Pressure, Intermittency, Singularity

Peter Constantin

ABSTRACT. We give conditions for regularity of solutions of three dimensional incompressible Navier-Stokes
equations based on the pressure and on structure functions.

On the occasion of the centennial anniversary of O. A. Ladyzhenskaya

1. Introduction

We consider solutions of incompressible Navier-Stokes equations in R3, with smooth and localized
initial data, and discuss conditions in terms of pressure and structure functions that are easily accessible
and guarantee that solutions which are smooth on a time interval [0,7") have smooth (and hence unique)
extensions beyond 7T'. The literature on regularity issues for Navier-Stokes equations is so extensive that we
are not able to give here even the beginning of a survey. We mention just some minimal references in this
short paper, with apologies to the many authors and works we knowingly or unknowingly leave out.

We discuss unforced Navier-Stokes equations

Ou+u-Vu—vAu+ Vp =0, (D

with
V-u=0, )

and
u(z,0) = ug. (3)

The kinematic viscosity v is a strictly positive constant, u is the velocity, p is the pressure. Most of this
paper is concerned with solutions in the whole space, but there will be a few instances in which we refer to
the bounded domain case. In that case the assumed boundary conditions are homogeneous Dirichlet,

We maintain a sparing notation throughout the paper, omitting arguments and indices as often as we can.

We recall the local existence result for initial data (at time 7p) in V. The spaces H (mentioned below)
and V' are spaces of divergence-free vector fields which are completions of smooth compactly supported
divergence free fields in the topologies of L? and H'. The norm in V is called the enstrophy. In the whole
space it corresponds to the H* norm. Initial data with finite enstrophy lead to local strong solutions, that is
unique solutions belonging to L>°(Ty, To+7; V)N L?(Ty, To+7; H2NV) for some 7 > 0. Strong solutions
are C'° smooth for ¢ > Tp in smooth domains [5]. By ”conditions for regularity” for smooth solutions on
a time interval [0,7") we mean conditions which guarantee u(7") € V. These are global regularity condi-
tions. We note here that we are not talking about e- regularity concepts ([11]) which are conditions on weak
solutions in space-time cylinders, which imply pointwise local regularity inside a smaller cylinder. When
assembled over space time, these conditions lead to partial regularity, and may lead to global regularity if
additional assumptions are in place, (for instance a single potential first singularity at one point). In this
paper we consider conditions which lead directly to persistence of regularity.

Key words and phrases. Navier-Stokes, pressure, intermittency, singularity.
MSC Classification: 35035, 35086.
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There are several well-known conditions for regularity. One of the simplest is

T
/ la(®)[4dt < My < . )
0

From it, we have in a straightforward manner [5] that
[u(IF < lu(0)[|} exp (Cv™>My) (6)

forall 0 < ¢t < T'. We adhere to the good practice that arguments of exponentials or logarithms should be
nondimensional. Another easy to prove explicit condition is based on ||Vu|| ;3 (see below, Theorem 5).
The celebrated Ladyzhenskaya-Prodi-Serrin conditions [11] are

T
/ la(t)|[2odt < My g < oo, ™)
0
with ) 3
S4i=n, ®)
p q

and 3 < ¢ < co. When ¢ = 3 the condition is
llu(t)||s < M3 < oo, t—ae. on [0,T]. )

As it is very well-known, the Ladyzhenskaya-Prodi-Serrin conditions imply regularity. The following is the
explicit bound on the enstrophy.

THEOREM 1. Let Q be a bounded open domain in R? with smooth boundary, let ¢ > 3 and let u be a

strong solution of the Navier-Stokes equations in ) on the interval [0, T). There exists an absolute constant
C such that

2 2 N =
@l < @I exp v 3 [ a0 as] (10)
holds for 0 <t < T. In particular, if (7) holds then
_at3
(@) < [u(O)IF exp [Cv 55 M, . an
PROOF. Here is a brief proof. We recall that the Stokes operator is defined as
Au = —PAu, (12)
where P is the Leray projector on divergence-free vector fields. We recall
[ull2(0) < ClAulm, (13)
the fact that
ullv = l[ullg @) (14)
and the notation
B(u,v) =P(u - Vo). (15)
We start with the enstrophy evolution
1d
5 sellull? + vl Aully = ~(B(u, w), Au)n < |B(u,w)|al Aul (16)
Now, because [P is a projector, it follows that
[B(u, u)|ar < lu- Vul| 2. (17

A Holder inequality with exponents g, qz_—q?, 2 yields

|B(uw)ln < ullal Vel 2, (18)



and because 2 < [12_—']2 < 6, interpolation yields

1—-3 3
lullLallVull 2q < flufpal[Vull . [Vl 7 (19)
La—2

Using the embedding H?(2) c W16(Q), (13) and (14), we have

1-3 3
|B(u, u)|m < Cllul|zallully, || Aull g (20)
Thus, from(16) we have
Ld, 2 2 1-2 +3
s lully +viAuly < llullzallully *|Auly ©2))
and Young’s inequality with exponents (3 (1 + %))*1, (31— %)))*1 yields
1d v g3 2L
Sl + vl dufly < Z|Aully + Cv ™5 [l @2)
The claimed inequality (10) follows by integrating the ODE inequality (22). ([

REMARK 1. The same result holds in R3 or T3 with the same proof.

If ¢ > 3, the bound on the enstrophy is precise and quantitative. In the case ¢ = 3, in order to have
a good quantitative control it is useful to have a form of finite uniform integrability of |u(x,t)[3. This
condition is

36 > 0,Vt,VA, |A]<§ :>/ lu(z,t)3de < (L)g (23)
9 9 9 — A I — 20 N

In the left hand side, |A| is the Lebesgue measure of A. In the right hand side, v is the kinematic viscosity
and C' is the constant in Morrey’s inequality,

lullzsrs) < Cllall g gey- 24)

REMARK 2. The condition (23) is uniform in time, but it is much weaker than uniform integrability,
because 5z is fixed.

THEOREM 2. Let u be a strong solution of the NSE in R3 on [0, T). Assume (23). Then

Juoll% exp {5022 )}
0 H1 p v 9 (25)

Ju(t) s < min N P
luoll;, + sz lluoll7z;
where 0 is the constant in (23).

REMARK 3. The time exponential bound is better than the time independent bound for times shorter
2||lugl|*
than —%%5— log <1 + luol,»

[uoll? v [[ull%,
bound (25) implies that the enstrophy is bounded on [0, T, which in turn implies that the solution has a
unique strong extension beyond T

). After that time, the time independent bound is smaller. In either case, the

PROOF. The proof (based on ([7]) follows from the enstrophy equation (16) using the fact that
{a; lu(z, )] = U} < U |luo| 7 (26)
with the choice of X
U =06"2|uoll 2, (27)

and estimating the nonlinear term separately in the region where |u(z,¢)| > U and where |u(z,t)| < U by
1

3
|lu- Vu|r2 < </| . ]u|3d:c> IVul| s + U||Vul 2. (28)



4 PETER CONSTANTIN

Then, using the assumption (23) we obtain
v
lu-Vullpz < S Aullzz + Ul[Vull 2, (29)

we absorb the first term in half the dissipation and use a Young inequality in the second term. We end up
with ODE inequality
UQ
y=y (30)

for the quantity y = Hu||i(1 with U given by (27). The exponential bound in inequality (25) follows from
Gronwall, and the time independent bound follows by using v fot y(s)ds < 2[|ugl|3.. O

REMARK 4. The same result holds in bounded domains ) or the periodic case T3, with the same proof.
We use the enstrophy equation (16), and the inequality (17). Then we estimate like in (28) and note that
IVul| s < C|Au|g.

As the reader may have already noticed, we are interested in explicit conditions, involving constants
known a priori, without the need to sample solutions, and which yield explicit enstrophy bounds. These
conditions are useful if additionally it is true that if they are satisfied uniformly on solutions of approxima-
tions that converge only almost everywhere, then the solutions are smooth. We refer to such conditions as
“easily accessible”. The conditions (7), (23) are easily accessible.

THEOREM 3. Let uy(z,t) be an approximation of the NSE solution u(x,t) on the interval [0,T]. As-
sume that

un(x,t) = u(z,t) (x,t) —a.e. on Qx|[0,T]. 31)

(i) If there exists M, , < oo, such that (7) holds for u, uniformly for all n, then u obeys (7) with the same
constant My .

(ii) If there exists M3 such that (9) holds for u,, uniformly for all n, then u obeys (9) withe the same constant
Ms,.

(iii) If there exists a constant 6 > 0 such that (23) holds for u,, uniformly for all n, then u obeys (23) withe
the same constant §.

REMARK 5. In the case (i), the solution u obeys the quantitative bound (11). In the case (iii), the
solution u obeys the quantitative bound (25). In these cases the H* bound on u(T) is explicit.

PROOE. The proof of (i), (i), (i7i) follows from applications of Fatou’s lemma. O

This paper is devoted to conditions based on pressure and on structure functions. There is a good motiva-
tion to seek conditions in terms of the pressure. In the absence of the pressure, the Navier-Stokes equations
are Burgers equations in 3D and obey a maximum principle. This implies that the velocity is bounded, (if
initially so), and the solutions are smooth for all time. The pressure in the Navier-Stokes equations is the
only reason the equations are not local and the velocity magnitude is not a priori controlled. Conditions of
regularity in terms of the pressure are known in L? [1] and one sided in L>° [12]. We present in this paper
an L3 condition, the analogue of the ¢ = 3 condition (23) expressed in terms of only the pressure (Theo-
rem 8, Theorem 9). We also give the analogues of the Ladyzhenskaya-Prodi-Serrin conditions (Theorem 10).

The motivation to express conditions for regularity in terms of structure functions comes from experi-
mental, numerical and theoretical turbulence studies. Structure functions are averages of moments of veloc-
ity increments. They obey remarkable and robust statistical relations. The relations need interpretation and
then the may serve as reasonable hypothesis for the solutions of Navier-Stokes equations. One of the more
widely verified relations is the “four-fifths” law [8]

4
(6fu)?) = —zele (32)
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where 5y (u) = (u(z +£) — u(x)) - é is the longitudinal velocity increment and € = —(%} is the rate

of dissipation of energy, which in the case of unforced NSE equals v/(|Vu|?). The four-fifths law is shown
to hold for homogeneous and isotropic turbulence in the limit of time to infinity, followed by Reynolds
number to infinity, followed by £ — 0, in this order. The Navier-Stokes solutions are assumed to be smooth.
The braces (-) are expectations (ensemble average). Long time and space averages are usually assumed to
realize them, and in numerical experiments these averages are used. The assumption of finite positive €
is also made, in the limit of time to infinity, followed by Reynolds number to infinity, in this order. The
Reynolds number is defined as

UL
v
where U is a velocity scale, and L is a length scale. The classical K’41 Kolmogorov theory proposes scaling
exponents ¢, = £ for structure functions

Re (33)

((8pu)?) = Cylelt)r. (34)

These relations are expected to hold in a range of scales,
scale,

¢] € (n, L) where 7 is the Kolmogorov dissipation

3\ 1
= (”) (35)
€

which is determined by the kinematic viscosity and energy dissipation rate, alone. Below the Kolmogorov
dissipation scale, it is assumed that viscous effects dominate, with smooth behavior. The length scale L
is the integral scale of turbulence. Turbulence findings are average statements, they refer to typical long
time behavior, and are asymptotic in Reynolds number. Interpreting them for the initial value problem for
Navier-Stokes equations is challenging. It is however reasonable to expect that there are many solutions
which give statistical weight to the turbulence laws and have properties that are consistent with them.

We give quantitative conditions in Theorem 11, Theorem 12. They involve a cutoff scale r = r(t). We
modify the structure function Sa(z, ) (see (54) below) to take into account a possibly non-universal viscous

regularization below r. The regularity condition (101) requires fOT r(t)~*dt < oo, a condition satisfied by

3
the Kolmogorov length r = 7). The condition requires in addition the smallness of [ A S3 (z,r)de < (%)3
on sets of small enough measure, |A| < 6.

Modern theories modify the scaling ¢, = % in (34) of the K’41 theory, reflecting experimental and nu-
merical observation of intermittency. The turbulent signal is intermittent, that is, regions of high gradients of
velocity are found to be sparse in both time and space. The connection between intermittency and regularity
was explored in several mathematical works, (see for instance [10] and references therein) where assump-
tions of sparse behavior in physical space are used to deduce improved conditional regularity. In a different
setting [2], multifractal scaling exponents were connected to ratios of volume averages, and conditions for
regularity were given on the basis of intermittency dimension.

In terms of the exponents, it is found numerically (see for instance [9]) that (o > % and, while (5 remains
close to 1, (;, become smaller than p/3 for large p, and perhaps even tends asymptotically to a constant,
suggesting depletion of regularity, significantly below Holder. We express conditions of regularity in terms
of a Dini modulus of continuity which give regularity if logarithmic scaling is assumed (Theorem 13). In
Section 4.3 we consider a multifractal scenario where regularity still persists. In Section 4.4 we give a
condition for regularity which requires small increments of velocity only in time dependent regions of high
velocity and high gradients.

The proofs are based on observations concerning the pressure.

2. The pressure

We consider solutions of
—Ap=V-(u-Vu) (36)
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in O C R3, where u is divergence-free and sufficiently regular. We recall representation results from [4].
We use the notation

= 1
Fen)= g | 10w = f s reaste @)

 4mr2 le]=1

where dS is surface area and { denotes the integral normalized by the area of the region of integration,
which in the above case is 47. We denote

3y —xi) (Y — xj)

oij(y —x) = P — 0ij (38)
where
T (39)
ly — x|

The following lemma was proved in [4].

LEMMA 1. Letz € Q C R3, letr 0 < r < dist(x,00), and let p solve (36) with divergence-free
u € C?(Q)3. Letv € R3. Then

p(@) = Bla,7) = §lu(@) = o] + iy € (ul@ +r€) —v)|* dS(€)
+PV. 592 £y 03 (€) (uila + p&) — vi) (uj(w + p&) — v;)dS (6).

All terms in the right hand side of (40) are determined solely by information in the ball of radius  about
x. We denote the singular integral

(40)

1 Uij <y/:E)
K@ =PV [ e ) ) ey @
Thus, (40) reads
ple) = (o)~ ghu@) —o 4 f 6 (e +r0) — 0PSO + K@ @)

Evidently, K depends on the choice of the vector v. In applications we want to be able to choose v appro-
priately. For divergence free functions w, it holds that

—

) 1 O'i'(fE _y) | _1 |

This follows from
1 Yi — T

am B(z,r) ‘y - :E’3
by integration by parts. We also note that

f (€ - 0)2dS(€) = Lo (44)
jgl=1 3

(V-u)(y)dy =0

This is true for any v that does not depends on £. Therefore, the representation (40) is valid even if v is a
function of x and r (but not £). Indeed, this follows by opening brackets in the right hand side of (40), using
(43) and (44), and identifying what remains as (40) for v = 0, which was proved independently in [4].

We average (42) % f ;R dr and obtain the representation [4]

THEOREM 4. Let p solve (36) with divergence-free u € C*(Q)3. Letx € Q C R3, v € R3 and let
0 < r < idist(z,00). Then,

1 2r
(o) = Bla,r) + war) = oo [ fula)  o'dp @s)



with

and

The explicit expression for 7w(x,r) is
w(,) = PV fio oy (B50) 2 (wily) — vi) (s () — v)dy

2
1 1 —
ot fycpystcor e (175 (W) —0) dy,

where the weight w is given by

1, ifo<ia<l,
wA\)=¢{ 2—-X if 1<A<2,
0 if A>2

We recall bounds on 5 and 7 (Propositions 2 and 3, [4])
PROPOSITION 1. There exists an absolute constant C' such that, for any r > 0,
IVBC ) p2s) < Cr ullZa g,
and
1BC,m) |z < Cr™2 ||Vl p2]lul 2
hold. Moreover, for any 1 < q < oo, there exists C independent of r, such that
186, Pl oo < CollulZaages)
holds.

We choose now v = u(z). Then from (52) and the corresponding bound for p it follows also that

17 (-, )| Larsy < Collul2a ey

We denote by

1 1 )
Sote.r) =g [t o) —u@)ay

. We note that
| (x,r)| < 2S2(z,7)
follows from (48). For any measurable set A C €2 with dist(A, 0Q) > 2r we have

/ So(z,r)? < CqTQQ/ |Vu(a:)\2qu
A A+rB(0,1)

(46)

47

(48)

(49)

(50)

(5D

(52)

(53)

(54)

(55)

(56)

for any ¢ > 1 where B(0, 1) is the unit ball in R3. This follows in straightforward manner by writing

the integral in (54) in polar coordinates with y = p&, p = |y

01 %u(m + Ap€)dA, and using Schwarz and Holder inequalities.

, & = 7, expressing u(z + y) — u(z) =

REMARK 6. The bounds (52) and (53) for 8 and w are valid in bounded domains with smooth boundary
if we add bounds for ||p|| La(aq), see Lemma 2 in [6]. Once these are obtained the rest of the bounds which

are local bounds are valid.
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3. Conditional regularity

THEOREM 5. Assume

T
/ [Vu(t)||3:dt = N < oo. (57)
0
There exists an absolute constant C' such that
CN
sup V()| < [[Vuollzz exp ——= (58)
0<t<T v
holds.
PROOF.
1d
—— |Vul|?dz + y/ |Aul|?dz = / (u-Vu) - Audxr < ||ul|s||Vul 13| Aul| 12
2 dt R3 R3
followed by Schwartz and Morrey inerqualities results in
S Va2 < SIVulZ:] Va2
and the proof is finished by Gronwall. ([l
Let )
A=(—A). (59)
THEOREM 6. Assume .
/ |A2u(t)[|22dt = M < 0. (60)
0
There exists an absolute constant C' such that
CM
sup || Vu(t)[[7> < [[Vuol|7z exp —— (61)
0<t<T v

holds.
PROOF. This is a consequence of (58) and of the inequality N < C'M which follows from the familiar
[13] Riesz potential inequality
1
[ flls < ClAZ fll L2 (62)
with f = Qju;, fori,j =1,...3. g
REMARK 7. The finiteness (58) is a stronger regularity condition (i.e., more general) than the finiteness

(61). Both conditions are analogues of the Ladyzhenskaya-Prodi-Serrin condition (7) for ¢ = oco. The
finiteness (58) and (7) for ¢ = oo are logically independent of each other.

THEOREM 7. There exists an absolute constant C such that
T
1 1 3
sup [[AZu(t)]| 2 < [[A2uoll 2 + C/ IAZu(t)]|72dt (63)
0<t<T 0
holds for smooth solutions of Navier-Stokes equations.
PROOF. We take the scalar product of the Navier-Stokes equation with Au(t) and integrate. We obtain
1d 1 3
% < Ollull pa[|Vul ol Aull s < ClIAZul| 2] AZul 75,
(64)
1
where we used (62). We divide by ||A2u||;2 and integrate in time. O

HA%UH%Q + 1/||A%u|]%2 < ‘/(u - Vu) - Audz

REMARK 8. In view of (62), the inequality (63) implies the boundedness of the L? norm. Hence, via
the Navier-Stokes equation, the finiteness (60) implies (9). The main virtue of (63) is that it is viscosity-
independent, and is valid for Euler equations as well.



The analogue of the L3-based condition (9) in terms of only the pressure is the following.

THEOREM 8. There exists an absolute constant C, such that, if p = R;R;(uu;) satisfies the finite
uniform integrability condition

3 v\3
36 > 0,Vt,VA |A| <= / Ip(z,t)|2dw < (—) (65)
A C

on [0,T), then u € L>(0,T; L3(R3)) with explicit bounds depending only on §,v, T, |luo|| 13, ||uo]| £2-
PROOF. We take the evolution of the L3 norm of u:
Sdt/ ]u\3dm+u/ lul[|[Vul® + |V|u||*)dz = — / lul(u - Vp)dx = / p(u- Viu|)dz  (66)
R3

Let U be a large positive number and ¢ a positive smooth function of one variable which is compactly
supported in [0, 2], satisfies 0 < ¢ < 1 and identically equals 1 on [0, 1]. We split the RHS of (66) ,

/Rgp(u-VIUI)dflfz/RBcbog‘) pu- V|u|)d:c+/ <1—¢(“‘U‘>>p(u.vyu|)dx

We estimate the first term, using that on the support of ¢ we have |u| < 2U,

’/ ( ) w- Vu)dz| < 2U)2VD /Rgp%zx (67)

D:/ u||Vu|>da (68)
R3

and then using the boundedness of Riesz transforms in LP spaces and then interpolating L* between L3 and
L?, we have

where

5 3
[p e uttds < Clulul (©9)
R3 R3
Now we use the fact that there exists a constant C' such that
D > Cllulf3,. (70)

This fact follows from Morrey’s inequality |V f|| ;2 > C|| f]| ¢ applied for with f = |u| 3. Thus, from (67)
and (70) we have

u
Lo () tu- Viubae| < cotpiu. )
With Young’s inequality we have
‘/ é <‘“’> plu- Viu))dz| < 2D + CU~3|ul[s. (72)
R3 U 2

We know from the energy inequality, interpolation L? — L and Morrey’s inequality that

T T
/HM@&gOMﬂ;/ww;ﬁschWﬁ% 3)
0 0

and thus the factor CU?v~3||ul|%; multiplying the ||u[|%; is time integrable. The second term is estimated

L (o)) - wiupas

by using Holder with exponents %, 18, 2. One more interpolation,

(1= 6)pll 5 < 0= )l 11— D)ol

< OVDllu 3 1((1 = ¢)pll g (74)
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and the inequality based on the fact that Riesz transforms are bounded in LP
10— @l g < CllullZs,
together with (70) yield from (74)

u 1
[ (=6 (5)) ot iuas < cona - om? 5)
R3 L2
Now the support of 1 — ¢ (w) is included in the set
By(t) ={z| |u(z,t)] = U} (76)
which has uniformly small Lebesgue measure
|Bu ()] < U |luolIZ (77
and, by assumption, the function x — |p(z, t) |% satisfies (65), so that
1 v
1-— 2, < — 78
(- 9l < o 78)
holds uniformly for ¢ € [0, T}, if U is chosen large enough. O

REMARK 9. The condition (65) is weaker than uniform integrability, because  is fixed. The condition
holds if |p(x,t) \% is uniformly integrable in x on [0, T). In particular, it holds if

p € C(0,T; L2(R%)), (79)

or if p is piece-wise continuous on [0, T] with values in L%, because in these cases the curve t — p belongs
to a compact subset of L3 and therefore |p(x,t) ]% is uniformly integrable in x on [0, T]. The condition also
holds if |p(z,t)| < f(x), z-a.e, with f € L3 (R3) time independent, because this again implies uniform
integrabilty.

REMARK 10. As it is seen in the proof above, the condition (65) is not applied on just any set, but rather

on a set of interest, namely the set where the absolute magnitude of velocity exceeds a fixed large threshhold,
(76). It is easy to see that this set can be replaced by a smaller, and even more interesting set

Bya(t) ={z| |u(z,t)| > U, and |Vu(z,t)| > G}. (80)

The proof of this fact is similar to the proof above, using two cutoffs, and showing that the regions |u| < U
and, separately |Vu| < G lead each to a priori bounds on the size of the L* norm of u, leaving only the
contributions from By ¢ (t) to require control.

The following result shows that the condition (65) leads to easily accessible bounds.

THEOREM 9. Let r > 4. There exists a constant C = C,. such that if (65) holds on [0, T then

u € L®(0,T; L"(R?)) (81)
holds. More precisely, we have the single exponential bound
Ct|luol|7
fute 0l < ol exp (<gls? ) 52)

where ¢ is the constant in (65).

PROOF. The evolution of the L™ norm is given by

1 d
/ \u|rdm+u/ []Vu\Qlu\r_Q—|—(r—2)\V!uH2\u]T_2]dx:/ pu -Vl 2z, (83)
T’dt R3 R3 R3
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We let U be a large positive number and ¢ a positive smooth function of one variable which is compactly
supported in [0, 2], satisfies 0 < ¢ < 1 and identically equals 1 on [0, 1]. We split the RHS of (66) . We split
the right hand side of (83),

[ ptw vy = [ o (M) vy [ (1-0 (8) ) ot v

We estimate the first term using Holder mequahtles with exponents 5 for p, 2 for a term involving the

r—2
gradient, [u| 2 |Vul, and -22; for the term lu| 2 3 , taking advantage of the fact that on the support of ¢ we
have |u| < 2U, and using the boundedness of Riesz transforms in LP spaces. We deduce that the first term

is bounded by
/ <‘»(uvmvam
R3

D_/ lu" 2| Vu|?dz. (85)
R3

< CUHu||LTD2 (34)

where

We used, in view of % T+ = 4, that

r—4

r(r—2) 2 r 2
| |<U|u] =1 dx < Ulu| ;" (86)
IS

The bound (84) is valid for = 4 as well, we just take |u| < U outside the integral and use L? — L? bounds.
Hiding v/D in %VD, we see that the inequality (84) leads to an exponential growth

(s )l < o e o V2 (87)
if the second term does not contribute to growth, The second term is bounded using
D > Cllullzs- (88)
We first bound

(89)

and then use

(1 =6 (%)) ol <1 (1 =0 (%)) w230 (1= () ol ©0)

/RS (1 —¢ (’g’)) p(u- Viu[""2)dz| < O <1 — ¢ <‘(Qj’>> pHi%D‘ 1)

The proof is completed by the assumption of finite uniform integrability (65) which shows this term to be
absorbed in the remaining dissipative term %VD. g

to deduce

REMARK 11. The result above can be used together with Theorem (1) to give a quantitative bound
depending on 6 on the supremum in time of the enstrophy.

The following result is the analogue of the Ladyzhenskaya-Prodi-Serrin condition in terms of the pres-
sure.
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THEOREM 10. Let p = R;R;(u;u;). Assume that there exists q > % such that

T
[ 7 < ©2)

Then v € L>®(0,T; L3(R?)) obey u € L>(0,T; L3(R3)) with explicit bounds depending in addition to
(92) only on v, T, ||up|| .3, ||wol| 2

PROOF. The proof follows from the evolution of the L? norm (66) by estimating as in (74) using Holder
with exponents 9/4, 18, 2,

/R p(u Vil

where we used also (70). We distinguish three ranges of q.
When ¢ < % we interpolate

L 2
< C\/BIIUIIZQIIPHL% < CDs|lpll, 5 (93)

2q 9—4q

Ipllza ™ llpll 7 g™ 94)

Ipll 5 <

We use || p||L g < C' D3 which folllows from (70) and the boundedness of Riesz transforms in L? spaces, to

/R3 p(u - V|u|)dz

From Young’s inequality, the boundedness of the L? norm of u follows if we know that

deduce

<CD'" a\\p|!9 E ©3)

29—

with o = = 2q)

_2q
fo lp|l 752 dt is finite, which was assumed in (92).

When g € [, 9], we use Young’s inequality in (93) and deduce that we need to estimate fOT I pHi g dt.
4
We interpolate

49—9 8q—18
3(2 2 3(2¢—3 3(2¢g—3
Ipll, 9 < llall e w el < Cllallzd o Ml 75" (96)
and thus
_2q
lal? g < llpllze " lullgs CH)
with o = 8q 18 .If ¢ < § we have o < 3, and the condition (92) ensures that ||ul| ;3 remains bounded.

2q—
When ¢ 2 5 we estnnate

1
< CVD||u| 25Ipll s (98)

/R p(u Vil

using Holder with exponents 2, 3, 6. Using Young’s inequality we need to consider the effect of the quantity
[ull L3]Ip||7 5. We interpolate

3 2(¢—3)

HpIIQ” el S (99)

2q3

Ipllzs < P2 pl*

%
and it follows that
6g—15

[l sllpllZs < OlePq el 5 Ead (100)

6g—15

Because 5= < 3, the condition (92) implies a uniform bound on [|ul| s on [0, 7] in this last case. O
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4. Structure function

We assume
Ir(t), [ r(t)~4dt < 00,38 > 0,YA,Vt € [0,T]
Al <6 = [, Sa(w,20(t))2dx < ()]

holds where Sa(x, ) is given in (54).

(101)

THEOREM 11. There exists an absolute constant C, such that, for any T' > 0, if a strong solution u of
NSE satisfies (101) for all 0 < t < T, then u € L°(0,T; L3(R®)) with explicit bounds depending only on
v, T, ||uol 13, |uoll 12 and the assumed 6 > 0, fOTr(t)*‘ldt.

PROOF. We use (66) and decompose the pressure p = 7w + [ as in (45), at each time ¢, with the choice
r = r(t). We bound the term

< Or YulLs (102)

[ - vB)ds

using (50), and then by interpolation (used also in (69)) we obtain

5 3
[ w98z < Co~ul flul (103)
The dissipation D (68) obeys (70) and, so
v
/3 lul(u - VB)dx| < ED + Cv= ()72 |ul|3s. (104)
R

In view of (73) and the assumption fOT r(t)~*dt < oo, it follows that the factor 72| ul|?; multiplying
[|w]|? 5 is time integrable a priori,

r(t) " |lu(t)ll7s € L([0,T)), (105)

and thus this term leads to an explicit uniform bound on |||/ 73, in terms of the initial data and f(;[ r—4dt.
We integrate by parts in the term

lul(u - Vm)dx /]R3 m(u - Vu|)dzx

< / Il Vlulae + / wllul|Vlullde  (106)
u|<U

R3 |u|>U

where U is a large time independent constant, at our disposal. We estimate the first term using (52):

v
/ ||| |V |ul|dz < CoU2v/Dju|2s < D+ CU*v73ul)3s. (107)
[u|<U

where we used interpolation (used also in (69)) and (70). We argue like in the proof of Theorem (8),
invoking (73), which implies that the term U?||u||3; multiplying |[u|?, in the right hand side of (107) is
time integrable with an explicit a priori bound, and as such it leads via Grownwalll to an explicit bound on
[[ul 3.

Finally, taking U large enough so that the set By(t) of (76) has small measure as in (77), using (55),
proceeding in the same manner as for (75), and using the assumption (101), we have

1
[ il lulids < oD < sz<-,r<t>>3dx)3 <'p. (108)
[u|>U By

2NN

This term is absorbed in the remaining dissipative term, ending the proof. ([l

As in the case of the condition regarding the finite uniform integrability of the pressure (65), the structure
function finite integrability condition (101) leads to easily accessible bounds.
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THEOREM 12. Let g > 4. There exists a constant C depending on q such that if (101) holds on [0, T]
then

u € L=(0,T; LY(R?)) (109)
holds. More precisely, we have the single exponential bound
Ct|luo|7 3
e Ol < ol exp (g 2 o~ uofar) (110)

where ¢ is the constant in (101) and

t
I(t) = / r=4(s)ds (111)
0
is bounded on [0, T'] by assumption.

PROOF. The proof follows closely the proof of Theorem 9. We use the evolution of the L? norm (83)
where we changed r to ¢ because r has now a different meaning. We split at each time p = (-, r) + (-, 1)
using r = r(t). We bound the term

q=2 1 g
/R Bu- Vult2dr < ||| zallull 7 VD < ClIB| F ullfo VD (112)

ﬁ’ =
bound ||BHL% < C||u)|2,. Hiding v/D in 2vD, this term leads to a growth factor

1 1
where we used Hélder with exponents ¢, 2 and 2L, interpolated ||58][ze < ||8]/7]3 Hz% and used the

¢
_ _3
vt [ 18 r(s)lleds < O R o310 (113)
0
where we used (51) and the Navier-Stokes energy inequality. We treat the terms involving 7 in exactly the
same manner as we treated p in the proof of Theorem 9. We omit further details. O

REMARK 12. Theorem 12 is stronger than Theorem 11 for strong solutions, which have initial data in
H'.

REMARK 13. A particularly significant small scale r = n is given by classical turbulence theory, where
the Kolmogorov dissipation wave number kg, inverse of the viscous dissipation scale 1 is given by
1 31 _1 o\ 1
kqg=n""=v 1ex = v 2((|Vu(t)[*))s. (114)
We note that it is a priori time integrable to power 4.

4.1. A nearly selfsimilar example. Theorem 11 (or rather, its proof) applies to functions which have
small translation increments in L3. We consider

u(z,t) = V + smooth (115)

where the leading term V satisfies
V(y+-) =Vl <W(@)lyl® (116)

for some s > 0. In order to have nondimensional quantities, we write

W=UL"" (117)

The typical example is of the form

T

V(x,t) =U(t)P <L(t)> (118)

where P is time independent and || P(- + z) — P(-)||zs < C|z|°. We note that this condition is satisfied by
many functions with slow decay which are not in L?(R?) or even in L?(R?), such as P(z) = (1 + |2|)77,
B > 0. Of course, the condition is also satisfied on B3 o (R3).
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We have that (116) reads
e+ -vels <o (4 (119

and define
UL
v
We take € > 0 such that s > Ze, and, writing |y|™® = [y[~1*|y| 7~ we use a Holder inequality with

exponents 3, % to bound

— Re(V). (120)

Sa(z,1)} < Cebrs /| i $V(y+2) - Vie)Pdy (121)
y T

Integrating dx on A and switching the order of integration we deduce

J4S2(x, T’)QdIL‘<CE s f|y|<7,\y| 3= fA|V y+x)—V(x)?dedy

35 (122)
< Ce zWids = Cem3 (UL (5)™.
Assuming a bound on the Reynolds number of the profile,
Re(V) <R (123)
and fixing € < 2s, we have
/ASg(w,r)gdac < Cs (%)38 (Re(V)31? < Cy (%)38 R33 (124)
The condition (101) is satisfied if
(%) R<Cy5(20) ", (125)

REMARK 14. The condition (125) shows that for self-similar profiles with time dependent collapsing
inner scale L, the condition is satisfied choosing r small compared to the collapsing scale L. Regularity
follows if L=(t) is time integrable. In particular, if the leading term V is given by (118) and U (t)L(t) <
Ruv, then regularity follows. The proof of this fact follows verbatim the proof of Theorem (11) including the

estimate (107). In that estimate now U is time dependent and it is bounded above by RL(t)~. The term
U~2||ul|3 is still time integrable and that is why the result continues to hold.
4.2. A Dini Condition.
THEOREM 13. Assume that u satisfies
10yullzs < m(lyl) (126)
where dyu(x,t) = u(x + y,t) — u(x,t), and where 0 < m is a time independent function satisfying
1
d
/ m2(p) 2L < oo (127)
0 P

Then u satisfies (101) with r time independent, and consequently, smooth solutions of Navier-Stokes equa-
tions obeying (126) with (127) on [0,T) obey u € L>®(0,T; L3(R?)) with explicit bounds depending only
onm, v, T, [[uol| s, [[uol| L2-

PROOF. The proof follows from the fact that

dy
1S2( )l 3 <€ 10y ulls - (128)
Lz ly| <27 v |y|3
This inequality is proved by duality, integrating S, against a test function in L3
1 dy
[ Saods = | o@isu@Pdr < ol [ ol (29
4z lyl<2r [y? wl<ar Lyl
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From (128) and the assumed Dini condition, we deduce that the ||Sa(-, ) HL 3 < (%)2 if r is chosen small
enough so that

2% < (%) (130)
O

REMARK 15. Clearly m(r) ~ log=®(r=') with o > 3 is sufficient. As we remarked before, the
smallness of the L? increment does not imply that the function needs to be in L3. We also remark that m can
be allowed to depend on time, if m(r)r~" is uniformly integrable on [0, 1], or more generally, if denoting

2r
dp

Ly (r) = i mz(p,t); (131)

we have that the preimage of (%)2 under Iy, that is r(t) = I’r:z%t) ((%)2>, obeys fOT r(t)4dt < oo.

4.3. Multifractal intermittent scenario. We consider the region By (t) = {z| |u(z,t)] > U} de-
fined before in (76). We take U time independent. We introduce a time independent length scale L > 0, and
we require

U?>L73 [ |ufdz (132)
R3
so that
|By| < L°. (133)
We assume that the velocity increments
s =f ety -u@lasw) (134)
yl=r
obey bounds
2a(x)
so(,1) < G2 (%) o (135)

with G > 0 constant (with units of velocity), L > 0 as above, constant, (with units of length) and with
0 < a(x) < 1. This upper bound is assumed to hold a.e. in x € By (t) and for all 0 < r < ry, where
0 < rp < L is a fixed positive constant. Because

2r d
SQ(J:',T') :/ 32(x7p)£7 (136)
0 P
we have that ) e
< 2 1 7;0 a(x
Syl 1) < CG* (L) (137)

holds a.e in x € By. In multifractal turbulent intermittent scenarios, it is assumed that there is a spectrum
of near-singularities of Holder exponent & and that these are achieved on sets X, of dimension d(h) < 3
which occur randomly with probability dy(h).

The dimension d(h) is implemented in the following manner. We take a region V}, around ¥, and
partition it in small disjoint cubes of size p with p < rg. This region is a “’collar”of cross-section size p
around the set X;, N Byy. The multifractal assumption is that the number of such cubes of V}, is of the order

Nu(p) = (%) —dh), Assuming «(x) > h to hold on each such cube, we have from (137), on each cube

2h
So(x,70) < CG2R! (%) . (138)

Writing the volume of the cube as L?(£)3, we have

3 1 /ro\3h / p\3—d(h) 4 _3 (70 3—d(h)+3h
< 3 - (20 P < ro ‘
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Above we used p < rg. Summing in h, remembering the frequency, we obtain

3 1 3—d(h)+3h
/ S2 (2, r0)dz < 0(GL)3/ h3 (7;0)
BUO(Uth) 0 L

In the multifractal formalism, the structure function exponents are defined by

du(h) (140)

Cp = i%f(B —d(h) + ph). (141)
The inequality (140) above implies
¢
/ Sal, 7o) idr < Cu(GL) (2)” (142)
ByN(UpVh) L
where .
C, = C/ h~2du(h) (143)
0
is assumed to be finite. Introducing the Reynolds number based on G,
L
Rg = Gl (144)
v

and recalling that By \ UV}, was assumed to have measure zero, we have

¢
S, 70) 3 dz < [CuRg (QO) 3} V3 (145)
By L
we see that the condition (101) is satisfied for By if
70 $3 _
R (fo) < (C3¢,). (146)

In classical turbulence theory (3 = 1. If (3 > 0, under the above scenario, it is enough to have 7 small
enough in order to deduce that no singularities in finite time can occur.

4.4. Time dependent regions of interest. As me noted before, the finite uniform integrability of con-
dition (101) is not needed, all we need is control of S, on certain small sets of interest. We consider the set
Bya(t) ={z]| |u(z,t)] > U, and |Vu(z,t)| > G} defined in (80). We note that

|Bu,c(t)] < Cmin{U~?||uol[72; G~ |Jwol| 1 }- (147)

where w = V X u. The first term in the inequality follows from the Markov-Chebyshev inequality and the
fact that the L? norms of solutions of Navier-Stokes equations are non-increasing in time. The second term
follows from the fact that the map w — Vu is weak type 1, that is from G|{z | |Vu| > G} < C|w| 1, and
the fact that the L' norm of vorticity of solutions of Navier-Stokes equations is non-increasing in time [3].

THEOREM 14. Let U(t), G(t) and r(t) be positive numbers such that

/T(r(t)_4 UM+ Gt))dt < . (148)
0

Consider the set
B(t) ={z| |u(z,t)| > U and |Vu(z,t)| > G}. (149)

There exists an absolute constant C' such that, if

2
3
dy v\2
Spu(z, t)Pde | —= < (= (150)
/|y|sT(t> </B<t>| v 1) ) lyl? (C)

then the smooth solution of Navier-Stokes equations obeys u € L>(0,T; L3(R3)) with explicit bounds
depending only on v, T, ||ug|| 3, ||uol| 2.
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PROOF. We follow the proof of Theorem 11. The 3 term is estimated as in (104). The contribution of
the term involving  from the region |u| < U is estimated as in (107), noting that the term U?[u||7 , is time
integrable in view of (148). A new term is

/ 9 lullde < CGluls, 1sn
lu|>U,|Vu|<G
and, in view of (148) it leads via Grownwalll to an explicit bound on ||u|| ;3. We are left with
s 5
[ nlldivllids < on ([ si o) (152)
B(#) B(t)

Now we use

2
3 3
S2dx gf / Syu(z)|?dx (153)
</B 2 ) 4m ly|<r ‘y’3 ’y

proved by duality, testing against arbitrary L3(B) functions. The assumption (150) implies
D
[ ielalvis < %3 (154)
B(!) 6

and concludes the proof. U

THEOREM 15. Let ¢ > 4, and assume (150) where the functions U (t), r(t) and G(t) obey

/T(UQ(t) +r74(t) + G(t))dt < oo. (155)
0

Then we have the single exponential bound
t t 5 t
llu(-,t)||ra < ||uo||La exp Cl/l/ U2ds+C'/ G(s)ds + Cv~ 2 ||lugl32 / r=4(s)ds (156)
0 0 0

PROOF. We start as in the proof of Theorem 12 by splitting p = 3 + 7 in the estimate the evolution of
the L9 norm of u, and deduce the bound (112) leading to the exponential growth factor (113). We are left o
estimate the contribution of 7, that is

I:/ mu - Vw72 dz. (157)
RS

We bound the integral

| <L+ I+ 1Ip

=(q¢—2) (fluISU |7||u|972| Vu|de + f\Vu|§G || |u|972| Vu|de + fB(t) |7T||u]q_2|Vu|d:U) .
We bound I; like in (84),

(158)

q
L < CU||ul|3,V'D (159)
where we use the fact that [|7 (-, r)|| ¢ <C [|lu||2, holds with C' an absolute constant, independent of r, and

q—4

q(g—2) 20 %_2
/|<U|u| lde| < Ui (160)

The bound (159) is valid for ¢ = 4 as well, we just take |u| < U outside the integral and use L% — L?
bounds. The term I5 is bound directly

|I2| < CGlull?, (161)

The last term is smaller than the dissipation, using the arguments similar to the ones leading to (91). We
omit further details. ]
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REMARK 16. The condition U € L?(0,T) appearing in (155) is better than the condition U € L*(0,T)
of (148) of Theorem 14. That is just because in that theorem the desire was to bound the L3 norm in terms
solely of itself. Theorem 15 is strictly stronger that Theorem 14 (it implies it for strong solutions), by
bounding first the L* norm of the solution, and then returning to the proof of the bound of the L? norm.
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