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Strain-Controlled Critical Slowing Down in the Rheology of Disordered Networks
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Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid
(or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or
applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting
heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to
diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship
between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computation-
ally and demonstrate its rheological consequences in simulations of strained filament networks and dense
suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer

networks near the strain stiffening transition.
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Polymer gels, suspensions, emulsions, and foams are
inherently composite in nature, with both elastic and
fluidlike components [1,2]. In these systems, minor
variations in parameters such as volume fraction [3-6],
connectivity [7-12], and applied strain [13—15] can drive
macroscopic transitions between fluidlike and solidlike
behavior. These transitions are often heralded by familiar
features of critical phenomena [16-18], including power-
law scaling of relevant quantities with distance to a critical
point [10,11,14,19,20] and diverging length and time-
scales [21-27]. As a consequence of their disorder, these
materials dissipate energy via heterogeneous or “nonaffine”
deformation, such that microscopic and macroscopic de-
formation fields differ [9]. The associated microscopic
nonaffine displacements can grow dramatically in magni-
tude near the onset or loss of rigidity and strongly influence
macroscopic viscoelastic behavior [28-31]. However, these
displacements are neglected in continuum models and are
notoriously difficult to measure in experiments [32-34]
except in special cases, such as confocal microscopy of
colloidal suspensions [35-37].

Indirect evidence of nonaffinity can be seen experimen-
tally, although specific rheological models are required to
quantify this connection. Prior studies on dense suspen-
sions [38—44], foams and emulsions [45,46], and immersed
networks [28,29,47] have shown that a steady-state balance
between externally applied power and the rate of dissipa-
tion by nonaffine rearrangement reveals phenomenological
scaling relationships between the nonaffinity and loss
modulus. This has even been used to identify critical
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exponents, e.g., for networks near isostaticity [29]. Yet,
many systems, including biopolymer networks such as the
cellular cytoskeleton and extracellular matrix, are subjected
to large and often transient applied stresses and strains; in
cells and tissues, this gives rise to highly strain-dependent
and typically power-law rheology [48,49], the origins of
which are not yet fully understood. Given the potential for
large energy-dissipating nonaffine rearrangement near the
onset of tension-dominated rigidity [14,50-53], one can
assume that such rearrangements can lead to significant
effects on network rheology in this regime. However, these
effects remain poorly understood, especially in biopolymer
or fiber systems with bending interactions, for which
experimental measurement of nonaffinity has remained
elusive.

Building on prior insights into the interplay between
nonaffinity and energy dissipation, we identify a general
relationship between the nonaffinity and measurable
rheology of fluid-immersed networks. We find that the
growth of nonaffine rearrangements near the strain stiff-
ening transition drives a dramatic slowing down of
stress relaxation in this regime. To explore the ensuing
rheological consequences, we perform two- and three-
dimensional simulations of prestrained disordered net-
works. We find that the longest relaxation time and
nonaffinity both diverge as power laws with respect to
distance to the stiffening transition. This leads to a set of
scaling relations describing the relaxation modulus and
nonaffinity near the critical strain, which we validate in
simulations. We identify several experimentally testable
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FIG. 1. (a) Immersed central-force spring networks with

connectivity z < z. rigidify under shear strain y, exceeding a
z-dependent critical strain y.. (b) Rheological and kinematic
features scale with the distance to the critical point, |y, — y.|. At
7., the stiffness becomes nonzero, while the zero-shear viscosity
and differential nonaffinity diverge. (c) Energy stored by an
affine step strain Jy is dissipated by microscopic nonaffine
displacements uNA, indicated here by arrows with uniformly

scaled lengths.

predictions of this nonaffinity-dissipation relationship for a
broad class of biopolymer and fiber systems.

We consider the overdamped dynamics of a d-dimensional
system of N particles with positions r; interacting via a
potential energy U = f(ry, ..., ry) [54]. These are immersed
in a Newtonian fluid with velocity field v, which imparts a
drag force f;; = —([F; — v,(r;)] that balances the interaction
force f,; = —0U/ar;, such that f;; +f,; = 0. This “free
draining” description ignores long-range hydrodynamic
interactions [55], which in our materials of interest can likely
be neglected due to hydrodynamic screening. We apply
macroscopic shear strain y(¢) via Lees-Edwards periodic
boundary conditions [56] and assume that the fluid
deforms affinely, such that v,(r;) = r; 7(¢)%; this is the
widely used “affine solvent model” [5,21,29,39,40]. For
a given strain rate y, the macroscopic shear stress is
o — ﬂf]/ + (2V)_1 Zijfij’xrij.z, in which ﬂf is the fluid
viscosity, V is the system’s volume, the sum is taken over
all pairs of interacting particles i and j, f;; is the force on
particle i due to particle j,r;; = r; — r;,and x and z denote the
flow and gradient directions, respectively.

Nonaffinity quantifies the reorganization required for a
system initially in mechanical equilibrium [satisfying

force balance or, equivalently, minimizing U(r;)] to
re-equilibrate after a small affine perturbation [57,58].
Consider an energy-minimized system at some prestrain
70, to which we apply an instantaneous affine strain step dy
yielding transformed particle positions r;( with, in gen-
eral, a net force on each particle. Evolving the equations of
motion until the forces are once again balanced, we find
that the particles take on new positions r; , defining static
nonaffine displacements u}% = r; , —ri(, as sketched in
Fig. 1(c). These collectively define the static differential
nonaffinity, 8Ty, = (NZ§oy*)™" 3, [[ulN&]|%. As noted ear-
lier, in response to even small perturbations, amorphous
materials near marginal stability tend to undergo large-
scale rearrangement signaled by large oI',.

We consider discrete elastic networks of central-force
springs with stretching rigidity ¢ and angular springs with
bending rigidity «, prepared as described in Supplemental
Material [59]. We focus on subisostatic networks, i.e., those
with average connectivity z (number of bonds connected to
each node) below Maxwell’s d-dependent isostatic point
z. = 2d [7]. For biopolymer networks, z is generally
between 3 and 4 [72], far below z. in d = 3. The linear
elastic moduli of subisostatic networks, in the static
(t — o0) limit, are proportional to k. For x = 0, they are
thus floppy in the small strain limit [9] but can transition to
a tension-stabilized rigid regime under finite applied strain.
We select simple shear prestrain y, as the rigidity control
variable; in this case, static (f — oo) solidlike behavior
develops when y, reaches the z-dependent critical strain
7. [10], as shown in Fig. 1(a). For N,V — o0, as y,
approaches 7., the system’s zero-shear viscosity and non-
affinity diverge, as sketched in Fig. 1(b).

In Fig. 1(c), we plot static nonaffine displacement
vectors for a representative network with z = 3.5 under
varying prestrain. The nonaffine displacements are largest
at the critical strain y. corresponding to the stiffening
transition [50] [see Fig. 2(b)]. Although the corresponding
maximum in the static nonaffinity Iy, provides a clear
signal of the critical point in simulations, its measurement
in experiments, often by tracking embedded tracer par-
ticles [32-34], is challenging and limited in precision.
Ideally, one could measure nonaffinity by relating it to
more experimentally accessible quantities, such as the
viscoelastic moduli. As noted earlier, such a relationship
exists due to energy conservation: at steady state, the
power injected into the system by the externally applied
stress balances the power dissipated by the nonaffine
rearrangement [28,29,38-47].

A similar power balance relates nonaffinity and viscoe-
lasticity beyond the linear regime. Consider an energy-
minimized configuration under prestrain y(z < 0) =y,
subjected to a superimposed oscillatory strain of amplitude
Sy and frequency w, such that y(r) =y, + 8y sin(wt) for
t > 0. After an initial transient regime, the stress steadily
oscillates as 6(1) = o( + o sin(wt + 6), with amplitude 66
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and phase shift 6. Equivalently, 6(¢) = ¢+ 6y[K'sin(wt) +
K"cos(wt)], in which K'(yg,w) = (66/8y)cos@ and
K" (y9, @) = (66/8y) sin@ are the frequency-dependent
differential storage and loss moduli. For small dy [73],
particles adopt elliptical trajectories p(¢) :r,-(t) —ri
combining affine and nonaffine components pr(1) =
ut(w)sin(wt + 64) and pNA(1) = ulA(w) sin(wt + ONA),
with p(7) = pA(r) + pN*(¢). The nonaffine displacement
vectors collectively define the frequency-dependent non-
affinity, 6T'(w) = (N£35y?)~' Y, [[ulA(w)]|?, in which £,
is a characteristic length scale, e.g., the typical spring
length. The drag force on each particle is proportional to
its velocity relative to the fluid, gpN*/0t = wul(w) x
cos(wt + ONA). Averaged over each cycle, the external
power input P;, =1 Vwdy*(K" —n;w) balances the total
power output by nonaffine work, Py, = 3 Nw*(56y%6T ()
[59]. Thus, for any prestrain, we can express the differential
dynamic viscosity #'(w) = K"(w)/w in terms of the
frequency-dependent nonaffinity as

i (@) —np = plt3oT (@) (1)
in which p = N/V is the particle number density. For
w — 0, this relates the zero-shear differential viscosity
o = lim,_o 7' (w) and the static nonaffinity &Iy, =
lim,,_ 6l'(w) as

no — 1y = pLeEol . (2)

The latter indicates that, for a free-draining suspension
with fluid viscosity 7, the increase in zero-shear viscosity
due to the presence of interacting particles, 1y — 7y, is
proportional to the fluid-independent static nonaffinity
associated with the particle arrangement, 6l . As this
relationship is independent of U, it applies to a wide range
of systems including, as we will later demonstrate, net-
works of bending-resistant filaments and soft sphere
suspensions near jamming.

We now consider the effects of these relationships on the
dynamic response of a strained network to an instantaneous
strain step. To a relaxed system at prestrain y,, we apply an
affine strain step 8y, such that y(¢) = yo + &y for t > 0. The
particles adopt nonaffine trajectories uN(¢) = r;(t) — r;(0)
that collectively define the relaxation nonaffinity
SU(1) = (N£3sy?)~' S, [[ulA(r)|]?, for which 6T, =
lim,_ ., 6T'(#). We measure the corresponding change in
shear stress 6o (1) = o(t) — 0y and compute the differential
relaxation modulus K(7) = 8c/8y and differential zero-
shear viscosity 1y —ny = [ K dt, in which
the static differential modulus is K, = lim,_ o K(¢).
Note that, for yo = 0, K and dI" are the linear relaxation
modulus G(¢) = lim, _, K(¢) and linear nonaffinity I'(r) =
lim, o oI'(1).
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FIG. 2. When an immersed spring network at prestrain y is
subjected to an instantaneous, infinitesimal strain increment dy,
(a) the relaxation modulus K (7) decays to the static (r — oo) value
K ., with a slowest relaxation time 7. that (b) diverges at a critical
prestrain y, = y,. along with the static nonaffinity 6. (c) K(¢)
and 8T'(¢) collapse according to the Widom-like scaling forms of
Egs. (3) and (4), with exponents f = 0.7, ¢ = 2.2, and 1 = 1.5.
(d) Viscoelastic regimes on a (), t) phase diagram. Dashed white
curves show ¢ o |yg — y.|™?. Here, N = 6400, z = 3.5, ¢ =0,
and 6y = 1074,

Because the static nonaffinity I, diverges at the critical
strain, Eq. (2) implies that we should observe an equiv-
alently diverging zero-shear viscosity and associated
diverging slowest relaxation time. In Fig. 2(a), we plot
stress relaxation curves for a single two-dimensional net-
work with z = 3.5, with infinitesimal step strains applied
over a range of prestrains y, containing y.. The normalized
relaxation modulus K(¢)/K(0) = do(t)/50(0) decays to its
equilibrium value K,,/K(0) with a y,-dependent slowest
relaxation time 7, (calculated as described in Supplemental
Material [59]), which is plotted in Fig. 2(b) as a function of
7o along with the corresponding static nonaffinity oI",, and
static differential modulus K, = o, /8y. Maxima in 7,
and O8I, occur at the critical strain, where K, becomes
nonzero. We assign the exponent ¢ to the scaling of 7, with
l¥o — 7| and, following Ref. [14], assign 4 to 6['y, and f
to K.

The relaxation modulus exhibits power-law decay over a
range of times extending from the microscopic relaxation
time 7y = {¢y/pu =1 to a characteristic slow timescale
governed by the distance from the critical strain,
7. = |yo — ¢|™%. Within this regime, the relaxation modu-
lus is a function of the ratio #/7... Beyond 7., we expect the
static critical behavior, i.e., Ko o |yo — 7./ for yo > 7.
Thus, K() should obey the scaling form
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FIG. 3. In immersed networks, the zero-shear viscosity 17y — 75

is maximized at the z-dependent critical strain y., mirroring the
nonaffinity. Here, N(d =2) = 10000, N(d = 3) = 8000, and
& = 0. (b) Finite bending rigidity & suppresses the divergence of
Mo — My at y., yet BEq. (2) remains satisfied. Here, N = 1600.
(c) Peaks in the viscosity and slowest relaxation time decay with &
as predicted by Eqgs. (5) and (6).

K(t) = lro = vel! F(tlro = 7cl?) (3)

in which the branches of the scaling function F.(x)
correspond to regimes above and below the critical strain.
When x> 1, F,(x)~constant and F_(x) ~exp(—x),
implying K(#) ~ |y — .|/ above y. and K(t)~ [y -
vl exp(=tlyo —7¢|?) below y. When x <1, K(t)
remains finite and thus must be independent of |y, —y./|,
so F(x) ~x~//?. Therefore, for y, = y,, the relaxation
modulus is predicted to decay as K(f) o t~//2.

Near y,, the differential nonaffinity is controlled by the
same diverging timescale 7., yet should eventually display
the static critical behavior T" « |y — 7.| ™. We thus expect

SU(t) = lro = re[™Gultlro = 7.17) (4)

in which, for x> 1, G, (x)~constant and G_(x)~
constant. Because 6I'(f) remains finite when x <1,
G (x) ~x*?%. Thus, for y, = 7., the nonaffinity grows as
ST (t) o« /. We observe excellent collapse of K(¢) and
8(#) according to these scaling forms with exponents
f=07,¢=22,and A = 1.5, as shown in Fig. 2 [74].
We next test Eq. (2), which relates the independently
measured static nonaffinity 6y, and zero-shear viscosity
no.- In Fig. 3(a), we demonstrate that, like oI, #g is
maximized at the finite-strain phase boundary between the
statically floppy and rigid regimes. In Fig. 3(b), we plot
1o — ny for networks with varying dimensionless bending
rigidity & and observe, in agreement with Eq. (2), a
divergence in 7y — 17y at the critical strain that is suppressed

by increasing &, which acts as a stabilizing field [14]. In
Supplemental Material [59], we verify that the same non-
affinity-viscosity relationship applies in dense suspensions
of frictionless soft spheres, in which 5, diverges at a critical
volume fraction ¢,..

The aforementioned power balance connects the static
scaling exponents, f and 4, and the dynamic exponent, ¢.
At 7., the relaxation modulus decays as K(t) ~t~//% and
the nonaffinity grows as 6I'(f) ~ /%, so the corresponding
frequency dependence of the complex modulus and non-
affinity must be K*(w) ~//? and 6T'(w) ~ w*?¢. The
former implies #'(w) ~ @//?~"; hence, Eq. (1) implies
¢ = f + 1. Consequently, the static scaling of the stiffness
and nonaffinity controls ¢ and, by extension, the exponents
f/¢ and /¢ describing the system’s stress relaxation and
time-dependent rearrangement, as prior work has noted for
networks near isostaticity [29]. Alternatively, we can
rationalize this finding with a more qualitative argument:
the relaxation time of large structural rearrangements scales
with the “size” of these rearrangements, i.e., 5T o, ~ |Ay| ™4,
divided by the magnitude of their driving force, propor-
tional to K, ~ |Ay|/; hence, 7, ~ |Ay|~#+/), with units set
by the fluid viscosity. This relationship implies that the
dynamic exponent ¢ is identical to the exponent describing
the critical coupling to the bending rigidity, defined in
Ref. [14]. Therefore, at y., the excess zero-shear viscosity
should scale with & just as 6l does [75],

no(re) —np < &4, (5)

and the slowest relaxation time should scale as

to(ye) k71, (6)

independently of the critical exponents. These relationships
are satisfied in simulations, as shown in Fig. 3(c).

Several of our predictions are experimentally testable.
For example, the exponents f and ¢ (and thus A) can
be estimated via quasistatic strain-controlled rheology, as
shown using reconstituted collagen networks in Ref. [14],
after which the predicted scaling of #'(w) for networks at
Ver (@) x @/~ can be tested via small-amplitude
oscillatory rheology at finite prestrain, i.e., y(f) = yo+
Sy sin(wt). In addition, 5, and 7, can be determined via
step-strain stress relaxation tests, with y(1) =y, for t < 0
and y(1) = yo+ 6y for t >0, allowing for tests of the
predictions 79 — 1y & |y — y.[/~? and 7, |y — y.[™. In
the same manner, the predicted dependence of #, and 7. on
K can be tested using reconstituted collagen networks of
varying concentration ¢, for which prior work has shown
kKo c [14,76]; hence, one would expect ny(y.) — 1y
¢ and 7, « ¢\

In conclusion, we have demonstrated that a fundamental
quantitative relationship between nonaffine fluctuations
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and excess viscosity controls the rheology of immersed
networks near the onset of rigidity. Consequently, the phase
boundary for strain-induced stiffening in subisostatic net-
works is accompanied by a diverging excess viscosity.
Applying prestrain to such networks thus produces a
dramatic slowing of stress relaxation that is nonetheless
quantitatively predictable from quasistatic nonaffine fluc-
tuations. We provided experimentally testable predictions
for the dynamics of networks near y., with broad implica-
tions for the rheology of biological materials. To emphasize
the generality of the nonaffinity-viscosity relationship, we
showed that it fully captures the diverging zero-shear
viscosity in suspensions of soft frictionless spheres near
jamming in two and three dimensions [59].

There is widespread interest in the rational design of
materials with tunable viscoelasticity [77-79]. This gen-
erally involves adjusting aspects of a material’s preparation,
such as polymer concentration or particle volume fraction.
However, the connection between nonaffine fluctuations
and excess viscosity implies that, in fiber networks, one can
generate dramatic changes in stress relaxation dynamics by
simply applying external strain, without changing the
underlying network structure. This suggests other avenues
for tuning the dynamics of stress relaxation; for example,
embedded force-generating components can drive macro-
scopic stiffening transitions and thus precisely control the
nonaffinity [80]. Examples include cytoskeletal molecular
motors [81-83], contractile cells [84-86], and inclusions
driven to shrink by varying temperature [87] or rearrange
under applied magnetic fields [88].

Additional work will be needed to characterize the effects
of finite system size on nonaffinity-induced critical slowing
down near the onset of rigidity. For networks at the critical
strain with correlation length exponent v, we expect
T(ye) < LY and ny(y,) — np & LMY [59], suggesting
additional ways to identify v and test the previously
proposed hyperscaling relation, v = (f+2)/d [75].
Other areas to investigate include the effects of hydro-
dynamic interactions near the critical strain, as these both
increase nonaffinity near isostaticity [89] and couple with
nonaffinity to produce an additional intermediate-frequency
viscoelastic regime at small strains [90], and the effects of
finite temperature: the Green-Kubo relations tie the sta-
tionary stress correlations to the zero-shear viscosity [91,92]
and thus to the athermal static nonaffinity. We note also that
the association of diverging nonaffine fluctuations with the
onset of rigidity, coupled with their microscopic role in
slowing stress relaxation, may account for prior observa-
tions of slow dynamics in disordered materials such as
fractal colloidal gels [93,94] and crowded, prestressed living
cells [95-98]. Finally, it remains to be seen whether
connections between nonaffinity and slowing down might
provide insight into the glass transition [23,99-104].
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