightmost points, we utilize the variables u5a,d,e.
Specifically, a configuration with three points above occurs if there is a point b

situated between a and e, lying below the line ae. Also, the configuration with
four points above arises when a point f , located to the right of e, falls below
the line de. The associated clauses for these configurations are detailed below.
The omission of 3-hole literals is justified by our knowledge that a 3-hole exists
among a, c, and e for some point c positioned above the line ae.

u5a,d,e _ oa,b,e with a < d < e, a < b < e (10)

u5a,d,e _ od,e,f with a < d < e < f (11)

To block the third type of a 6-hole, we need to introduce variables v4a,c,d
which, similar as u4a,c,d, indicate the presence of a 4-gon {a, b, c, d} with the
property that the points a, b, c, d appear in this order from left to right and b

and c are below the line ad. The clauses that encode these variables are:

v4a,c,d _ oa,b,c _ ob,c,d with a < b < c < d (12)

Using the variables u4a,c,d and v4a,c0,d we are now ready to block the configu-
ration of the third type of a 6-hole where two points lie above and two points lie
below the line connecting the leftmost and rightmost points; see Fig. 5 (right).
Recall that u4a,c,d denotes a 4-gon situated above the line ad, with c being the
second-rightmost point. Also, v4a,c0,d denotes a 4-gon below the line ad, with c

0

as the second-rightmost point. A 6-hole exists if both u4a,c,d and v4a,c0,d are true
for some points a and d when there are no points within the triangle formed by
a, c, and c

0. Or, in clauses:

u4a,c,d _ v4a,c0,d _ ha,c,c0 with a < c < c
0
< d (13)

u4a,c,d _ v4a,c0,d _ ha,c0,c with a < c
0
< c < d (14)

10 M.J.H. Heule and M. Scheucher

The remaining configurations to consider involve those with three or four
points below the line joining the leftmost and rightmost points. As we discussed
at the end of Section 4.1, these configurations can be encoded more compactly.
We only need to block the existence of 5-holes {a, b, c, d, e} with the property
that the points 1, a, b, c, d, e appear in this order from left to right and the points
b, c, and d are below the line ae. The reasoning is as follows: if such a 5-hole
exists, it can be expanded into a 6-hole by the closest point to line ab within
the triangle {1, a, b} (which is point 1 if the triangle is empty). Additionally, by
blocking these specific 5-holes, we simultaneously block all 6-holes with three or
four points below the line between the leftmost and rightmost points. Following
the earlier cases, we only require a single 3-hole literal which ensures that the
triangle {a, c, e} is empty. The clauses to block these 5-holes are as follows:

v4a,c,d _ oc,d,e _ ha,c,e with 1 < a < c < d < e (15)

This encoding uses O(n4) clauses, while it has the same propagation power as
having all the 16⇥

�n
6

�
clauses in the domain-consistent encoding of Section 4.1. In

general, the trusted encoding for k-holes uses O(nk) clauses, while the optimized
encoding when generalized to k-holes has only O(kn4) clauses, or O(n4) for every
fixed k. An encoding of size O(n4) for k-gons is analogous: simply remove the
3-hole literals from the clauses.

4.3 Minor Optimizations

We can make the encoding even more compact by removing a large fraction of
the clauses from the trusted encoding. Note that constraints to forbid 6-holes
contain only negative 3-hole literals. That means that only half of the constraints
to define the 3-hole variables are actually required. This in turn shows that only
half of the inside variables definitions are required. So, instead of (1), (2), and (3),
it suffices to use the following:

ci;a,b,c !
⇣�

oa,b,c ! (oa,i,b ^ oa,i,c)
�
^
�
oa,b,c ! (oa,i,b ^ oa,i,c)

�⌘
(16)

ci;a,b,c !
⇣�

oa,b,c ! (oa,i,c ^ ob,i,c)
�
^
�
oa,b,c ! (oa,i,c ^ ob,i,c)

�⌘
(17)

ha,b,c
^

a<i<c
i 6=b

ci;a,b,c. (18)

It is worth noting that the SAT preprocessing technique blocked-clause elim-
ination (BCE) can automatically remove the omitted clauses [22]. However, for
means of efficiency, BCE is turned off by default in top-tier solvers, including
the solver CaDiCaL, which we used for the proof. During initial experiments, we
observed that omitting these clauses slightly improves the performance.

Finally, the variables u4a,c,d and v4a,c,d can be used to more compactly encode
the clauses (6). We can replace them with the following clauses:

(u4a,c,d _ oa,c,d) ^ (v4a,c,d _ oa,c,d) with a < c < d (19)

Happy Ending: An Empty Hexagon in Every Set of 30 Points 11

4.4 Breaking the Reflection Symmetry

Holes are invariant to reflectional symmetry: If we mirror a point set S, then
the counterclockwise order around the extremal point p1 (which is p2, . . . , pn)
is reversed (to pn, . . . , p2). By relabeling points to preserve the counterclockwise
order, we preserve o1,a,b = true for a < b, while the original orientation variables
oa,b,c with 2  a < b < c  n are mapped to on�c+2,n�b+2,n�a+2. A similar
mapping applies to the containment and 3-hole variables. The trusted encoding
maps almost onto itself, except for the missing reflection clauses of (5) and (6).
As a fix for verification, we add each reflected clause using one resolution step.

Since only a tiny fraction of triple orientations map to themselves (so-called
involutions), breaking the reflectional symmetry reduces the search space by a
factor of almost 2. We partially break this symmetry by constraining the vari-
ables oa,a+1,a+2 with 2  a  n� 2. We used the symmetry-breaking predicate
below, because it is compatible with our cube generation, described in Section 5.

odn
2 e�1,dn

2 e,dn
2 e+1, . . . , o2,3,4 4 obn

2 c+1,bn
2 c+2,bn

2 c+3, . . . , on�2,n�1,n (20)

One symmetry that remains is the choice of the first point. Any point on
the convex hull could be picked for this purpose, and breaking it can potentially
reduce the search space by at least a factor of 3. However, breaking this symmetry
effectively is complicated and we therefore left it on the table.

5 Problem Partitioning

The formula to determine that h(6)  30 requires CPU years to solve. To com-
pute this in reasonable time, the problem needs to be partitioned into many
small subproblems that can be solved in parallel. Although there exist tools to
do the partitioning automatically [18], we observed that this partitioning was
ineffective. As a consequence, we focused on manual partitioning.

During our initial experiments, we determined which orientation variables
were suitable for splitting. We used the formula for g(6)  17 for this purpose
because its runtime is large enough to make meaningful observations and small
enough to explore many options. It turned out that the variables oa,a+1,a+2

were the most effective choice for splitting the problem. Assigning one of these
oa,a+1,a+2 variables to true/false roughly halves the search space and reduces
the runtime by a factor of roughly 2.

A problem with n points has n�3 free variables of the form oa,a+1,a+2, as the
variable o1,2,3 is already fixed by the symmetry breaking. One cannot generate
2n�3 equally easy subproblems, because (oa,a+1,a+2_oa+1,a+2,a+3_oa+2,a+3,a+4)
and (oa,a+1,a+2_oa+1,a+2,a+3_oa+2,a+3,a+4_oa+3,a+4,a+5) follow directly from
the optimized formula after unit propagation. Thus, assigning three consecutive
oa,a+1,a+2 variables to true results directly in a falsified clause, as it would create
a 6-hole among the points p1, pa, . . . , pa+4. The same holds for four consecutive
oa,a+1,a+2 variables assigned to false, which would create a 6-hole among the

12 M.J.H. Heule and M. Scheucher

points pa, . . . , pa+5. The asymmetry is due to fixing the variables o1,a,b to true.
If we assigned them to false, then the opposite would happen.

We observed that limiting the partition to variables involving the middle
points reduces the total runtime. We will demonstrate such experiments in Sec-
tion 6.2. So, to obtain suitable cubes, we considered all assignments of the se-
quence oa,a+1,a+2, oa+1,a+2,a+3, . . ., oa+`�1,a+`,a+`+1 for a suitable constant `
and a = n+`

2 �1 such that the above properties are fulfilled, that is, no three con-
secutive entries are true and no four consecutive entries are false. In the following
we refer to ` as the length of the cube-space. In our experiments, we observed
that picking ` < n � 3 reduces the overall computational costs. Specifically, for
the h(6)  30 experiments, we use length ` = 21.

Our initial experiments showed that the runtime of cubes grows exponen-
tially with the number of occurrences of the alternating pattern ob,b+1,b+2 = +,
ob+1,b+2,b+3 = �, ob+2,b+3,b+4 = +. As a consequence, the hardest cube for
h(6)  30 would still require days of computing time, thereby limiting par-
allelism. To deal with this issue, we further partition cubes that contain this
pattern. For each occurrence of the alternating pattern in a cube, we split the
cube into two cubes: one that extends it with ob,b+2,b+4 and one that extends it
with ob,b+2,b+4. Note that we do this for each occurrence. So a cube containing
m of these patterns is split into 2m cubes. This reduced the computational costs
of the hardest cubes to less than an hour.

6 Evaluation

For the experiments, we use the solver CaDiCaL (version 1.9.3) [1], which is cur-
rently the only top-tier solver that can produce LRAT proofs directly. The effi-
cient, verified checker cakeLPR [32] validated the proofs. We run CaDiCaL with
command-line options: ––sat ––reducetarget=10 ––forcephase ––phase=0.
The first option reduces the number of restarts. This is typically more useful
for satisfiable formulas (as the name suggests), but in this case it is also help-
ful for unsatisfiable formulas. The second option turns off the aggressive clause
deletion strategy. The last two options turn on negative branching, a MiniSAT
heuristic [7]. Experiments were run on a specialized, internal Amazon Web Ser-
vices solver framework that provides cloud-level scaling. The framework used
m6i.xlarge instances, which have two physical cores and 16 GB of memory.

6.1 Impact of the Encoding

To illustrate the impact of the encoding on the performance, we show some statis-
tics on various encodings of the h(6)  30 formula. We restricted this experiment
to solving a single randomly-picked subproblem. For other subproblems, the re-
sults were similar. We experimented with the following five encodings:

– T : the trusted encoding presented in Section 3
– O1: T with (4) replaced by the domain-consistent encoding (7) of Section 4.1

Happy Ending: An Empty Hexagon in Every Set of 30 Points 13

– O2: O1 with (7) replaced by the O(n4) encoding (8) - (15) of Section 4.2
– O3: O2 with the minor optimizations that replace (1), (2), (3), and (6) by

(17), (18), (18), and (19), respectively, see Section 4.3
– O4: O3 extended with the symmetry-breaking predicate from Section 4.4

Table 1 summarizes the results. The domain-consistent encoding can be
solved more efficiently than the trusted encoding while having over five times
as many clauses. The reason for the faster performance becomes clear when
looking at the number of conflicts and propagations. The domain-consistent en-
coding requires just over a fifth as many conflicts and propagations to determine
unsatisfiability. The auxiliary variables that enable the O(n4) encoding reduce
the size by almost an order of magnitude. The resulting formula can be solved
three times as fast, while using a similar number of conflicts and propagations.
The minor optimizations reduce the size by roughly a third and further improve
the runtime. Finally, the addition of the symmetry-breaking predicate doesn’t
impact the performance. Its main purpose is to halve the number of cubes.

We also solved the optimized encoding (O3) of the formula g(6)  17, which
takes 41.99 seconds using 623 540 conflicts. Adding the symmetry-breaking pred-
icate (O4) reduces the runtime to 17.39 seconds using 316 785 conflicts. So the
symmetry-breaking predicate reduces the number of conflicts by roughly a fac-
tor of 2 (as expected) while the runtime is reduced even more. The latter is due
to the slowdown caused by maintaining more conflict clauses while solving the
formula without the symmetry-breaking predicate.

6.2 Impact of the Partitioning

All known point sets witnessing the lower bound h(6) � 30 contain a 7-gon.
To obtain a possibly easier problem to test and compare heuristics, we studied
how many points are required to guarantee the existence of a 6-hole or a 7-
gon. It turned out that the answer is at most 24 (Theorem 2). Computing this
is still hard but substantially easier compared to our main result. During our
experiments, we observed that increasing the number of cubes can increase the
total runtime. We therefore explored which parameters produce the lowest total
runtime. The experimental results are shown in Table 2 for various values for
the parameter `. Incrementing ` by 2 increases the number of cubes roughly by
a factor of 3. The optimal total runtime is achieved for ` = 15, which is a 62%

Table 1. Comparison of the different encodings.

formula #variables #clauses #conflicts #propagations time (s)

T 62 930 1 171 942 1 082 569 1 338 662 627 243.07
O1 62 930 5 823 078 228 838 282 774 472 136.20
O2 75 110 667 005 211 272 343 388 591 45.49
O3 75 110 436 047 234 755 340 387 692 39.46
O4 75 110 444 238 234 587 342 904 580 39.41

14 M.J.H. Heule and M. Scheucher

0% 20% 40% 60% 80% 100%

10�1

100

101

102

103

104

105

ru
nt

im
e

(s
ec

on
ds

)

` = 7 ` = 9
` = 11 ` = 13
` = 15 ` = 17
` = 19 ` = 21

Fig. 6. Runtime to solve the subproblems of Theorem 2 for various splitting parameters.

reduction compared to full partitioning (` = 21). Note that the solving time
for the hardest cube (the max column) increases substantially when using fewer
cubes. This in turn reduces the effectiveness of parallelism. The runtime without
partitioning is expected to be about 1000 CPU hours, so partitioning achieves
super-linear speedups and more than a factor of 4 speedup for ` = 15. Fig. 6
shows plots of cumulatively solved cubes, with similar curves for all settings.

We also evaluated the off-the-shelf tool March for partitioning. This tool
was used to prove Schur Number Five [16]. We used option -d 13 to cut off
partitioning at depth 13 to create 8192 cubes. That partition turned out to be
very poor: at least 18 cubes took over 100 000 seconds. The expected total costs
are about 10 000 CPU hours, so 10 times the estimated partition-free runtime.

A partitioning can also guide the search to solve the formula g(6)  17. The
partitioning of this formula using ` = 12 results in 1108 cubes. If we add these
cubes to the formula with the symmetry-predicate (O4) in the iCNF format [34],
then CaDiCaL can solve it in 8.53 seconds using 205 153 conflicts.

Table 2. Runtime comparison for different values of partitioning parameter `

` #cubes average time (s) max time (s) total time (h)

21 312 418 6.99 66.86 606.55
19 89 384 13.61 123.70 337.96
17 25 663 34.29 293.10 244.50
15 7393 112.61 949.50 231.27
13 2149 431.26 3 347.59 257.44
11 629 1 847.46 11 844.05 322.79
9 188 7 745.14 32 329.05 404.47
7 57 32 905.90 105 937.76 521.01

Happy Ending: An Empty Hexagon in Every Set of 30 Points 15

100K 200K 300K
10�1

100

101

102

103

ru
nt

im
e

(s
ec

on
ds

)

Fig. 7. Reported process time to solve the subproblems of h(6)  30 with proof logging
while running a formally-verified checker to validate the solver’s output.

6.3 Theorem 1

To show that the optimized encoding for h(6)  30 is unsatisfiable, we par-
titioned the problem with the splitting algorithm described in Section 5 with
parameter ` = 21, which results in 312 418 cubes. We picked this setting based
on the experiments shown in Table 2. Fig. 7 shows the runtime of solving the
subproblems. The average runtime was just below 200 seconds. All subproblems
were solved in less than an hour. Almost 24 000 subproblems could be solved
within a second. For these subproblems, the cube resulted directly in a conflict,
so the solver didn’t have to do any search.

The total runtime is close to 17 300 CPU hours, or slightly less than 2 CPU
years. We could achieve practically a linear speedup using 1000 m6i.xlarge
instances. The timings include producing and validating the proof as described in
Section 7.1. The combined size of the proofs is 180 terabytes in the uncompressed
LRAT format used by the cakeLPR checker. In past verification efforts of hard
math problems, the produced proofs were in the DRAT format. For this problem,
the LRAT proofs are roughly 2.3 times as large as the corresponding DRAT
proof. We estimate that the DRAT proof would have been 78 terabytes in size,
so approximately one third to the proof of the Pythagorean triples problem [17].
For all problems, the checker was able to easily catch up with the solver while
running on a different core, thereby finishing as soon as the solver was done.

7 Verification

We applied three verification steps to increase trust in the correctness of our
results. In the first step, we check the results produced by the SAT solver. The
second step consists of checking the correctness of the optimizations discussed
in Section 4. In the third step, we validate that the case split covers all cases.

16 M.J.H. Heule and M. Scheucher

7.1 Concurrent Solving and Checking

The most commonly used approach to validate SAT-solving results works as
follows. First, a SAT solver produces a DRAT proof. This proof is checked and
trimmed using an unverified efficient tool that produces a LRAT proof. The
difference between a DRAT proof and a LRAT proof is that the latter contains
hints. The LRAT proof is then validated by a formally-verified checker, which
uses the hints to obtain efficient performance.

Recently, the SAT solver CaDiCaL added support for producing LRAT proofs
directly (since version 1.7.0). This allows us to produce the proof and validate
it concurrently. To the best of our knowledge, we are the first to take advantage
of this possibility. CaDiCaL sends its proof to a pipe and the verified checker
cakeLPR reads it from the pipe. This tool chain works remarkably well and adds
little overhead while avoiding storing large files.

7.2 Reencoding Proof

We validated the four optimizations presented in Section 4. Only the trusted
encoding has the reflection symmetry, as each of the optimizations don’t preserve
this symmetry. Each of the clauses in the symmetry-breaking predicate have the
substitution redundancy (SR) property [5] with respect to the trusted encoding.
However, there doesn’t exit a SR checker. Instead, we transformed the SR check
into a sequence of DRAT addition and deletion steps. This is feasible for small
point sets (up to 10 points), but is too expensive for the full problem. It may
therefore be more practical to verify this optimization in a theorem prover.

Transforming the trusted encoding into the domain-consistent one is challeng-
ing to validate because the solver cannot easily infer the existence of a 6-hole
using only the clauses (7). Since we are replacing (4) by (7) and clause deletion
trivially preserves satisfiability, we only need to check whether each of the clauses
(7) is entailed by the trusted encoding. This can be achieved by constructing a
formula that asks whether there exists an assignment that satisfies the trusted
encoding, but falsifies at least one of the clauses (7). We validated that this
formula is unsatisfiable for n  12 (around 300 seconds).5 The formula becomes
challenging to solve for larger n. However, the validation for small n provides
substantial evidence of the correctness of the encoding and the implementation.

Checking the correctness of the other two optimizations is easier. Observe
that one can obtain the domain-consistent encoding from the O(n4) encoding
by applying Davis-Putnam resolution [6] on the auxiliary variables. This can be
expressed using DRAT steps. The DRAT derivation from the domain-consistent
encoding to the O(n4) encoding applies all these steps in reverse order. The
minor optimizations mostly delete clauses, which is trivially correct for proofs
of unsatisfiability. The clauses (19) have the RAT property on the auxiliary
variables and their redundancy can easily be checked using a DRAT checker.

5 We implemented an entailment tool, see https://github.com/marijnheule/entailment

https://github.com/marijnheule/entailment

Happy Ending: An Empty Hexagon in Every Set of 30 Points 17

7.3 Tautology Proof

The final validation step consists of checking whether the partition of the problem
covers the entire search space. This part has also been called the tautology
proof [16], because in most cases it needs to determine whether the disjunction
of cubes is a tautology. We take a slightly different approach and validate that
the following formula is unsatisfiable: the conjunction of the negated cubes; the
symmetry-breaking predicate; and some clauses from the formula.

Recall that we omitted various cubes because they resulted in a conflict with
the clauses (oa,a+1,a+2_oa+1,a+2,a+3_oa+2,a+3,a+4) with a 2 {2, . . . , n�4} and
(oa,a+1,a+2 _ oa+1,a+2,a+3 _ oa+2,a+3,a+4 _ oa+3,a+4,a+5) with a 2 {2, . . . , n� 5}.
We checked with DRATtrim that these clauses are implied by the optimized
formulas, which takes 0.3 CPU seconds. We combined them with the negated
cubes and the symmetry-breaking predicate, which results in an unsatisfiable
formula that can be solved by CaDiCaL in 12 CPU seconds.

8 Conclusion

We closed the final case regarding k-holes in the plane by showing h(6) = 30.
This is another example that SAT-solving techniques can effectively solve a range
of long-standing open problems in mathematics. Other successes include the
Pythagorean triples problem [17], Schur number five [16], and Keller’s conjec-
ture [4]. Also, we recomputed g(6) = 17 many orders of magnitude faster com-
pared to the original computation by Szekeres and Peters [31] even when taking
into account the difference in hardware. So, SAT techniques overwhelmingly out-
performed a dedicated approach on this geometry problem. Key contributions in-
clude an effective, compact encoding and a partitioning strategy enabling linear-
time speedups even when using thousands of cores. We also presented a new
concurrent proof-checking procedure to significantly decrease validation costs.

Although the tools are fully automatic, some aspects of our solution require
the ingenuity of the user. In particular, we had to develop encoding optimizations
and a search-space partitioning strategy to take full advantage of the power of
the tools. Constructing the domain-consistent encoding automatically appears
challenging. Most other optimizations can be achieved automatically, for example
via structured bounded variable elimination [13]. However, the resulting formula
cannot be solved as efficiently as the presented one. Substantial research into
generating effective partitionings is required to enable non-experts to solve such
hard problems. Although we validated most steps, formally verifying the trusted
encoding or even the domain-consistent encoding would further increase trust in
the correctness of our result.

Acknowledgements Heule is partially supported by NSF grant CCF-2108521.
Scheucher was supported by the DFG grant SCHE 2214/1-1. We thank Donald
Knuth, Benjamin Kiesl-Reiter, John Mackey, and the reviewers for their valuable
feedback. The authors met for the first time during Dagstuhl meeting 23261 “SAT
Encodings and Beyond”, which kicked off the research published in this paper.

18 M.J.H. Heule and M. Scheucher

References

1. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Computer
Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020),
http://hdl.handle.net/10138/318754

2. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 336. IOS Press, second edn.
(2021), https://www.iospress.com/catalog/books/handbook-of-satisfiability-2

3. Björner, A., Las Vergnas, M., White, N., Sturmfels, B., Ziegler, G.M.: Oriented
Matroids, Encyclopedia of Mathematics and its Applications, vol. 46. Cambridge
University Press, 2 edn. (1999). https://doi.org/10/bhb4rn

4. Brakensiek, J., Heule, M.J.H., Mackey, J., Narváez, D.E.: The resolution of keller’s
conjecture. Journal of Automated Reasoning 66(3), 277–300 (2022). https://doi.
org/10.1007/S10817-022-09623-5

5. Buss, S., Thapen, N.: DRAT and propagation redundancy proofs without new
variables. Logical Methods in Computer Science 17(2) (2021). https://doi.org/10/
mbdx

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960). https://doi.org/10/bw9h55

7. Eén, N., Sörensson, N.: An extensible sat-solver. In: Theory and Applications of
Satisfiability Testing. pp. 502–518. Springer (2004)

8. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-
ematica 2, 463–470 (1935), http://www.renyi.hu/~p_erdos/1935-01.pdf

9. Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry.
Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae,
Sectio Mathematica 3–4, 53–63 (1960), https://www.renyi.hu/~p_erdos/1960-09.
pdf

10. Felsner, S., Weil, H.: Sweeps, arrangements and signotopes. Discrete Applied Math-
ematics 109(1), 67–94 (2001). https://doi.org/10/dc4tb4

11. Gent, I.P.: Arc consistency in SAT. In: European Conference on Artificial In-
telligence (ECAI 2002). FAIA, vol. 77, pp. 121–125. IOS Press (2002), https:
//frontiersinai.com/ecai/ecai2002/pdf/p0121.pdf

12. Gerken, T.: Empty Convex Hexagons in Planar Point Sets. Discrete & Computa-
tional Geometry 39(1), 239–272 (2008). https://doi.org/10/c4kn3s

13. Haberlandt, A., Green, H., Heule, M.J.H.: Effective Auxiliary Variables via Struc-
tured Reencoding. In: International Conference on Theory and Applications of
Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 271, pp. 11:1–11:19. Dagstuhl, Dagstuhl, Germany (2023).
https://doi.org/10.4230/LIPIcs.SAT.2023.11

14. Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elemente der Math-
ematik 33, 116–118 (1978), http://www.digizeitschriften.de/dms/img/?PID=
GDZPPN002079801

15. Heule, M.J.H.: The DRAT format and DRAT-trim checker (2016),
arXiv:1610.06229

16. Heule, M.J.H.: Schur number five. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence. AAAI’18, AAAI Press (2018)

17. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer. In: Theory and Applications

http://hdl.handle.net/10138/318754
https://www.iospress.com/catalog/books/handbook-of-satisfiability-2
https://doi.org/10/bhb4rn
https://doi.org/10/bhb4rn
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10.1007/S10817-022-09623-5
https://doi.org/10/mbdx
https://doi.org/10/mbdx
https://doi.org/10/mbdx
https://doi.org/10/mbdx
https://doi.org/10/bw9h55
https://doi.org/10/bw9h55
http://www.renyi.hu/~p_erdos/1935-01.pdf
https://www.renyi.hu/~p_erdos/1960-09.pdf
https://www.renyi.hu/~p_erdos/1960-09.pdf
https://doi.org/10/dc4tb4
https://doi.org/10/dc4tb4
https://frontiersinai.com/ecai/ecai2002/pdf/p0121.pdf
https://frontiersinai.com/ecai/ecai2002/pdf/p0121.pdf
https://doi.org/10/c4kn3s
https://doi.org/10/c4kn3s
https://doi.org/10.4230/LIPIcs.SAT.2023.11
https://doi.org/10.4230/LIPIcs.SAT.2023.11
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002079801
http://arXiv.org/abs/1610.06229

Happy Ending: An Empty Hexagon in Every Set of 30 Points 19

of Satisfiability Testing (SAT 2016). LNCS, vol. 9710, pp. 228–245. Springer (2016).
https://doi.org/10/gkkscn

18. Heule, M.J.H., Kullmann, O., Wieringa, S., Biere, A.: Cube and Conquer: Guiding
CDCL SAT Solvers by Lookaheads. In: Hardware and Software: Verification and
Testing. pp. 50–65. Springer (2012). https://doi.org/10/f3ss29

19. Heule, M.J.H., Scheucher, M.: Happy Ending: An Empty Hexagon in Every Set of
30 Points (Extended Version) (2024), arXiv:TODO

20. Holmsen, A.F., Mojarrad, H.N., Pach, J., Tardos, G.: Two extensions of the Erdős–
Szekeres problem. Journal of the European Mathematical Society pp. 3981–3995
(2020). https://doi.org/10/gsjw4m

21. Horton, J.: Sets with no empty convex 7-gons. Canadian Mathematical Bulletin
26, 482–484 (1983). https://doi.org/10/chf6dk

22. Järvisalo, M., Biere, A., Heule, M.J.H.: Blocked clause elimination. In: Tools and
Algorithms for the Construction and Analysis of Systems. pp. 129–144. Springer
(2010)

23. Kalbfleisch, J., Kalbfleisch, J., Stanton, R.: A combinatorial problem on convex
regions. In: Proc. Louisiana Conf. Combinatorics, Graph Theory and Computing,
Congressus Numerantium, vol. 1, Baton Rouge, La.: Louisiana State Univ. pp.
180–188 (1970)

24. Knuth, D.E.: Axioms and Hulls, LNCS, vol. 606. Springer (1992). https://doi.org/
10/bwfnz9

25. Marić, F.: Fast formal proof of the Erdős–Szekeres conjecture for convex polygons
with at most 6 points. Journal of Automated Reasoning 62, 301–329 (2019). https:
//doi.org/10/gsjw4r

26. Nicolás, M.C.: The Empty Hexagon Theorem. Discrete & Computational Geome-
try 38(2), 389–397 (2007). https://doi.org/10/bw3hnd

27. Overmars, M.: Finding Sets of Points without Empty Convex 6-Gons. Discrete &
Computational Geometry 29(1), 153–158 (2002). https://doi.org/10/cnqmr4

28. Scheucher, M.: Two disjoint 5-holes in point sets. Computational Geometry 91,
101670 (2020). https://doi.org/10/gsjw2z

29. Scheucher, M.: A SAT Attack on Erdős–Szekeres Numbers in Rd and the Empty
Hexagon Theorem. Computing in Geometry and Topology 2(1), 2:1–2:13 (2023).
https://doi.org/10/gsjw22

30. Suk, A.: On the Erdős–Szekeres convex polygon problem. Journal of the AMS 30,
1047–1053 (2017). https://doi.org/10/gsjw44

31. Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős–Szekeres prob-
lem. Australia and New Zealand Industrial and Applied Mathematics 48(2), 151–
164 (2006). https://doi.org/10/dkb9j3

32. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: Verified propagation redundancy and
compositional UNSAT checking in cakeml. International Journal on Software Tools
for Technology 25(2), 167–184 (2023). https://doi.org/10/grw7wm

33. Tóth, G., Valtr, P.: The Erdős–Szekeres theorem: Upper Bounds and Related Re-
sults. In: Combinatorial and Computational Geometry. vol. 52, pp. 557–568. MSRI
Publications, Cambridge Univ. Press (2005), http://www.ams.org/mathscinet-
getitem?mr=2178339

34. Wieringa, S., Niemenmaa, M., Heljanko, K.: Tarmo: A framework for parallelized
bounded model checking. In: International Workshop on Parallel and Distributed
Methods in verifiCation, PDMC 2009. EPTCS, vol. 14, pp. 62–76 (2009). https:
//doi.org/10.4204/EPTCS.14.5

https://doi.org/10/gkkscn
https://doi.org/10/gkkscn
https://doi.org/10/f3ss29
https://doi.org/10/f3ss29
http://arXiv.org/abs/TODO
https://doi.org/10/gsjw4m
https://doi.org/10/gsjw4m
https://doi.org/10/chf6dk
https://doi.org/10/chf6dk
https://doi.org/10/bwfnz9
https://doi.org/10/bwfnz9
https://doi.org/10/bwfnz9
https://doi.org/10/bwfnz9
https://doi.org/10/gsjw4r
https://doi.org/10/gsjw4r
https://doi.org/10/gsjw4r
https://doi.org/10/gsjw4r
https://doi.org/10/bw3hnd
https://doi.org/10/bw3hnd
https://doi.org/10/cnqmr4
https://doi.org/10/cnqmr4
https://doi.org/10/gsjw2z
https://doi.org/10/gsjw2z
https://doi.org/10/gsjw22
https://doi.org/10/gsjw22
https://doi.org/10/gsjw44
https://doi.org/10/gsjw44
https://doi.org/10/dkb9j3
https://doi.org/10/dkb9j3
https://doi.org/10/grw7wm
https://doi.org/10/grw7wm
http://www.ams.org/mathscinet-getitem?mr=2178339
http://www.ams.org/mathscinet-getitem?mr=2178339
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5

	Happy Ending: An Empty Hexagon in Every Set of 30 Points

