
research papers

IUCrJ (2023). 10, 487–496 https://doi.org/10.1107/S2052252523004293 487

IUCrJ
ISSN 2052-2525

MATERIALSjCOMPUTATION

Received 7 February 2023

Accepted 17 May 2023

Edited by K. Moffat, University of Chicago, USA

‡ These authors contributed equally.

Keywords: structure prediction; structure

determination; X-ray crystallography; deep

learning.

Supporting information: this article has

supporting information at www.iucrj.org

A deep learning solution for crystallographic
structure determination

Tom Pan,a‡ Shikai Jin,b,c‡ Mitchell D. Miller,b‡ Anastasios Kyrillidisa and

George N. Phillips Jrb,d*

aDepartment of Computer Science, Rice University, Houston, Texas, USA, bDepartment of Biosciences, Rice University,

Houston, Texas, USA, cCenter for Theoretical Biological Physics, Rice University, Houston, Texas, USA, and
dDepartment of Chemistry, Rice University, Houston, Texas, USA. *Correspondence e-mail: georgep@rice.edu

The general de novo solution of the crystallographic phase problem is difficult

and only possible under certain conditions. This paper develops an initial

pathway to a deep learning neural network approach for the phase problem in

protein crystallography, based on a synthetic dataset of small fragments derived

from a large well curated subset of solved structures in the Protein Data Bank

(PDB). In particular, electron-density estimates of simple artificial systems are

produced directly from corresponding Patterson maps using a convolutional

neural network architecture as a proof of concept.

1. Introduction

Proteins are an important class of organic macromolecules in

living systems as they are the driving force behind the vast

majority of cellular processes. Determining the structure of a

protein is one of the classic problems in biology, as a protein’s

function is specified by its structure. In essence, proteins are

polymers of relatively small organic molecules called amino

acids, of which there are 20 that are considered to be in the

standard set. However, these underlying polypeptide chains

always fold into complex three-dimensional structures (as well

as potential complexes) to form their active conformations; for

example see Petsko & Ringe (2008). Thus, biologists would

like to have a standard method for experimentally deter-

mining and viewing a protein’s overall structure.

1.1. Crystallographic phase problem

X-ray crystallography has been the most commonly used

method to determine protein structure for over 60 years

(Berman et al., 2004). In review, an X-ray crystallography

experiment measures a diffraction pattern which consists of a

set of spots, e.g. on a detector surface. Each spot (known as a

reflection) is denoted by three indices h, k, l, known as Miller

indices. These correspond to sets of parallel planes within the

protein crystal’s unit cell that contributed to producing the

reflections, and the set of possible h, k, l values is determined

by the radial extent of the observed diffraction pattern. Any

reflection has an underlying mathematical representation,

known as a structure factor, dependent on the locations and

scattering factors of all the atoms within the crystal’s unit cell,

Fðh; k; lÞ ¼
Xn

j¼1

fj exp 2�iðhxj þ kyj þ lzjÞ
� �

; ð1Þ

where the scattering factor and location of atom j are fj and

(xj, yj, zj), respectively. A structure factor F(h, k, l) has both an

amplitude and a phase component (denoted by �) and thusPublished under a CC BY 4.0 licence

https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252523004293&domain=pdf&date_stamp=2023-07-01


can be considered a complex number. Furthermore, suppose

we knew both components of the structure factors corre-

sponding to all of the reflections within a crystal’s diffraction

pattern. Then, in order to produce an accurate estimate of the

electron density � at any point (x, y, z) within the crystal’s unit

cell, we would only need to take an inverse Fourier transform

of all of these structure factors,

�ðx; y; zÞ ¼
1

V

X
h;k;l

jFðh; k; lÞj

� exp �2�i½hxþ kyþ lz� �ðh; k; lÞ�
� �

; ð2Þ

where V is the volume of the unit cell. The amplitude

|F(h, k, l)| of any structure factor is easy to determine, as it is

simply proportional to the square root of the measured

intensity of the corresponding reflection. Unfortunately, it is

impossible to determine directly the phase �(h, k, l) of a

structure factor, and this is what is well known as the crys-

tallographic phase problem; see for example Lattman & Loll

(2008).

A few methods of varying popularity have been developed

for solving the crystallographic phase problem for determining

protein structures. The three most commonly used methods

are isomorphous replacement, anomalous scattering and

molecular replacement (Lattman & Loll, 2008; Jin et al., 2020).

Also, for small molecules that diffract to true atomic resolu-

tion, direct methods of solving the phase problem are avail-

able (Karle & Hauptman, 1950). However, this method does

not work for protein crystallography except in the rarest of

cases, as the requirement that atoms be completely resolved as

separate objects is rarely attainable. If this does not hold, then

the probabilistic principle on which these methods are

dependent (Sayre, 1952) also does not hold.

There have also been several methods developed that

attempt to solve the problem of determining phase informa-

tion given direct access only to intensity measurements in a

more general setting (Fienup, 1982), better known as phase

retrieval in non-crystallographic contexts. However, none

have seen widespread use in the X-ray crystallography context

as they either assume a more continuous sampling of inten-

sities than possible in our setting, or were developed for use in

specific non-crystallographic fields of physics (Guo et al., 2021;

Kappeler et al., 2017; Rivenson et al., 2018). The most

well known of these is probably the iterative non-convex

Gerchberg–Saxton (G-S) (Zalevsky et al., 1996; Fienup, 1982)

algorithm, which has been applied in various optical settings

such as electron microscopy. However, it has not been applied

to crystallography since it requires more input measurements

than would be available. Fienup (1982) also extended the G-S

algorithm to work better in settings similar to X-ray crystal-

lography. Similar methods to that developed by Fienup have

occasionally been applied to solve the crystallographic phase

problem, but only in special cases where the crystals have very

high solvent content (He & Su, 2015; He et al., 2016a; Kingston

& Millane, 2022).

1.2. Patterson methods

Many of the commonly used procedures to solve the phase

problem of X-ray crystallography make use of another

mathematical representation called a Patterson function

(Patterson, 1934). It has long been known as a useful tool for

crystallographers, although traditionally it has not been used

to solve the crystallographic phase problem directly for large

molecules such as proteins. Our project aims to provide a

method of solving structures via direct interpretation of

Patterson function applications.

Essentially, the Patterson function is a simplified variation

of the Fourier transform from structure factors to electron

density, in which all structure factor amplitudes are squared

and all phases are set to zero (i.e. ignored),

Pðu; v;wÞ ¼
1

V

X
h;k;l

jFðh; k; lÞj2 exp �2�iðhuþ kvþ lwÞ½ �: ð3Þ

Locations in the Patterson unit cell are usually denoted by

indices u, v, w to distinguish them from locations in the true

unit cell, as the two have the exact same dimensions. A

simplification using Euler’s formula then gives the most

common form of the Patterson function,

Pðu; v;wÞ ¼
1

V

X
h;k;l

jFðh; k; lÞj2 cos 2�ðhuþ kvþ lwÞ: ð4Þ

Applying the Patterson function over all unit-cell locations

u, v, w creates what is known as a Patterson map, which is

periodic with the same dimensions as the crystal’s unit cell.

The Patterson function can be computed without direct access

to any phase information of the structure factors. Thus, a

Patterson map can be obtained directly from diffraction data

without the need for additional experiments or outside

information. These Patterson maps, which are formally auto-

correlations of the corresponding electron densities, can be

considered three-dimensional images that capture indirect

information about the structure within the corresponding

protein crystal’s unit cell.

Therefore, Patterson maps are natural inputs into a well

known class of machine learning models. If we can provide

Patterson maps as inputs into such a machine learning

framework and obtain suitably accurate electron-density map

predictions, then we can bypass the crystallographic phase

problem and potentially save time and effort.

It can be shown that a Patterson map will have peaks (which

are also called Patterson vectors) at positions corresponding

to interatomic vectors within the original crystal’s unit cell

research papers

488 Tom Pan et al. � Deep learning for structure determination IUCrJ (2023). 10, 487–496

Figure 1
An example of the corresponding Patterson map (right) given atomic
locations (left) and the interatomic vectors formed by them (middle).



(Lattman & Loll, 2008), as shown in Fig. 1. Furthermore, the

height of any such peak is proportional to the product of the

atomic numbers of the two atoms in the corresponding atomic

pair. This means that if a protein crystal contains n atoms in its

unit cell, the resulting Patterson map will contain order n2

peaks within its unit cell. This, along with substantial peak

overlap, means that Patterson maps for large organic mole-

cules such as proteins are considered to be uninterpretable for

humans. Furthermore, given the nature of Patterson vectors,

Patterson maps are invariant to translation of the entire

contents of the original crystal’s unit cell.

1.3. Machine learning formulation

We want to generate predictions of the values at all loca-

tions (x, y, z) of an electron-density map given the values at all

locations (u, v, w) of the corresponding Patterson map. Due to

the complexity of such a transformation, we would not want to

solve some optimization problem to determine all of its

aspects explicitly ourselves. Instead, we want to automate its

specification by making use of supervised parametric machine

learning. This technique, based on the statistical principle of

empirical risk minimization, involves a computer system

automatically optimizing (‘learning’) the parameters � (often

called weights) of a transformation gð�; xÞ, where x denotes an
input into the transformation (Goodfellow et al., 2016). In our

case, this is a Patterson map. This optimization is done in an

iterative procedure where the predictions given the current

parameter values are compared with the true values via a loss

function l ½gð�; xÞ; y�, where y denotes the desired output

corresponding to input x. In our case, this is the corresponding

true electron-density map. Formally, given a set of n input/

output examples ðxi; yiÞ, the aim is to find parameter values ��

such that

�� :¼ argmin
�

Lð�Þ :¼
1

n

Xn
i¼1

l gð�; xiÞ; yi
� �( )

: ð5Þ

The parameter values can be updated by an optimization

algorithm, such as the classic stochastic gradient descent

(Robbins, 1951). This entire process is called training.

In particular, we are making use of what is now the most

commonly used machine learning architecture – that of the

neural network. Neural networks allow us to express a

complex overall transformation as a composition of simpler,

often standardized, transformations. These constituent func-

tions are known as layers, and the output of one layer is passed

through a nonlinear activation function before being given to

the next one. In the simplest and earliest developed layer, the

fully connected (FC) one, any output of the layer depends on

all of the layer inputs (Goodfellow et al., 2016). However, this

results in very slow training for large neural networks.

Since the inputs we work with have a 3D shape and their

elements have spatial meaning, we can instead make use of 3D

convolutional layers as our default layers. Such layers enforce

both sparse connectivity and weight sharing. A location in the

output of a convolutional layer only depends on a relatively

small spatially localized subset of the input locations. Also, the

weights that these input values are multiplied by are shared

across all output locations (Goodfellow et al., 2016). Recently,

several convolutional deep neural network approaches have

been developed for phase retrieval within various fields of

optics in order to bypass the demanding computational

requirements of modern convex programming methods. One

project (Kappeler et al., 2017) used a very simple convolu-

tional neural network with only three convolutional layers to

perform phase retrieval in the Fourier ptychography setting.

Meanwhile, another report (Rivenson et al., 2018) used a more

complex model architecture, consisting of several convolu-

tional networks with residual blocks in parallel, to reconstruct

holographic images from corresponding hologram intensities.

In both the Kappeler and Rivenson models, multiple similar

input intensities are given to the machine learning model,

unlike our approach which is to provide a single input

Patterson map.

The only previous work directly related to our particular

line of inquiry of applying machine learning to solve the phase

problem of X-ray crystallography using Patterson maps was

done by David Hurwitz, who used a simple 3D convolutional

model to predict the locations of randomly positioned sets of

‘atoms’ within a 3D space given the corresponding Patterson

maps (Hurwitz, 2020). He determined several potential issues

that could arise from the inherent properties of Patterson

maps, which then lead to ambiguity in their interpretation. We

have either addressed these issues or found that we could

ignore them to a certain extent.

In this project, we have devised a deep learning approach

for the direct interpretation of simple Patterson maps. We

developed a standardized procedure for generating datasets

with examples consisting of calculated electron densities of

short adjacent peptides and their corresponding Patterson

maps, derived from existing Protein Data Bank (PDB; Berman

et al., 2000) entries. We trained a convolutional neural network

model on several such datasets, where the inputs to our model

are Patterson maps and the predictions are electron densities,

and have obtained successful results on a few initial datasets.

We found that several difficulties arising during training on

Patterson maps of randomly placed atoms can be alleviated

due to the innate structural properties of natural amino acid

residues. Overall, we have designed a new deep learning

approach to bypass the phase problem and have achieved a

successful solution on simple dipeptide examples.

2. Methods

2.1. Choice of model architecture

Because of the shape of our Patterson map inputs and

electron-density outputs, we use the well known convolutional

neural network model architecture. Such models are most

commonly used for image recognition and classification

purposes. Thereby, they usually contain some FC layers at the

very end of the model (Wang et al., 2020) and are often

referred to as encoders. But we do not want our model to

produce just one or a vector of values for a given input.

research papers

IUCrJ (2023). 10, 487–496 Tom Pan et al. � Deep learning for structure determination 489



Instead, we want to produce outputs of the same dimension-

ality as our inputs. Therefore, a natural choice of model

architecture is the U-net, which was first introduced for a

biosciences application (Ronneberger et al., 2015) and is an

example of an encoder–decoder network. In particular, almost

all layers of our model are convolutional, except for those that

perform downsampling and upsampling operations.

Thus, our current model architecture is an extension of the

architecture proposed by Hurwitz. Although it is a 3D

convolutional U-net as well, we also make use of residual

connections (He et al., 2016b) which have seen widespread use

in convolutional neural networks. It is divided into three

phases and is implemented in the PyTorch machine learning

framework (Paszke et al., 2019) for the Python programming

language. A representation of the model, in which the depth

dimension of the Patterson and electron-density maps is not

displayed, is shown in Fig. 2.

2.2. Detailed description of current model architecture

The phases of our model are the Encoding, Learning

Features and Decoding phases. The Encoding phase consists

of two 7�7�7 convolutional layers, both followed by batch

normalization and a ReLU activation. Afterwards, a max

pooling operation with kernel size 2�2�2 and stride 2 is used

to reduce the height, width and depth dimensions by a factor

of 2. The Learning Features phase consists of a sequence of

several residual blocks. Each of these blocks consists of a

7�7�7 convolutional layer with batch normalization and

ReLU activation, followed by another 7�7�7 convolutional

layer with batch normalization but no activation. [In later

versions of our model, we introduced a squeeze and excitation

block (Hu et al., 2018) at this point, applied with the channel

dimension reduced by a factor of 2. This is a method to

reweight each channel based on the global information

present in the channel.] The residual skip connection is then

applied, followed by a ReLU activation. At the end of this

phase, a naive upsampling operation is used to increase the

height, width and depth dimensions by a factor of 2, restoring

the original dimensions. The Decoding phase consists of two

5�5�5 convolutional layers. The first is followed by batch

normalization and a ReLU activation, while the second

produces the model predictions. Since all elements of the

target outputs were constrained to be in the range [�1, 1], we

apply a final tanh activation function after this layer. There are

about three million trainable parameters in our original

convolutional U-net model. See the supporting information

for more details on the model architecture.

In all convolutional layers, the input is ‘same’ padded to

preserve dimensionality. The convolutional layers in the

Encoding and Learning Features phases are padded using

PyTorch’s circular padding scheme to account for the periodic

nature of the input Patterson maps. Furthermore, all convo-

lutional layers were initialized using the kaiming_normal

function of the default torch.nn module, which uses the He

initialization scheme with a normal distribution (He et al.,

2015). Also, all convolutional layers except the last have

multiple output channels. Currently, all inputs and outputs to

the convolutional neural network are assumed to be of a

constant cubic size. The loss function used to compare our

model’s output predictions with the true electron-density

maps was the mean-squared error function. Given an input

Patterson map p, a corresponding electron-density map e and

current model parameters �,

l ½gð�; pÞ; e� :¼ jjgð�; pÞ � ejj22: ð6Þ

2.3. Datasets and data generation process

We generated several synthetic datasets that we used to

train and test our machine learning model. All of the input and

output maps we generated for our datasets were derived from

actual PDB entries of proteins solved by X-ray crystal-

lography (Berman et al., 2004). A total of �24 000 such

protein structures were curated, based on criteria such as

sequence length, to form the basis for the examples of all our

datasets. For each of these, non-protein atoms in the PDB file

were removed, and then dipeptides of adjacent amino acid

residues were randomly extracted to a new file with a fixed

unit cell. Since one issue leading to potential ambiguity in

interpreting Patterson maps is their invariance to translation

of the corresponding electron density (Hurwitz, 2020), we

decided to center each such dipeptide according to its center

of mass in its unit cell. Although this meant that our model’s

predicted electron densities would always be roughly centered

research papers

490 Tom Pan et al. � Deep learning for structure determination IUCrJ (2023). 10, 487–496

Figure 2
The neural network architecture of our proposal, showing the height, width and channel dimensions. The depth dimension is not shown. Generated using
the NN-SVG online tool (LeNail, 2019).



in the unit cell, we did not consider this to be a particular issue

with respect to realism. Structure factors for each of the

dipeptide examples were then generated to 1.5 Å resolution,

and electron-density and Patterson maps for each example

were obtained from those structure factors. These maps were

then converted into PyTorch tensors. Finally, we normalized

the values in each of the tensors to be in the range [�1, 1] after

determining the maximum and minimum values present in

each. Additional details of our data generation process can be

found in the supporting information.

Another issue brought up by Hurwitz regarding ambiguity

in Patterson map interpretation is the fact that an electron

density will always have the exact same Patterson map as its

corresponding centrosymmetry-related electron density

(Hurwitz, 2020). One method to address this ambiguity is

always to combine a set of atoms with the set of its centro-

symmetry-related atoms into a single example output.

However, this workaround requires additional post-processing

to separate the original and centrosymmetric densities for

each of the model’s predictions. But here we are working with

molecular structures rather than randomly placed data, so we

can exploit certain known properties. In particular, we know

that all proteinogenic amino acids are found in only one

possible enantiomeric configuration (Helmenstine, 2021).

Although the mirror-image symmetry of enantiomers is not

exactly the same as centrosymmetry, we still hypothesized that

the fixed chirality of amino acids was close enough to cause

our model to learn a standard stereochemistry, thus allowing

us to use individual dipeptide electron densities instead of

applying Hurwitz’s workaround.

2.4. Training and analysis

We used the Pearson correlation coefficient as an additional

metric to compare our model’s predictions with the corre-

sponding desired electron densities during training. This

metric involves all of the relevant elements xi and yi of the

predicted and actual electron-density map tensors, respec-

tively, as well as their average values x and y:Pn
i¼1ðxi � xÞðyi � yÞPn

i¼1 xi � xð Þ
2

� �
þ �

� �1=2 Pn
i¼1 yi � yð Þ

2
� �

þ �
� �1=2 : ð7Þ

We also performed phase error analysis for our model’s post-

training predictions using the cphasematch program of the

CCP4 program suite (Cowtan, 2011; Agirre et al., 2023). We

performed all our training runs on a single NVIDIA GeForce

GTX Titan GPU, making use of PyTorch’s CUDA library

(NVIDIA et al., 2020).

3. Results

3.1. Dialanine experiments

As in previous work (Hurwitz, 2020), we have implemented

cases using synthetic training and test sets for the successful

interpretation of Patterson functions using a convolutional

neural network (CNN). As stated above, these are generated

from a few thousand instances of dipeptide configurations

taken from a randomly selected set of PDB entries. For our

first dataset, referred to here as Dataset 1a, we converted the

extracted dipeptides to dialanine by truncation at the C� atom

and renaming. This was done to simplify the initial problem, as

alanine is among the smallest and simplest proteinogenic

amino acids. To simplify the problem further, we placed all of

the dialanines in a P1 unit cell with cubic dimensions. We also

considered Hurwitz’s suggestion for eliminating yet another

source of ambiguity in Patterson map interpretation – the fact

that, since a Patterson map is periodic and its peaks corre-

spond to vectors, it can be ambiguous from which corner of the

Patterson map a Patterson vector originates (Hurwitz, 2020).

Thus, for this initial dataset, we artificially enlarged the unit

cells of our dialanine examples with enough empty space on all

sides so that any Patterson vector in the resulting Patterson

maps could only originate from the corner that it is closest to.

A total of 28 470 training and 3147 validation/test examples

of unit-cell size 20 � 20 � 20 Å were generated. As already

stated, the loss function was originally the simple mean-square

error between the predicted maps and the original electron-

density maps. We also calculated the average Pearson corre-

lation coefficient between the central 6 � 6 � 6 Å regions of

the learned and original electron-density maps over the set of

validation examples after every training epoch, as the

remaining portions of the maps were empty.

Following tests using a learning rate finder tool, we settled

on a final learning rate schedule of a 0.86 exponential decay

for the first 12 training epochs, followed by a 0.9991 expo-

nential decay for the remaining epochs. After training for 1000

epochs with a batch size of 146 (effectively 438 due to gradient

accumulation) using the Adam optimizer (Kingma & Ba,

2015), predictions on the test set were created using the

learned weights. The CNN was able to produce correct solu-

tions, as demonstrated by comparison of the predictions with

the corresponding known electron densities (Fig. 3). The

median correlation coefficient for these test set predictions

relative to the corresponding known dialanine densities after

training was over 0.9, indicating success. This also more or less

research papers

IUCrJ (2023). 10, 487–496 Tom Pan et al. � Deep learning for structure determination 491

Figure 3
Examples of predictions on dialanine Datasets 1a (first row) and 1b
(second row). The desired electron density is shown in blue and the
predicted electron density is shown in orange. The labels indicate the
PDB IDs and the starting residue index of the electron-density map.



confirmed our hypothesis about centrosymmetry-induced

ambiguity in Patterson map interpretation.

However, actual crystallographic protein structures are not

surrounded by empty space, so we knew that continuing to

eliminate ambiguity completely in the Patterson vector origin

by surrounding our dipeptides with significant amounts of

empty space would not be a viable option if we wanted our

model to work on real-world data. Since organic molecules are

structured rather than consisting of randomly placed atoms,

we predicted that our model could handle some ambiguity in

the Patterson vector origin after greatly reducing the amount

of empty space we introduced. This hypothesis was shown to

be correct by the high correlations in all the tests we

performed. In fact, reducing the cell size and thus making the

origin definition harder actually helped the training efficacy

for Dataset 1b, although for 1b the training set size was also

increased, which is also likely to have contributed to the

improved performance (see Table 1).

Starting with Dataset 1b, we calculated correlation coeffi-

cients using the entire boxes rather than only the central

regions, as accounting for a significant amount of surrounding

empty space was no longer necessary. For both Datasets 1a

and 1b, we calculated the average phase error over all

predictions on validation set examples at various resolutions

and created the plot shown on the left in Fig. 4. There are

clearly better phase error results on the predictions for

Dataset 1b. Since the average phase errors remain low even at

high resolution, we conclude that our model’s predictions on

Dataset 1b match even the finer details of the corresponding

actual electron densities in general. This is not surprising given

the simple structure of alanine residues. For both datasets, we

also created a plot of the fraction of validation set predictions

for which the phase error is <60� at various ranges of reso-

lution, as shown on the right in Fig. 4. For Dataset 1a, we see a

gradual decrease in this fraction at higher bins of resolution.

However, for Dataset 1b we still have a very high fraction of

predictions with phase error <60�, even at the highest ranges

of resolution. Also, for both datasets the fraction of predic-

tions with low phase error is very high at the lowest bins of

resolution. Overall, this shows that the model is able to

reproduce the general shape of the desired electron densities

on both datasets, but is able to produce higher-resolution

predictions (i.e. it more accurately generates finer details)

after training on Dataset 1b.

3.2. Dipeptide experiment

After our initial success on the dialanine datasets, we

switched to Dataset 2, consisting of dipeptide examples where

each dipeptide could be any of the 20 standard proteinogenic

amino acids rather than just alanine. The examples we

produced for Dataset 2 were slightly larger than for the

dialanine datasets, at 12 � 12 � 12 Å, to limit the number of

dipeptides containing larger amino acids that would be

rejected due to spatial clashes with neighboring unit cells. As a

result of this greatly increased variability in our examples, this

is considered to be a much more difficult problem. With the

same model as we used in the dialanine experiments, we found

that the validation set metrics plateaued after relatively few

training epochs. Thus, we decided to increase our model

research papers

492 Tom Pan et al. � Deep learning for structure determination IUCrJ (2023). 10, 487–496

Figure 4
(Left) A plot of the average phase error of validation set predictions on Datasets 1a and 1b (dialanine datasets) against resolution. For the predictions on
Dataset 1b, the average phase error remains below 60� for the entire range of resolution. (Right) The fraction of validation set predictions for which the
phase error is <60� at various ranges of resolution, for Dataset 1a and 1b predictions.

Table 1
The results of reported experiments.

Dataset
Training
examples

Validation
examples Cell size (Å3)

Grid
spacing (Å)

Amino
acids Epochs

Median
Pearson CC

Median
phase error

1a 28 470 3147 20 � 20 � 20 0.5 A 1000 0.93 52�

1b 66 504 7390 10 � 10 � 10 0.5 A 1000 0.98 25�

2 424 096 47 126 12 � 12 � 12 0.6 All 20 200 0.87 64�



complexity and thereby address the increased problem

complexity.

The improvement was done by increasing the number of

channels in our convolutional layers. Layers with 23 original

channels were increased to 25 channels and layers with 25

original channels were increased to 30. We increased the

number of residual blocks in the Learning Features phase

from seven to eight. We also introduced squeeze and excita-

tion blocks into the residual blocks and switched to the

AdamW optimizer (Loshchilov & Hutter, 2019) with a weight

decay parameter of 3 � 10�2. Furthermore, we began

augmenting the loss function by adding 1 minus the calculated

Pearson correlation coefficient to the MSE loss for each

training example to produce a weighted combined loss func-

tion (with the weight heavily in favor of the MSE loss). We

also experimented with introducing Inception v1 modules

(Szegedy et al., 2015) in place of simple convolutional layers in

our residual blocks, but found slightly worse performance than

without. This suggests that, given our current problem, the

7�7�7 kernels we use in the Learning Features phase are the

optimal size.

We also further increased the size of both the training and

validation sets for this dataset, which ended up with 424 096

training and 47 126 test examples. After training for 200

epochs with a batch size of 58 (effectively 928), we obtained a

median test set Pearson correlation coefficient of about 0.87,

also indicating success. We also slightly modified the learning

rate schedule, which now has a 0.91 exponential decay for the

first 18 epochs and a 0.9989 exponential decay afterwards.

Several examples of predictions made by the trained model on

Dataset 2 are shown in Fig. 5.

After performing phase error analysis on the post-training

validation set predictions for this dataset, we once again

plotted average prediction phase errors against resolution, as

shown in Fig. 6. This plot shows that, in this much more

difficult problem, the current model has difficulty reproducing

the finer details of the corresponding electron densities. This

was expected as we are now working with all of the possible

proteinogenic amino acid residues, almost all of which are

considerably more complex in structure than alanine. We also

generated another plot of the fraction of predictions with

phase error <60� at various ranges of resolution, also shown in

Fig. 6. The fraction begins decreasing at lower resolution bins

than for Dataset 1a, which shows that phase errors tend to

become higher than 60� at lower ranges of resolution than

those for the dialanine dataset predictions. However, it also

shows that only a very small fraction of the predictions can be

considered completely unusable. The model is still able to

reproduce the overall shape of the desired electron density the

vast majority of the time. A summary of our experimental

results, including median Pearson correlation coefficients and

median phase errors of validation set predictions after

training, is shown in Table 1.

4. Challenges and limitations

We have shown that, at least for simple cases, our CNN-based

approach is viable for directly determining structures from

research papers

IUCrJ (2023). 10, 487–496 Tom Pan et al. � Deep learning for structure determination 493

Figure 5
Examples of predictions on dipeptide Dataset 2. The desired electron
density is shown in blue and the predicted electron density is shown in
orange. The labels indicate the PDB IDs and the starting residue index of
the electron-density map.

Figure 6
(Left) A plot of the average phase error of validation set predictions on Dataset 2 (dipeptide dataset) against resolution. Note that, unlike for the
dialanine datasets, the average phase error rises above 60� before about 2 Å resolution. (Right) The fraction of validation set predictions for which the
phase error is <60� at various ranges of resolution, for Dataset 2 predictions.



Patterson maps. Our eventual goal is to design an algorithmic

approach for bypassing the crystallographic phase problem

that goes beyond our synthetic cases to more realistic ones.

Several challenges will have to be overcome along the way,

some of which have some theoretical bases for implementa-

tion and some of which need algorithmic development. We

also expect that scalability will be a challenge. We may have to

look into recent advances in convolutional model architecture

or even begin implementing custom convolutional layers.

These concerns may also lead us to pursue alternative or novel

model architectures in place of our current convolutional

U-net setup, which may in turn lead us to approach our

problem from a different angle than predicting electron

densities from corresponding Patterson maps.

We found that, unlike what was suggested in related work

(Hurwitz, 2020), we do not need to disallow ambiguity in the

Patterson vector origin completely when working with our

simulated peptide data. However, our most recent datasets

still have more empty space around the electron densities than

would be considered realistic. Thus, we want to see if our

model continues to be able to train as we increase the realism

of our datasets.

The current model architecture, along with our current

dataset sizes, already requires significant training time over-

head with our current computing resources. However, true

protein crystal unit cells are still substantially larger than those

of the examples in the datasets we have developed. It is also

known that convolutional layers scale poorly (order n3) with

input size (Notchenko et al., 2018). Thus, we understand that

scaling our model to solve realistic protein structures will be a

challenge and may require introducing sparsity into our

convolutional layers, as in previous work (Notchenko et al.,

2018). Alternatively, or in addition, we may have to begin

using dilated convolutions (Yu & Koltun, 2016) in our

convolutional layers, which we previously did not consider to

be beneficial for our unique problem.

Our synthetic datasets currently incorporate many simpli-

fying limitations. For example, we trained our model on

examples that all have the same cubic unit-cell sizes, but real-

world density maps obviously can have different sizes.

Although there are methods to include differently sized inputs

in CNNs (He et al., 2014), this is even simpler in our case as we

use a U-net architecture that does not end with one or more

fully connected layers. Thus, we will not need to change our

model architecture to allow for inputs and corresponding

outputs of varying rectangular unit-cell sizes. On the other

hand, the PyTorch framework requires that all examples

within a batch must have the same size, so we need to find a

workaround for this issue. Furthermore, our current data

generation process assumes that all unit-cell angles are exactly

90�. We will also eventually want to create datasets with

variable true unit-cell angles (the generated PyTorch tensors

will still be rectangular) to see if our model can also be robust

to this kind of variation, and potentially implement changes to

address this.

All of the experiments performed thus far have been in

space group P1, with no internal symmetry considered.

Methods that best include cyclic and dihedral symmetries in

CNNs with minimal increases in effective parameters need to

be explored. We will adapt our fabricated test cases to include

C2, C4, D2 and/or D4 symmetries, e.g. by modifying the

convolutional layers in our neural network and verifying their

functionality in solving Patterson maps.

We can also look to introduce additional known data to help

our model, which currently only takes entire Patterson maps

as input. This is in stark contrast to the approach of Alpha-

Fold2, the most important recent related result (Jumper et al.,

2021; Tunyasuvunakool et al., 2021). In particular, we do not

currently make any use of the actual identities and order of

the amino acid residues in each example. We could embed

sequence data and other information in a 3D tensor and thus

provide more than one channel to our model inputs. For

example, since convolutional models are known to be robust

to the rotational orientation of their inputs (Goodfellow et al.,

2016), we could provide the n most common rotamers of the

peptides in an example as additional channels.

Another direction we could pursue is to replace some

phases of our current convolutional U-net model with new

architectures. Although they can be considered to be 3D

images, Patterson maps do not actually exhibit any spatial

locality, so immediately performing convolution on them may

not be the most theoretically sound approach. Thus, we could

replace the Encoding phase, or both the Encoding and

Learning Features phases, with a 3D vision transformer model

(Chen et al., 2021). Additionally, using simple convolutional

layers to produce our model outputs could be the reason why

our predicted electron densities tend to be too smooth and

lacking in finer details. To address this, we can replace the

decoding phase of our model with a diffusion decoder

(Ramesh et al., 2022) or even another transformer.

Finally, for the proof-of-concept work described here, we do

not claim that our approach is the best way of actually solving

new simple crystal structures. Our resolution is slightly worse

than that required for most direct methods, but in fact we

could solve a couple of trial examples using SHELXT (Shel-

drick, 2015). It seems that molecular replacement could also

work. Our longer term goal is to develop a machine learning

framework for larger scale, more difficult cases.

5. Conclusion

Overall, we have solved Patterson maps from synthetic data-

sets consisting of short peptides derived from existing PDB

entries. This was achieved by the successful training of a

convolutional U-net neural network. We have shown the

viability of such an approach for solving the structures of

simple systems, and have also identified several potential

avenues for further research on using neural networks to help

solve the crystallographic phase problem.

6. Related literature

For further literature related to the supporting information,

see Eastman et al. (2017), Read & Schierbeek (1988), Winn et

al. (2011) and Wojdyr (2022).

research papers

494 Tom Pan et al. � Deep learning for structure determination IUCrJ (2023). 10, 487–496



Acknowledgements

We thank Chen Dun for helpful discussions.

Funding information

Funding for this research was provided by: Welch Foundation

(grant No. C-2118 to George N. Phillips Jr and Anastasios

Kyrillidis); National Science Foundation, Directorate for

Biological Sciences (grant No. 1231306 to George N. Phillips

Jr); Rice University (Faculty Initiative award to George N.

Phillips Jr and Anastasios Kyrillidis); NSF FET:Small (award

no. 1907936); NSF MLWiNS CNS (award no. 2003137, in

collaboration with Intel); NSF CMMI (award no. 2037545);

NSF CAREER (award no. 2145629); a Rice InterDisciplinary

Excellence Award (IDEA); an Amazon Research Award; a

Microsoft Research Award.

References

Agirre, J., Atanasova, M., Bagdonas, H., Ballard, C. B., Baslé, A.,
Beilsten-Edmands, J., Borges, R. J., Brown, D. G., Burgos-Mármol,
J. J., Berrisford, J. M., Bond, P. S., Caballero, I., Catapano, L.,
Chojnowski, G., Cook, A. G., Cowtan, K. D., Croll, T. I.,
Debreczeni, J. É., Devenish, N. E., Dodson, E. J., Drevon, T. R.,
Emsley, P., Evans, G., Evans, P. R., Fando, M., Foadi, J., Fuentes-
Montero, L., Garman, E. F., Gerstel, M., Gildea, R. J., Hatti, K.,
Hekkelman, M. L., Heuser, P., Hoh, S. W., Hough, M. A., Jenkins,
H. T., Jiménez, E., Joosten, R. P., Keegan, R. M., Keep, N.,
Krissinel, E. B., Kolenko, P., Kovalevskiy, O., Lamzin, V. S., Lawson,
D. M., Lebedev, A. A., Leslie, A. G. W., Lohkamp, B., Long, F.,
Malý, M., McCoy, A. J., McNicholas, S. J., Medina, A., Millán, C.,
Murray, J. W., Murshudov, G. N., Nicholls, R. A., Noble, M. E. M.,
Oeffner, R., Pannu, N. S., Parkhurst, J. M., Pearce, N., Pereira, J.,
Perrakis, A., Powell, H. R., Read, R. J., Rigden, D. J., Rochira, W.,
Sammito, M., Sánchez Rodrı́guez, F., Sheldrick, G. M., Shelley, K.
L., Simkovic, F., Simpkin, A. J., Skubak, P., Sobolev, E., Steiner, R.
A., Stevenson, K., Tews, I., Thomas, J. M. H., Thorn, A., Valls, J. T.,
Uski, V., Usón, I., Vagin, A., Velankar, S., Vollmar, M., Walden, H.,
Waterman, D., Wilson, K. S., Winn, M. D., Winter, G., Wojdyr, M. &
Yamashita, K. (2023). Acta Cryst. D79, 449–461.

Berman, H., Henrick, K. & Nakamura, H. (2004). Nat. Struct. Mol.
Biol. 10, 980.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). Nucleic Acids
Res. 28, 235–242.

Chen, J., He, Y., Frey, E. C., Li, Y. & Du, Y. (2021). arXiv: 2104.06468.
Cowtan, K. (2011). cphasematch. https://www.ccp4.ac.uk/html/
cphasematch.html.

Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y.,
Beauchamp, K. A., Wang, L.-P., Simmonett, A. C., Harrigan, M. P.,
Stern, C. D., Wiewiora, R. P., Brooks, B. R. & Pande, V. S. (2017).
PLoS Comput. Biol. 13, e1005659.

Fienup, J. R. (1982). Appl. Opt. 21, 2758–2769.
Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning.
Cambridge, Massachusetts, USA: MIT Press. https://
www.deeplearningbook.org.

Guo, Y., Wu, Y., Li, Y., Rao, X. & Rao, C. (2022). Mon. Not. R.
Astron. Soc. 510, 4347–4354.

He, H., Fang, H., Miller, M. D., Phillips, G. N. & Su, W.-P. (2016a).
Acta Cryst. A72, 539–547.

He, H. & Su, W.-P. (2015). Acta Cryst. A71, 92–98.
He, K., Zhang, X., Ren, S. & Sun, J. (2014). Computer Vision – ECCV
2014, pp. 346–361. Cham: Springer International Publishing.

He, K., Zhang, X., Ren, S. & Sun, J. (2015). IEEE International
Conference on Computer Vision (ICCV 2015), pp. 1026–1034. New
York: IEEE Press.

He, K., Zhang, X., Ren, S. & Sun, J. (2016b). IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2016), pp. 770–
778. New York: IEEE Press.

Helmenstine, A. M. (2021). Amino Acid Chirality. https://
www.thoughtco.com/amino-acid-chirality-4009939.

Hu, J., Shen, L. & Sun, G. (2018). IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR 2018), pp. 7132–
7141. New York: IEEE Press.

Hurwitz, D. (2020). arXiv: 2003.13767.
Jin, S., Miller, M. D., Chen, M., Schafer, N. P., Lin, X., Chen, X.,
Phillips, G. N. & Wolynes, P. G. (2020). IUCrJ, 7, 1168–1178.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek, A.,
Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard,
A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler,
J., Back, T., Petersen, S., Reiman, D., Clancy, E., Zielinski, M.,
Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S.,
Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P.
& Hassabis, D. (2021). Nature, 596, 583–589.

Kappeler, A., Ghosh, S., Holloway, J., Cossairt, O. & Katsaggelos, A.
(2017). IEEE International Conference on Image Processing (ICIP
2017), pp. 1712–1716. New York: IEEE Press.

Karle, J. & Hauptman, H. (1950). Acta Cryst. 3, 181–187.
Kingma, D. P. & Ba, J. (2015). arXiv:1412.6980.
Kingston, R. L. & Millane, R. P. (2022). IUCrJ, 9, 648–665.
Lattman, E. & Loll, P. (2008). Protein Crystallography. Baltimore,
Maryland, USA: Johns Hopkins University Press.

LeNail, A. (2019). J. Open Source Software, 4(33), 747.
Loshchilov, I. & Hutter, F. (2019). 7th International Conference
on Learning Representations (ICLR 2019), New Orleans,
Louisiana, USA, 6–9 May 2019. https://openreview.net/forum?id=
Bkg6RiCqY7.

Notchenko, A., Kapushev, Y. & Burnaev, E. (2018). Analysis of
Images, Social Networks and Texts, pp. 245–254. Cham: Springer
International Publishing.

NVIDIA , Vingelmann, P. & Fitzek, F. H. (2020). CUDA. Release
10.2.89. https://developer.nvidia.com/cuda-toolkit.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S.
(2019). Adv. Neural Inf. Process. Syst. 32, 8024–8035.

Patterson, A. L. (1934). Phys. Rev. 46, 372–376.
Petsko, G. & Ringe, D. (2008). Protein Structure and Function.Oxford
University Press.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. (2022).
arXiv:2204.06125.

Read, R. J. & Schierbeek, A. J. (1988). J. Appl. Cryst. 21, 490–
495.

Rivenson, Y., Zhang, Y., Günaydın, H., Teng, D. & Ozcan, A. (2018).
Light Sci. Appl. 7, 17141–17141.

Robbins, H. E. & Monro, S. (1951). Ann. Math. Stat. 22, 400–407.
Ronneberger, O., Fischer, P. & Brox, T. (2015). Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015,
edited by N. Navab, J. Hornegger, W. M. Wells & A. F. Frangi, pp.
234–241. Cham: Springer International Publishing.

Sayre, D. (1952). Acta Cryst. 5, 60–65.
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V. & Rabinovich, A. (2015). IEEE
Conference on Computer Vision and Pattern Recognition (CVPR
2015), pp. 1–9. New York: IEEE Press.

Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M.,
Žı́dek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A.,
Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A.,

research papers

IUCrJ (2023). 10, 487–496 Tom Pan et al. � Deep learning for structure determination 495

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB43
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB50
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB500
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37


Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A.,
Potapenko, A., Ballard, A. J., Romera-Paredes, B., Nikolov, S.,
Jain, R., Clancy, E., Reiman, D., Petersen, S., Senior, A. W.,
Kavukcuoglu, K., Birney, E., Kohli, P., Jumper, J. & Hassabis, D.
(2021). Nature, 596, 590–596.

Wang, H., Yang, W., Wang, J., Wang, R., Lan, L. & Geng, M. (2020).
Proceedings of the 28th ACM International Conference on Multi-
media, pp. 2409–2418. New York: Association for Computing
Machinery.

Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P.,
Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W.,
McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson,
K. S. (2011). Acta Cryst. D67, 235–242.

Wojdyr, M. (2022). J. Open Source Software, 7, 4200.
Yu, F. & Koltun, V. (2016). arXiv:1511.07122.
Zalevsky, Z., Dorsch, R. G. & Mendlovic, D. (1996). Opt. Lett. 21,
842–844.

research papers

496 Tom Pan et al. � Deep learning for structure determination IUCrJ (2023). 10, 487–496

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB41
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB42
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mf5063&bbid=BB42

