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Abstract We compute the free energy of confinement F for a wormlike chain (WLC), with persistence
length I,,, that is confined to the surface of a cylinder of radius R under an external tension f using a mean
field variational approach. For long chains, we analytically determine the behavior of the chain in a variety
of regimes, which are demarcated by the interplay of I,, the Odijk deflection length (Ig = (R?1,)/?), and
the Pincus length (I = kgT/f, with kT being the thermal energy). The theory accurately reproduces
the Odijk scaling for strongly confined chains at f = 0, with F ~ Ll;l/gR_QB. For moderate values of
f, the Odijk scaling is discernible only when I, > R for strongly confined chains. Confinement does not
significantly alter the scaling of the mean extension for sufficiently high tension. The theory is used to
estimate unwrapping forces for DNA from nucleosomes.

1 Introduction

There are compelling reasons for understanding the
static and dynamics of confined polymers because
of their relevance in filtration, gel permeation chro-
matography, translocation of polymers and polypeptide
chains through microporous membranes, and passage
of newly synthesized proteins through the ribosome
tunnel. These and other considerations prompted sev-
eral theoretical studies, starting with pioneering studies
[1,2], which triggered subsequent theories and simula-
tions that probed the fate of flexible polymers in pores
with regular geometries [3-8] as well as in the related
case of random media [9,10] is well understood.

The situation is somewhat more complicated when
considering semi-flexible polymers or worm-like chains,
WLC, in confined spaces. Spatial confinement of WLC
plays an important role in many biological systems, [11-
16], including histone wrapping in chromatin [17-21]
and nanolithography [13,22]. Here, we consider a WLC
that is wrapped around a cylinder whose radius is R,
and is subject to mechanical force (Fig. 1). Besides the
total contour length (L), there are three length scales
that control the statistics of the WLC polymer. The
first is the persistence length [,, which is a measure of
the resistance of polymers to bending. For long uncon-
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fined chains the free energy is a function of [,. In the
mean field theory, proposed here, the polymer is glob-
ally restricted to be wound around the cylinder, which
is equivalent to restraint enforced by a soft harmonic
potential. Consequently, the Odijk length or the deflec-
tion length, Iy = (R21,)'/3, emerges [23] coupling the
chain stiffness and radius of confinement. In many bio-
logical contexts, the system is often under an external
field elongating the chain, such as external tension (f)
unravelling histone-wrapped DNA for replication [20].
An external tension or mechanical force is captured by
the Pincus length [24], Iy = (8f)~! with 8 = 1/kpT.
The interplay of l¢, and [,, and [; on the conforma-
tions of the WLC is not fully understood. The problem
has some relevance to nucleosomes, consisting of DNA
wrapped around histone proteins, which is a building
block for chromosomes. This theory may also be appli-
cable to the aggregation of charged biomolecules to sur-
faces [25,26], which lack the specific interactions that
give rise to structure or the nucleosome. Hence, the
approximate theory developed here might illustrate an
aspect of polymer theory in describing the physics of
chromatin [11,18].

In this paper, we propose a mean-field approach to
study the properties of a wormlike chain confined to
the surface of a cylinder [27] under the application
of an external tension. Because [, is comparable to
the contour length, L, excluded volume interactions
may be neglected. We recover the known [22,23,28,29]
dependence of free energy on the deflection length
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Fig. 1 Schematic diagram of the chain backbone, with a
fixed distance between monomers a and resistance to bend-
ing characterized by the persistence length [,, the confine-
ment to the surface of a cylinder of radius R, and an external
tension f acting on the endpoints of the chain

lqg = (R%1,)Y/3 at f = 0. The theory predicts the coef-
ficient of the leading term of the scaling of free energy,
which is in good agreement with numerical results [27].
For moderate values of f # 0 (possibly relevant to
DNA unwrapping from nucleosomes) and strong con-
finement (I,,/R > 1), we show that that the free energy
scales quadratically with [;. At high external tensions,
we find that the effect of confinement is perturbative,
with 1 —(Z)/L ~ +/l¢/l,, independent of the radius of

confinement.

2 Mean field theory

2.1 Formulation and approximations

In order to understand the equilibrium properties of a
cylindrically confined WLC under tension, we devel-
oped a mean-field theory to arrive at analytically
tractable results. The energy of a configuration of the
chain is determined by a variety of terms that are
sketched in Fig. 1. The system is characterized by the
spacing between monomers (a), the number of bonds
in the chain (the chain length L = (N — 1)a = Na
with N > 1), the persistence length of the uncon-
fined chain (I,), the confinement radius (R) aligned
with the z-axis, and the external tension (f) that is
also applied in the z direction. Let the position of each
monomer be r; = (x;,¥;,2;), and define u; = r;y; —r;
as the bond vector, and @; = u;/|u;| the unit bond
vector. The statistics of a surface-confined chain can be
described by a constrained Kratky-Porod (KP) Hamil-

tonian [30] fHkp = l;” Zgzo ;- Wi — Bf(z2n — 20)s
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with confinement to the surface of the cylinder requir-
ing 27 + y? = R? for all i.

The KP model is mathematically difficult to work
with because of two rigid constraints: the fixed bond
length, |u;| = a, and the constraint that monomers be
spatially constrained transverse to the z axis, which
should be enforced through the relation, z? + y? = R?.
On the mean field level, we replace these rigid con-
straints for the confined WLC with softer harmonic
restraints (an approach that has been fruitfully applied
previously [29,31-34]). The form of the MF Hamilto-
nian can be found by writing the monomer distribu-
tion function explicitly, in order to identify a physically
meaningful harmonic approximation to the rigid con-
straints. It is straightforward to show that (up to a con-
stant) the statistical weight is Ug = (HnN:o §[z2 4+ y2 —
R2))x (TTp_y 8| Ara|—a])x ([T, e fr/2e (Ao = are))
x et0f(zL=20) where Ar = rpe1 — oy and B = 1/kgT.
The first term enforces confinement of the chain to
the cylinder (affecting only the z and y coordinates
of the polymer), the second term enforces the con-
stant monomer spacing constraint, the third term
accounts for the WLC’s resistance to bending, and the
fourth term accounts for the external tension. Each
of the & functions may be written as §(x2 + y2 —

R?) o« [dK,ei S l@tv)/B =10 and §(|Ar| — a) o
fdAne’i“A"[A”i/aLl], leading to,

n

ico N x2+y2
Wsm/imﬂdknd)\nexp{a;kn(m1>
N-—1

2
—a Z /\n<AaI;" - 1) — Bf(zr — 20)
n=1

N-2 5
N )

4
a
n=1

The 0 functions constrain enforce a fixed monomer sep-
aration and fixed transverse distance in the confined
dimension. Here, we focus solely on surface confine-
ment, but note that a MF approach has been applied
to the confinement to the interior and surface [31] of
a sphere. An equivalent volume constraint could be
applied the interior of the cylinder through a constraint
of 27 +y? < R%. However, a harmonic constraint on vol-
ume confinement requires an estimate of the average
distance of each monomer in the transverse direction
(which cannot be predicted at the mean field level).
Although exact, the formulation in Eq. 1 is difficult to
work with directly. Analytical progress becomes possi-
ble by assuming that the integrals over the Fourier vari-
ables are sharply peaked, in the same manner as in our
previous studies [31,35]. The partition function Z =
[, Pra¥s({r.}) = | T1, dhadkn exp(~F[{A. k)
defining the nondimensional free energy functional F as
an integral over all the monomer coordinates, and the
linearity of the Fourier transform allows us to write F =

FodFy+Fo—aXN ky—aX NN, with e %> =
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[ 11, dvyeMellendle=Fu =[], dype "l and
e™7= = [, dzne "=}l where we define the
dimensionless confined Hamiltonian as,

N—2
Hel[{zn}] =a Z lp(Azpqq — Az,)?/2a*
n=1
N—1 N
+a A A2? Ja® +a Z kn2? )R
n=1 n=1

The dimensionless unconfined Hamiltonian is, H.,,[{z, }]
=a EnN:_f ly(Azpi1 — Az,)% /20 +a Eg:_ll AnAz2/a?+
Bf Zg;ll Az,. If the free energy is sharply peaked
around some {\,,kn,} = {A\:,k’} that minimizes F,
the partition function can be written approximately
as Z ~ Z* = e ¥ . Because the Hamiltonians H.
and H, are uncoupled and quadratic in the monomer
coordinates, it is straightforward to integrate over the
internal coordinates of the polymer exactly. Along the
confined axes, we find 7, = F, = 3log[Det(Q)],
where the elements of the matrix (Q)y, are the coef-
ficients associated with z,z,, in Eq.2. The explicit
form of (Q)nm is given in “Appendix A” of an ear-
lier wor k [31]. In the unconfined direction, completing
the square and noting the translational invariance of
the system along the cylinder axis, allows us to write
F. = §log[Det(P)]et (PN a0zl A with [35] (P)y; =
Aibij — lpéi’jil/QaQ. These expressions can in principle
be used to determine the stationary phase values for
the Fourier variables by setting OF /OAn|(x, k. }={rx kx}
= 0F [Okn|(x, kpy={rz kzy = 0. However, the resulting
2N — 1 equations become intractable for large N, thus
making it necessary to make additional approximations.
The matrices P and Q are bidiagonal and tridiago-
nal, respectively, with a regular structure except near
the endpoints of the chain. The high symmetry of the
matrices that underly the equations suggest that we
should seek symmetric solutions for the stationary val-
ues of A% and k. In both the unconfined [35] and
spherically confined [31] cases, it was shown that the
tractable equations that reproduced exact theoretical
results could be found for mean field parameters sepa-
rated into bulk terms and endpoint terms [31,35], with
Ar = X and k,, = k for the interior points on the chain
(those with 2 < n < N — 2). Excess endpoint fluc-
tuations generally require that Ay = Ay_1 # A and
k1 = ky # k # kay = ky—1 (with the equalities due
to symmetry arguments). This approximation allows

us to write H.[{z,}] = £b) {zn}] + ng) {z,}] and
Hul[{A2,}] = H {Az,}] + H [{Az,}], where the

superscript b denotes an extensive bulk term, depend-
ing on the mean field parameters A and k. The super-
script e denotes an intensive endpoint term depending
on the more complicated values of the mean field vari-
ables near the ends of the chain.

In the continuum limit, it can be shown that the bulk
form of the Hamiltonians become,
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The form for Hgb) is identical to the spherically con-
fined Hamiltonian of the wormlike chain in our previ-

ous work [31], while the form of H is identical to that
for an unconfined chain [35]. Note that A is the same
in the two Hamiltonians in Eq.4 because of the con-
dition (u?) = (u2 + u? + u?) = 1 couples the three
components of the bending vector. However, the mean
field parameter k£ occurs only in the confined Hamil-
tonian and enforces (z? + y?) = R? constraint. The
assumption that A is isotropic causes inaccuracies in
the predicted mean extension of a chain using the MF
approach [36]. A MF theory that avoids this assump-
tion has been developed [34], which does at the cost of
greater complexity in the model. As we will show below,
the expected scaling of the free energy in the limits of
high tension and strong confinement are both recov-
ered using an isotropic assumption, suggesting that the
overall scaling laws will be accurate but with poten-
tially inaccurate coefficients. We also ignore the end-
point effects by neglecting the Hamiltonians H((f) and
§f). This approximation simplifies the mathematics
greatly, but restricts our analysis to very long chains.
Neglecting the endpoint effects, the mean field equa-
tions for the extensive contribution to the free energy
in the continuum are 0F/0N = OF/0k = 0, with
e ¥ = fD[r(s)}efHEf) [2()]=H [y(s)]=HE [2()]+ L(A+kK)

We note that this model assumes the tension is
applied only in the z direction. In many contexts
(including chromatin [17-20]), pulling forces may be
applied in the transverse (f1) and longitudinal (f})
directions, with only the latter aligned with the cylinder
axis. Due to the constraints on the system, the compo-
nent of the force along the cylinder axis will dominate
the contribution of the force to the free energy, as the
chain is free to elongate in that dimension (making its
contribution extensive). Forces applied in the transverse
direction (f,) will alter the behavior of the endpoints
of the WLC, but will not have a significant affect on the
free energy scaling.. We expect these theoretical results
will be applicable for WLC’s bound to the surface of a
cylinder so long as L/l, > 1. The relevant tension scale
will be f}, the component of the force applied along the
axis of the cylinder.

An analytical advantage of the MF approach is that
there is no coupling between the confined x-y dimen-
sions and the tensile z-dimension. This approximation
should break down for sufficiently large forces [37], but
the MF approach does accurately recover the statis-
tics confined chains in the absence of the tension, and
the scaling of the extension for chains under tension in
the absence of confinement. We note that while these
scaling laws are correctly predicted, the scaling coef-
ficients are not accurately determined using the MF
method. We, therefore, expect the results in this paper
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to be accurate in the scaling laws predicted, but can-
not quantitatively predict the free energy or extension
of a confined WLC under tension. The MF theory
is analytically tractable in the limit of large L, where
sinh(L/l,) = cosh(L/l,) ~ e/!» /2. The analytic pre-
dictions are expected to be accurate so long as the chain
is free to slide on the surface of the cylinder.

2.2 Calculation of the free energy

It is straightforward to perform the path integrals over
the confined [31] and unconfined [35] dimensions to
explicitly compute the partition function e™7, from
which it is possible to derive the mean field equations
for constant A and k. One can readily recognize that
Eq. 4 describes a quantum harmonic oscillator after a
change of variables, for which an exact propagator is
known [38]. In the confined dimension, it is straightfor-
ward to show [31] that the action in Eq. 3 is minimized
by a path satisfying %’x“”(s) — Ni(s) + 2za(s) = 0.
It is readily observed (after some tedious mathematics)
that the solution is expressible in terms of the frequen-
cies w}l = %(1 + /1 —2kl,/A\2R? ). It is possible to
integrate over the internal degrees of freedom of the
chain exactly [31], which results in an unwieldy expres-
sion. However, with the assumption that sinh(Lwy) ~
cosh(Lwy ) &~ el“+ /2 (satisfied for L/l, > 1), it is pos-
sible to simplify the confinement free energy as,

2 (on o=t (2= ),

where the first term is the contribution from integra-
tion over the chain configurations along the two con-
fined axes, and the second is the contribution from the
single unconfined axis. Endpoint effects are neglected
in deriving Eq. 5, and is only valid for very long chains
(where L is larger than all other length scales in the
problem). The average extension of the chain, under
tension, can be calculated using

_0F  BfL
=860 T B 0

where we have explicitly included the dependence of the
mean field solution of A on the physical parameters at
play. Equation 6 is similar to the result found in the case
of an unconfined chain under an external tension [32],
which is straightforward to evaluate once the mean field
solution for A is known. We note that this result is ana-
lytically exact on the Mean Field level, but the value of
A determined in this paper neglects the excess endpoint
fluctuations. While these endpoint effects are important
in accurately determining the end-to-end distribution
functions [39,40], these effects are perturbative for the
mean extension [32,37] (since Eq. 5 is accurate to lead-
ing order in L but neglects higher-order corrections).
To determine the free energy and mean extension,
we must solve the MF equations 0F /0k = OF /O = 0.
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The resulting equations are greatly simplified by noting
that

1, R? l
g a=t@re) o
Owy n wi
ON lp(wl —w?)
&Ui - 1
ok :FZPRQwi (Wi —w?)’ (®)

After some algebra, the variational equations for A and
k, respectively, become

[ S SO (c/ )
lp(wy +w_) VAL,  4A?
1 _ P2

As the left-hand side of both equalities in Eq. 9 are
identical, we can readily solve for k in terms of A, with,

o 1 1/BF\*\?
k‘zm(l‘m‘zx@)) 10

so that the confinement parameter k at the mean field
level can be determined exactly. The mean field parame-
ter A\, enforcing the inextensibility of the chain, requires
the solution of a complicated equation in Eq.9, after
substitution of the exact solution for k. Although it
may not be possible to solve for the exact values ana-
lytically for all I,, R, and f, it is straightforward to
numerically determine the mean field values accurately
for any [, and R. The asymptotic behavior of the roots
can be readily determined in certain limits, as discussed
in the next section.

3 Results

3.1 Scaling for weak confinement and weak tension

An asymptotic solution to the Mean Field equations
can be determined in a variety of parameter regimes.
The simplest scenario is the limit where both the cylin-
drical confinement and the external tension are weak.
In the limit of R/l; < 1 (with [y = kgT/f the Pin-
cus length) and I,/ R < 1, the chain is weakly confined
and we expect the mean field solution to be a pertur-
bation on the solution to the unconfined three dimen-
sional mean field theory. It has been shown [35] that
A ~ 9/8l, in the absence of external force or confine-
ment. In order to determine the asymptotic behavior
of the mean field parameter, we expand in a series for
small values of the rescaled variables [, = I,/R < 1 and

¥ = R/lf < 1, with AR = 8?1, + Zi,nzo b"mlpn@m
for some coefficients b,,,,. Substitution for the exact
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solution for k in Eq. 10 into the MF equation for A in
Eq. 9 allows us to perform a series expansion in higher
order of I/, and ¢, both assumed to be small. Itera-
tively solving for the lowest order coefficients b;; shows

A\~ % - ;}%’2 % + O(I3/R*), to leading order in

Zp and ¢. To leading order, the free energy under weak
confinement and weak external tension is

F 9 2, 812 21
PRI N O [y A I 11
LS8, or ( siee) amz (Y

Note that retaining higher order terms in A does not
affect the scaling coefficients in Eq.11. It is interest-
ing to note that the leading order contribution of the
tension is independent of the radius of the cylinder,
with the confinement only entering into the free energy
through coupling with the persistence length. This is
due to the distinct axes over which each energetic con-
tribution acts, each of which are perturbative in this
limit. Not surprisingly for weakly confined chains, the
deflection length 14 = (1, R?)'/3 does not enter into the
free energy. We note that these scaling coefficients are
not likely to be precise, as has been previously noted
for the MF solutions in multiple contexts [32,34,36].
However, the scaling with each variable is expected to
be accurate.

For a weakly confined chain, the average extension in
Eq. 6 becomes

@ lp/lf
Ol v (12)

to fourth order in [, and ¢, growing linearly with f as
long as I, < R. The linear increase for low forces and
weak confinement is shown in the purple triangles of
Fig. 2a, satisfying the expected linear scaling.

4
)

3.2 Strongly confined chains under weak tension

It is also possible to determine the scaling behavior of
the polymer under strong confinement (with I, > R)
but still constraining the external tension to be weak
(with RGBf < 1). A one-dimensional WLC in the
absence of tension on the mean field level will satisfy
A ~ 1/8l,, and we expect that A\ must converge to
this value for sufficiently small R or sufficiently large
l, (since transverse fluctuations must vanish in either
limit). The effect of confinement is contained in the
mean field variable k, which should capture the trans-
verse statistics of the chain. It is known that the Odijk
length scale, I4 (Rzlp)l/‘g7 emerges for strongly con-
fined WLCs to the interior of a cylinder [23,29]. A stiff
chain will predominantly be aligned with the cylinder
axis, and lg would be the typical distance along the
chain for transverse fluctuations (a consequence of the
mean field approach) to encounter the walls (causing
a deflection). A similar scaling has been observed for
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Fig. 2 a Average chain extension (Eq.6) as a function of
f (with R =1 held fixed) for various values of [,: [,/R =1
(purple triangles), 10 (red circles), and 100 (blue squares).
The extension increases linearly with force for small f, and
the linear scaling is unperturbed by confinement effects. b
The approach to full extension, 1 — (Z)/L, as a function
of f scales as f~'/2 for large external tension, but devia-
tions from this scaling occur for very stiff chains. The data
are solutions to Eq.5, with k given by Eq.10 and with A
determined numerically from Eq9

surface confined chains [27] and we expect the deflec-
tion length to emerge at the MF level because the hard
constraint is replaced by a soft harmonic potential. As
a consequence, the stiff chain ‘deflects’ off the soft har-
monic potential rather than a rigid wall.

In the limit of I, = [,/R > 1 and ¢ = R/l; < 1 we
expect the leading order behavior of A can be recovered
with the ansatz \ ~ i +>00, cnl;n/3+Zf§:1 Ay ™.
This is similar to the expression for A in the weakly
confined case but with the expansion in terms of small

71/3 .
¢ and large [/, and ignores cross-terms (assumed to
be higher order, as was the case for weak confinement
and low tension). The restriction of n > 4 in the sum
over [, ensures we recover the expected 1-d scaling for
R = 0, since the leading order behavior is expected to
be A = 1/8l, for R = 0. Substitution into Eqs.9 using
10 and taking the limit of small ¢ and large I, shows
that ¢4, = 0 and ¢5 = 1/(4 x 2/3) cancel the lowest
order terms in l,, while d; = 0 and dy = 4 cancels the

leading term in ¢. Substitution of this solution into the
free energy yields

F 3 2, Iy 1
TR - o+ = (13)
L~ 2B, 22" s,
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Fig. 3 a Numerical roots for the extensive component of
the mean field free energy for R3f = 0 (black stars), 1 (pur-
ple triangles), 10 (red circles), and 100 (blue squares) as [,
is varied and R held fixed. The scalings derived for the three
asymptotic regimes are indicated by the gray dashed lines.
The free energy is shifted by a factor L/l; to counter the
leading term in Eq.16. b The coefficients « for the curves
in (a) show that the scaling of F ~ I, ' and F ~ l;l/?’ are
recovered for sufficiently weak or sufficiently strong confine-
ment respectively. Furthermore, F ~ [, /2 is observed only
for very large forces

with the first term the leading order in the confine-
ment, the second to leading order in [y, the third term
the lowest order coupling between the competing length
scales [4 and ¢, and the fourth term the 1-dimensional
MF free energy. In the absence of force, this expres-
sion for the free energy at a large eternal tension scales
as L/lg, agreeing with the known result for a strongly
confined WLC [23]. The coefficient of the leading term
in Eq. 13 is 3/25/% ~ 0.945, which will dominate in the
limit of R — 0. This compares reasonably well with
the theoretical prediction for a surface-confined chain,
with Eq. 38 in a previous study [27], which predicts
a coefficient of 0.8416 by solving an exact nonlinear
Fokker-Plank equation. We also note that the coeffi-
cient of the leading term of Eq. 13 is exactly twice the
value Eq. (8) in an earlier report of DNA in confined
to the interior of a cylinder [29]. This agreement along
with the accurate prediction of the scaling coefficient
in the previously studied case of spherical confinement
using the mean field theory [31] suggest that even the
calculated numerical coeflicients arising may generally
be reliable.

The scaling is confirmed by the numerical calcula-
tion for l,/R 2 10 at f = 0 in the black stars in
Fig.3, and for non-zero forces the scaling is recov-
ered for sufficiently strong confinement. Figure 3b shows
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that non-zero tensions can significantly alter the onset
of the Odijk regime. Even an external tension as
low as, R/l; = 1 (the purple triangles), delays the
onset of the transition to the Odijk scaling, a =
dlog(F)/0log(l,/R) = —3, by orders of magnitude
in [,/R. In particular, we note that modeling the his-
tone as a long cylinder of radius R =~ 3.15nm and
DNA with I, =~ 50nm will have a free energy of con-
finement satisfying the Odijk scaling at f = 0 (since
l,/R ~ 16). The binding of DNA to histones is known
to be interrupted by forces on the order of f ~ 10pN
[20] and the unbinding of DNA already bound to his-
tones occurs [19,20] at forces ~ 20 — 30pN (or 7.7 <
% < 23.0). The intermediate external tension in the
red squares of Fig.3 (with R/l; = 10) falls within
this range, indicating that the Odijk scaling may not
be discernible by tensile forces over a wide range of
biologically relevant conditions. The calculations sug-
gest that tension effects may be more important than
confinement in nucleosomes (see the lower panel in
Fig. 3).

It is interesting to note that confinement does not
have a similarly strong effect on the scaling for the
extension of a WLC under tension. The extension of
the chain for small f and large [,/ R becomes

<Z> ~ 4lp/lf
T () o
1+ (32)

with the variations in the denominator being weak due
to the approximation [,,/R > 1. Note that the scaling
is linear in [, despite the emergence of the deflection
length as the dominant length scale in the free energy
in Eq.13. We expect that even stiff chains will devi-
ate only slightly from linear scaling at small to moder-
ate values of f (confirmed in the red squares and blue
circles of Fig.2b). The leading term in Eq. 14 differs
from the extension of a weakly confined chain by a fac-
tor of %7 which implies that strongly confined chains
are expected to have a greater average extension at
the same external tension as weakly confined chains (a
physically sensible result). This is confirmed in Fig.4,
which shows that a decrease in the radius of the cylin-
der at fixed [, decreases the midpoint of extension (f,,
the force at which (Z)/L = 0.5) from [,5fn ~ 2 by
nearly an order of magnitude. For parameters match-
ing the wrapping of DNA around a histone core, with
I, = 50 nm and R ~ 3.15 nm, we predict that the
midpoint of the transition is greatly reduced from its
unconfined value, with f,,(R — o00) ~ 0.16 pN for the
unconfined chain [32] and f,,(R = 3.15) ~ 0.025 pN.
We note that the binding of the DNA to specific sites
on the histone are not accounted for in the current the-
ory and may significantly alter the scaling of the free
energy. Binding of DNA to negatively charged colloids
[25,26] are expected to exhibit an Odijk scaling in the
free energy for low tension, but forces f 2 kT /R may
be sufficient to interrupt the emergence of this scaling.
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Fig. 4 Extension (Z)/L for fixed I, = 1 as R and f are
varied. The midpoint of the force extension curve for suf-
ficiently large R/I, > 10 occurs near l,8f, ~ 2, but is
reduced by nearly a factor of 8.8 for small R/l, < 1072 to
IpBfm = 0.23, in good agreement with the predicted reduc-
tion by a factor of 9 between weakly and strongly confined
chains

3.3 Confined chains under high tension

Finally, we consider the limit of external tensions that

are strong enough to be comparable to confinement

effects, satisfying ZE 2 lp/R. To determine the asymp-
5

totic form of the free energy in this limit, we define
I, =1,/R=0x R/l; = op for some unconstrained o
(assumed finite, but not restricted to be large or small),

and expand A in the limit of large ¢. In this limit, it is

straightforward to show that AR ~ £ + % + (?,);;j)

to leading order in ¢ > 1. In the high-force and high-
tension limit, the free energy becomes,

F oy 3 1

9
~-— 2 — (1+— 1
L R+2Rﬁ+2R¢< +160> (15)

_ 3 [Bf . 9 1
=Pty lp+32lp+2ﬁfR2' (16)

Note that the free energy here does not depend on
the deflection length I ~ (I,R?)'/3 that was seen
for strongly confined chains with low tension. Thus,
a strong force significantly alters the free energy of
confinement. The predicted scaling is confirmed in
the blue circles in Fig.3 for very large forces (with
RBf = 100). We do not observe the expected limits
of F ~ (I,/15)""/? or F ~ (I,R?)~/3 for strong con-
finement and intermediate tension (the purple trian-
gles or red squares with R/l; = 1 or 10 respectively),
but instead an extended crossover region between the
expected scaling laws emerges. The average extension
of the chain in this limit is similar to the unconfined
WLC, with

—1-—— (17)
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with the highest order dependence on the confinement
radius scaling as (R/l) 2, which is assumed to be small
in this limit. Note that the inextensibility of the chain
is respected in the mean field theory (since (Z) — L
as f — 00), and that Eq. 17 (valid for sufficiently high
forces) is identical to that of the unconfined chain. The
approach to full extension is shown in Fig. 2b, confirm-
ing the scaling of 1 —(Z)/L ~ f~/2 for large f regard-
less of the strength of confinement. Deviations from
this scaling occur only for much weaker forces (with
l,8f < 1) for strongly confined chains.

4 Conclusions

In this paper, we calculated the free energy and linear
extension of a wormlike chain confined to the surface
of a cylinder with an applied external tension using a
mean field approach, which we showed previously [31]
reproduces the exact results for confinement around
the surface of a sphere [41]. We conclude with the fol-
lowing additional comments. (1) Our method recovers
the Odijk scaling of the free energy in the absence of
force and the one-dimensional extension profile for a
WLC in the limit of small cylinder radius. Previously
these relations were derived using sound physical argu-
ments [23] and numerical methods [27]. (2) The coefli-
cient in Eq. 13 in the free energy expression obtained
here is fairly close to the result obtained previously
[27], which shows that the mean field theory not only
predicts the scaling relation but also yields the coeffi-
cients that are fairly accurate. (3) For a nucleosome,

%ﬁ’ lies in the range (5-10) depending on the concen-
tration and valence of counter ions. Moreover, experi-
ments [19] show that the first stage of DNA unwrapping
occurs at f &~ (3—5) pN. For these parameters, the the-
ory predicts that o = dlog(F)/d1log(l,/R) ~ —0.5 (red
curve in Fig. 3B), which corresponds to external tension
effects dominating modest confinement.
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