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Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid
(or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or
applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting
heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to
diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship
between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computation-
ally and demonstrate its rheological consequences in simulations of strained filament networks and dense
suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer
networks near the strain stiffening transition.
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Polymer gels, suspensions, emulsions, and foams are
inherently composite in nature, with both elastic and
fluidlike components [1,2]. In these systems, minor
variations in parameters such as volume fraction [3–6],
connectivity [7–12], and applied strain [13–15] can drive
macroscopic transitions between fluidlike and solidlike
behavior. These transitions are often heralded by familiar
features of critical phenomena [16–18], including power-
law scaling of relevant quantities with distance to a critical
point [10,11,14,19,20] and diverging length and time-
scales [21–27]. As a consequence of their disorder, these
materials dissipate energy via heterogeneous or “nonaffine”
deformation, such that microscopic and macroscopic de-
formation fields differ [9]. The associated microscopic
nonaffine displacements can grow dramatically in magni-
tude near the onset or loss of rigidity and strongly influence
macroscopic viscoelastic behavior [28–31]. However, these
displacements are neglected in continuum models and are
notoriously difficult to measure in experiments [32–34]
except in special cases, such as confocal microscopy of
colloidal suspensions [35–37].
Indirect evidence of nonaffinity can be seen experimen-

tally, although specific rheological models are required to
quantify this connection. Prior studies on dense suspen-
sions [38–44], foams and emulsions [45,46], and immersed
networks [28,29,47] have shown that a steady-state balance
between externally applied power and the rate of dissipa-
tion by nonaffine rearrangement reveals phenomenological
scaling relationships between the nonaffinity and loss
modulus. This has even been used to identify critical

exponents, e.g., for networks near isostaticity [29]. Yet,
many systems, including biopolymer networks such as the
cellular cytoskeleton and extracellular matrix, are subjected
to large and often transient applied stresses and strains; in
cells and tissues, this gives rise to highly strain-dependent
and typically power-law rheology [48,49], the origins of
which are not yet fully understood. Given the potential for
large energy-dissipating nonaffine rearrangement near the
onset of tension-dominated rigidity [14,50–53], one can
assume that such rearrangements can lead to significant
effects on network rheology in this regime. However, these
effects remain poorly understood, especially in biopolymer
or fiber systems with bending interactions, for which
experimental measurement of nonaffinity has remained
elusive.
Building on prior insights into the interplay between

nonaffinity and energy dissipation, we identify a general
relationship between the nonaffinity and measurable
rheology of fluid-immersed networks. We find that the
growth of nonaffine rearrangements near the strain stiff-
ening transition drives a dramatic slowing down of
stress relaxation in this regime. To explore the ensuing
rheological consequences, we perform two- and three-
dimensional simulations of prestrained disordered net-
works. We find that the longest relaxation time and
nonaffinity both diverge as power laws with respect to
distance to the stiffening transition. This leads to a set of
scaling relations describing the relaxation modulus and
nonaffinity near the critical strain, which we validate in
simulations. We identify several experimentally testable
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predictions of this nonaffinity-dissipation relationship for a
broad class of biopolymer and fiber systems.
We consider the overdamped dynamics of a d-dimensional

system of N particles with positions ri interacting via a
potential energyU ¼ fðr1;…; rNÞ [54]. These are immersed
in a Newtonian fluid with velocity field vf, which imparts a
drag force f d;i ¼ −ζ½ṙi − vfðriÞ� that balances the interaction
force fp;i ¼ −∂U=∂ri, such that f d;i þ fp;i ¼ 0. This “free
draining” description ignores long-range hydrodynamic
interactions [55], which in our materials of interest can likely
be neglected due to hydrodynamic screening. We apply
macroscopic shear strain γðtÞ via Lees-Edwards periodic
boundary conditions [56] and assume that the fluid
deforms affinely, such that vfðriÞ ¼ ri;zγ̇ðtÞx̂; this is the
widely used “affine solvent model” [5,21,29,39,40]. For
a given strain rate γ̇, the macroscopic shear stress is
σ ¼ ηf γ̇ þ ð2VÞ−1Pij fij;xrij;z, in which ηf is the fluid
viscosity, V is the system’s volume, the sum is taken over
all pairs of interacting particles i and j, f ij is the force on
particle i due to particle j, rij ¼ rj − ri, andx and z denote the
flow and gradient directions, respectively.
Nonaffinity quantifies the reorganization required for a

system initially in mechanical equilibrium [satisfying

force balance or, equivalently, minimizing UðriÞ] to
re-equilibrate after a small affine perturbation [57,58].
Consider an energy-minimized system at some prestrain
γ0, to which we apply an instantaneous affine strain step δγ
yielding transformed particle positions ri;0 with, in gen-
eral, a net force on each particle. Evolving the equations of
motion until the forces are once again balanced, we find
that the particles take on new positions ri;∞ defining static
nonaffine displacements uNAi;∞ ¼ ri;∞ − ri;0, as sketched in
Fig. 1(c). These collectively define the static differential
nonaffinity, δΓ∞ ¼ ðNl2

0δγ
2Þ−1Pi kuNAi;∞k2. As noted ear-

lier, in response to even small perturbations, amorphous
materials near marginal stability tend to undergo large-
scale rearrangement signaled by large δΓ∞.
We consider discrete elastic networks of central-force

springs with stretching rigidity μ and angular springs with
bending rigidity κ, prepared as described in Supplemental
Material [59]. We focus on subisostatic networks, i.e., those
with average connectivity z (number of bonds connected to
each node) below Maxwell’s d-dependent isostatic point
zc ¼ 2d [7]. For biopolymer networks, z is generally
between 3 and 4 [72], far below zc in d ¼ 3. The linear
elastic moduli of subisostatic networks, in the static
(t → ∞) limit, are proportional to κ. For κ ¼ 0, they are
thus floppy in the small strain limit [9] but can transition to
a tension-stabilized rigid regime under finite applied strain.
We select simple shear prestrain γ0 as the rigidity control
variable; in this case, static (t → ∞) solidlike behavior
develops when γ0 reaches the z-dependent critical strain
γc [10], as shown in Fig. 1(a). For N;V → ∞, as γ0
approaches γc, the system’s zero-shear viscosity and non-
affinity diverge, as sketched in Fig. 1(b).
In Fig. 1(c), we plot static nonaffine displacement

vectors for a representative network with z ¼ 3.5 under
varying prestrain. The nonaffine displacements are largest
at the critical strain γc corresponding to the stiffening
transition [50] [see Fig. 2(b)]. Although the corresponding
maximum in the static nonaffinity δΓ∞ provides a clear
signal of the critical point in simulations, its measurement
in experiments, often by tracking embedded tracer par-
ticles [32–34], is challenging and limited in precision.
Ideally, one could measure nonaffinity by relating it to
more experimentally accessible quantities, such as the
viscoelastic moduli. As noted earlier, such a relationship
exists due to energy conservation: at steady state, the
power injected into the system by the externally applied
stress balances the power dissipated by the nonaffine
rearrangement [28,29,38–47].
A similar power balance relates nonaffinity and viscoe-

lasticity beyond the linear regime. Consider an energy-
minimized configuration under prestrain γðt ≤ 0Þ ¼ γ0
subjected to a superimposed oscillatory strain of amplitude
δγ and frequency ω, such that γðtÞ ¼ γ0 þ δγ sinðωtÞ for
t > 0. After an initial transient regime, the stress steadily
oscillates as σðtÞ ¼ σ0 þ δσ sinðωtþ θÞ, with amplitude δσ

FIG. 1. (a) Immersed central-force spring networks with
connectivity z < zc rigidify under shear strain γ0 exceeding a
z-dependent critical strain γc. (b) Rheological and kinematic
features scale with the distance to the critical point, jγ0 − γcj. At
γc, the stiffness becomes nonzero, while the zero-shear viscosity
and differential nonaffinity diverge. (c) Energy stored by an
affine step strain δγ is dissipated by microscopic nonaffine
displacements uNAi , indicated here by arrows with uniformly
scaled lengths.
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and phase shift θ. Equivalently, σðtÞ¼σ0þδγ½K0 sinðωtÞþ
K00 cosðωtÞ�, in which K0ðγ0;ωÞ ¼ ðδσ=δγÞ cos θ and
K00ðγ0;ωÞ ¼ ðδσ=δγÞ sin θ are the frequency-dependent
differential storage and loss moduli. For small δγ [73],
particles adopt elliptical trajectories pðtÞ ¼ riðtÞ − ri;0
combining affine and nonaffine components pAi ðtÞ ¼
uAi ðωÞ sinðωtþ θAÞ and pNAi ðtÞ ¼ uNAi ðωÞ sinðωtþ θNAÞ,
with pðtÞ ¼ pAðtÞ þ pNAðtÞ. The nonaffine displacement
vectors collectively define the frequency-dependent non-
affinity, δΓðωÞ ¼ ðNl2

0δγ
2Þ−1Pi kuNAi ðωÞk2, in which l0

is a characteristic length scale, e.g., the typical spring
length. The drag force on each particle is proportional to
its velocity relative to the fluid, ∂pNAi =∂t ¼ ωuNAi ðωÞ×
cosðωtþ θNAÞ. Averaged over each cycle, the external
power input Pin ¼ 1

2
Vωdγ2ðK00 − ηfωÞ balances the total

power output by nonaffine work, Pout ¼ 1
2
Nω2ζl2

0δγ
2δΓðωÞ

[59]. Thus, for any prestrain, we can express the differential
dynamic viscosity η0ðωÞ ¼ K00ðωÞ=ω in terms of the
frequency-dependent nonaffinity as

η0ðωÞ − ηf ¼ ρζl2
0δΓðωÞ ð1Þ

in which ρ ¼ N=V is the particle number density. For
ω → 0, this relates the zero-shear differential viscosity
η0 ¼ limω→0 η

0ðωÞ and the static nonaffinity δΓ∞ ¼
limω→0 δΓðωÞ as

η0 − ηf ¼ ρζl2
0δΓ∞: ð2Þ

The latter indicates that, for a free-draining suspension
with fluid viscosity ηf, the increase in zero-shear viscosity
due to the presence of interacting particles, η0 − ηf, is
proportional to the fluid-independent static nonaffinity
associated with the particle arrangement, δΓ∞. As this
relationship is independent of U, it applies to a wide range
of systems including, as we will later demonstrate, net-
works of bending-resistant filaments and soft sphere
suspensions near jamming.
We now consider the effects of these relationships on the

dynamic response of a strained network to an instantaneous
strain step. To a relaxed system at prestrain γ0, we apply an
affine strain step δγ, such that γðtÞ ¼ γ0 þ δγ for t ≥ 0. The
particles adopt nonaffine trajectories uNAi ðtÞ ¼ riðtÞ − rið0Þ
that collectively define the relaxation nonaffinity
δΓðtÞ ¼ ðNl2

0δγ
2Þ−1Pi kuNAi ðtÞk2, for which δΓ∞ ¼

limt→∞ δΓðtÞ. We measure the corresponding change in
shear stress δσðtÞ ¼ σðtÞ − σ0 and compute the differential
relaxation modulus KðtÞ ¼ δσ=δγ and differential zero-
shear viscosity η0 − ηf ¼ R

∞
0 ½KðtÞ − K∞�dt, in which

the static differential modulus is K∞ ¼ limt→∞KðtÞ.
Note that, for γ0 ¼ 0, K and δΓ are the linear relaxation
modulus GðtÞ ¼ limγ0→0 KðtÞ and linear nonaffinity ΓðtÞ ¼
limγ0→0 δΓðtÞ.

Because the static nonaffinity δΓ∞ diverges at the critical
strain, Eq. (2) implies that we should observe an equiv-
alently diverging zero-shear viscosity and associated
diverging slowest relaxation time. In Fig. 2(a), we plot
stress relaxation curves for a single two-dimensional net-
work with z ¼ 3.5, with infinitesimal step strains applied
over a range of prestrains γ0 containing γc. The normalized
relaxation modulusKðtÞ=Kð0Þ ¼ δσðtÞ=δσð0Þ decays to its
equilibrium value K∞=Kð0Þ with a γ0-dependent slowest
relaxation time τc (calculated as described in Supplemental
Material [59]), which is plotted in Fig. 2(b) as a function of
γ0 along with the corresponding static nonaffinity δΓ∞, and
static differential modulus K∞ ¼ δσ∞=δγ. Maxima in τc
and δΓ∞ occur at the critical strain, where K∞ becomes
nonzero. We assign the exponent ϕ to the scaling of τc with
jγ0 − γcj and, following Ref. [14], assign λ to δΓ∞ and f
to K∞.
The relaxation modulus exhibits power-law decay over a

range of times extending from the microscopic relaxation
time τ0 ¼ ζl0=μ ¼ 1 to a characteristic slow timescale
governed by the distance from the critical strain,
τc ¼ jγ0 − γcj−ϕ. Within this regime, the relaxation modu-
lus is a function of the ratio t=τc. Beyond τc, we expect the
static critical behavior, i.e., K∞ ∝ jγ0 − γcjf for γ0 ≥ γc.
Thus, KðtÞ should obey the scaling form

FIG. 2. When an immersed spring network at prestrain γ0 is
subjected to an instantaneous, infinitesimal strain increment δγ,
(a) the relaxation modulusKðtÞ decays to the static (t → ∞) value
K∞ with a slowest relaxation time τc that (b) diverges at a critical
prestrain γ0 ¼ γc along with the static nonaffinity δΓ∞. (c) KðtÞ
and δΓðtÞ collapse according to the Widom-like scaling forms of
Eqs. (3) and (4), with exponents f ¼ 0.7, ϕ ¼ 2.2, and λ ¼ 1.5.
(d) Viscoelastic regimes on a ðγ0; tÞ phase diagram. Dashed white
curves show t ∝ jγ0 − γcj−ϕ. Here, N ¼ 6400, z ¼ 3.5, κ̃ ¼ 0,
and δγ ¼ 10−4.
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KðtÞ ¼ jγ0 − γcjfF�ðtjγ0 − γcjϕÞ ð3Þ

in which the branches of the scaling function F�ðxÞ
correspond to regimes above and below the critical strain.
When x ≫ 1, FþðxÞ ∼ constant and F−ðxÞ ∼ expð−xÞ,
implying KðtÞ ∼ jγ0 − γcjf above γc and KðtÞ ∼ jγ0 −
γcjf expð−tjγ0 − γcjϕÞ below γc. When x ≪ 1, KðtÞ
remains finite and thus must be independent of jγ0 − γcj,
so F�ðxÞ ∼ x−f=ϕ. Therefore, for γ0 ¼ γc, the relaxation
modulus is predicted to decay as KðtÞ ∝ t−f=ϕ.
Near γc, the differential nonaffinity is controlled by the

same diverging timescale τc, yet should eventually display
the static critical behavior δΓ ∝ jγ0 − γcj−λ. We thus expect

δΓðtÞ ¼ jγ0 − γcj−λG�ðtjγ0 − γcjϕÞ ð4Þ

in which, for x ≫ 1, GþðxÞ ∼ constant and G−ðxÞ∼
constant. Because δΓðtÞ remains finite when x ≪ 1,
G�ðxÞ ∼ xλ=ϕ. Thus, for γ0 ¼ γc, the nonaffinity grows as
δΓðtÞ ∝ tλ=ϕ. We observe excellent collapse of KðtÞ and
δΓðtÞ according to these scaling forms with exponents
f ¼ 0.7, ϕ ¼ 2.2, and λ ¼ 1.5, as shown in Fig. 2 [74].

We next test Eq. (2), which relates the independently
measured static nonaffinity δΓ∞ and zero-shear viscosity
η0. In Fig. 3(a), we demonstrate that, like δΓ∞, η0 is
maximized at the finite-strain phase boundary between the
statically floppy and rigid regimes. In Fig. 3(b), we plot
η0 − ηf for networks with varying dimensionless bending
rigidity κ̃ and observe, in agreement with Eq. (2), a
divergence in η0 − ηf at the critical strain that is suppressed

by increasing κ̃, which acts as a stabilizing field [14]. In
Supplemental Material [59], we verify that the same non-
affinity-viscosity relationship applies in dense suspensions
of frictionless soft spheres, in which η0 diverges at a critical
volume fraction ϕc.
The aforementioned power balance connects the static

scaling exponents, f and λ, and the dynamic exponent, ϕ.
At γc, the relaxation modulus decays as KðtÞ ∼ t−f=ϕ and
the nonaffinity grows as δΓðtÞ ∼ tλ=ϕ, so the corresponding
frequency dependence of the complex modulus and non-
affinity must be K�ðωÞ ∼ ωf=ϕ and δΓðωÞ ∼ ω−λ=ϕ. The
former implies η0ðωÞ ∼ ωf=ϕ−1; hence, Eq. (1) implies
ϕ ¼ f þ λ. Consequently, the static scaling of the stiffness
and nonaffinity controls ϕ and, by extension, the exponents
f=ϕ and λ=ϕ describing the system’s stress relaxation and
time-dependent rearrangement, as prior work has noted for
networks near isostaticity [29]. Alternatively, we can
rationalize this finding with a more qualitative argument:
the relaxation time of large structural rearrangements scales
with the “size” of these rearrangements, i.e., δΓ∞ ∼ jΔγj−λ,
divided by the magnitude of their driving force, propor-
tional to K∞ ∼ jΔγjf; hence, τc ∼ jΔγj−ðλþfÞ, with units set
by the fluid viscosity. This relationship implies that the
dynamic exponent ϕ is identical to the exponent describing
the critical coupling to the bending rigidity, defined in
Ref. [14]. Therefore, at γc, the excess zero-shear viscosity
should scale with κ̃ just as δΓ∞ does [75],

η0ðγcÞ − ηf ∝ κ̃−λ=ϕ; ð5Þ

and the slowest relaxation time should scale as

τcðγcÞ ∝ κ̃−1; ð6Þ

independently of the critical exponents. These relationships
are satisfied in simulations, as shown in Fig. 3(c).
Several of our predictions are experimentally testable.

For example, the exponents f and ϕ (and thus λ) can
be estimated via quasistatic strain-controlled rheology, as
shown using reconstituted collagen networks in Ref. [14],
after which the predicted scaling of η0ðωÞ for networks at
γc, η0ðωÞ ∝ ωf=ϕ−1, can be tested via small-amplitude
oscillatory rheology at finite prestrain, i.e., γðtÞ ¼ γ0þ
δγ sinðωtÞ. In addition, η0 and τc can be determined via
step-strain stress relaxation tests, with γðtÞ ¼ γ0 for t < 0
and γðtÞ ¼ γ0 þ δγ for t ≥ 0, allowing for tests of the
predictions η0 − ηf ∝ jγ0 − γcjf−ϕ and τc ∝ jγ0 − γcj−ϕ. In
the same manner, the predicted dependence of η0 and τc on
κ̃ can be tested using reconstituted collagen networks of
varying concentration c, for which prior work has shown
κ̃ ∝ c [14,76]; hence, one would expect η0ðγcÞ − ηf ∝
c−λ=ϕ and τc ∝ c−1.
In conclusion, we have demonstrated that a fundamental

quantitative relationship between nonaffine fluctuations

FIG. 3. In immersed networks, the zero-shear viscosity η0 − ηf
is maximized at the z-dependent critical strain γc, mirroring the
nonaffinity. Here, Nðd ¼ 2Þ ¼ 10000, Nðd ¼ 3Þ ¼ 8000, and
κ̃ ¼ 0. (b) Finite bending rigidity κ̃ suppresses the divergence of
η0 − ηf at γc, yet Eq. (2) remains satisfied. Here, N ¼ 1600.
(c) Peaks in the viscosity and slowest relaxation time decay with κ̃
as predicted by Eqs. (5) and (6).
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and excess viscosity controls the rheology of immersed
networks near the onset of rigidity. Consequently, the phase
boundary for strain-induced stiffening in subisostatic net-
works is accompanied by a diverging excess viscosity.
Applying prestrain to such networks thus produces a
dramatic slowing of stress relaxation that is nonetheless
quantitatively predictable from quasistatic nonaffine fluc-
tuations. We provided experimentally testable predictions
for the dynamics of networks near γc, with broad implica-
tions for the rheology of biological materials. To emphasize
the generality of the nonaffinity-viscosity relationship, we
showed that it fully captures the diverging zero-shear
viscosity in suspensions of soft frictionless spheres near
jamming in two and three dimensions [59].
There is widespread interest in the rational design of

materials with tunable viscoelasticity [77–79]. This gen-
erally involves adjusting aspects of a material’s preparation,
such as polymer concentration or particle volume fraction.
However, the connection between nonaffine fluctuations
and excess viscosity implies that, in fiber networks, one can
generate dramatic changes in stress relaxation dynamics by
simply applying external strain, without changing the
underlying network structure. This suggests other avenues
for tuning the dynamics of stress relaxation; for example,
embedded force-generating components can drive macro-
scopic stiffening transitions and thus precisely control the
nonaffinity [80]. Examples include cytoskeletal molecular
motors [81–83], contractile cells [84–86], and inclusions
driven to shrink by varying temperature [87] or rearrange
under applied magnetic fields [88].
Additional work will be needed to characterize the effects

of finite system size on nonaffinity-induced critical slowing
down near the onset of rigidity. For networks at the critical
strain with correlation length exponent ν, we expect
τcðγcÞ ∝ Lϕ=ν and η0ðγcÞ − ηf ∝ Lλ=ν [59], suggesting
additional ways to identify ν and test the previously
proposed hyperscaling relation, ν ¼ ðf þ 2Þ=d [75].
Other areas to investigate include the effects of hydro-
dynamic interactions near the critical strain, as these both
increase nonaffinity near isostaticity [89] and couple with
nonaffinity to produce an additional intermediate-frequency
viscoelastic regime at small strains [90], and the effects of
finite temperature: the Green-Kubo relations tie the sta-
tionary stress correlations to the zero-shear viscosity [91,92]
and thus to the athermal static nonaffinity. We note also that
the association of diverging nonaffine fluctuations with the
onset of rigidity, coupled with their microscopic role in
slowing stress relaxation, may account for prior observa-
tions of slow dynamics in disordered materials such as
fractal colloidal gels [93,94] and crowded, prestressed living
cells [95–98]. Finally, it remains to be seen whether
connections between nonaffinity and slowing down might
provide insight into the glass transition [23,99–104].
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