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ARTICLE INFO ABSTRACT

Keywords: Machine tool vibrations impose severe limitations on industry. Recent progress in solving
Milling for the stability behavior of delay differential equations and in modeling milling operations
Stability with time delay differential equations has provided the potential to significantly reduce the

Parameter estimation aforementioned limitations. However, industry has yet to widely adopt the current academic

knowledge due to the cost barriers in implementing this knowledge. Some of these cost
prohibitive tasks include time-consuming experimental cutting tests used to calibrate model
force parameters and experimental modal tests for every combination of tool, tool holder,
tool length, spindle, and machine. This paper introduces an alternative approach whereby
the vibration behavior of a milling tool during cutting is used to obtain the necessary model
parameters for the common delay differential equation models of milling.

Time series
Delay differential equations

1. Introduction

Milling is one of the most commonly used material removal processes. In this process, a rotating cutting tool is gradually fed into
a workpiece and the cutting teeth remove small chips of material with the goal of producing a smooth surface at a desired location.
However, vibrations of the cutting tool can cause variations in the chip thickness, a poor surface finish, and reduced accuracy in
the machined surface. Due to the relative motion between the cutting tool and workpiece, each tooth passage affects the cutting
forces and chip thickness during the subsequent tooth passage. For certain combinations of cutting parameters, tool vibrations can
cause a self-excited type of instability known as chatter. The large forces in chatter are problematic as they can damage the tool and
produce a poorly machined, inaccurate surface. Thus, it is important to avoid chatter vibrations and to be able predict the machine
settings that will give rise to this undesirable phenomenon.

Several past works have developed mathematical models for milling along with solution approaches to obtain stability charts
from these delay differential equation models, e.g. [1-9]. However, all of these models require parameter values, terms describing
the structural dynamics and cutting forces, that can drastically vary for even small differences in the cutting tool, tool holder,
spindle, machine, workpiece material, etc. [10-12]. Measuring the parameters directly requires time-consuming tests with a skilled
engineer and specialized equipment [11-14]. In contrast to the traditional approach of time-consuming modal tests and separate
cutting force measurements to estimate model parameters, it would far better if the vibration time series from actual cutting tests
could be used to estimate model parameters. This has the potential to enable the milling machine to quickly collect data and then
run an algorithm to generate stability charts for chatter-free machining. This article takes aim at this problem and one approach to
accomplish this. The proposed methodology is based on the idea of trajectory matching but is specifically adapted to the problem
of milling.
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Fig. 1. Schematic of down-milling with an end mill. The directions of the rotation and feed of the tool are indicated with blue arrows. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Early work on the vibration of machine tools provided models to explain chatter, including the development of stability charts
which compactly represent stability as a function of the system parameters, such as the spindle speed and cutting depth, and
identifying regions of stability where material could be removed more quickly by cutting at higher spindle speeds [15-17]. Related
works expanding on those efforts have investigated refinements in the models, experimental validation, and improvements in the
analysis techniques [2,15-34]. The physics-based models which describe the dynamics of machining are typically written as delay
differential equations (DDEs) [1,3,7,35-41]. Unlike ordinary differential equations (ODEs), even simple systems with time delay are
infinite-dimensional, making analysis non-trivial [42]. Moreover, milling is an interrupted phenomenon, resulting in non-smooth
and non-autonomous DDE models. Researchers have investigated methods to analytically or numerically approximate the solutions
of these DDEs, primarily with a focus on stability [2-5,8,43-47]. Recent works have also investigated methods for optimization of
machining parameters, e.g. [48,49].

The undesirable effects of chatter have also resulted in other creative attempts to avoid chatter vibrations. For example,
researchers have developed active and passive vibration suppression methods to thwart chatter including spindle speed variation [50,
51], tuned mass dampers [52-54], and parametric excitation [55], among others. While useful, chatter suppression methods typically
depend upon dynamic models with parameters that are subject to change or difficult to obtain. In addition, a formidable number of
investigations have centered on chatter detection [56-62]. However, chatter detection methods provide limited system information.
Thus, selecting machine settings, like spindle speed and cutting depth, from chatter detection methods results in a trial and error
process.

Despite the fact that researchers have developed detailed models and sophisticated analysis techniques to address vibrations
in machining, the industrial implementation of this knowledge has been limited. The primary hurdle for widespread adoption by
industry is the costly and time-consuming traditional methods for estimating the model parameters that describe the structural
dynamics and cutting forces; obtaining these parameters is time-consuming, difficult, and often requires the expertise of a skilled
engineer. This has motivated several recent works that take aim at estimating machining model parameters from real cutting
conditions [40,63-65]. The present work was inspired by Ref. [40], which sought to estimate parameters for a one-degree-of-
freedom milling model from vibration time series collected during a milling process. This article expands on that work by estimating
parameters for a two-degree-of-freedom milling model based on experimental data taken from Refs. [2,3]; it presents a new
trajectory-matching approach specifically designed for time series collected from an instrumented milling process.

For the first time, this article presents a method to estimate the parameters for a two-degree-of-freedom DDE milling model
directly from time series collected on an instrumented milling machine. It combines and extends models from [2,3] into an updated
model which incorporates steady-state vibration of the tool outside of cutting, due to effects such as mass imbalance or misalignment
of the cutting tool in the tool holder. Appendix B adapts and extends the spectral element method [66] to efficiently predict the
trajectory of the tool using this model. Section 4 describes a method to estimate the model parameters from time series data. Finally,
this article validates the proposed methods using experimental data and evaluates the quality of the stability predictions.

2. Dynamics model

Fig. 1 provides a schematic of the down-milling process. As the cutting tool rotates and is fed into the workpiece, it removes
material from the workpiece. The tool also bends and vibrates due to the cutting forces. Considering only the first mode of vibration
of the tool in the X and Y directions of Fig. 1, the 2-D vibration of the tool tip in the X and Y directions can be modeled by [2]:

Mg)+ Cq(t) + Kq(t) = f.(1) (€D)]

T
where the two components of q(f) = [gx(t) qy()| are the modal displacements of the tool tip in the X and Y directions,
respectively, relative to the axis of rotation, at time 7; M, C, and K are mass, damping, and stiffness matrices of the tool; and
f.(1) is the vector of cutting forces in the X and Y directions exerted by the workpiece on the tool near the tool tip at time 7.
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The cutting forces can be modeled by [2,3]:

o) =K () (qt) — gt = ©)) + fo(©) @

where K_(¢) is a time-periodic coefficient for cutting forces which depend on the variation in the chip thickness; f(r) is a time-
periodic vector of additional cutting forces; and r is the tooth passing period. The value of 7 is given by 7 = 27:!2’111;;E > Where 2
is the spindle speed in rad/s, and n., is the number of teeth on the tool. Section 2.1 discusses the cutting forces in more detail.

Eq. (1) assumes that the steady-state position of the tool in the absence of cutting forces is perfectly aligned to and centered
about the axis of rotation. However, this assumption may not be valid. For example, the rotating components, such as the tool and
tool holder, may have a mass imbalance which can cause vibration of the tool; the tool could also be imperfectly positioned in the
tool holder. These effects can be approximated by an additional, time-periodic, term f,(1):

M) + Cq(t) + Kq(t) = f.(O) + fu(0) 3

Substituting Eq. (2) and rearranging the terms, Eq. (3) can be written as a first-order DDE:

x(t) = A(t, p)x(t) + B(t, p)x(t — 7) + c(t, p) 4)
where
_[aw
x(1) = _q(t)] 5)
[ 0 I
ACP= | Mk MoK —MT'C ©
[0 0
BOP= | ik 0] @
t,p) = _ 0 ®
P M o0+ M7 0
The f,(?) term is modeled by:
Fu® = Fug+ R [ fupe ©

where f, is a constant, real vector, where the subscript ‘0’ refers to this being the constant term; f, , is a constant, complex vector,
where the subscript ‘p’ refers to this being the coefficient of the periodic term; and R : C — R extracts the real part of its argument.
Note that f,(r) affects the trajectory of the system, so it is important for fitting time series, but it does not affect the characteristic
multipliers (CMs) or stability. This can be seen most easily using the spectral element method; see Section 2.3 and Appendix B.

2.1. Cutting forces

The derivation presented here of the cutting forces for a helical cutting tool is similar to [3], but this derivation provides simplified
expressions for K (¢) and f(#), and it incorporates edge coefficients as in [2]. The cutting forces are distributed along a small contact
region, as shown in Fig. 2(a). The total cutting forces on the tool in the X and Y directions can be computed by summing over the
teeth and integrating over the contact region for each tooth:

2k lo() sin 0 (1) —c0s 0, (z,1)

Nteeth Zeni® | | o
£ = z 0 kh [ cos 0,(z, t)] fzn+ [ sin0,(z, t)] £z |dz 10)
k=1

where f,(z,1) and f;(z,?) are the normal and tangential cutting forces per unit height at height z and time ¢, as illustrated in Fig. 2(b);
Z;.10(?) is the lowest position where tooth & is in contact with the workpiece; z; 1,;(?) is the highest position where tooth & is in contact
with the workpiece; g, (1) is 1 if tooth k is cutting, and 0 otherwise; and the instantaneous angle of the point at height z on tooth k
at time ¢ is given by

0(2,1) = 0z, 1) + 2 - (t — 1) (1D
For points in the contact region, the radial chip thickness can be approximated by

wy(z,t) = hsin 0, (z,t) + [sin 0,(z,1) cosO(z, t)] (q(t) —q(t— T)) (12)
where £ is the feed per tooth. The cutting forces per unit height can be modeled by

fi(z, D) = Kwy (z,1) + K, (13)
oz, D) = Kywy (z,1) + K a4



J.D. Turner et al. Journal of Sound and Vibration 571 (2024) 117954

workpiece
(a) Isometric view of the tool and workpiece. The contact (b) Cross section of the tool and workpiece, viewed
region between the tooth and the workpiece is indicated from above. The arrows labeled f; and f, show the
with a dashed orange line. tangential and normal cutting forces per unit height

at this height and instant in time.

Fig. 2. Illustrations of the contact region and the cutting forces per unit height for a helical cutting tool with two teeth.

where K, and K, are the cutting pressures, and K|, and K,,, are the edge coefficients. Substituting and rearranging, Eq. (10) becomes
Eq. (2), with

Mteeth Zehi® [ g se— K. 52 —K.c2—K.sc
K.(t) = t t n t n d s
< 1; &0 Zelo® [ K s* — K,sc K se — K,c? z (15)
Nteeth Zini (D Kose—K.s? KoK
fo) = g h t n + te ne dz 16
’ 1; ¢ Zk 1o (D) Ks* = K,s¢ Ki.s — K.c
where
s =sinf(z,1) ¢ =cos0,(z,1) an

To evaluate Egs. (15) and (16), it is necessary to compute g, (r) and the bounds of integration. For down-milling, the leading tip
of a tooth enters the cut at angle 6., = = — arccos(l — 2p) and exits the cut at angle ., = =, where the radial immersion is pDyq,
and Dy, is the diameter of the tool. Note, however, that for a tool with a helix angle g # 0, the upper contact point of the tooth
does not start cutting until a short time after the tip starts cutting, and it does not exit the cut until a short time after the tip of the
tooth exits the cut. Let

tan f
K= (18)
Dtool/2
so that
0,(z,1) = 0,(0,1) — kz (19)

Then, for axial cut depth b, the tool rotates through an angle of 8;,, = kb between the tip of a tooth entering the cut and the upper
contact point on the tooth entering the cut, and between the tip of a tooth exiting the cut and the upper contact point on the tooth
exiting the cut. This is illustrated in Fig. 3. So, the contact indicator function for tooth k is

1 if 6,(0,1) € [Ben Oex + Olag]
g (1) = e (20)
0 otherwise
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The heights of the instantaneous lower and upper points of contact between tooth k and the workpiece are given by

0 if 0,(0,1) € [Oep. Oey
zk,lo(l) = 1 . (21)
—k7 (Oex — 0,0.1)) if 0,(0.1) € [eex, Oy + alag]
k1 (Ben — 0,0,1)) if 0,0,1) € [0en,am + 01ag]
Zg i) = ) (22)
if 6,(0.1) € [een + Opag Ocx + 9138]
and the corresponding angles for the lower and upper points of contact are
0,(0,1) if 6,(0,) € [Oe. Oex]
010 = 0y (2100, 1) = . (23)
0 if6,0.0) € [eex, Oox + elag]
Oun if 6,(0.1) € [9en, Oon + elag]
i) = O (2eni(0). 1) = . (24)
0,(0,1) = Orag if 6,(0,1) € [0en + Opag Ocx + 91ag]
Then, Egs. (15) and (16) can be simplified to
Nteeth — ) ) —
—K,sc— K,s2 —K,c2—-K,5sc
K=Y go| S " T (25)
=l K s* — K sc K.sc— K,c
Nteeth — - - =
—K,5¢ — K, 52 —K€¢— K,.5
)= g0 h = ™ol te e (26)
Jo ; , K‘SZ - K,sc Kies — Kpec
where, for ¢ such that g, (t) =1,
/zl(t) bsin6,(0,1) ifk=0
5= sinf(z,1)dz = 1 0=6,ni() . 27)
200 ~L (= cos ) |9:9k,10<0 if x #£0
/zl(t) bcos 6,(0,1) ifx=0
c= cos 0, (z,1)dz = | 0=0eni() (28)
20(0) ——sin 9|0=0k,10(t) if « #0
_ a0 bsin? 6,(0, 1) ifx=0
52 =/ sin® 0 (z,1)dz = 11 ) 0=0pi(1) (29)
—= (s (6 —sinfcoso f 0
0 F(Fo-sinocosa) )| " i w2
_ a0 bcos? 6,(0,1) ifx=0
c? = / cos® Oy (z,1)dz = e 0=0hi( (30)
—= (= (0 +sinfcosb if 0
(30 sn0cosa)) [0 i
210 bsin6,(0,1) cos 6,(0,1) ifx=0
sCc = sin6,(z,1)cos 0,(z,1)dz = 0=0ni( (31)
/zn(t) k k -1 (—%COSZQ)‘ " ifk£0
=0y 10(1)
2.2. Analytical solution for vibration between cuts
When no teeth are in contact with the workpiece, Eq. (4) simplifies to an ODE, which can be solved analytically:
x(1) = AJ(P)x(D) + co(t.p) Vi st (gk(t) =ovke{l,.. ,nteeth}> (32)
where
0 I 0
Ay(p) = |:_M—1K —M‘lC] c,(t,p) = [M_lfu(t)] (33)
It can be shown that the solution to Eq. (32), using Eq. (9), is
x(0) = x () +x,() Vst (gk(t) =o0vke{l,.. ,nteeth}> (34)

5
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Fig. 3. Illustration of the helix and lag angles. The view is looking at the side of the tool from the point of view of the workpiece, with the helix unrolled onto
a plane. The thick diagonal lines are the helical edge of the tooth (1) when the tip of the tooth starts cutting and (2) when the point at height 5 on the tooth
starts cutting. The tool rotates through an angle of 6,,, between instants (1) and (2). The shaded rectangle indicates the size of the chip being cut on this tooth
passage; the size varies with the axial cut depth b, which determines the height, and the radial immersion, which affects the width. At any instant during the
cut, the contact between the tooth and the workpiece is the intersection between a diagonal line representing the tooth edge and the shaded rectangle.

where
x, (1) = eAoPIT0) (x(1) — x, (1)) (35)
iQr -1 0 . -1 0
xss(t) = xss,O +R [xss,pe ] xss,O = _(Ao(p)) |:M—1f 0:| xss,p = (IQI - Ao(p)) |:M—]f :| (36)
u, up
Note that this implies that
M7 =0 1] (~(A@)xs0) 37)
M, = [0 1] (121 = Ay(p) % (38)

which provides a convenient way to obtain M~! f,(¢) from the steady-state solution between cuts x(f).
2.3. Approximate solution using the spectral element method

The full solution of the DDE model (Eq. (4)) can be approximated in a computationally efficient way by an extended version of
the spectral element method introduced by Khasawneh and Mann [66]. Let y(¢) be this approximation of the state x(r). Time is split
into segments of length z, where each segment begins at the start of a cut and ends at the start of the next cut. The time interval
during each cut is split into multiple elements. Within each element, the solution is approximated by polynomial interpolation
between the values of y(¢) at discrete times, known as nodes. Between cuts, the solution is described by Eq. (34), where the initial
condition is the node at the end of the preceding cut. This is illustrated in Fig. 4, where the start of the initial cut is #;, and the
duration of each cut is #,.

The spectral element method computes an approximate mapping from the nodes in one segment to the nodes in the next, which
can be written as:

y(ti+ (k+ Dr+n) y(t; + kt + 1)

t.+(k+ 1+ t.+kt+
y (1 + = L0 S b TN @) 0<my <<, <t k=01, (39)
y(ti+&+Dr+n,) y( +kt +1,)

where Q,,(p) and r, ., (p) represent the mapping from segment k to segment k+1, and 7, ..., are the times of the each segment’s
nodes relative to the start of the segment. Due to the periodicity of A(z, p), B(t, p), and c(t, p) in Eq. (4) with respect to the spindle
rotation period, the mapping is also periodic:

Ot (P) = Oi(P) ity @) = (D) (40)

So, given the solution at the initial nodes, y(t; + n), ..., y(t; + n,), a continuous approximation of the solution for the first n
segments can be obtained by the following steps:

(1) Compute Q,(p) and ri(p) for k =1, ..., neeep-
(2) Apply Eq. (39) repeatedly to compute the solution at the nodes for each of the first n segments.
(3) For each segment:
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State

i t+tq ti+ 7 ti+T7+ty ti+27 i+ 2T+ 1y t;+ 37
Time

Fig. 4. Illustration of the spectral element segments, elements, and nodes for approximating the solution of Eq. (4). The state of the system is indicated with a
curved blue line. The divisions between segments are indicated with solid vertical lines. The end of each element is indicated with a vertical dashed line. The
location of each node is indicated with a vertical line (solid, dashed, or dotted), and the corresponding value of the state is indicated with an orange circular
marker. The intervals of time during cuts have a shaded backgrounds (with a different color for each element within a segment), while the intervals of time
between cuts have a white background. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

» Within the cut, use Lagrange polynomial interpolation between the nodes within each element.
« Following the cut, use the last node from the cut as the initial condition for Eq. (34).

The matrices Q,(p), ... 1 Qo () cAN also be used to compute the CMs, and thus stability, of the system.

For more details, see Appendix B. Eq. (4) corresponds to Eq. (B.1), and Eq. (34) corresponds to Eq. (B.2). It was found that,
for this problem, a good choice for the number of elements and the polynomial order was n, = 3 and n, = 5. The boundaries
of the elements were chosen to coincide with the times when the cutting forces were non-differentiable, i.e. when the tip of the
tooth started and stopped cutting and when the point on the tooth at height b started and stopped cutting. This choice of element
boundaries was beneficial because the spectral element approximation was infinitely differentiable within each element but only
continuous across elements.

3. Experimental setup

The proposed model and methods were evaluated using data collected from test cuts on a 5-axis linear motor milling machine,
cutting into an aluminum (7050-T7451) block, with various spindle speeds and cutting depths [2]. The experimental setup closely
resembled the use of long slender tools by the aerospace industry to machine deep pocket monolithic structures. The tool was a
carbide end mill with ey = 2, diameter Dy, = 12.75 mm, helix angle p = 30°, and 106 mm overhang. The radial immersion ratio
was p = 0.05, and the feed rate was h = 0.127 mm per tooth. A clean-up pass to smooth the workpiece was performed between each
test cut.

The milling machine was instrumented with sensors to collect time series data for each test cut. The time series data for each test
cut consisted of a tachometer signal and noisy measurements of the position of the tool tip. Fig. 5 shows a photograph of the sensor
setup. The position of the tool 19 mm from the tip was measured using two capacitive sensors held close to the tool in a rigid fixture;
the position of the tool tip was estimated by scaling these measurements. The tachometer signal indicated at each instant in time
whether a mark drawn on the tool was detected or not; this indirectly provided information about the spindle speed and orientation
of the tool. The sampling frequency for the sensors was 25 kHz. For more details on the setup and data collection, see [2].

4. Fitting to time series data

The objective of this article is to estimate the unknown model parameters by fitting the model to the time series data, so
that stability charts can be generated using the estimated parameters. In theory, it would be possible to estimate all of the
unknowns simultaneously by trajectory matching, using a global optimization algorithm to fit the spectral element approximation
of the milling model to the time series. However, this is difficult due to the large number of unknown parameters. Fortunately,
the unknown parameters can instead be estimated in a sequence of stages, where each stage estimates a different subset of
the parameters. For example, it is possible to estimate parameters describing M~'K and M~'C using the portions of the data
between cuts, independently of the parameters describing the cutting forces. This approach of breaking up the overall problem into
smaller subproblems limits the number of parameters which need to be estimated simultaneously, which significantly simplifies
the optimization problems which need to be solved. This section describes how the model can be parameterized, provides a brief
overview of the trajectory matching technique used in the last two stages, and then describes the stages of the parameter estimation
strategy in sequence.
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rigid
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capacitance
probes

tachometer

cutting
tool

Fig. 5. Annotated photograph of the cutting tool and sensor setup. [Photograph by Brian P. Mann, 2003.]

4.1. Parameterizing the model

To make model fitting work well, it is beneficial to define the parameter vector p such that the number of unknown parameters
to fit is minimized and the parameter values always meet physical constraints. This section describes the specific parameter choices,
in the order which they were estimated. The details of how they were estimated are provided in the following sections.

First, the axial cut depth b, radial immersion ratio p, and feed h per tooth were assumed to be known but possibly different
between time series; they correspond to settings on the milling machine:

pp=>b 41)
P=p (42)
p3=h (43)

The number of teeth, diameter, and helix angle of the tool were assumed to be known and the same for all time series:

P4 = Nieeth 44)
P5 = Dygo1 (45)
P =P (46)

The spindle speed 2 should be approximately controlled by the milling machine, but, for higher accuracy, 2 was estimated
from separate tachometer measurements. The time #,,(0) of the first upward edge of the tachometer signal—which was used as an
indicator of the phase of the tool—could also be estimated from the tachometer signal, as described in Section 4.3.

pr =K (47)
Py = tup(o) (48)

As described in Section 4.4, an initial estimate of the steady-state solution outside of cutting, x.(#) (Eq. (36)), was obtained by
fitting the steady-state vibration data before cutting started. Let

qss(t) = qss,O +3R [qss,peigt] (49)

such that
9ss (t) 95,0 qss it
x ()= |" = O+ RY | 2SP | e (50)
SS( |:q55(t):| [ 0 :I |:1~Qqss’p:|
So, the coefficients of the steady-state solution in Eq. (36) are
- qss,O — qss,p

Xs5,0 |: 0 :| xss,p |:i'Qqss,p:| (51)
Six real parameters are sufficient to describe the steady-state solution:

Py = [1 0] dss.0 (52)
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1’10=[0 1] 9550 (53)

pi=[1 0| R g, =1 0]9]aw, (54)

pi=[0 1] R [a,] pa=[0 1]9]aw (55)
Then,

o= | aur= 1]

Recall that, by Egs. (9), (37), and (38), this also describes M -l «(D. Note that these parameters differ between time series. In
particular, the amplitude tends to increase with spindle speed, and the phase relative to 7 = 0s differs.

As described in Section 4.5, by fitting Eq. (32) to the vibration between cuts, it is possible to estimate the M -1k and M~!C
matrices, refine the estimate of the steady-state solution x(f) (which also describes M i «(M), and estimate the phase of the cuts.
These were parameterized as follows. First, it is reasonable to assume that the M, K, and C matrices are approximately diagonal,
so M~'K and M~!C can be written as

(M~k) 0 (m-'c) 0
MK = XX M-Cc= XX (57)
0 (M~'k) 0 (M~'c)
YY YY

However, to be physically realistic, all the diagonal elements in these matrices should be positive, so it is beneficial to use
the logarithm of a diagonal element as the corresponding parameter to ensure that the resulting diagonal element is positive.
Additionally, the two diagonal elements in each matrix should be very similar to each other, so it can be beneficial for one parameter
to describe the first element and the other parameter to describe the ratio between the two elements. In other words, the parameters
used to describe M~'K and M~'C were the following:

pis=1In ((M‘]K>XX> (58)
P =In %2:: =In ((M“K)YY> ~In <(M—1K>XX> (59)

(
pi7=1n <(M‘1C)XX> (60)
E— =In <(M—lc)w> ~In ((M"C)XX> (61)

p p
MK = [e 15 0 ] M-IC = [e 17 0 ] 62)

0 eP151Pi6 0 eP17tP1g

The phase was represented by the orientation of the tip of a tooth at time #,,(0):

Pro =6, (o, tup(O)) (63)

since the orientation of the tool at time #,,(0) should be consistent regardless of the other parameters, as long as the tachometer
position and the mark on the tool detected by the tachometer are consistent.

During cutting, the values of M~' K .(r) and M ! f,(¢) are also necessary. Dividing through by the first element in the mass matrix
reduces the number of parameters by one, as shown below. First, observe that M~' can be written as

1
—_— 0 1 1 0
M7= M =g [O My (64)
Myy XX Myy
So, substituting Egs. (25) and (26),
— K. 5 K, J—
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In other words, dividing the pressure and edge coefficients by Myx allows for Myx to be eliminated as a parameter. As with the
stiffness and damping, many of the parameters are known to be positive or to have a fairly consistent ratio, so it is beneficial to use
logarithms and ratios as the parameters:

K
Py =In ! (65)
Myx
K K,/M K K
p21=1n—"=lnu=n b n—t (66)
K, K /Myx Myx Myx
Kte
Py =In (67)
Mxx
K K./ M K K,
Py = In Kne =1 Kne;MXX =In Mne -1 Mte (68)
te te XX XX XX
M M
pyy=In X = _jp XX (69)
My Myy
Then,
Mteeth — ) ) —
_ 1 0 —eP05c — eP0tP1 g2 —eP20e2 — eP20tP215e
MK ()= o g0 | = > < =
0 P24 & eP20 52 — eP20tP21 3¢ eP203e — eP20+P21 o2
Nteeth — ) — =
1 0 —eP205¢ — eP20tP2 g2 —ePnE — eP2tr3y
M7 fo(n) = t = _ _
Jo® [0 e_"24:| ,; 80| p3 [ eP20 52 — eP0+P215e :| |: ePnys — ePntrne ]
T
In summary, p= |p, - p,| are all the parameters needed for the milling dynamics model, Eq. (4). Note that when fitting

to time series, the initial conditions are also unknowns which need to be estimated.
4.2. Overview of trajectory matching

One way to estimate the parameters of a dynamics model is to solve an optimization problem for the parameters, where the
objective function describes how closely trajectories predicted by the model match the measured time series. The objective function
incorporates any prior belief about the parameters and penalizes differences between the noisy measured time series and the noiseless
measurements corresponding to the predicted trajectories. This works even if the measurements represent only a subset of the
state variables, such as positions but not velocities. For cases where the measurement noise vectors are independent, additive, and
multivariate normal and the prior belief on the parameters is a multivariate normal distribution independent of the measurement
noise, the optimization problem can be expressed as a nonlinear least squares problem which accounts for the distributions of the
measurement noise and the prior belief. This approach is used to estimate parameters in Sections 4.5 and 4.6.

Fully describing a trajectory with the dynamics model requires the initial conditions of the trajectory in addition to the model
parameters. Typically, these initial conditions are unknown and, as a result, need to be estimated simultaneously with the model
parameters in order to match the predicted trajectory to the measurements. For an ODE model, these initial conditions consist of
the system state at a single instant in time. For a DDE model with delay z, however, the initial conditions consist of the trajectory
of x(¢) over a continuous interval of length 7, due to the dependency of the dynamics on past values of x(¢). The spectral element
method provides a convenient approximate representation of these initial conditions: the approximation of x(¢) at the nodes in the
first segment. By representing the initial conditions in this way, the future trajectory can easily be approximated using the spectral
element method, as described in Section 2.3.

In summary, the parameters of a dynamics model can be estimated from time series by matching trajectories predicted by the
model to the time series measurements. Under certain assumptions, this can be framed as a nonlinear least squares optimization
problem which accounts for the covariance of the measurement noise and any prior belief on the parameters. The unknowns to
optimize consist of both the unknown model parameters and the unknown initial conditions. The unknown model parameters may
consist of parameters which are common to multiple time series, as well as parameters which are separate for each time series.
Regardless, all of the unknowns can be concatenated together into a single vector of unknowns for the optimization problem. The
optimization problem can be solved using standard techniques. For more details on the objective function, see Appendix A.

4.3. Estimating the spindle speed

As described in Section 3, the milling machine was instrumented with a tachometer to more accurately estimate the spindle speed.
This section describes how the spindle speed was estimated from the tachometer signal. The tachometer signal was approximately a
square wave between 0V and 5 V; the edges of the signal were used to estimate the spindle speed. First, the upward and downward
edges were estimated by finding the intersections between the tachometer signal and a threshold of 2.5V, using linear interpolation
between adjacent points of the tachometer signal. This is illustrated in Fig. 6. After estimating the edges, a linear model

typ()) = 1, (0) + T (70)
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Fig. 6. Example of finding the upward and downward edges of the tachometer signal; only the first 30 ms is shown, due to space limitations. The tachometer
signal is the solid blue line; the threshold of 2.5V shown with the dashed orange line; the times corresponding to the detected upward and downward edges
are indicated with upward-pointing and downward-pointing triangular markers, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

was fit to the indices and values of the estimated upward edges using ordinary least squares (OLS), where the first upward edge
is #,,(0), the next upward edge is 7,,(1), etc. The estimated spindle speed was given by 2 = 2z /7. Finally, the estimated values
of 1,5,(0) and T were checked in various ways to verify that they were a good fit: (1) the estimated 2 was checked against the
nominal spindle speed reported by the milling machine, (2) the residuals between the actual estimated upward edges and Eq. (70)
were verified to be no more than a threshold fraction of T, and (3) the relative errors from 7 for the intervals between consecutive
upward edges and consecutive downward edges were verified to be less than a threshold. If any of these checks failed, then the
experiment was thrown out. The most common cause of failure was a small chip from the workpiece getting stuck to the side of
the tool, which would occasionally interfere with the tachometer measurements.

Eq. (70) was fit separately to the edges from before cutting started and the edges during cutting, since the spindle speed changed
slightly during cutting due to the additional load on the machine. The estimated spindle speed before cutting was used to estimate
the parameters of steady-state vibration before cutting started (Section 4.4), and the estimated spindle speed during cutting was
used for fitting the dynamics model (Sections 4.5 and 4.6). Additionally, the estimate of 1,,(0) for the data during cutting was used
to match the phases of the time series, since the orientation of the tool should have been the same for all upward edges.

4.4. Estimating steady-state vibration before cutting started

For each experiment, the machine was started with the tool outside the workpiece and allowed to reach steady-state, then data
collection was initialized, and then the tool was fed into the workpiece. The steady-state motion of the tool before cutting was
estimated for two reasons: (1) the covariance of the difference between the measurements and the estimated motion was a good
estimate of the covariance of the measurement noise, and (2) the estimated motion was a good initial guess for g () (Eq. (49)) for
use in fitting the vibration between cuts (Section 4.5).

For each time series, the steady-state motion was estimated by fitting a Fourier series

n
£ = %0 + Y (ay cos kQt + b sin k) 71
k=1

to each of the two position components of the measurements separately, using OLS. The value of £ had been estimated earlier from
the tachometer signal, as described in Section 4.3. For estimating q(), the Fourier series were limited to n = 1; see Fig. 7 for an
example. For estimating the covariance of the measurement noise, n = 10 was used; the additional terms allowed fitting the data
slightly more closely to obtain a slightly better estimate of the noise covariance in case the steady-state vibration did not perfectly
match Eq. (49). Even if the noise is clearly noticeable in the data, as in Fig. 7, this method still estimates g () well.

4.5. Fitting vibration between cuts and estimating the phase of cuts

For the low radial immersion experiments, most of the time was spent with the tool between cuts, i.e. with no teeth in contact
with the workpiece. So, the model could be fit to the data between cuts with fewer parameters; the parameters describing the cutting
forces were not necessary. In particular, Eq. (32) could be fit to the data instead of Eq. (4). By fitting fewer model parameters, the
optimization algorithm converges faster and is more likely to find the global optimum. As an additional benefit, fitting the vibration
between cuts can be used to estimate the phase when cuts occur. This section describes how the phase of the cuts and the relevant
model parameters can be estimated.
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Fig. 7. Example of fitting to the observations before cutting started; only the first 30ms is shown, due to space limitations. The components in the X and Y
directions are shown on separate axes. The position measurements are the solid blue lines, and the corresponding fitted steady-state vibration g (¢) is indicated
with dashed orange lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Example of fitting to the observations between cuts. Note that only part of one time series is shown; the model is actually fit to multiple time series
simultaneously. The components in the X and Y directions are shown on separate axes. The position measurements are the solid blue lines, and the corresponding
fitted positions g(f) between cuts are indicated with dashed orange lines. The estimated initial condition for each interval between cuts is indicated with a brown
circular marker. The steady-state response g (r) estimated from the data before cutting started (Section 4.4) and the updated estimate of g (r) from the data
between cuts (Section 4.5) are shown with solid green and dotted red lines, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Observe that if a time interval is between cuts, then all intervals which are integer multiples of 7 later in time are also between
cuts, since cuts are separated in time by 7. Given the information obtained in Sections 4.3 and 4.4, intervals between cuts can be
described by two values: the interval length a7, and the time ¢z between the first upward tachometer edge #,,(0) and the start of
an interval between cuts. In other words, the intervals described by these two values are [tup(0) + ¢ + kt, 1,(0) + 67 + k7 + ar] for
k=0,1,....

If suitable values of ¢ and a« were known, then Eq. (32) could be fit to the data in the intervals described by ¢ and a using
trajectory matching. The parameters to estimate are the relevant unknown model parameters which are common to all time
series, i.e. pjs,...,ps, the relevant unknown model parameters which differ between time series, i.e. py,...,p;4, and the initial
condition at the start of each interval. Note that good initial guesses for po, ..., p;, for each time series are available from fitting
the data before cutting starts, as described in Section 4.4. The trajectory matching can be framed as a least squares optimization
problem, as described in Section 4.2, using the analytical solution (Eq. (34)) for the predicted trajectories. The optimization problem
can be solved using standard nonlinear least-squares methods, such as the scipy.optimize.least_squares SciPy library
function [67] with the Trust Region Reflective algorithm. Only a subset of the parameters affects each term in the objective function,
so sparse Jacobians can be used to significantly speed up the optimization algorithm. Specifically, each initial condition affects only
the terms in the corresponding interval, and each time series has different values of pq, ..., p;,. Fig. 8 shows an example of fitting
the model to the data in the intervals between cuts. The fitted trajectories in the intervals are indicated with dashed orange lines,
and the estimated initial condition for each interval is indicated with a brown circular marker.

Unfortunately, the phase of the intervals between cuts was unknown, since none of the sensors could directly detect contact
between the tool and the workpiece. So, it was necessary to find suitable values of ¢ and « using the time series data. One way
to do this is to take advantage of the fact that Eq. (32) should fit the data in intervals between cuts more closely than data in
intervals which contain cuts, since the cutting forces cause the motion of the tool during cuts to deviate from the dynamics described
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by Eq. (32). So, given a set of candidate values of (¢, a), the best candidate from the set can be chosen by comparing the quality of
the fits for these candidates, as described by the least squares objective function. The question, then, is how to strategically choose
candidates for (¢, «) in order to narrow in on the correct values.

First, it is useful to determine the maximum possible value of a for which there exists a value of ¢ such that all the intervals
described by ¢ and a are between cuts. This maximum value for «a is 1 — y, where y is the fraction of each tooth passage period for
which a tooth may be cutting in any of the time series when they are aligned by their respective values of #,,(0). When dealing with
multiple time series of differing radial immersions and axial cut depths,

<ml?x (eex,k + Hlag,k )) - <mkin eenA,k)

27 [Mreeth
where ey i, Oex > and Bj,g are the tooth tip cut entry, tooth tip cut exit, and lag angles for the time series with index k; these
angles are described in more detail in Section 2.1. The process of estimating the phase can be implemented as a sequence of steps,
where each step chooses between a small number of candidates of (¢, «). The first step starts with a smaller value of « in order to
find a value of ¢ which corresponds to intervals between cuts, and then subsequent steps increase a and adjust the value of ¢. After
multiple steps, a approaches the maximum value of 1 — y. At that point, the intervals described by ¢ and « are the largest possible
intervals between cuts, and their endpoints describe when cuts occur.

The first step considers four different candidates: ¢ € g, %, %,% , all with « = % — 7. This value for « is chosen so that an
interval of length yz cannot simultaneously overlap the intervals described by all four candidates. This ensures that there is at least
one candidate which represents intervals which are entirely between cuts. Fig. 9(a) shows how the choice of « = % —y ensures this
property. In this figure, the intervals for each of the four candidates are indicated with a solid color, and possible cutting intervals
of duration yz, separated by time r, are indicated with hatched rectangles. If the hatched rectangles are slid together across the
timeline, they never intersect all four candidates simultaneously. Fig. 9(c) illustrates the same thing, but is wrapped around a circle
to more easily show the periodicity. Once the model has been fit to the intervals for each candidate value of ¢, the value of ¢ for
which the model best fits the data is selected. Let ¢, and «, be these initially-selected values.

In the following steps, the selected intervals are repeatedly expanded, until « is as close as desired to 1—y. For each step k, given
values of ¢,_, and «,_; which were selected on the previous step, ¢, and «, can be chosen by considering two candidates which
overlap the previously-selected candidate but are somewhat larger. This is illustrated in Figs. 9(b) and 9(d). The previously-selected
candidate with intervals of length «,_, is indicated with a dotted background, and the two expanded candidates with intervals of
length a7 are indicated with solid backgrounds. If o) = a;_; + %(1 —y — a,_), then if the hatched regions are slid together across
the timeline, they cannot overlap both candidates simultaneously while remaining outside the intervals specified by (¢;_;, a;_;). So,
if (¢y_;.a,_;) represents intervals which are entirely between cuts, then at least one of the candidates is guaranteed to represent
intervals which are entirely between cuts. As the number of steps increases, « rapidly approaches the maximum of 1 —y, which can
be shown as follows. The value of «; is given by

(72)

2oy ifi=0
o = 73)
g+ 50 —y—ay) ifie{l,2..}
So, the difference between 1 —y and «; is given by

a-n-(2-7) ifi=0

(-7 - = 1 74)
(== (e + 0=y -a) ifie{12,..}

ifi=0

—y—qy) ifie{l,2..}

N

(75)

= (1) =2 76)

In other words, the difference between 1 — y and a exponentially decays towards zero. For example, after five expansion steps,
(1 —y) — a5 < 1%. Using this procedure, the only limitations on the precision of the estimate of ¢ are the time step between
measurements and the uncertainty due to measurement noise.

Once ¢ has been estimated using this procedure, it can be used in combination with tp(0) to specify the times when cuts occur,
for fitting the milling model as described in the following section. While the estimate of ¢ obtained from this procedure is usually
fairly close to the correct value, measurement noise can lead to larger error than would be ideal. The following section adds a
parameter to allow for small errors in the estimates of 1,,,(0) and ¢. To allow for larger errors, it can be beneficial to also try values
of ¢ somewhat farther away, selecting the value for which the model best fits the data. The estimates of the model parameters
Do, ... » P13, Obtained while fitting Eq. (32) to the data for the chosen value of ¢, are used in the following section to fit the remaining
parameters.
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Fig. 9. Strategy for estimating the phase of the cuts by the tool. The intervals to try fitting as vibration between cuts are indicated with solid backgrounds; the
size of the interval when the tool may be cutting is indicated with a hatched region; and the previously chosen interval being expanded in Figs. 9(b) and 9(d)
is indicated with a dotted background.

4.6. Estimating the cutting coefficients and mass asymmetry

After completing the stages described in the previous sections, the only remaining parameters which have not been estimated are
those describing the cutting coefficients and mass asymmetry, i.e. p,, ..., p,4. These parameters can be estimated by fitting the full
milling model, i.e. Eq. (4), to the time series after cutting started, using the trajectory matching approach described in Section 4.2
with the spectral element method described in Section 2.3. This is illustrated in Fig. 10.

Most of the parameter values estimated in the previous sections were used as-is. The only exception was an additional parameter
for each time series to allow for small errors in the estimates of parameters pg and p,y, since small errors in the phase of the cuts
can significantly affect the quality of the fit to the time series. To allow for these small errors, the orientation of the tip of tooth 1
at the estimate of 7,,(0) was represented by a shifted logistic curve:

0,(0, pg) = pjo — 0.05 ( 2z ) < 2 1) 77)

Neeeth ) \ 1+ (1+ePs)

where jg is the value of p; estimated in Section 4.3, jg is the value of p,, estimated in Section 4.5, and p,5 is an additional parameter
for each time series.
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Fig. 10. Example of fitting using the complete milling model (Eq. (4)). Note that only part of one time series is shown; the model is actually fit to multiple
time series simultaneously. The components in the X and Y directions are shown on separate axes. The position measurements are the solid blue lines, and
the corresponding fitted positions g(r) are indicated with dashed orange lines. The start and end of each cut are indicated with solid and dashed vertical lines,
respectively. The cut containing the explicitly parameterized nodes is indicated with a shaded background. The steady-state response g () estimated from the
data between cuts (Section 4.5) is shown with a dotted red line. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

To match the time series data, the initial conditions for each time series must be estimated simultaneously with the unknown
model parameters. The initial conditions for a DDE with delay = consist of the states x over an interval of length z. For the approach
presented here, this interval of states was represented by state values at the spectral element nodes for one cut. Specifically, the first
spectral element segment was explicitly represented by the position g at each spectral element node in the segment, the velocity ¢
at the first node in the segment, and the velocity at the last node in the segment. The velocities between the first and last nodes
were not necessary, because they affected neither the position measurements in the first segment nor the states of later segments. An

initial guess for the explicitly represented nodes was obtained by fitting a polynomial of order | min {n -1, L\/ZJ }) to the n time

series measurements within the initial cut. Given the representation of the initial segment and the model parameters, an estimate
of the state x at any time in the time series could be computed using the spectral element method, as described in Section 2.3. So,
the model parameters and initial conditions could be estimated by finding the values of the parameters and initial conditions for
which the computed trajectory most closely matched the time series data, as described in Section 4.2.

For the solving the least squares optimization problem to fit the time series, the 1least_squares SciPy library function [67]
with the Trust Region Reflective algorithm was used. As in Section 4.5, only a subset of the parameters affected each term in the
objective function, so sparse Jacobians were used to significantly speed up the optimization algorithm. Specifically, each initial
condition segment and each parameter p,; affected only the terms in the corresponding time series. Once the parameters were
estimated, the milling model could be used to make predictions. For example, the spectral element method was used to generate a
stability chart for different spindle speeds and cutting depths.

5. Results and discussion

The methods presented in this article were designed so that a machine operator could, in a few minutes, conduct a few short,
low radial immersion test cuts; run the automated parameter estimation procedure; and then automatically generate a stability
chart, like the one shown in Fig. 11, using the estimated parameters. To demonstrate their applicability to a real milling system,
the methods presented in this article were applied to time series collected using the experimental setup described in Section 3.

Given a set of a few time series, the methods described in Section 4 were used to estimate the parameters of the dynamics model
described in Section 2. Then, using these parameter estimates, the spectral element method described in Section 2.3 and Appendix B
was used to compute approximate CMs over a grid of spindle speeds and axial cut depths. Each point in the grid was predicted to
be stable if the magnitudes of all the CMs were less than one, and unstable otherwise. This procedure of estimating the parameters
from a set of time series and predicting the stability over a grid of points was repeated for various sets of time series, in order to
provide an indication of the variability in the predictions. Specifically, it was repeated for each subset of four unique time series
from a set of five time series. The spindle speeds and axial cut depths for the five time series are indicated by black boxes in Fig. 11.
Note that all of these cases have low axial cut depths. Low axial cut depths are a good choice for test cuts in order to minimize the
risk of damaging the tool, since the system is more likely to be stable, and even if it is unstable, the cutting forces are smaller.

The grids of spectral element stability predictions corresponding to the subsets of time series were overlaid on each other to
form the background color in Fig. 11: the background color of each point indicates the fraction of the subsets of the time series
for which the point was predicted to be stable. For comparison, true stability assessments obtained experimentally [2] are shown
with triangular, cross-shaped, and circular markers. There is noticeable variability in the stability predictions, as indicated by the
width of the transition between the background colors corresponding to the stable and unstable regions. However, they match the
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Table 1

Comparison of values obtained from separate modal and cutting force tests [2] to the values estimated from time series
using the methods described in Section 4. For the separate test values, only the nominal values from [2] are shown; the
uncertainty was unavailable. The estimated values are reported as means and standard deviations over the data subsets.

Expression Description Separate tests Estimated Units
V(M7 K)yx Angular natural frequency, XX 4.58%10° (4.53 £0.03) x 10° rad/s
(M™'K)yy Angular natural frequency, YY 4.57x 103 (4.53£0.01)x 10° rad/s
MO Damping ratio, XX 10.7x 107 (7.37 £2.83) x 10~
2/(M K0y ping ’ B
(M~ C)yy : : -3 -3
—_—— Damping ratio, YY 9.96 X 10~ (5.18 +0.70) x 10~
24/ (M~ K)yy
K./ Myy Normalized tangential cutting pressure 12.3x 107 (6.88 +0.65) x 10° Pa/kg
K,/Myx Normalized normal cutting pressure 4.29 x 10° (4.70 +2.45) x 10° Pa/kg
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Fig. 11. Stability charts for the estimated parameter values. For each point (£2,5), the background color indicates the fraction of subsets of the data for which
the estimated parameters predicted that the point would be stable. For comparison, the experimental stability assessments for this system from [2] are indicated
with markers (stable: yellow circle, borderline: green cross, unstable: purple triangle). The values of @ and b for the time series used for fitting are indicated
with black boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

true stability assessments fairly closely. Given a stability chart like this, the operator could easily select a good operating point by
finding a point which meets the desired criteria and is a reasonable distance from the unstable regions.

While the purpose of the methods is to provide stability predictions, the parameter values themselves may also be of some
interest. Table 1 compares some of the nominal values obtained from separate modal and cutting force tests [2] to the values
estimated from the subsets of time series as described above. The estimated values are reported as means and standard deviations
over the subsets of time series. Note that the separate tests had some uncertainty as well, but only the nominal values were available
for comparison. Based on the table, the estimated natural frequencies were quite close to the nominal values. Similarly, the damping
ratio and normalized cutting pressure values were close in order of magnitude to the nominal values. It is unclear how much of the
differences were due to errors in the nominal values obtained from the separate tests or due to errors in the values estimated from
the time series. Regardless, the estimated values were sufficiently accurate to generate a useful stability chart as shown in Fig. 11.

Also, while the purpose of the methods is to provide stability predictions via parameter estimation, comparing the fitted
trajectories to the experimental measurements provides some useful insight. For the same five time series which were used to
generate Fig. 11, the fitting procedure was run for all five time series together. For the fit of the data before cutting started
(Section 4.4), Fig. 12 shows the estimated g(¢) for the data before cutting started. The good fit confirms that a single sinusoid
is sufficient to represent the steady-state vibration. For the fit of the data between cuts (Section 4.5), Fig. 13 shows the estimated
q(1) between cuts and the updated estimate of g (r). The model for the vibration between cuts fits the data very well; this strongly
supports the proposal of incorporating nonzero f(¢) into the model to handle cases where the tool is not perfectly centered about
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Fig. 12. Fit to the observations before cutting started; only the first 30ms is shown, due to space limitations. The components in the X and Y directions are
shown on separate axes. The noisy position measurements are the solid blue lines, and the corresponding fitted steady-state vibration g(r) (Section 4.4) is
indicated with dashed orange lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the axis of rotation. For fitting all the data during cutting (Section 4.6), Fig. 14 shows the estimated q(¢). While the model fits the
most of the time series fairly well, some of the errors between the observations and fitted state are systematic, i.e. not just due
to measurement noise. This suggests that the DDE model describing the dynamics during each cut could be improved further or,
possibly, some of the “known” parameter values (p,, ..., p;) were not quite correct. This also explains why some of the errors in the
stability estimates in Fig. 11 appear to be systematic, rather than due to measurement noise.

In summary, using the proposed methods, it is possible to quickly collect data from a small number of low radial immersion
test cuts, using sensors attached to a milling machine, and then generate a stability chart which can be used to select appropriate
parameters in the stable region. The results demonstrate that the model fits the data fairly well, although there is room for further
improvement. The stability chart in Fig. 11 is close enough to the correct stability boundary to be useful in practice. Fitting to subsets
of the data provides an indication of the variability or uncertainty in the stability estimates. While interpreting the variability as
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Fig. 13. Fit to the observations between cuts; only the first 10% of the data is shown, due to space limitations. The components in the X and Y directions are
shown on separate axes. The position measurements are the solid blue lines, and the corresponding fitted positions g(r) between cuts (Section 4.5) are indicated
with dashed orange lines. The estimated initial condition for each interval between cuts is indicated with a brown circular marker. The steady-state response
q(1) estimated from the data before cutting started (Section 4.4) and the updated estimate of g.(r) from the data between cuts (Section 4.5) are shown with
solid green and dotted red lines, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

uncertainty may be somewhat misleading because the errors are partially systematic, the variability information allows the operator
to make a more informed decision. Given the stability chart in Fig. 11, the operator could select a point a reasonable distance from
the unstable regions which meets the operator’s desired criteria.

6. Conclusion

Milling is one of the most widely used material removal processes. Despite this popularity, milling in its present state has a
number of limitations resulting from vibrations of the cutting tool. Chatter, a vibration induced dynamic instability, is particularly
undesirable as it causes surface location error, tool damage, and sub-optimal material removal rates. For these reasons, much research

has focused on chatter, including modeling, numerical prediction, stability analyses, chatter detection, and vibration absorption.
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Fig. 14. Fit using the complete milling model (Eq. (4)); only the first 10% of the data is shown, due to space limitations. The components in the X and Y
directions are shown on separate axes. The position measurements are the solid blue lines, and the corresponding fitted positions g(r) (Section 4.6) are indicated
with dashed orange lines. The start and end of each cut are indicated with solid and dashed vertical lines, respectively. The cut containing the explicitly
parameterized nodes is indicated with a shaded background. The steady-state response g () estimated from the data between cuts (Section 4.5) is shown with
a dotted red line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

However, chatter research has failed to be extensively applied in industry, in part because of the challenges associated with system
identification for milling models described by DDEs. Thus, this work sought to automatically identify model parameters from milling
vibration time series, in order to enable industry to take advantage of existing research. The experimental setup was designed to
closely resemble a common application by the aerospace industry—the deep pocket machining of monolithic aerospace structures.

This article described an automated method for estimating the parameters of a two-degree-of-freedom milling model from a small
number of time series which could be collected using sensors attached to a milling machine. The milling model incorporated nonzero
steady-state vibration of the milling tool, independent of cutting, to better match the motion of the tool in real time series. The
parameters were strategically defined to be well-suited for estimation using optimization algorithms. The fitting method proceeded
in stages which estimated a few parameters at a time in order to minimize the number of parameters which needed to be estimated
simultaneously. Finally, the proposed method was evaluated on real experimental data. The results demonstrated that, despite some
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limitations of the model, the estimated stability chart matched the true stability boundary fairly closely and provided valuable
information which would allow an operator to select appropriate machining settings.

Although the parameters were estimated for the case of low radial immersion, several methods exist to use these same parameters
to make stability predictions for higher radial immersions [36,68]. Additionally, note that using low radial immersion cutting tests
for in-process identification is advantageous as it increases the frequency content of the excitation spectrum.

There are several possible extensions of the current work. For example, the long slender tools for this work commonly yield
systems with a single dominant mode of vibration in each direction. A possible future extension is to consider tools with multiple
modes of vibration in each direction. Additionally, further improvements to the models may allow them to fit the time series more
closely, estimate the parameters more accurately, and better generalize to other operating conditions.
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Appendix A. Maximum a posteriori estimation as a least squares problem

Consider maximum a posteriori (MAP) estimation of unknown parameters of an ODE or DDE model given noisy measurements
of the system’s state. Assume that time series of noisy measurements are available, where each measurement zﬁ.'] in time series i is

a known function of the system state xﬁ,"] with additive Gaussian noise,

2 = h(x[."]) +ell € LN, x,) (A1)
J J J J

and that all the noise vectors 65.” for all the samples are mutually independent. In other words, assume a multivariate normal density

for each measurement,

i T
. . -3 1 . . _ . .
p (zyJ | xyj) = ((27r)dz det ):g) 2 exp <—§ <zyJ - h(xyj)> 261 <zyJ - h<xyj)>) (A.2)

where d, is the number of elements in each z!'! and X, is the covariance of the noise.

Let 6 be a vector containing all of the unknown model parameters and unknown initial conditions necessary to approximately
describe the trajectories of the system corresponding to the time series. Let yE.i] be the point on the ith approximate trajectory
which corresponds to x;"]. For ODE models, the initial condition at a single instant in time is sufficient for each trajectory, and the
trajectories can be obtained numerically or analytically. For DDE models, the spectral element method provides a convenient way

to represent the initial segment of each trajectory and compute the approximate trajectories. In summary, each yE.i] approximating

[

xji] is a known function of 6:

1 o i = pli]
x; ry; =f;(0) (A.3)

Assume also that the prior knowledge of 6 can be expressed as a multivariate normal density, @ ~ N(ug, Zg), i.e.

3 1 -
pO) = ((27r)d9 det 29) . exp <—§ (0 - ﬂg)ngl (9 - ;49)> (A.4)
where dj is the number of elements in 6.
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The objective is to find the value of 0 at the maximum posterior density:
arggmx p (0 | z[ll], ) (A.5)
Applying Bayes’ theorem, this is equivalent to

p(z.16)p®

argmax . (A.6)
o [op (z[l U 9’),;(9') a0’
which is equivalent to
arggmx p (z[lll, o 0>p(9) (A7)

since the denominator of Eq. (A.6) is always positive and does not depend on 6. Using Eq. (A.3), since all yﬁi] are known functions
of 0, this can be approximately expressed as

arggaax p (z[ll], oo y[ll], ...)p(e) (A.8)

This can be simplified as follows. First, since the noise vectors are assumed to be independent, the joint likelihood is equal to
the product of the likelihoods of the individual noise vectors,

p(A ) =TT (2 151) .9
ij

Then, since the posterior density is always nonnegative and the natural logarithm is a monotonically increasing function, maximizing
the posterior density is equivalent to maximizing its natural logarithm, which can then be expanded into a sum:

arg:)nax p (zﬂ”, v yﬁ”, ) p(0) = arg;nax Hp (z;” | yﬁ.”) p(0) (A.10)
ij
= argmax In - (zE.i] | yﬁ,"]) 10 (A.11)
ij
= argmax Y inp (zﬁ."] | yﬁ”) +1np(6) (A.12)
ij
Let
Al =T (zm - h(y[”)) (A.13)
J € J J

where L, is a factor in the Cholesky decomposition 2;1 = LSLZ, so that
T
i1 i] -1 [i] i1
<zj — h(x} )) 3 <zj ~ h(x} )) (A.14)

T e -
> = <z511 _h(y;n>> (A.15)

T - -
> L.L] <z£,’] - h(yﬁ”)) (A.16)

T

T [i] [i] T [i] [i]

L] (zj’ ~h(y} ))) L] (zj' ~h(y} )> (A17)

NT s
- <,[_11) il (A.18)
Similarly, let
ro=1Lj (60— ) (A.19)

where L, is a factor in the Cholesky decomposition 251 = Lng, so that

T o T
(6~ Ho) 201 (0= o) =(ro) 1o (A.20)
Then, substituting Egs. (A.2), (A.4), (A.18), and (A.20) into Eq. (A.12), the optimization problem becomes

2 T2 Lo\ -3 Loo\T
arg:)nax in:ln<<(27r)d det 26) exp <—§(rj ) r +1In ((2;:)‘19 det 23) * exp —E(rg) ro (A.21)
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Fig. B.15. Illustration of the spectral element segments, elements, and nodes for a system with piecewise dynamics described by Egs. (B.1) and (B.2). The state
of the system is indicated with a curved blue line. The divisions between segments are indicated with solid vertical lines. The end of each element is indicated
with a vertical dashed line. The location of each node is indicated with a vertical line (solid, dashed, or dotted), and the corresponding value of the state is
indicated with an orange circular marker. The intervals of time following Eq. (B.1) have a shaded background, while the intervals of time following Eq. (B.2)
have a white background. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

-1/2 NT - _1
= arggnax Z <ln ((2ﬂ)dz det ZJS) - %(rﬁ']) rﬁ.’]> +In ((27r)d9 det 29) = %(ro)Trg (A.22)
ij
-1/2 NT _1
= argznax z In ((27r)dz det 25> - % Z (r&’]) rﬁ.'] +In ((27r)d9 det Zo) P - %(rg)Trg (A.23)
i iy

Subtracting the terms which do not depend on 6 yields

_1 W) i _ L T
argmax| - [Z/: (rj. ) r; 2(r9) ro (A.24)

Dividing by —1/2 changes this into an equivalent minimization problem:

T o
arg(r}nin Z (ri,’]> rL’] + (re)Trg (A.25)

i.j

This is an unconstrained, nonlinear, least-squares optimization problem. Solving it finds the MAP estimate of 6 according to the
prior, measurements, and models.

Appendix B. Adapting the spectral element method

Consider a system with piecewise dynamics,
x(t) = A(t, p)x(t) + B(t, p)x(t — ) + c(t, p) fO<r—1n0) <ty (B.1)
x(t) = D(t —t,(t), p) (x(ts(t)) - e(ts(t),p)) +e(t,p) ifty<r—-n,()<t (B.2)
where A(1, p), B(t, p), c(t,p), and e(z, p) are functions with period T; T is an integer multiple of z; and
(@) =7\t —1)/7] +1 (B.3)
t() = 1,() + 14 (B.4)

Time is split into segments of duration z, starting at an initial time ;. Within each segment of duration z, the system follows Eq. (B.1)
for the initial interval of duration ¢4, and then it switches to Eq. (B.2) for the remaining interval of duration = — 4. Note that the
milling model used in this paper is of this form—Eq. (4) corresponds to Eq. (B.1), and Eq. (34) corresponds to Eq. (B.2)—but the
spectral element method described here can also be used for any other system with dynamics of this form.

The solution for a system with dynamics described by Egs. (B.1) and (B.2) can be approximated using an extended version of
the spectral element method presented in [66]. The approach and derivation used here is similar, but is extended to handle nonzero
¢(t, p), piecewise dynamics, and coefficients whose period is an integer multiple of z.

The approximate solution is represented by the value of the solution at discrete nodes, as illustrated by the circular markers
in Fig. B.15. The initial interval of duration 1, in each segment is split into n, elements with indices {0,...,n, — 1}. Within each
element, the solution is approximated by a polynomial of order n, which interpolates between n, + 1 nodes with indices {0, g}
Let #; ;, be the time corresponding to node k in element j in segment i. The times of the nodes within segments are consistent,
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ie t;;x = ti_1;x + 7, and consecutive elements within a segment are contiguous, i.e. ¢, for j > 0. For element j in

segment i, the solution is approximated by

0 = ij—in,

x(1) ~ Z a; bV (1), te [t,., oot MO] (B.5)
k=0

where a; ;. is the solution at time ¢, ;5 v; ;(t) = (t — 1, ;0)/(t; ;,,, — t;;0) is a function shifting and scaling the time ¢ to a coordinate
in [0, 1] within the element; and ¢, : [0, 1] — R are Lagrange trial functions of order n,. The nodes are chosen to be the Legendre—
Gauss—-Lobatto (LGL) points of the specified order within the element, and the trial functions are chosen to be Lagrange polynomials,
such that

1 k=m
d’k("i,j(’i,j,m)) = (B~6)
0 k#m

For times following the initial interval of duration 74 in each segment i, the dynamics follow Eq. (B.2), so the solution in this interval
for segment i is approximated by

x(t) ® D(t =ty 1 - P) (a,-,,,c_ly,," - e(t,-_,,c_l,,,o,p)) +e(t, p), te [li,nc—l,n“a ti+1,0,0] B.7)

Applying this to the full interval of duration r — 74 between the end of the last element in previous segment and the start of the
current segment yields

a;00=D(z —14,p) (ai—l,ne—l,no - e(ti—],ne—l,no’p)> +eltipo.P) (B.8)
=D(t—14,P)a_1 1, +d; (B.9)

where
d; = e(tig0.p) = D(z = 14, p)eti_1 y _1 > P) (B.10)

Approximate expressions for the time derivative and delayed state within each element can be derived from Eq. (B.5). Note that
the value of the derivative v,.’_j(t) is independent of i and #; this derivative will be denoted vj’.. Then, for element j in segment i,

n(\

50~ Y a4 $ iy, 1€ [0t (B.11)
k=0

Xi-)~ Y a b 0). 1€ [z,,j,o,ri_j’no] (B.12)
k=0

Substituting into Eq. (B.1) and rearranging yields

(Z a[,j,ijl-qs;((Vi,j(f))) — A(t,p) (Z a,-,j,ktﬁk(v,-,j(t))) ~ B(t,p) (Z a[_l,j,k¢k(v,~,j(r))> +c(t, p), te [t[,jfo, r,.'j’no] (B.13)
k=0 k=0 k=0

Simplifying, this becomes

Z (IV/’~¢;€(V;,/ (1) — A1, p)y(v; (t))) a;;x~ <Z B(t, p)pi (v (f))ai—l,/,k) +c(1, p), te |:ti,j,0’ ti,j,no] (B.14)
k=0

k=0

The method of weighted residuals can be applied to obtain multiple equations which enforce approximate equality of Eq. (B.14).
As in [66], the first n, Legendre polynomials are used as the test functions. They are denoted y, and have indices # € {O, ang =1},
For each element j in segment i:

o

1
/0 (Z (Iv,’.qs;(a) -4 (v} @.p) ¢k<o>> a;,,-,k> v (0)do

k=0

1 o
- /0 <Z B (v;jl (g),p) qsk(a)a,._l,j,k) te (V;jl(a),p) v, (0)do
k=0

where V,-T,-I(U) =tj0+ 0 —1;0) denotes the inverse function of v, ;. Rearranging, this becomes

(B.15)

n\)

1
Z </0 <Iv;¢/’{(0) —-A (szl(o-),p) zj)k(o-)) (o) da) a; ;i

=0 1 (B.16)

No 1
- Z{) </0 B (v,-f,l (o'),p) ¢k(a)w(a)do> ap .+ /0 ¢ (V;jl (a)’p) w,(0)do

which can be written as
no Ny
Z Nijreije= Z Piixeaicijxtdije (B.17)
k=0 k=0
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where
Nijie = /0 1 (110 = AG; @), Pe(@) ) we(o) do (®.18)
Pr= /0 1 B(v; } (o), Py (o), (o) do (B.19)
dj,= /O 1 (v} (0), Pw(0) do (B.20)

The integrals can be approximated by LGL quadrature using LGL weights w,,, which is convenient because the nodes were chosen
to be LGL points:

Nojwe ~ Z <1v;¢’k(am) —A (z,.,jym,p) qf)k(am)) v (o, w,, (B.21)
e

Piiie % Y B (1P ) buGnwe @0, (B.22)
m=1

djo~Ye (z,.,j,,,,, p) v, (o)W, (B.23)
m=1

where o,, = v, ;(; ; ,,)- Substituting Eq. (B.6), this simplifies to

Nyjie ™ < v~¢;<am>wf<om>wm> 1= A(1,0P) Bi@we GOw, (B.24)

Plj k.l B( i,j, k7 )d’k(o'k)WK(Uk)wk (B25)

dijs Y ety PW(0,)W, (B.26)
m=1

Combining Eq. (B.8) with Eq. (B.17) for all the elements and trial functions yields the following relationship between the solution
in segment i and the solution in segment i — 1:

N.a,=Pa, | +d, (B.27)

For example, for n, =2,

I 0 0 0 0
Niooo Nigio = Niono 0 0
: : : 0 0
Ni=INioon-1 Niotn-1 = Nionn-1 0 0 (B.28)
0 0 Niio0 Niiio Niin0
0 0 : . :
0 0 Ni,l,O,no—] N[,l,],no—l Ni,l,no,no—l
0 0 0 0 D(z —t4,p)
Pioo0 Pio1o Pion,0 0 0
: : : 0 0
P;=(Pioon-1 Piotn-1 = Piongn,-1 0 0 (B.29)
0 0 P00 Piiio Piin,0
0 0 . : - :
0 0 Piﬂl,O,no—l i,1,1,n5—1 Pi,l,nmno—l
ai0,0 a;_1,00 ai
aio,1 ai_1,0,1 dioo
a; = (a0, =0a10]| a;_ =|ai_10n, = A-1,10 |- d; =|d;o, -1 (B.30)
a1 ai_1,1,1 diio
A 1n, ai_1,1,n, di,l,n(,—l
Eq. (B.27) can be solved for a; to obtain
a, =Q0,a;_, +F where 0 = NI._II_’,-, F= Ni_][il (B.31)
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Observe that 0, = 0, /e and F; = F; 7/, due to the periodicity of A(, p), B(t,p), c(, p), and e(1, p). As a result, 0,,....0r /- and
F,...,Fp,, are sufficient to approximately describe the dynamics of the system. For example, given &, they can be used to compute
a,,a,, ..., which can be interpolated using Egs. (B.5) and (B.7) to find the approximate solution at an arbitrary future time.

For computation of the CMs, the equations described by Eq. (B.31) for all i = 1,...,T /7 can be combined into a single equation
describing the mapping over an entire period T,

Ay 1y(T/0) = Ql,“.,T/r‘_li-(T/r) +F 1/ (B.32)

where 0, 1 e = 0r = 0, is a constant matrix product and ¥, /- 1s a constant vector. The equilibrium point is given by

. 1
a = (I - Ql,...,T/r) Fi.1/c (B.33)
which can be substituted to obtain
A1)/ — @ = Ql,...,T/T <a1.(T/r) - ‘_1*) (B.34)

So, the system converges, i.e. lim;_ @/, = a* if the all eigenvalues of O .r /- have magnitude less than 1, and diverges
otherwise. In other words, the eigenvalues of O, 1 /- are the CMs of the spectral element approximation. They approximately
describe the stability of the system being approximated.
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