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Abstract. We characterize totally symmetric self-complementary plane partitions (TSSCPP) as
bounded compatible sequences satisfying a Yamanouchi-like condition. As such, they are in bijec-
tion with certain pipe dreams. Using this characterization and the recent bijection of [Gao-Huang]
between reduced pipe dreams and reduced bumpless pipe dreams, we give a bijection between
alternating sign matrices and TSSCPP in the reduced, 1432-avoiding case. We also give a differ-
ent bijection in the 1432- and 2143-avoiding case that preserves natural poset structures on the
associated pipe dreams and bumpless pipe dreams.

1. Introduction

Plane partitions are three-dimensional analogues of ordinary partitions. Just as partitions in an
a× b are counted by a lovely formula

(
a+b
a

)
, plane partitions in an a× b× c box are enumerated by

MacMahon’s product formula
a∏

i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2
[Mac04]. In a 1986 [Sta86], Stanley considered

symmetry operations on plane partitions, namely, reflection (transpose), rotation, and complemen-
tation. This yielded 10 symmetry classes of plane partitions consisting of plane partitions invariant
under combinations of these operations. The plane partitions invariant under all three operations
are called totally symmetric self-complementary (TSSCPP). As in the case of all plane partitions,
each symmetry class has a nice enumeration. The set of TSSCPP inside a 2n × 2n × 2n box was

shown in 1994 by Andrews [And94] to be counted by
n−1∏
j=0

(3j + 1)!

(n+ j)!
. This was, at the time, the

conjectured [MRR83] number of n × n alternating sign matrices (ASM ). The 1996 proofs of this
conjecture [Zei96, Kup96] sparked a search for a natural, explicit bijection between TSSCPP and
ASM. Partial bijections have been found on small subsets, including the permutation case [Str18],
the case of two monotone triangle diagonals [CB12, Bet19], and the 312-avoiding case [ACGB11].
This paper interprets TSSCPP as pipe dreams to extend the bijection of [Str18] to what appears
to be a larger subset than any previous partial bijection; see Section 6 for discussion.

Our first main theorem is below; see Figure 1 for an example and Section 2 for the relevant
definitions. Given π ∈ Sn, let TSSCPPred(π) denote the set of TSSCPP whose associated pipe
dream is reduced and has permutation π, and let ASMred(π) denote the set of ASM whose associated
bumpless pipe dream is reduced and has permutation π.

Theorem 1.1. Let π ∈ Sn. There is an explicit weight-preserving injection φ from TSSCPPred(π)
to ASMred(π). If π avoids 1432, then φ is a bijection.

While the bijection of Theorem 1.1 preserves a meaningful weight on both sides, it does not, in
general, preserve the natural partial order. A corollary of our second main result, Theorem 5.20,
gives a different poset-preserving bijection between TSSCPPred(π) and ASM(π) in the case that π
avoids both 1432 and 2143. (Note in this case, ASMred(π) = ASM(π).) Theorem 5.20 itself relates
the posets Slide(π) on pipe dreams and Droop(π) on bumpless pipe dreams of such permutations,

1

ar
X

iv
:2

30
3.

10
46

3v
2 

 [m
at

h.
C

O
]  

5 
Fe

b 
20

24



⇔ ⇔
⇔


1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 −1 1 0
0 0 0 1 0 0
0 1 0 −1 0 1
0 0 0 1 0 0



Figure 1. An example of the bijection of this paper. From left to right the objects
are: TSSCPP, pipe dream, bumpless pipe dream, ASM. The pipe dream and bump-
less pipe dream both have permutation 135264, which avoids 1432. Note the black
rhombi in column k (from the left) of the TSSCPP fundamental domain correspond
to the cross tiles in row k (from the top) of the pipe dream. This equals the number
of blank tiles in row k of the bumpless pipe dream, which is the number of positive
inversions of row k of the ASM.

giving a poset-preserving bijection by decomposing into Grassmannian and inverse-Grassmannian
blocks.

The paper is organized as follows. Section 2 contains background on the relevant objects, includ-
ing the permutation case TSSCPP bijection of [Str18] and the bijection of [GH23] between reduced
pipe dreams and reduced bumpless pipe dreams, which are important ingredients in our proof of
Theorem 1.1. Section 3 proves Theorem 3.3 characterizing TSSCPP as pipe dreams subject to a
Yamanouchi-like condition. Section 4 concerns Theorem 1.1 and its proof. Section 5 proves The-
orems 5.9, 5.12, and 5.20 relating the posets Droop(π) and Slide(π) in the respective cases where
π is inverse-Grassmannian, Grassmannian, or avoiding both 1432 and 2143. These theorems yield
Corollaries 5.10, 5.14, and 5.21, which give poset-preserving bijections between TSSCPPred(π) and
ASM(π) for these three types of permutations. Section 6 gives some concluding remarks.

An extended abstract of this paper was published in the proceedings of the 2023 FPSAC confer-
ence [HS23].

2. Background

In this section, we review relevant definitions and bijections from the literature. Subsections 2.1,
2.2, 2.4, and 2.5 review definitions of ASM, TSSCPP, bumpless pipe dreams, and pipe dreams,
respectively. Subsections 2.3 and 2.6 contain less-familiar bijections that are important for our
main results.

2.1. Alternating sign matrices. In this subsection, we define alternating sign matrices (see
e.g. [MRR83]) and the weight that is preserved in Theorem 1.1.

Definition 2.1. An alternating sign matrix (ASM) is a square matrix with entries in {0, 1,−1}
such that the rows and columns each sum to 1 and the nonzero entries alternate in sign across each
row and across each column.

Alternating sign matrices are in bijection with configurations of the six-vertex / square ice model
of statistical physics with domain wall boundary conditions; this was an essential element of the
enumeration proof of [Kup96]. The 3× 3 alternating sign matrices are below.(

1 0 0
0 1 0
0 0 1

)(
1 0 0
0 0 1
0 1 0

)(
0 1 0
0 0 0
0 0 1

)(
0 1 0
1 −1 1
0 1 0

)(
0 1 0
0 0 1
1 0 0

)(
0 0 1
1 0 0
0 1 0

)(
0 0 1
0 1 0
1 0 0

)
2



In Figure 2, left and center-left are an alternating sign matrix and its corresponding square ice
configuration; the horizontal molecules correspond to +1, the vertical molecules correspond to −1,
and all other molecules correspond to 0. Center-right is its six-vertex configuration, where the six
molecule configurations are replaced by directed edges. Figure 2, right, shows the corresponding
bumpless pipe dream, which will be discussed shortly.


0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0



Figure 2. An alternating sign matrix and its corresponding square ice configura-
tion, six-vertex configuration, and bumpless pipe dream.

An important statistic on an alternating sign matrix A is the positive inversion number:

ν(A) =
∑

1≤i<k<n

∑
1≤ℓ≤j≤n

AijAkℓ.

The positive inversion number of A equals the number of vertices in the corresponding six-
vertex configuration. Equivalently, ν(A) equals the number of entriesAij = 0 such that

∑i
i′=1Ai′j =∑j

j′=1Aij′ = 0. Let NW(A) denote the set of matrix indices (i, j) of all such entries. We use the

notation NW(A) since these 0 entries are precisely those whose first nonzero entry to their right is
a 1 and the first nonzero entry below is a 1; that is, they are north and west of 1 entries. See for
instance [Beh13, Sections 2.1 and 5.2] for these well-known correspondences. The weight that is
preserved in our main bijection is the following refinement of the positive inversion number statistic
by row: wt(A) :=

∏
(i,j)∈NW(A) xi. For the ASM in Figure 2, wt(A) = x1x2x3.

2.2. Totally symmetric self-complementary plane partitions. In this subsection, we define
plane partitions and their symmetry classes (see e.g. [Sta86]). The weight that is preserved in
Theorem 1.1 will be discussed in Subsection 2.3.

Definition 2.2. A plane partition t is a rectangular array of nonnegative integers (ti,j)i,j≥1 such
that ti,j ≥ ti′,j′ if i ≤ i′, j ≤ j′. We say t is in an a × b × c bounding box if ti,j = 0 whenever
i > a or j > b and ti,j ≤ c for all i, j. Let PP (a × b × c) denote the set of plane partitions in an
a× b× c bounding box.

Remark 2.3. We can also view t ∈ PP (a× b× c) as a finite set of positive integer lattice points
(i, j, k) with 1 ≤ i ≤ a, 1 ≤ j ≤ b, and 1 ≤ k ≤ c such that if (i, j, k) ∈ t and 1 ≤ i′ ≤ i, 1 ≤ j′ ≤ j,
1 ≤ k′ ≤ k then (i′, j′, k′) ∈ t. This well-known bijection is given as (i, j, k) ∈ t if and only if
ti,j ≥ k. We will use both of these characterizations in the next definition.

Definition 2.4. A plane partition t is symmetric if ti,j = tj,i for all i, j. t is cyclically sym-
metric if whenever (i, j, k) ∈ t then (j, k, i) ∈ t as well. t is totally symmetric if it is both
symmetric and cyclically symmetric, so that whenever (i, j, k) ∈ t then all six permutations of
(i, j, k) are also in t. The complement tC of t inside a given bounding box a × b × c is defined
as tCi,j = c − ta−i+1,b−j+1 for all 1 ≤ i ≤ a, 1 ≤ j ≤ b. That is, tCi,j equals the number of empty
cubes above ta−i+1,b−j+1 in the bounding box. A plane partition t is self-complementary inside

a given bounding box if t = tC . A totally symmetric self-complementary plane partition
(TSSCPP) is a plane partition which is both totally symmetric and self-complementary.

3



Note that for there to exist a self-complementary plane partition in an a×b×c bounding box, the
volume abc of the box must be an even number. In addition, cyclic symmetry requires a = b = c,
therefore, we need a = b = c = 2n for there to exist a TSSCPP inside an a× b× c bounding box.

Definition 2.5. Let TSSCPP(n) denote the set of TSSCPP inside a 2n× 2n× 2n box.

2.3. TSSCPP boolean triangles and a permutation case bijection. In this subsection, we
review the characterization from [Str18] of TSSCPP as boolean triangles and the bijection of the
same paper between permutation matrices and TSSCPP boolean triangles whose entries weakly
decrease along rows. We also describe the weight on TSSCPP preserved in Theorem 1.1.

Definition 2.6 (Def 2.12 of [Str18]). A TSSCPP boolean triangle of order n is a triangular
integer array b = {bi,j} for 1 ≤ i ≤ n − 1, n − i ≤ j ≤ n − 1 with entries in {0, 1} such that the
diagonal partial sums satisfy the following inequality for all 1 ≤ j < i ≤ n− 1:

(1) 1 +
i∑

k=j+1

bk,n−j−1 ≥
i∑

k=j

bk,n−j .

Call this the (i, j)-inequality, in which n− j and n− j − 1 are the diagonals being compared and i
indicates the row index of where the sums stop.

We give below the indexing of a generic TSSCPP boolean triangle.
b1,n−1

b2,n−2 b2,n−1

b3,n−3 b3,n−2 b3,n−1
...

bn−1,1 bn−1,2 · · · bn−1,n−2 bn−1,n−1

Below are a non-example and an example of a TSSCPP boolean triangle.
1

1 1
1 0 0

1 0 0 1
0 0 0 1 0

1
1 1

1 0 0
1 0 1 1

0 0 0 0 0

In the left triangle, the (4, 1)-inequality is not satisfied, since
∑4

k=1 bk,n−1 = 3 while
∑4

k=2 bk,n−2 =
1. In the triangle on the right, all (i, j)-inequalities are satisfied.

Proposition 2.7 (Prop 2.13 of [Str18]). TSSCPP boolean triangles of order n are in bijection with
TSSCPP(n).

The bijection proceeds by taking the fundamental domain of the TSSCPP, transforming it into
a nest of non-intersecting lattice paths, and then recording the two different types of steps in each
path as 0 and 1. The diagonal partial sum condition (1) is equivalent to the requirement that the
paths do not intersect. See [Str18] for details.

We now review the characterization of a certain subset of TSSCPP boolean triangles.

Definition 2.8 (Def 3.1 of [Str18]). A permutation TSSCPP boolean triangle is a TSSCPP
boolean triangle with weakly decreasing rows.

That is, the entries equal to one in a permutation TSSCPP boolean triangle are all left-justified.
The terminology ‘permutation’ in the above definition is justified by the weight-preserving bijection
in the theorem below. An example of this bijection is given in Figure 3.

Theorem 2.9 (Theorem 3.5 of [Str18]). There is a natural, statistic-preserving bijection between
n × n permutation matrices with inversion number p and permutation TSSCPP boolean triangles
of order n with p zeros.

4



TSSCPP

↔

Permutation
TSSCPP

Boolean triangle
1

0 0
1 1 0

0 0 0 0
1 0 0 0 0

↔

Permutation
Matrix

0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0



Figure 3. An example of the permutation case bijection of [Str18, Theorem 3.5]

The injection φ in Theorem 1.1 extends this bijection under the mild transformation of flipping
the resulting matrix vertically (or reversing the one-line notation of the permutation). Thus, in
Theorem 1.1 we instead map the TSSCPP in Figure 3, left, to the vertical reflection of the matrix
in Figure 3, right.

The TSSCPP weight preserved in Theorem 1.1 is the number of 1 entries in the kth row from the
bottom in its boolean triangle. More specifically, for T ∈ TSSCPP(n) with boolean triangle b, let
one(T ) denote the set of indices of the entries of b that equal 1. Then wt(T ) :=

∏
(i,j)∈one(T ) xn−i.

For the TSSCPP in Figure 3, wt(T ) = x1x
2
3x5 and for the TSSCPP in Figure 5, wt(T ) = x22x3x4.

Note the weight can also be seen directly on the TSSCPP fundamental domain, as each 1 in row
n− k of b corresponds to a black rhombus in column k (from the left) of the fundamental domain,
as shown in these figures.

2.4. Bumpless pipe dreams. In this subsection, we define bumpless pipe dreams and describe
the bijection with alternating sign matrices.

Definition 2.10. A bumpless pipe dream [LLS21] of size n is a tiling of an n×n grid of squares
by the following six types of tiles: , , , , , , such that n pipes traveling from the south
border to the east border are formed. We denote the set of bumpless pipe dreams of size n as
BPD(n). We say a bumpless pipe dream is reduced if no two pipes cross twice. We associate
a permutation to each reduced bumpless pipe dream by labeling the pipes 1, · · · , n from left to
right on the south border and read off the pipe labels from top to bottom on the east border. Let
BPDred(π) denote the set of all reduced bumpless pipe dreams with permutation π.

A simple droop is a move on a bumpless pipe dream bounded by a 2 × 2 square, as shown
below. The four pairs of 2× 2 squares show all four possibilities a pipe enters and leaves the 2× 2
square.

For each reduced bumpless pipe dream D, we define its weight to be the monomial wt(D) :=∏
(i,j)∈blank(D) xi where blank(D) denotes the set of the -tiles in D.

There is a natural, weight-preserving bijection between BPD(n) and ASM(n), as described in
[Wei21]. To obtain an ASM from a BPD we simply replace each with a 1, each with a −1,
and the other four allowed squares with 0s. The blank tiles of a BPD D correspond to the NW
zeros of the associated ASM A. Thus blank(D) = NW (A), so wt(D) = wt(A). For the inverse
map, it is not difficult to see the positions of and uniquely determine a bumpless pipe dream.
See Figure 2 for an example.
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2.5. Pipe dreams. In this subsection, we define pipe dreams and bounded compatible sequences
and describe the bijection between them.

Definition 2.11. A pipe dream [BB93] of size n is a tiling of an n × n grid of squares with
two kinds of tiles, the cross-tile and elbow-tile , such that the positions on or below the main
(anti)diagonal only consist of elbow-tiles. We think of a pipe dream as n pipes, labelled 1, · · · , n
traveling from the north border and exiting from the west border. We denote the set of pipe dreams
of size n as PD(n). We say a pipe dream is reduced if no two pipes cross twice. We associate a
permutation to each reduced pipe dream by reading from top to bottom the labels of each pipe on
the west border of the pipe dream. (One can also assign permutations to non-reduced pipe dreams,
but this will not be important for the present paper.) Let PDred(π) denote the set of reduced pipe
dreams with permutation π.

The set of pipe dreams for a fixed permutations are connected by chute and ladder moves. For
precise definitions see [BB93]. When a ladder (or chute) move is bounded by a 2 × 2 square, we
call this move a simple slide, as shown below.

Figure 4 shows the set of pipe dreams PDred(1432). The first four pipe dreams are connected by
simple slides; the fifth is not.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Figure 4. PDred(1432)

For each pipe dream D, we define its weight to be the monomial wt(D) :=
∏

(i,j)∈cross(D) xi
where cross(D) denotes the set of the -tiles in D.

Definition 2.12. A bounded compatible sequence [BJS93] is a pair (a, r) where a = (a1, · · · , aℓ)
and r = (r1, · · · , rℓ) are words of positive integers, satisfying the following conditions:

(a) r1 ≥ r2 ≥ · · · ≥ rℓ,
(b) ai ≥ ri for all 1 ≤ i ≤ ℓ,
(c) ri > ri+1 if ai ≥ ai+1.

There is a simple bijection between PD(n) and the set of all bounded compatible sequences where
ai < n for each i, see [BB93]. Given a bounded compatible sequence (a, r), we may construct a pipe
dream by putting a cross-tile at position (ri, ai + 1 − ri) for each 1 ≤ i ≤ ℓ and fill the remaining
positions with elbow-tiles. Conversely, given a pipe dream, we may construct a bounded compatible
sequence as follows: scan the pipe dream from bottom to top and within each row left to right,
and whenever we encounter a cross-tile at position (r, c) we append (r+ c− 1, r) to the compatible
sequence. For example, the corresponding bounded compatible sequences for the pipe dreams in
Figure 4 are as follows; the vector a is recorded in the top row and r in the bottom row.

( 3 2 3
3 2 2 ) , (

3 2 3
3 2 1 ) , (

3 2 3
3 1 1 ) , (

3 2 3
2 1 1 ) , (

2 3 2
2 2 1 ) .

2.6. Reduced BPD-PD bijection. Both reduced pipe dreams and reduced bumpless pipe dreams
give combinatorial formulas for Schubert polynomials Sπ, π ∈ S∞ which are important polynomials

6



in the study of Schubert calculus [BB93, LLS21]. Explicitly,

Sπ =
∑

D∈PDred(π)

∏
(r,c)∈cross(D)

xr =
∑

D∈BPDred(π)

∏
(r,c)∈blank(D)

xr.

For this reason, there exists a weight-preserving bijection between PDred(π) and BPDred(π), where
the weight of a PD or BPD is its monomial contribution to the Schubert polynomial indexed by its
permutation.

In [GH23], such an explicit direct bijection φ : BPDred(π) → PDred(π) is given using an iterative
algorithm. To find the image of a BPD under φ, the algorithm computes in each iteration the
position of one crossing in the corresponding PD. For a detailed description of this process, see
[GH23, Definition 3.1]. For explicit examples, see [GH23, Example 3.4]. This bijection is weight-
preserving; in particular, for D ∈ BPDred(π), the number of blank tiles in row k equals the number
of cross-tiles in row k of φ(D).

Because the bijection is weight-preserving and there is a unique lowest weight monomial that
corresponds to the Lehmer code of the permutation in each Schubert polynomial, the permutation
BPD is mapped to the bottom pipe dream, the unique pipe dream with all crosses left-justified.

3. Characterizing TSSCPP as pseudo-Yamanouchi pipe dreams

This section focuses on our first theorem: a characterization of TSSCPP as a subset of all
(reduced and non-reduced) pipe dreams.

3.1. Mapping TSSCPP into pipe dreams. Recall the bijection of Proposition 2.7 from TSS-
CPP to the TSSCPP boolean triangles of Definition 2.6. As TSSCPP boolean triangles are triangu-
lar arrays with entries in {0, 1}, we can transform them to pipe dreams (reduced and non-reduced),
since these are triangular arrays of tiles with two choices for each spot. There are several possibili-
ties for how to do this; we choose to correspond each 1 to a cross-tile and each 0 to an elbow-tile
. There are also several choices for orientation of the triangle. We set the following convention.
Given a TSSCPP boolean triangle b of order n, we create a triangular array yi,j , 1 ≤ i ≤ n− 1,

1 ≤ j ≤ n− i of zeros and ones where yi,j = bn−i,i+j−1. That is, we flip b vertically and justify to
the left.

bn−1,1 bn−1,2 bn−1,3 · · · bn−1,n−1

bn−2,2 bn−2,3 · · · bn−2,n−1

bn−3,3 · · · bn−3,n−1

. .
.

b1,n−1

y1,1 y1,2 y1,3 · · · y1,n−1

y2,1 y2,2 · · · y2,n−2

y3,1 · · · y3,n−3

. .
.

yn−1,1

The inequality of Definition 2.6 translates to the following:

1 +

i∑
k=1

yj−k,k ≥
i+1∑
k=1

yj−k+1,k for all 1 ≤ i < j ≤ n− 1.

Now we turn each 1 into a cross-tile and each 0 into an elbow-tile . We call the pipe dreams
that lie in this image the TSSCPP pipe dreams. Note that permutation TSSCPP boolean triangles
have weakly decreasing rows; this corresponds to left-justified crosses in the associated pipe dream.

3.2. A Yamanouchi-like condition on bounded compatible sequences. In this subsection,
we prove Theorem 3.3 characterizing TSSCPP pipe dreams. We also prove Lemma 3.2, which will
be used in Section 4.

7



↔

0
0 1

1 0 0
1 0 1 0

0 0 0 0 0

↔

0 0 0 0 0
1 0 1 0
1 0 0
0 1
0

↔

Figure 5. An example of transforming a TSSCPP to a pipe dream. Note the
weight of this TSSCPP is x22x3x4.

Definition 3.1. Given a bounded compatible sequence

(a, r) = ((a1, · · · , aℓ), (r1, · · · , rℓ)),
define count(k, j)(a) (or count(k, j) when a is understood) to be the number of j that appear in
a1, · · · , ak. We say that (a, r) is pseudo-Yamanouchi if for all 1 ≤ k ≤ ℓ, 1 ≤ j ≤ n − 2,
1 + count(k, j) ≥ count(k, j + 1). We also say that a pipe dream is pseudo-Yamanouchi if its
corresponding bounded compatible sequence is so.

Lemma 3.2. For any π, the bottom pipe dream is pseudo-Yamanouchi.

Proof. The bottom pipe dream is the unique pipe dream of π with all left-justified cross-tiles. Thus
the bounded compatible sequence (a, r) is either empty or a is made up of increasing runs such
that it can be written for some m ≥ 1 as

a = (j1, j1 + 1, . . . , j∗1 − 1, j∗1 , j2, j2 + 1, . . . , j∗2 − 1, j∗2 , . . . , jm, jm + 1, . . . , j∗m − 1, j∗m)

where j1 > j2 > · · · > jm and j∗i ≥ ji for all 1 ≤ i ≤ m. Because j1 > j2 > · · · > jm, each
increasing run needs to start with a smaller number than the previous.

Suppose (a, r) is not pseudo-Yamanouchi. Choose the smallest k such that there exists a j for
which 1 + count(k, j) < count(k, j + 1). Since count(k, j) is a non-negative increasing function
of k, it must be that 1 + count(k − 1, j) = count(k − 1, j + 1) and ak = j + 1, since we chose
k to be the smallest value with the property. If we are in row j + 1 (rk = j + 1), then this is
the first time that j + 1 has appeared in a, so count(k, j + 1) = 1 and thus cannot be greater
than 1 + count(k, j). If rk > j + 1, then ak−1 = j, since the cross-tiles are left-justified, and thus
count(k− 1, j)+1 = count(k, j). But 1+count(k− 1, j) ≥ count(k− 1, j+1) = count(k, j+1)− 1.
So finally, count(k, j) ≥ count(k, j + 1)− 1, which is a contradiction. □

Theorem 3.3. TSSCPP(n) is in weight-preserving bijection with the set of pseudo-Yamanouchi
pipe dreams in PD(n).

Proof. We identify a TSSCPP with the 0-1 triangular array (yi,j)1≤i≤n−1,1≤j≤n−i satisfying the

inequalities 1 +
∑i

k=1 yj−k,k ≥
∑i+1

k=1 yj−k+1,k for all 1 ≤ i < j ≤ n− 1, as described in Section 3.1.
These inequalities mean the following: for any position (i, j) in the corresponding pipe dream, the
number of crosses in the same diagonal as (i, j) at or below row i can be at most one more than
the number of crosses in the previous diagonal at or below row i. Therefore it suffices to check this
property when (i, j) is a cross to decide whether the pipe dream is TSSCPP.

Now suppose (a, r) is an entry of a pseudo-Yamanouchi compatible sequence. Then by the
definition of the reading order, all crosses that appear at or below row r in the (a− 1)st diagonal
of the corresponding pipe dream appear before (a, r) in the compatible sequence. Therefore the

8



inequality for the (r, a−r+1) position is implied by the pseudo-Yamanouchi property. The converse
is true by a similar argument.

By definition, wt(T ) = wt(D), where T is a TSSCPP andD its corresponding pseudo-Yamanouchi
pipe dream. So this bijection is weight-preserving. □

See Figure 5 for an example.

4. A bijection between TSSCPP and ASM in the reduced, 1432-avoiding case

In this section, we prove our first main result, Theorem 1.1. The proof uses the following theorem
and lemmas, the first of which is due to Yibo Gao.

We need the following terminology. A permutation π avoids a permutation π′ if there is no
subsequence of π having the same relative order as π′.

Theorem 4.1 ([Gao21, Theorem 4.1]). If π ∈ Sn avoids 1432, then any two reduced pipe dreams
of π are connected by simple slides.

Lemma 4.2. Suppose D ∈ PD(n) is pseudo-Yamanouchi and D′ ∈ PD(n) is related to D by a
simple slide. Then D′ is pseudo-Yamanouchi.

Proof. Suppose D ∈ PD(n) is pseudo-Yamanouchi. Let (a, r) = ((a1, · · · , aℓ), (r1, · · · , rℓ)) be its
associated bounded compatible sequence. Suppose for some 1 < i < n, D has a tile at position
(ri, ai + 1− ri) and no tiles at positions (ri, ai + 2− ri), (ri − 1, ai − ri), or (ri − 1, ai + 1− ri).
Then a simple slide may be applied to D, resulting in another pipe dream D′ with tile at position
(ri − 1, ai + 1− ri) and no tiles at positions (ri, ai + 1− ri), (ri, ai + 2− ri), or (ri − 1, ai − ri).
That is, the simple slide moves the tile up one unit and to the right one unit and there were no
other tiles in these intermediate squares. This preserves the diagonal but decrements the row
index, creating a new bounded compatible sequence (a′, r′) = ((a′1, · · · , a′ℓ), (r′1, · · · , r′ℓ)) such that

(2) a′k =


ak k < i

ak+1 i ≤ k < m

ai k = m

ak m < k ≤ ℓ

where m > i is uniquely chosen so that (a′, r′) satisfies the conditions of a bounded compatible
sequence. Let j̃ := ai. So a and a′ differ only in that j̃ has slid to the right from index i to m.

Recall count(k, j)(a) denotes the number of j that appear in a1, · · · , ak. By assumption, (a, r) is
pseudo-Yamanouchi, so for all 1 ≤ k ≤ ℓ, 1 ≤ j ≤ n−2, 1+count(k, j)(a) ≥ count(k, j+1)(a). We
need only check that (a′, r′) is also pseudo-Yamanouchi. The only values of j we need to consider
are j̃ − 1, j̃, and j̃ + 1.

By (2), count(k, j)(a′) = count(k, j)(a) for all values of j when k < i or k ≥ m. Thus we need
only check the pseudo-Yamanouchi inequality for k in the range i ≤ k < m.

Suppose i ≤ k < m. Since (a, r) and (a′, r′) are related by a simple slide, we know there is no cross
inD at position (ri−1, ai−ri). That is, am−1 ̸= j̃−1. Furthermore, ak ̸= j̃−1 for all i ≤ k < m. Thus
count(k, j̃ − 1)(a′) = count(k, j̃ − 1)(a) for all i ≤ k < m while count(k, j̃)(a′) = count(k, j̃)(a)− 1
in this same range. So

count(k, j̃ − 1)(a′) = count(k, j̃ − 1)(a) ≥ count(k, j̃)(a)− 1 = count(k, j̃)(a′).

So the pseudo-Yamanouchi condition is more than satisfied when comparing diagonals j̃− 1 and j̃.
Since (a, r) and (a′, r′) are related by a simple slide, we also know there is no cross in D at

position (ri, ai + 2 − ri). That is, ai+1 ̸= j̃ + 1. Furthermore, ak ̸= j̃ + 1 for all i ≤ k < m. Thus
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count(k, j̃ + 1)(a′) = count(k, j̃ + 1)(a) for all i ≤ k < m while count(k, j̃)(a′) = count(k, j̃)(a)− 1
in this same range. So

1 + count(k, j̃)(a′) = 1 + count(k, j̃)(a) ≥ count(k, j̃ + 1)(a) = count(k, j̃ + 1)(a′).

Thus, the pseudo-Yamanouchi condition is satisfied on diagonals j̃ and j̃ + 1.
Therefore, (a′, r′) is pseudo-Yamanouchi, implying D′ is pseudo-Yamanouchi. □

Lemma 4.3. If π ∈ Sn avoids 1432, then all reduced pipe dreams of π are pseudo-Yamanouchi.

Proof. Choose π ∈ Sn that avoids 1432. Using the previous two lemmas, we know that simple slides
preserve the pseudo-Yamanouchi property and that all reduced pipe dreams in PDred(π) are con-
nected by simple slides. So we need only show one reduced pipe dream is pseudo-Yamanouchi, and
then all of them are. By Lemma 3.2, the bottom (permutation) pipe dream is pseudo-Yamanouchi.
Thus the lemma is proved. □

Proof of Theorem 1.1. Let π ∈ Sn. The explicit bijection φ : PDred(π) → BPDred(π) of [GH23]
discussed in Section 2.6 is weight-preserving; in particular, for D ∈ PDred(π), the number of cross-
tiles in row k equals the number of blank tiles in row k of φ(D), so wt(D) = wt(φ(D)). By
Theorem 3.3, TSSCPP are characterized as the set of pseudo-Yamanouchi pipe dreams in PD(n),
and the weight is preserved in this bijection. Thus whenever such pipe dreams are reduced, φ
produces a BPD with the same weight, which is in bijection with an ASM of the same weight.
Thus we have a weight-preserving injection φ : TSSCPPred(π) ↪→ ASMred(π) given by transfoming
the TSSCPP to its corresponding reduced pipe dream as in Theorem 3.3, mapping it to a reduced
BPD using φ, and then transforming to an ASM using the bijection described in Section 2.4.

Suppose π avoids 1432. Then by Lemma 4.3, all pipe dreams in PDred(π) are pseudo-Yamanouchi,
so TSSCPPred(π) is in bijection with PDred(π). So the above injection is a bijection between
TSSCPPred(π) and ASMred(π). □

5. A poset-preserving bijection in the 2143- and 1432-avoiding case

In this section, we study posets constructed using simple slides on pipe dreams and simple
droops on bumpless pipe dreams. We use this understanding to construct a bijection between
TSSCPPred(π) and ASM(π) that preserves their poset structure in the case that π avoids both
1432 and 2143. Note that this bijection is not, in general, the same as the bijection φ used in
Theorem 1.1; see Remark 5.11. Note also that when π avoids 2143, ASMred(π) = ASM(π), since
all BPD that avoid 2143 are reduced; see Lemma 5.3 below.

We use simple droops to define a poset on BPD. The Rothe BPD of π is the BPD corresponding
to the permutation matrix of π. We will also refer to the Rothe BPD as the Rothe diagram of
π. Note that the connected regions of blank tiles of a Rothe diagram are all partition-shaped.

Definition 5.1. Given π ∈ Sn, let Droop(π) denote the poset constructed from applying simple
droops in all possible ways to the Rothe BPD of π. The Rothe BPD is the bottom element of the
poset and each simple droop moves up in the poset.

Note that this construction also induces a poset on the corresponding ASM, by the simple
bijection between BPD and ASM.

Definition 5.2. The set of essential boxes of a permutation π is the set ess(π) := {(i, j) : π(j) >
i, π−1(i) > j, π(j + 1) ≤ i, π−1(i+ 1) ≤ j}. In other words, ess(π) consists of the SE-most corners
in the connected regions of blank tiles of the Rothe diagram of π. Define the dominant region of
Rothe diagram to be the connected region of blank tiles containing (1, 1). Note that the dominant
region might be empty.

The following statement is found in [Wei21].
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Lemma 5.3 ([Wei21, Lemma 7.2, Lemma 7.4 (2)]). If π ∈ Sn avoids 2143, then any D ∈ BPD(π)
is reduced, and any two bumpless pipe dreams of π are connected by simple droops.

This yields the following corollary.

Corollary 5.4. If π ∈ Sn avoids 2143, the elements of Droop(π) are all of BPD(π).

We define a similar poset for pipe dreams, using the simple slides of Section 2.5.

Definition 5.5. Given π ∈ Sn, let Slide(π) denote the poset constructed from applying simple
slides to the bottom pipe dream in all possible ways. The bottom pipe dream is the bottom
element of this poset, and each simple slide moves up in the poset.

We have the following, as a corollary of the result of Gao we stated as Theorem 4.1.

Corollary 5.6. If π ∈ Sn avoids 1432, the elements of Slide(π) are all of PDred(π).

An important class of permutations are the Grassmannian permutations, which are defined as
the permutations with at most one descent. Grassmannian permutations necessarily avoid both
2143 and 1432, since these patterns each have two descents. Inverse-Grassmannian permutations
are permutations whose inverse is Grassmannian. These also avoid both 2143 and 1432, since these
patterns are their own inverses.

We now relate Droop(π) and Slide(π) in the cases that π is inverse-Grassmannian or Grassman-
nian. We will need the following lemmas, the first of which is also due to Weigandt.

Lemma 5.7 ([Wei21, Lemma 7.4 (1)]). If π avoids 2143, all bumpless pipe dreams in BPD(π) are
uniquely determined by the locations of the blank tiles.

We remark that the same paper shows 1432-avoiding bumpless pipe dreams are in bijection with
flagged tableaux constructed by filling the blank tiles with numbers [Wei21, Theorem 1.6].

Lemma 5.8. The blank tiles in the Rothe BPD of a Grassmannian permutation have the following
characterizing properties:

(a) Each connected region of blank tiles is a rectangular block.
(b) The essential boxes lie in the same row.
(c) The NW-most blank tile of the leftmost rectangular block is on the diagonal.
(d) If B1 and B2 are two consecutive blocks and the horizontal distance between them is d, then

the height of B1 is d more than the width of B2.

Furthermore, if a set of blank tiles satisfy the properties above, this set uniquely determines the
Rothe BPD of a Grassmannian permutation. If we replace (c) and (d) with the following

(b′) The essential boxes lie in the same column.
(d′) If B1 and B2 are two consecutive blocks and the vertical distance between them is d, then

the width of B1 is d more than the width of B2.

we get similar characterizing properties for the inverse-Grassmannian permutations.

Proof. We may consider the permutation as an element in S∞ and the BPDs to be unbounded in the
east and south directions. The Rothe BPD of an inverse Grassmannian permutation is the transpose
of that of a Grassmanian permutation, so it suffices to argue for Grassmannian permutations. It
is easy to see the set of blank tiles of the Rothe BPD for a Grassmannian permutation satisfies
properties (a)–(d). Given a set of blank tiles satisfying (a)–(d), we may construct a Rothe BPD by
iteratively placing a tile at the NW-most undetermined position, and extending to the east by
a horizontal ray and to the south by a vertical ray. The properties (a)–(d) guarantee that this is
always possible, see Figure 6. □
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Figure 6. The Rothe BPD of a Grassmannian permutation is determined by blank
tiles satisfying conditions (a)–(d) of Lemma 5.8. Transposing the diagrams we get
the analogous statements for inverse Grassmannians.

We are now ready to show a poset isomorphism between BPD and reduced PD in the inverse-
Grassmannian case.

Theorem 5.9. If π ∈ Sn is inverse-Grassmannian, there is an explicit weight-preserving bijection
between BPD(π) and PDred(π) such that Droop(π) ∼= Slide(π).

Proof. Suppose π ∈ Sn is inverse-Grassmannian. By Lemma 5.7, since π avoids 2143, the blank
tiles of the BPD completely determine it. The map on the Rothe BPD of π that left-justifies all the
blank tiles and turns them into crosses results in the bottom (permutation) pipe dream of π [BB93].
By Lemma 5.8, the blank tiles in the Rothe BPD of π are disconnected rectangular blocks that are
aligned on the right. When they are left-justified to create the bottom pipe dream, they become
mirror-image rectangular blocks aligned on the left. Furthermore, the NW-most blank tile in the
Rothe BPD is on the diagonal. The number of simple droops that may be applied to this blank tile
then equals the number of simple slides that may be applied to the rightmost cross in this row of
the bottom pipe dream. Moreover, the simple droop moves of Droop(π) correspond exactly to the
simple slides of Slide(π). Thus, Droop(π) ∼= Slide(π). By construction, the number of blank tiles in
row k of a BPD in Droop(π) corresponds to the number of cross tiles in row k of the corresponding
PD, so this weight is preserved. See Figure 7 for an example. □

The following is a direct application of Theorem 5.9 to ASM and TSSCPP.

Corollary 5.10. If π ∈ Sn is inverse-Grassmannian, there is an explicit weight-preserving bijection
between ASM(π) and TSSCPPred(π) such that Droop(π) ∼= Slide(π).

Remark 5.11. For crystal-theoretic reasons, the bijection of Corollary 5.10 coincides with the
bijection φ of Theorem 1.1, though this will not be true for the subsequent corollaries of this
section.

We have a similar result for Grassmannian permutations, but the poset isomorphism is with the
dual poset Slide(π)∗ (all order relations reversed). Note that in the case that π avoids 1432, by
Theorem 4.1, Slide(π) has a unique maximal element, the pipe dream in which all the crosses are
top-justified; this is called the top pipe dream. Thus, Slide(π)∗ has the top pipe dream as its
unique minimal element.

We now show a dual poset isomorphism between BPD and reduced PD in the Grassmannian case.
Note that the transpose of a Grassmannian permutation is inverse-Grassmannian, so Grassmannian
permutations satisfy the transpose of the description in Theorem 5.9.

Theorem 5.12. If π ∈ Sn is Grassmannian, there is an explicit bijection between BPD(π) and
PDred(π) such that Droop(π) ∼= Slide(π)∗.
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Figure 7. A weight-preserving and poset-preserving bijection between BPD(14253)
and PD(14253). Note that 14253 is inverse-Grassmannian and avoids both 1432 and
2143.

Proof. Suppose π ∈ Sn is Grassmannian. By Lemma 5.7, since π avoids 2143, the blank tiles of the
BPD completely determine it. The map on the Rothe BPD of π that top-justifies all the blank tiles
and turns them into crosses results in the top pipe dream of π. This can be seen by transposing
the construction that left-justifies blank tiles of inverse-Grassmannian Rothe BPDs as described in
the proof of Theorem 5.9. By Lemma 5.8, the blank tiles in the Rothe BPD of π are disconnected
rectangular blocks that are aligned on the bottom. When they are top-justified to create the top
pipe dream, they become mirror-image rectangular blocks aligned on the top. Furthermore, the
NW-most blank tile in the Rothe BPD is on the diagonal. The number of simple droops that may be
applied to this blank tile then equals the number of inverse simple slides that may be applied to the
lowest cross in this column of the top pipe dream. Moreover, the simple droop moves of Droop(π)
correspond exactly to the inverse simple slides of Slide(π). Thus, Droop(π) ∼= Slide(π)∗. □

Remark 5.13. Note that by construction of this poset isomorphism, the number of blank tiles
in row k of a BPD in Droop(π) corresponds to the number of cross tiles row n − k + 1 of the
corresponding PD, so this weight is reversed instead of preserved.

The corollary below follows immediately from Theorem 5.12.

Corollary 5.14. If π ∈ Sn is Grassmannian, there is an explicit bijection between ASM(π) and
TSSCPPred(π) such that Droop(π) ∼= Slide(π)∗.

Remark 5.15. One may wonder why we use the dual poset in this theorem/corollary when many
small examples, including that of Figure 7, seem to indicate that these posets may be self-dual. An
example of a Grassmannian permutation π for which Slide(π) ̸= Slide(π)∗ is π = 146235.

Now we generalize these correspondences to define a poset on PD(π) in the case that π avoids
both 1432 and 2143 that is isomorphic to Droop(π). This will yield a poset-preserving bijection

13



between the corresponding TSSCPP and ASM. First, we characterize features of these BPD in the
lemmas below.

The following statement is well-known. We include a short proof.

Lemma 5.16. If π is 2143-avoiding, then essential boxes of the Rothe diagram of π run northeast
to southwest. Namely, it is impossible that (i1, j1), (i2, j2) ∈ ess(π) such that i1 < i2 and j1 < j2.

Proof. Let π be a permutation and suppose (i1, j1) and (i2, j2) are two essential boxes of π. Suppose
i1 < i2 and j1 < j2. Since (i1, j1) ∈ ess(π), we have π−1(j1 + 1) ≤ i1 and π(i1 + 1) ≤ j1. Since
(i2, j2) ∈ ess(π), there exist i1 + 1 < a ≤ i2 such that π(a) > j2 and j1 + 1 < b ≤ j2 such that
π−1(b) > i2. We then have π−1(j1 + 1) < i1 + 1 < a < π−1(b) where π(i1 + 1) < j1 + 1 < b < π(a),
so π must be 2143-containing. □

Lemma 5.17. If π is 1432-avoiding, the Rothe diagram of π satisfies the following properties:

(a) The partition shapes formed by the blank region must all be rectangles, except for the dom-
inant region.

(b) Let B1 and B2 be two non-dominant connected regions of blank tiles with essential boxes
(i1, j1) and (i2, j2). If B1 and B2 both contain tiles in some row r, then i1 = i2. If B1 and
B2 both contain tiles in some column j, then j1 = j2.

Proof. For (a), suppose to the contrary that there is a non-rectangular partition that is not domi-
nant. Let (a, b) be its NW corner, and (i1, j1), (i2, j2) with i1 < i2 and j1 > j2 SE corners of this
partition with no other SE corners in between. Note that a > 1. Let (x, y) be the unique outer
NW corner SW of (i1, j1) and NE of (i2, j2). It must be the case that π(x) = y. Then π(a− 1) < b,
π(i1) > j1, and π

−1(j2) > i2. Therefore, a− 1 < i1 < x < π−1(j2) and π(a− 1), π(i1), π(x), j2 gives
the pattern 1432, contradicting our assumption on π.

For (b), we show the row statement and the column statement is similar. It suffices to consider
the case when B1 and B2 are adjacent and j1 < j2. Now suppose i1 ̸= i2. Since B1 and B2

both contain tiles in some row r, we must have i1 > i2. Let (a, b) be the NW corner of B1, then
π(a − 1) < b ≤ j1. Since (i2, j2) ∈ ess(π), π(i2) > j2. Note also that j1 < π(i1) ≤ j2. Finally,
π−1(b) > i1. We then have a− 1 < i2 < i1 < π−1(b) and π(a− 1) < b < π(i1) < π(i2) which gives
the pattern 1432. □

Lemma 5.18. Suppose π is 1432- and 2143-avoiding. If (i, j1), (i, j2) ∈ ess(π), j1 < j2 and (i, j1) is
not in the dominant region, then (i′, j1) ̸∈ ess(π) for any i′ > i. Similarly if (i1, j), (i2, j) ∈ ess(π),
i1 < i2 and (i1, j) is not in the dominant region, then (i1, j

′) ̸∈ ess(π) for any j′ > j.

Proof. Suppose (i1, j1), (i1, j2), (i2, j1) ∈ ess(π) with i1 < i2 and j1 < j2, and (i1, j1) is not in
the dominant region. Suppose B, B1, B2 are the blank regions containing (i1, j1), (i1, j2), and
(i2, j1), respectively. Suppose (a1, b) is the NW corner of B and a2 is the row index of the topmost
row in B2. Then π(a − 1) < b ≤ j1, π(i1) > j2, and π−1(j1) > i2. Since the essential boxes of
2143-avoiding permutations run NE to SW by Lemma 5.16, there can be no blank tiles strictly
SE of (i1, j1), and therefore j1 < π(a2) ≤ j2. We then have a − 1 < i1 < a2 < π−1(j1) and
π(a− 1) < j1 < π(a2) < π(i2) giving the pattern 1432. □

Definition-Lemma 5.19. If π ∈ Sn is 2143- and 1432-avoiding, the Rothe BPD can be partitioned
into a dominant partition of empty squares in the NW corner, a partition shape of fixed pipes in the
SE corner, and disjoint blocks containing non-intersecting pipes corresponding to Grassmannian
and inverse-Grassmannian permutations. Call this the block-decomposition of π.

Proof. By Lemmas 5.17 and 5.18, the set of essential boxes outside of the dominant region can
be partitioned into E1, · · · , Em according to whether they lie on the same row or column. In
particular, if e1, e2 ∈ Ei for some i, then either e1 and e2 are in the same row, or they are in the
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same column. If Ei contain essential boxes in the same row r, let c be the smallest column index
such that (r, c) is not in the dominant region. Let r′ < r be the smallest row index such that (r′, c)
is not in the dominant region. Let l be the sum of the widths of the rectangular blocks of blank
tiles with essential boxes in Ei. Then the rectangular region with (r, c) as the SW corner of height
r − r′ + 1 and width l + r − r′ + 1 consist of r − r′ + 1 non-intersecting pipes and agree with the
top r− r′ +1 rows of the Rothe BPD of a Grassmannian permutation by Lemma 5.8. Transposing
this construction we get a rectangular region of inverse-Grassmannian permutation. The rest of
the Rothe diagram contains fixed pipes, as there are no more blank tiles. □

Theorem 5.20. Suppose π ∈ Sn avoids both 2143 and 1432. Let σ1, σ2, . . . , σk be the inverse-
Grassmannian permutations in the block-decomposition of π and τ1, τ2, . . . , τℓ the Grassmannian
permutations in the block-decomposition of π. There is an explicit bijection between BPD(π) and
PDred(π) such that

Droop(π) ∼= Slide(σ1)× Slide(σ2)× · · · × Slide(σk)× Slide(τ1)
∗ × Slide(τ2)

∗ × · · · × Slide(τℓ)
∗.

Proof. By Lemma 5.19, the Rothe diagram of such a permutation is block-Grassmannian and
inverse-Grassmannian. So we begin by mapping the Rothe diagram to a PD block-by-block. For
the Grassmannian blocks, we map to the top pipe dream, and for the inverse-Grassmannian blocks,
we map to the bottom pipe dream. Then from Theorems 5.9 and 5.12, the posets for each block
are isomorphic or dual isomorphic. So we have the stated poset isomorphism. □

The corollary below follows immediately.

Corollary 5.21. If π ∈ Sn avoids both 2143 and 1432, there is an explicit bijection ψ between
ASM(π) and TSSCPPred(π) such that

Droop(π) ∼= Slide(σ1)× Slide(σ2)× · · · × Slide(σk)× Slide(τ1)
∗ × Slide(τ2)

∗ × · · · × Slide(τℓ)
∗

where σ1, σ2, . . . , σk are the inverse-Grassmannian permutations and τ1, τ2, . . . , τℓ the Grassman-
nian permutations in the block-decomposition of π.

Example 5.22. In Figure 8, we show an example of the Rothe BPD for a 2143- and 1432- avoiding
permutation π and its image under the poset-preserving bijection ψ. The dominant partition in the
upper left corner of each diagram is (6, 6, 6, 5, 4). The block-decomposition of π (from Definition-
Lemma 5.19) consists of the Grassmannian permutation σ = 146235 (shown in the upper right of
each diagram) and the inverse-Grassmannian permutation τ = 142563 (shown in the lower left of
each diagram).

Remark 5.23. In [FG21], Fan and Guo give a formula with set-valued Rothe tableaux for Grothendieck
polynomials indexed by 1432-avoiding permutations, which when restricted to the reduced case gives
a formula for Schubert polynomials. It is not hard to see that their (set-valued) Rothe tableaux are
in direct bijection with pipe dreams. In a similar spirit, Weigandt [Wei21] gives a direct bijection
between vexillary bumpless pipe dreams and flagged (set-valued) tableaux. It is possible to combine
these tools in the 2143- and 1432- avoiding case to obtain a bijection between pipe dreams and
bumpless pipe dreams via tableaux. Such a bijection agrees with the Gao-Huang bijection [GH23]
and therefore is different from our poset-preserving bijection.

6. Concluding remarks

We conclude the paper by discussing the progress made thus far on the ASM-TSSCPP bijection
problem and an outlook on and challenges to further progress. Table 1 below shows the numbers
up to n = 7 (computed using SageMath [S+22]) of ASM and TSSCPP that correspond using the
theorems of this paper (Columns 3, 6, 7) as well as the results of [Str18, ACGB11, Str11, CB12,
Bet19] (Columns 2, 4, 5).
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Figure 8. Example of an Rothe BPD for a 2143- and 1432- avoiding permutation
and its image under the poset-preserving bijection ψ

• Column 2 is given by n!, as this counts the permutation case bijection of [Str18].
• Column 3 gives those matched under the poset-preserving 1432- and 2143-avoiding bijection
of the present paper (Corollary 5.21).

• Column 4 gives the number of ASM and TSSCPP matched in the bijection of [ACGB11,
Theorem 4], which concerns the case that the monotone triangle associated to the ASM is
gapless; this is the same set as the intersection discussed in [Str11, Section 7]. Remark 6.1
below explains the connection to pattern avoidance.

• Column 5 gives the number matched in the bijections of [CB12, Bet19], which both concern
the case of at most two nontrivial diagonals in the monotone triangle.

• Column 6 gives the number matched in the weight-preserving 1432-avoiding bijection of the
present paper (Theorem 1.1).

• Column 7 gives the number matched in the weight-preserving injection of Theorem 1.1 on
all TSSCPP whose pipe dreams are reduced.

• Column 8 gives the total number of ASM, for comparison.

Size Perm (1432,2143) 213-avoiding Two 1432 Matched Total
bijection -avoiding (gapless) diagonal -avoiding in number

bijection bijection bijection bijection injection of ASM
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 6 7 6 7 7 7 7
4 24 33 26 35 36 40 42
5 120 185 162 219 246 362 429
6 720 1175 1450 1594 2135 5125 7436
7 5040 8261 18626 12935 23067 112941 218348

Table 1. The number of ASM and TSSCPP in correspondence via the various re-
sults of this paper and as compared to other subset bijections. The column headings
in bold represent results from this paper.

One may ask whether any of these bijections include any of the other partial bijections. As noted
earlier, the weight-preserving injection of Theorem 1.1 (Column 7) extends the permutation case
bijection of [Str18] (Column 2). Also, the subsets addressed in this paper are proper subsets of
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TSSCPP PDs Remaining BPDs for n = 4Images of BPDs under

known bijections,

Not TSSCPP

Figure 9. Challenges for the remaining unmatched TSSCPP pipe dreams and
bumpless pipe dreams

each other (Columns 3, 6, 7). But it is useful to note that the subset of ASM included in other
bijections discussed here may not be a proper subset of the ASM included in Theorem 1.1. In
particular, the one ASM with n = 4 whose BPD is non-reduced (pictured in Figure 9, upper right)
has monotone triangle with only two non-trivial diagonals. Thus, it is included in the bijection of
Column 5 [CB12, Bet19], but not in Theorem 1.1 (Column 7).

Remark 6.1. Pattern avoidance is discussed in [ACGB11], in the sense that the bijection of
Column 4 [ACGB11, Theorem 4] includes all permutations that avoid the pattern 312, using the
conventions of that paper. In the conventions of the current paper, this corresponds to the set
{ASM(π) | π avoids 213}, the ASM whose associated permutation π avoids the pattern 213. (A
gapless monotone triangle is obtained from such an ASM A as follows: the ith row consists of the
column indices whose partial sum from the bottom row to row (n − i + 1) of A equals 1.) If a
permutation avoids 213, it necessarily avoids 2143, but it might not avoid 1432. Table 1 shows
that for small n, the cardinality of {ASM(π) | π avoids 213} is smaller than the cardinality of
{ASM(π) | π avoids 1432 and 2143}, but for larger values of n in the table, this comparison is
reversed.

One may ask whether it is possible to extend the bijection of Theorem 1.1 beyond 1432-avoiding
permutations and/or remove the reducedness restrictions. There are some challenges. In the case
of n = 4, 40 pseudo-Yamanouchi pipe dreams are reduced, so all the corresponding TSSCPP are
mapped to reduced BPD, and therefore to ASM. There are only two remaining TSSCPPs, shown
in the left column of Figure 9. There is one remaining reduced pipe dream, shown in the bottom
middle of Figure 9, which maps by φ to the BPD on the bottom right. Comparing this reduced
pipe dream with the two remaining TSSCPP pipe dreams, we see it differs from the one with
three crosses by moving the top cross to the right, creating a non-reduced pipe dream. In general,
the set of reduced pipe dreams for a fixed permutation are connected by (n × 2)–ladder moves
and (2× n)–chute moves [BB93], and these moves do not always preserve the pseudo-Yamanouchi
property when n > 2.

In the forthcoming work of Shimozono, Yu, and the first author, a weight-preserving bijection

between the set of all 2(
n
2) pipe dreams in PD(n) and the set of all marked bumpless pipe dreams

(a marked BPD is a BPD whose -tiles admit a binary marking) of size n, which generalizes the
bijection in [GH23]. Under this bijection, the BPD on the top right of Figure 9 is mapped to the
PD on the top middle. Notice that the one remaining TSSCPP PD on the top left has one more
, so a bijection that preserves this weight is no longer possible.
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