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The general de novo solution of the crystallographic phase problem is difficult
and only possible under certain conditions. This paper develops an initial
pathway to a deep learning neural network approach for the phase problem in
protein crystallography, based on a synthetic dataset of small fragments derived
from a large well curated subset of solved structures in the Protein Data Bank
(PDB). In particular, electron-density estimates of simple artificial systems are
produced directly from corresponding Patterson maps using a convolutional
neural network architecture as a proof of concept.

1. Introduction

Proteins are an important class of organic macromolecules in
living systems as they are the driving force behind the vast
majority of cellular processes. Determining the structure of a
protein is one of the classic problems in biology, as a protein’s
function is specified by its structure. In essence, proteins are
polymers of relatively small organic molecules called amino
acids, of which there are 20 that are considered to be in the
standard set. However, these underlying polypeptide chains
always fold into complex three-dimensional structures (as well
as potential complexes) to form their active conformations; for
example see Petsko & Ringe (2008). Thus, biologists would
like to have a standard method for experimentally deter-
mining and viewing a protein’s overall structure.

1.1. Crystallographic phase problem

X-ray crystallography has been the most commonly used
method to determine protein structure for over 60 years
(Berman et al., 2004). In review, an X-ray crystallography
experiment measures a diffraction pattern which consists of a
set of spots, e.g. on a detector surface. Each spot (known as a
reflection) is denoted by three indices 4, k, [, known as Miller
indices. These correspond to sets of parallel planes within the
protein crystal’s unit cell that contributed to producing the
reflections, and the set of possible £, &, [ values is determined
by the radial extent of the observed diffraction pattern. Any
reflection has an underlying mathematical representation,
known as a structure factor, dependent on the locations and
scattering factors of all the atoms within the crystal’s unit cell,

F(h, k1) = Xn:f] exp [27i(hx; + ky; + Iz,)], (1)

j=1

where the scattering factor and location of atom j are f; and
(x;, ¥j» z;), respectively. A structure factor F(h, k, [) has both an
amplitude and a phase component (denoted by ¢) and thus

IUCr) (2023). 10, 487-496

https://doi.org/10.1107/52052252523004293

487


https://creativecommons.org/licences/by/4.0/legalcode
http://crossmark.crossref.org/dialog/?doi=10.1107/S2052252523004293&domain=pdf&date_stamp=2023-07-01

research papers

can be considered a complex number. Furthermore, suppose
we knew both components of the structure factors corre-
sponding to all of the reflections within a crystal’s diffraction
pattern. Then, in order to produce an accurate estimate of the
electron density p at any point (x, y, z) within the crystal’s unit
cell, we would only need to take an inverse Fourier transform
of all of these structure factors,

o,y 2) = 3 S F kD)

Ikt
x exp {—2milhx + ky + 1z — ¢(h, k, D]}, (2)

where V is the volume of the unit cell. The amplitude
|F(h, k, )| of any structure factor is easy to determine, as it is
simply proportional to the square root of the measured
intensity of the corresponding reflection. Unfortunately, it is
impossible to determine directly the phase ¢(h, k,I) of a
structure factor, and this is what is well known as the crys-
tallographic phase problem; see for example Lattman & Loll
(2008).

A few methods of varying popularity have been developed
for solving the crystallographic phase problem for determining
protein structures. The three most commonly used methods
are isomorphous replacement, anomalous scattering and
molecular replacement (Lattman & Loll, 2008; Jin et al., 2020).
Also, for small molecules that diffract to true atomic resolu-
tion, direct methods of solving the phase problem are avail-
able (Karle & Hauptman, 1950). However, this method does
not work for protein crystallography except in the rarest of
cases, as the requirement that atoms be completely resolved as
separate objects is rarely attainable. If this does not hold, then
the probabilistic principle on which these methods are
dependent (Sayre, 1952) also does not hold.

There have also been several methods developed that
attempt to solve the problem of determining phase informa-
tion given direct access only to intensity measurements in a
more general setting (Fienup, 1982), better known as phase
retrieval in non-crystallographic contexts. However, none
have seen widespread use in the X-ray crystallography context
as they either assume a more continuous sampling of inten-
sities than possible in our setting, or were developed for use in
specific non-crystallographic fields of physics (Guo et al., 2021;
Kappeler et al., 2017, Rivenson et al., 2018). The most
well known of these is probably the iterative non-convex
Gerchberg-Saxton (G-S) (Zalevsky et al., 1996; Fienup, 1982)
algorithm, which has been applied in various optical settings
such as electron microscopy. However, it has not been applied
to crystallography since it requires more input measurements
than would be available. Fienup (1982) also extended the G-S
algorithm to work better in settings similar to X-ray crystal-
lography. Similar methods to that developed by Fienup have
occasionally been applied to solve the crystallographic phase
problem, but only in special cases where the crystals have very
high solvent content (He & Su, 2015; He et al., 2016a; Kingston
& Millane, 2022).

1.2. Patterson methods

Many of the commonly used procedures to solve the phase
problem of X-ray crystallography make use of another
mathematical representation called a Patterson function
(Patterson, 1934). It has long been known as a useful tool for
crystallographers, although traditionally it has not been used
to solve the crystallographic phase problem directly for large
molecules such as proteins. Our project aims to provide a
method of solving structures via direct interpretation of
Patterson function applications.

Essentially, the Patterson function is a simplified variation
of the Fourier transform from structure factors to electron
density, in which all structure factor amplitudes are squared
and all phases are set to zero (i.e. ignored),

Pu, v, w) = éz \F(h, k, )? exp [<27i(hu + kv + Iw)]. (3)

h.k.l

Locations in the Patterson unit cell are usually denoted by
indices u, v, w to distinguish them from locations in the true
unit cell, as the two have the exact same dimensions. A
simplification using Euler’s formula then gives the most
common form of the Patterson function,

1
P(u, v, w) = VZ |F(h, k, ))* cos 2m(hu + kv + Iw).  (4)
h,k,l

Applying the Patterson function over all unit-cell locations
u, v, w creates what is known as a Patterson map, which is
periodic with the same dimensions as the crystal’s unit cell.
The Patterson function can be computed without direct access
to any phase information of the structure factors. Thus, a
Patterson map can be obtained directly from diffraction data
without the need for additional experiments or outside
information. These Patterson maps, which are formally auto-
correlations of the corresponding electron densities, can be
considered three-dimensional images that capture indirect
information about the structure within the corresponding
protein crystal’s unit cell.

Therefore, Patterson maps are natural inputs into a well
known class of machine learning models. If we can provide
Patterson maps as inputs into such a machine learning
framework and obtain suitably accurate electron-density map
predictions, then we can bypass the crystallographic phase
problem and potentially save time and effort.

It can be shown that a Patterson map will have peaks (which
are also called Patterson vectors) at positions corresponding
to interatomic vectors within the original crystal’s unit cell

[/ %/

Crystal

Patterson

Figure 1
An example of the corresponding Patterson map (right) given atomic
locations (left) and the interatomic vectors formed by them (middle).
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(Lattman & Loll, 2008), as shown in Fig. 1. Furthermore, the
height of any such peak is proportional to the product of the
atomic numbers of the two atoms in the corresponding atomic
pair. This means that if a protein crystal contains n atoms in its
unit cell, the resulting Patterson map will contain order n”
peaks within its unit cell. This, along with substantial peak
overlap, means that Patterson maps for large organic mole-
cules such as proteins are considered to be uninterpretable for
humans. Furthermore, given the nature of Patterson vectors,
Patterson maps are invariant to translation of the entire
contents of the original crystal’s unit cell.

1.3. Machine learning formulation

We want to generate predictions of the values at all loca-
tions (x, y, z) of an electron-density map given the values at all
locations (u, v, w) of the corresponding Patterson map. Due to
the complexity of such a transformation, we would not want to
solve some optimization problem to determine all of its
aspects explicitly ourselves. Instead, we want to automate its
specification by making use of supervised parametric machine
learning. This technique, based on the statistical principle of
empirical risk minimization, involves a computer system
automatically optimizing (‘learning’) the parameters 6 (often
called weights) of a transformation g(0, x), where x denotes an
input into the transformation (Goodfellow et al., 2016). In our
case, this is a Patterson map. This optimization is done in an
iterative procedure where the predictions given the current
parameter values are compared with the true values via a loss
function /[g(0, x), y], where y denotes the desired output
corresponding to input x. In our case, this is the corresponding
true electron-density map. Formally, given a set of n input/
output examples (x;, y;), the aim is to find parameter values 6*
such that

i=1

0 = arg;nin L(O) := %Zl[g(@, x;), y,-]}- )

The parameter values can be updated by an optimization
algorithm, such as the classic stochastic gradient descent
(Robbins, 1951). This entire process is called training.

In particular, we are making use of what is now the most
commonly used machine learning architecture — that of the
neural network. Neural networks allow us to express a
complex overall transformation as a composition of simpler,
often standardized, transformations. These constituent func-
tions are known as layers, and the output of one layer is passed
through a nonlinear activation function before being given to
the next one. In the simplest and earliest developed layer, the
fully connected (FC) one, any output of the layer depends on
all of the layer inputs (Goodfellow et al, 2016). However, this
results in very slow training for large neural networks.

Since the inputs we work with have a 3D shape and their
elements have spatial meaning, we can instead make use of 3D
convolutional layers as our default layers. Such layers enforce
both sparse connectivity and weight sharing. A location in the
output of a convolutional layer only depends on a relatively
small spatially localized subset of the input locations. Also, the

weights that these input values are multiplied by are shared
across all output locations (Goodfellow et al., 2016). Recently,
several convolutional deep neural network approaches have
been developed for phase retrieval within various fields of
optics in order to bypass the demanding computational
requirements of modern convex programming methods. One
project (Kappeler et al., 2017) used a very simple convolu-
tional neural network with only three convolutional layers to
perform phase retrieval in the Fourier ptychography setting.
Meanwhile, another report (Rivenson et al., 2018) used a more
complex model architecture, consisting of several convolu-
tional networks with residual blocks in parallel, to reconstruct
holographic images from corresponding hologram intensities.
In both the Kappeler and Rivenson models, multiple similar
input intensities are given to the machine learning model,
unlike our approach which is to provide a single input
Patterson map.

The only previous work directly related to our particular
line of inquiry of applying machine learning to solve the phase
problem of X-ray crystallography using Patterson maps was
done by David Hurwitz, who used a simple 3D convolutional
model to predict the locations of randomly positioned sets of
‘atoms’ within a 3D space given the corresponding Patterson
maps (Hurwitz, 2020). He determined several potential issues
that could arise from the inherent properties of Patterson
maps, which then lead to ambiguity in their interpretation. We
have either addressed these issues or found that we could
ignore them to a certain extent.

In this project, we have devised a deep learning approach
for the direct interpretation of simple Patterson maps. We
developed a standardized procedure for generating datasets
with examples consisting of calculated electron densities of
short adjacent peptides and their corresponding Patterson
maps, derived from existing Protein Data Bank (PDB; Berman
et al.,2000) entries. We trained a convolutional neural network
model on several such datasets, where the inputs to our model
are Patterson maps and the predictions are electron densities,
and have obtained successful results on a few initial datasets.
We found that several difficulties arising during training on
Patterson maps of randomly placed atoms can be alleviated
due to the innate structural properties of natural amino acid
residues. Overall, we have designed a new deep learning
approach to bypass the phase problem and have achieved a
successful solution on simple dipeptide examples.

2. Methods
2.1. Choice of model architecture

Because of the shape of our Patterson map inputs and
electron-density outputs, we use the well known convolutional
neural network model architecture. Such models are most
commonly used for image recognition and classification
purposes. Thereby, they usually contain some FC layers at the
very end of the model (Wang et al, 2020) and are often
referred to as encoders. But we do not want our model to
produce just one or a vector of values for a given input.
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Figure 2

Convolution (5x5x5)

The neural network architecture of our proposal, showing the height, width and channel dimensions. The depth dimension is not shown. Generated using

the NN-SVG online tool (LeNail, 2019).

Instead, we want to produce outputs of the same dimension-
ality as our inputs. Therefore, a natural choice of model
architecture is the U-net, which was first introduced for a
biosciences application (Ronneberger et al., 2015) and is an
example of an encoder—decoder network. In particular, almost
all layers of our model are convolutional, except for those that
perform downsampling and upsampling operations.

Thus, our current model architecture is an extension of the
architecture proposed by Hurwitz. Although it is a 3D
convolutional U-net as well, we also make use of residual
connections (He et al., 2016b) which have seen widespread use
in convolutional neural networks. It is divided into three
phases and is implemented in the PyTorch machine learning
framework (Paszke et al., 2019) for the Python programming
language. A representation of the model, in which the depth
dimension of the Patterson and electron-density maps is not
displayed, is shown in Fig. 2.

2.2. Detailed description of current model architecture

The phases of our model are the Encoding, Learning
Features and Decoding phases. The Encoding phase consists
of two 7x7x7 convolutional layers, both followed by batch
normalization and a ReLU activation. Afterwards, a max
pooling operation with kernel size 2x2x?2 and stride 2 is used
to reduce the height, width and depth dimensions by a factor
of 2. The Learning Features phase consists of a sequence of
several residual blocks. Each of these blocks consists of a
7x7x7 convolutional layer with batch normalization and
ReLU activation, followed by another 7x7x7 convolutional
layer with batch normalization but no activation. [In later
versions of our model, we introduced a squeeze and excitation
block (Hu et al., 2018) at this point, applied with the channel
dimension reduced by a factor of 2. This is a method to
reweight each channel based on the global information
present in the channel.] The residual skip connection is then
applied, followed by a ReLU activation. At the end of this
phase, a naive upsampling operation is used to increase the
height, width and depth dimensions by a factor of 2, restoring
the original dimensions. The Decoding phase consists of two
5x5x5 convolutional layers. The first is followed by batch
normalization and a ReLU activation, while the second
produces the model predictions. Since all elements of the

target outputs were constrained to be in the range [—1, 1], we
apply a final tanh activation function after this layer. There are
about three million trainable parameters in our original
convolutional U-net model. See the supporting information
for more details on the model architecture.

In all convolutional layers, the input is ‘same’ padded to
preserve dimensionality. The convolutional layers in the
Encoding and Learning Features phases are padded using
PyTorch’s circular padding scheme to account for the periodic
nature of the input Patterson maps. Furthermore, all convo-
lutional layers were initialized using the kaiming_normal
function of the default torch.nn module, which uses the He
initialization scheme with a normal distribution (He et al,
2015). Also, all convolutional layers except the last have
multiple output channels. Currently, all inputs and outputs to
the convolutional neural network are assumed to be of a
constant cubic size. The loss function used to compare our
model’s output predictions with the true electron-density
maps was the mean-squared error function. Given an input
Patterson map p, a corresponding electron-density map e and
current model parameters 6,

180, p), el := lIg(®, p) — ell3. (6)

2.3. Datasets and data generation process

We generated several synthetic datasets that we used to
train and test our machine learning model. All of the input and
output maps we generated for our datasets were derived from
actual PDB entries of proteins solved by X-ray crystal-
lography (Berman et al, 2004). A total of ~24 000 such
protein structures were curated, based on criteria such as
sequence length, to form the basis for the examples of all our
datasets. For each of these, non-protein atoms in the PDB file
were removed, and then dipeptides of adjacent amino acid
residues were randomly extracted to a new file with a fixed
unit cell. Since one issue leading to potential ambiguity in
interpreting Patterson maps is their invariance to translation
of the corresponding electron density (Hurwitz, 2020), we
decided to center each such dipeptide according to its center
of mass in its unit cell. Although this meant that our model’s
predicted electron densities would always be roughly centered
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in the unit cell, we did not consider this to be a particular issue
with respect to realism. Structure factors for each of the
dipeptide examples were then generated to 1.5 A resolution,
and electron-density and Patterson maps for each example
were obtained from those structure factors. These maps were
then converted into PyTorch tensors. Finally, we normalized
the values in each of the tensors to be in the range [—1, 1] after
determining the maximum and minimum values present in
each. Additional details of our data generation process can be
found in the supporting information.

Another issue brought up by Hurwitz regarding ambiguity
in Patterson map interpretation is the fact that an electron
density will always have the exact same Patterson map as its
corresponding centrosymmetry-related electron density
(Hurwitz, 2020). One method to address this ambiguity is
always to combine a set of atoms with the set of its centro-
symmetry-related atoms into a single example output.
However, this workaround requires additional post-processing
to separate the original and centrosymmetric densities for
each of the model’s predictions. But here we are working with
molecular structures rather than randomly placed data, so we
can exploit certain known properties. In particular, we know
that all proteinogenic amino acids are found in only one
possible enantiomeric configuration (Helmenstine, 2021).
Although the mirror-image symmetry of enantiomers is not
exactly the same as centrosymmetry, we still hypothesized that
the fixed chirality of amino acids was close enough to cause
our model to learn a standard stereochemistry, thus allowing
us to use individual dipeptide electron densities instead of
applying Hurwitz’s workaround.

2.4. Training and analysis

We used the Pearson correlation coefficient as an additional
metric to compare our model’s predictions with the corre-
sponding desired electron densities during training. This
metric involves all of the relevant elements x; and y; of the
predicted and actual electron-density map tensors, respec-
tively, as well as their average values X and y:

S =B, =) _
([0 =22 + e} UL [0 - 9] + e

We also performed phase error analysis for our model’s post-
training predictions using the cphasematch program of the
CCP4 program suite (Cowtan, 2011; Agirre et al., 2023). We
performed all our training runs on a single NVIDIA GeForce
GTX Titan GPU, making use of PyTorch’s CUDA library
(NVIDIA et al., 2020).

™

3. Results
3.1. Dialanine experiments

As in previous work (Hurwitz, 2020), we have implemented
cases using synthetic training and test sets for the successful
interpretation of Patterson functions using a convolutional
neural network (CNN). As stated above, these are generated
from a few thousand instances of dipeptide configurations

taken from a randomly selected set of PDB entries. For our
first dataset, referred to here as Dataset 1a, we converted the
extracted dipeptides to dialanine by truncation at the Cg atom
and renaming. This was done to simplify the initial problem, as
alanine is among the smallest and simplest proteinogenic
amino acids. To simplify the problem further, we placed all of
the dialanines in a P1 unit cell with cubic dimensions. We also
considered Hurwitz’s suggestion for eliminating yet another
source of ambiguity in Patterson map interpretation — the fact
that, since a Patterson map is periodic and its peaks corre-
spond to vectors, it can be ambiguous from which corner of the
Patterson map a Patterson vector originates (Hurwitz, 2020).
Thus, for this initial dataset, we artificially enlarged the unit
cells of our dialanine examples with enough empty space on all
sides so that any Patterson vector in the resulting Patterson
maps could only originate from the corner that it is closest to.

A total of 28 470 training and 3147 validation/test examples
of unit-cell size 20 x 20 x 20 A were generated. As already
stated, the loss function was originally the simple mean-square
error between the predicted maps and the original electron-
density maps. We also calculated the average Pearson corre-
lation coefficient between the central 6 x 6 x 6 A regions of
the learned and original electron-density maps over the set of
validation examples after every training epoch, as the
remaining portions of the maps were empty.

Following tests using a learning rate finder tool, we settled
on a final learning rate schedule of a 0.86 exponential decay
for the first 12 training epochs, followed by a 0.9991 expo-
nential decay for the remaining epochs. After training for 1000
epochs with a batch size of 146 (effectively 438 due to gradient
accumulation) using the Adam optimizer (Kingma & Ba,
2015), predictions on the test set were created using the
learned weights. The CNN was able to produce correct solu-
tions, as demonstrated by comparison of the predictions with
the corresponding known electron densities (Fig. 3). The
median correlation coefficient for these test set predictions
relative to the corresponding known dialanine densities after
training was over 0.9, indicating success. This also more or less

A B C
1BO9_21 1ACA_32 1CTF_67
D E F
1C75_87 1ETY_17 1HB8_74
Figure 3

Examples of predictions on dialanine Datasets la (first row) and 1b
(second row). The desired electron density is shown in blue and the
predicted electron density is shown in orange. The labels indicate the
PDB IDs and the starting residue index of the electron-density map.
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Table 1
The results of reported experiments.
Training Validation i Grid ) Amino Median Median
Dataset examples examples Cell size (A?) spacing (A) acids Epochs Pearson CC phase error
la 28 470 3147 20 x 20 x 20 0.5 A 1000 0.93 52°
1b 66 504 7390 10 x 10 x 10 0.5 A 1000 0.98 25°
2 424 096 47 126 12 x 12 x 12 0.6 All 20 200 0.87 64°
90
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Figure 4

(Left) A plot of the average phase error of validation set predictions on Datasets 1a and 1b (dialanine datasets) against resolution. For the predictions on
Dataset 1b, the average phase error remains below 60° for the entire range of resolution. (Right) The fraction of validation set predictions for which the
phase error is <60° at various ranges of resolution, for Dataset 1a and 1b predictions.

confirmed our hypothesis about centrosymmetry-induced
ambiguity in Patterson map interpretation.

However, actual crystallographic protein structures are not
surrounded by empty space, so we knew that continuing to
eliminate ambiguity completely in the Patterson vector origin
by surrounding our dipeptides with significant amounts of
empty space would not be a viable option if we wanted our
model to work on real-world data. Since organic molecules are
structured rather than consisting of randomly placed atoms,
we predicted that our model could handle some ambiguity in
the Patterson vector origin after greatly reducing the amount
of empty space we introduced. This hypothesis was shown to
be correct by the high correlations in all the tests we
performed. In fact, reducing the cell size and thus making the
origin definition harder actually helped the training efficacy
for Dataset 1b, although for 1b the training set size was also
increased, which is also likely to have contributed to the
improved performance (see Table 1).

Starting with Dataset 1b, we calculated correlation coeffi-
cients using the entire boxes rather than only the central
regions, as accounting for a significant amount of surrounding
empty space was no longer necessary. For both Datasets la
and 1b, we calculated the average phase error over all
predictions on validation set examples at various resolutions
and created the plot shown on the left in Fig. 4. There are
clearly better phase error results on the predictions for
Dataset 1b. Since the average phase errors remain low even at
high resolution, we conclude that our model’s predictions on
Dataset 1b match even the finer details of the corresponding
actual electron densities in general. This is not surprising given

the simple structure of alanine residues. For both datasets, we
also created a plot of the fraction of validation set predictions
for which the phase error is <60° at various ranges of reso-
lution, as shown on the right in Fig. 4. For Dataset 1a, we see a
gradual decrease in this fraction at higher bins of resolution.
However, for Dataset 1b we still have a very high fraction of
predictions with phase error <60°, even at the highest ranges
of resolution. Also, for both datasets the fraction of predic-
tions with low phase error is very high at the lowest bins of
resolution. Overall, this shows that the model is able to
reproduce the general shape of the desired electron densities
on both datasets, but is able to produce higher-resolution
predictions (i.e. it more accurately generates finer details)
after training on Dataset 1b.

3.2. Dipeptide experiment

After our initial success on the dialanine datasets, we
switched to Dataset 2, consisting of dipeptide examples where
each dipeptide could be any of the 20 standard proteinogenic
amino acids rather than just alanine. The examples we
produced for Dataset 2 were slightly larger than for the
dialanine datasets, at 12 x 12 x 12 A, to limit the number of
dipeptides containing larger amino acids that would be
rejected due to spatial clashes with neighboring unit cells. As a
result of this greatly increased variability in our examples, this
is considered to be a much more difficult problem. With the
same model as we used in the dialanine experiments, we found
that the validation set metrics plateaued after relatively few
training epochs. Thus, we decided to increase our model
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A B C

4M00_462 2CEM_5 10LT_44
D E F

6UGK_148 5JDA 158 3021 22
Figure 5

Examples of predictions on dipeptide Dataset 2. The desired electron
density is shown in blue and the predicted electron density is shown in
orange. The labels indicate the PDB IDs and the starting residue index of
the electron-density map.

complexity and thereby address the increased problem
complexity.

The improvement was done by increasing the number of
channels in our convolutional layers. Layers with 23 original
channels were increased to 25 channels and layers with 25
original channels were increased to 30. We increased the
number of residual blocks in the Learning Features phase
from seven to eight. We also introduced squeeze and excita-
tion blocks into the residual blocks and switched to the
AdamW optimizer (Loshchilov & Hutter, 2019) with a weight
decay parameter of 3 x 107 Furthermore, we began
augmenting the loss function by adding 1 minus the calculated
Pearson correlation coefficient to the MSE loss for each
training example to produce a weighted combined loss func-
tion (with the weight heavily in favor of the MSE loss). We
also experimented with introducing Inception vl modules
(Szegedy et al., 2015) in place of simple convolutional layers in
our residual blocks, but found slightly worse performance than
without. This suggests that, given our current problem, the

7x7x7 kernels we use in the Learning Features phase are the
optimal size.

We also further increased the size of both the training and
validation sets for this dataset, which ended up with 424 096
training and 47 126 test examples. After training for 200
epochs with a batch size of 58 (effectively 928), we obtained a
median test set Pearson correlation coefficient of about 0.87,
also indicating success. We also slightly modified the learning
rate schedule, which now has a 0.91 exponential decay for the
first 18 epochs and a 0.9989 exponential decay afterwards.
Several examples of predictions made by the trained model on
Dataset 2 are shown in Fig. 5.

After performing phase error analysis on the post-training
validation set predictions for this dataset, we once again
plotted average prediction phase errors against resolution, as
shown in Fig. 6. This plot shows that, in this much more
difficult problem, the current model has difficulty reproducing
the finer details of the corresponding electron densities. This
was expected as we are now working with all of the possible
proteinogenic amino acid residues, almost all of which are
considerably more complex in structure than alanine. We also
generated another plot of the fraction of predictions with
phase error <60° at various ranges of resolution, also shown in
Fig. 6. The fraction begins decreasing at lower resolution bins
than for Dataset la, which shows that phase errors tend to
become higher than 60° at lower ranges of resolution than
those for the dialanine dataset predictions. However, it also
shows that only a very small fraction of the predictions can be
considered completely unusable. The model is still able to
reproduce the overall shape of the desired electron density the
vast majority of the time. A summary of our experimental
results, including median Pearson correlation coefficients and
median phase errors of validation set predictions after
training, is shown in Table 1.

4. Challenges and limitations

We have shown that, at least for simple cases, our CNN-based
approach is viable for directly determining structures from
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Patterson maps. Our eventual goal is to design an algorithmic
approach for bypassing the crystallographic phase problem
that goes beyond our synthetic cases to more realistic ones.
Several challenges will have to be overcome along the way,
some of which have some theoretical bases for implementa-
tion and some of which need algorithmic development. We
also expect that scalability will be a challenge. We may have to
look into recent advances in convolutional model architecture
or even begin implementing custom convolutional layers.
These concerns may also lead us to pursue alternative or novel
model architectures in place of our current convolutional
U-net setup, which may in turn lead us to approach our
problem from a different angle than predicting electron
densities from corresponding Patterson maps.

We found that, unlike what was suggested in related work
(Hurwitz, 2020), we do not need to disallow ambiguity in the
Patterson vector origin completely when working with our
simulated peptide data. However, our most recent datasets
still have more empty space around the electron densities than
would be considered realistic. Thus, we want to see if our
model continues to be able to train as we increase the realism
of our datasets.

The current model architecture, along with our current
dataset sizes, already requires significant training time over-
head with our current computing resources. However, true
protein crystal unit cells are still substantially larger than those
of the examples in the datasets we have developed. It is also
known that convolutional layers scale poorly (order n’) with
input size (Notchenko et al., 2018). Thus, we understand that
scaling our model to solve realistic protein structures will be a
challenge and may require introducing sparsity into our
convolutional layers, as in previous work (Notchenko et al.,
2018). Alternatively, or in addition, we may have to begin
using dilated convolutions (Yu & Koltun, 2016) in our
convolutional layers, which we previously did not consider to
be beneficial for our unique problem.

Our synthetic datasets currently incorporate many simpli-
fying limitations. For example, we trained our model on
examples that all have the same cubic unit-cell sizes, but real-
world density maps obviously can have different sizes.
Although there are methods to include differently sized inputs
in CNNs (He et al., 2014), this is even simpler in our case as we
use a U-net architecture that does not end with one or more
fully connected layers. Thus, we will not need to change our
model architecture to allow for inputs and corresponding
outputs of varying rectangular unit-cell sizes. On the other
hand, the PyTorch framework requires that all examples
within a batch must have the same size, so we need to find a
workaround for this issue. Furthermore, our current data
generation process assumes that all unit-cell angles are exactly
90°. We will also eventually want to create datasets with
variable true unit-cell angles (the generated PyTorch tensors
will still be rectangular) to see if our model can also be robust
to this kind of variation, and potentially implement changes to
address this.

All of the experiments performed thus far have been in
space group Pl, with no internal symmetry considered.

Methods that best include cyclic and dihedral symmetries in
CNNs with minimal increases in effective parameters need to
be explored. We will adapt our fabricated test cases to include
C2, C4, D2 and/or D4 symmetries, e.g. by modifying the
convolutional layers in our neural network and verifying their
functionality in solving Patterson maps.

We can also look to introduce additional known data to help
our model, which currently only takes entire Patterson maps
as input. This is in stark contrast to the approach of Alpha-
Fold2, the most important recent related result (Jumper et al.,
2021; Tunyasuvunakool et al., 2021). In particular, we do not
currently make any use of the actual identities and order of
the amino acid residues in each example. We could embed
sequence data and other information in a 3D tensor and thus
provide more than one channel to our model inputs. For
example, since convolutional models are known to be robust
to the rotational orientation of their inputs (Goodfellow et al.,
2016), we could provide the n most common rotamers of the
peptides in an example as additional channels.

Another direction we could pursue is to replace some
phases of our current convolutional U-net model with new
architectures. Although they can be considered to be 3D
images, Patterson maps do not actually exhibit any spatial
locality, so immediately performing convolution on them may
not be the most theoretically sound approach. Thus, we could
replace the Encoding phase, or both the Encoding and
Learning Features phases, with a 3D vision transformer model
(Chen et al., 2021). Additionally, using simple convolutional
layers to produce our model outputs could be the reason why
our predicted electron densities tend to be too smooth and
lacking in finer details. To address this, we can replace the
decoding phase of our model with a diffusion decoder
(Ramesh et al., 2022) or even another transformer.

Finally, for the proof-of-concept work described here, we do
not claim that our approach is the best way of actually solving
new simple crystal structures. Our resolution is slightly worse
than that required for most direct methods, but in fact we
could solve a couple of trial examples using SHELXT (Shel-
drick, 2015). It seems that molecular replacement could also
work. Our longer term goal is to develop a machine learning
framework for larger scale, more difficult cases.

5. Conclusion

Opverall, we have solved Patterson maps from synthetic data-
sets consisting of short peptides derived from existing PDB
entries. This was achieved by the successful training of a
convolutional U-net neural network. We have shown the
viability of such an approach for solving the structures of
simple systems, and have also identified several potential
avenues for further research on using neural networks to help
solve the crystallographic phase problem.

6. Related literature

For further literature related to the supporting information,
see Eastman et al. (2017), Read & Schierbeek (1988), Winn et
al. (2011) and Wojdyr (2022).
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