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The high efficiency of a recently proposed method for computing with Gaussian processes relies 
on expanding a (translationally invariant) covariance kernel into complex exponentials, with 
frequencies lying on a Cartesian equispaced grid. Here we provide rigorous error bounds for 
this approximation for two popular kernels—Matérn and squared exponential—in terms of the 
grid spacing and size. The kernel error bounds are uniform over a hypercube centered at the 
origin. Our tools include a split into aliasing and truncation errors, and bounds on sums of 
Gaussians or modified Bessel functions over various lattices. For the Matérn case, motivated by 
numerical study, we conjecture a stronger Frobenius-norm bound on the covariance matrix error 
for randomly-distributed data points. Lastly, we prove bounds on, and study numerically, the 
ill-conditioning of the linear systems arising in such regression problems.

1. Introduction

Over the last couple of decades, Gaussian processes (GPs) have seen widespread use in statistics and data science across a range 
of natural and social sciences [3,8,11,13,17,23]. In the canonical Gaussian process regression task, the goal is to recover an unknown 
real-valued function 𝑓 ∶𝐷 ⊆ ℝ𝑑 → ℝ using noisy observations of that function. Specifically, given data locations 𝑥1, … , 𝑥𝑁 ∈ ℝ𝑑 , 
and corresponding observations 𝑦1, … , 𝑦𝑁 ∈ℝ, the usual Gaussian process regression model is

𝑦𝑛 ∼ 𝑓 (𝑥𝑛) + 𝜖𝑛, 𝑛 = 1,… ,𝑁 , (1)
𝑓 (𝑥) ∼ (𝜂(𝑥),𝑘(𝑥,𝑥′)), (2)

where  denotes a Gaussian process distribution, 𝜖𝑛 ∼  (0, 𝜎2) is independent and identically distributed (iid) noise of known 
variance 𝜎2 > 0, 𝜂 ∶ℝ𝑑 →ℝ is a given prior mean function, and 𝑘 ∶ℝ𝑑 ×ℝ𝑑 →ℝ is a given positive definite covariance kernel [23]. 
In practice, 𝑘 is often also translation-invariant and isotropic, that is, 𝑘(𝑥, 𝑥′) depends only on |𝑥 − 𝑥′|.

In general, the mean function 𝜂 can be set to zero by subtraction, which from now we will assume has been done. Then, the 
marginal posterior of 𝑓 at any point 𝑥 ∈𝐷 is Gaussian with mean 𝜇(𝑥) and variance 𝑠(𝑥) given by,

𝜇(𝑥) =
𝑁∑
𝑛=1

𝛼𝑛𝑘(𝑥,𝑥𝑛), (3)

* Corresponding author.
E-mail address: abarnett@flatironinstitute.org (A. Barnett).

https://doi.org/10.1016/j.acha.2024.101640
Received 17 May 2023; Received in revised form 15 December 2023; Accepted 15 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:abarnett@flatironinstitute.org
https://doi.org/10.1016/j.acha.2024.101640
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2024.101640&domain=pdf
https://doi.org/10.1016/j.acha.2024.101640


Applied and Computational Harmonic Analysis 71 (2024) 101640

2

A. Barnett, P. Greengard and M. Rachh

𝑠(𝑥) = 𝑘(𝑥,𝑥)−
𝑁∑
𝑛=1

𝛾𝑥,𝑛𝑘(𝑥,𝑥𝑛), (4)

where 𝜶 ∶= {𝛼𝑛}𝑁𝑛=1 and 𝜸𝑥 ∶= {𝛾𝑥,𝑛}𝑁𝑛=1 are the vectors in ℝ𝑁 that uniquely solve the 𝑁 ×𝑁 symmetric linear systems

(𝐾 + 𝜎2𝐼)𝜶 = 𝐲, (5)

(𝐾 + 𝜎2𝐼)𝜸𝑥 = 𝐤𝑥, (6)
respectively, where 𝐾 denotes the 𝑁 ×𝑁 positive semidefinite matrix with 𝐾𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗 ), and 𝐤𝑥 ∶= {𝑘(𝑥, 𝑥𝑛)}𝑁𝑛=1. These are known as “function space” linear systems [23].

While GP regression has achieved widespread popularity, an inherent practical limitation of the procedure is its computational 
cost. A dense direct solution of the above linear systems requires (𝑁3) operations, and in the case of variance 𝑠(𝑥) a new right-hand 
side and solve is needed for each 𝑥. Since in many modern data sets 𝑁 can be in the millions or more, a large literature has emerged 
on faster approximate methods for solving these linear systems, and related tasks such as computing the determinant [1,4,7,12,19,
20,22,23,31]. An in-depth review of the computational environment for GP regression is outside the scope of this paper, though a 
summary can be found in, for example, [16–18].

In this work, we analyze the equispaced Fourier Gaussian process (EFGP) regression approach recently proposed by the au-
thors [16]. Briefly, in EFGP, the covariance kernel is factorized as 𝑘(𝑥 − 𝑥′) ≈ 𝑘̃(𝑥 − 𝑥′) ∶=∑𝑀

𝑗=1 𝜙𝑗 (𝑥)𝜙𝑗 (𝑥′) where the plane wave 
bases {𝜙𝑗} arise from an equispaced quadrature discretization of the inverse Fourier transform of the covariance kernel, using 
𝑀 = (𝑚𝑑 ) nodes, where 𝑚 sets the grid size in each dimension. This leads to a rank-𝑀 approximation of the covariance matrix 
𝐾 ≈ 𝐾̃ =ΦΦ∗. The method then proceeds to solve the equivalent “weight space” dual system, with 𝑀 ×𝑀 system matrix Φ∗Φ +𝜎2𝐼 , 
using conjugate gradients (CG) [9]. The method derives its computational efficiency from the ability to rapidly apply the Toeplitz 
matrix Φ∗Φ using padded 𝑑-dimensional fast Fourier transforms (FFTs) with cost 𝑂(𝑀 log𝑀). A precomputation which exploits 
nonuniform FFTs of cost 𝑂(𝑁 +𝑀 log𝑀) is needed; however, the cost per iteration is independent of the number of data points 𝑁 . 
The result is that for low-dimensional problems (say, 𝑑 ≤ 3), 𝑁 as high as 109 can be regressed in minutes on a desktop; this is much 
faster than competing methods in many settings [16].

Error bounds for such a Fourier kernel approximation are crucial in practice in order to choose the numerical grid spacing ℎ
and grid size 𝑚. Then the error in the computed posterior mean when using 𝑘̃ as the covariance kernel can be bounded in terms 
of the Frobenius norm of 𝐾̃ −𝐾 , which in turn can be bounded by the uniform kernel approximation error [16, Thm. 4.4]. This is 
a deterministic analysis of what is sometimes termed “computational uncertainty” [30]. This motivates us to derive error estimates 
for 𝑘̃ − 𝑘, for the commonly-used squared exponential (SE) and Matérn kernels, with explicit dimension- and kernel-dependent 
constants. Our bounds are uniform over a kernel argument lying in [−1, 1]𝑑 , as appropriate for evaluating the kernel 𝑘̃(𝑥 − 𝑥′) for 
all 𝑥, 𝑥′ in the hypercube 𝐷 = [0, 1]𝑑 . We provide convenient explicit bounds on ℎ and 𝑚 that guarantee a user-specified uniform 
error 𝜀 (Corollaries 3 and 6). Our Matérn bounds are reminiscent of an analysis of Gaussian random field sampling by Bachmayr 
et al. [2], but we include kernel approximation error and our constants are explicit. Since an equispaced tensor-product grid is 
perhaps the simplest (deterministic) way to discretize a kernel in Fourier space, we expect the bounds to have wider applications to 
kernel approximations and Gaussian random fields.

Yet, we find that such uniform bounds are in practice pessimistic for Matérn kernels of low smoothness 𝜈, due to the slow algebraic 
Fourier decay of the kernel. To address this discrepancy we conjecture a stronger bound on ‖𝐾̃ − 𝐾‖𝐹 for data points drawn iid 
randomly from some absolutely continuous measure. We support this with a brief derivation and a numerical study. This provides a 
useful heuristic for choosing more efficient EFGP numerical parameters.

Finally, motivated by experiments [16, Sec. 5] exhibiting very large CG iteration counts, we include a preliminary analysis and 
study of the condition numbers of the “exact” (true kernel 𝑘) linear system, and the approximate (kernel 𝑘̃) function and weight 
space systems. While the issue of ill-conditioning of the function space system is well known [24,26] (and studied in the operator 
case [28] as well as in the 𝜎 = 0 setting of radial basis approximation [29, Ch. 12]), the weight space system condition number 
is less well studied. In a numerical study in 𝑑 = 1 we will find that both function- and weight-space linear systems are nearly as 
ill-conditioned as their upper bounds allow (about 𝑁∕𝜎2).

The remainder of this paper is structured as follows. In Section 2, we review bounds on errors in posterior means using approxi-
mate GP regression, and provide a summary of the EFGP algorithm introduced in [16]. The main results are the approximation errors 
for the SE and Matérn kernels derived in Section 3. In Section 4, we conjecture a bound for the norm of 𝐾̃ −𝐾 in terms of a weighted 
𝐿2 approximation of the covariance kernel, and give a heuristic derivation along with numerical evidence. We discuss bounds on 
various condition numbers, as well as a numerical study, in Section 5. We summarize and list some open questions in Section 6.

2. Preliminaries

In this section, we motivate the study of the kernel approximation error by reviewing how it controls the error in the posterior 
mean (relative to exact GP regression with the true kernel). We also summarize the EFGP numerical method. Both are presented in 
more depth in [16].
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2.1. Error estimates for the posterior mean

Suppose that 𝑘̃ is an approximation to 𝑘 with a uniform error 𝜀, i.e.

sup
𝑥,𝑥′∈𝐷

|𝑘(𝑥,𝑥′)− 𝑘̃(𝑥,𝑥′)| ≤ 𝜀,

then, since all data points lie in 𝐷, the error in the corresponding covariance matrix is easily bounded by

‖𝐾 − 𝐾̃‖ ≤ ‖𝐾 − 𝐾̃‖𝐹 ≤𝑁𝜀, (7)
where ‖ ⋅ ‖ denotes the spectral norm of the matrix, and ‖ ⋅ ‖𝐹 denotes the Frobenius norm.

Furthermore, let 𝜶, and 𝜶̃ be the solutions to

(𝐾 + 𝜎2𝐼)𝜶 = 𝐲, (𝐾̃ + 𝜎2𝐼)𝜶̃ = 𝐲, (8)
and let 𝝁 =𝐾𝜶, and 𝝁̃ = 𝐾̃𝜶̃ be the corresponding posterior mean vectors at the observation points. Then the (2-norm) error in this 
posterior mean vector satisfies

‖𝝁− 𝝁̃‖
‖𝐲‖ ≤ ‖𝐾 − 𝐾̃‖

𝜎2
≤ 𝑁𝜀

𝜎2
. (9)

Finally, let 𝜇(𝑥) = 𝐤𝖳𝑥𝜶, where 𝐤𝑥 ∶= [𝑘(𝑥, 𝑥1), … , 𝑘(𝑥, 𝑥𝑁 )]𝖳, be the true posterior mean at a new test target 𝑥 ∈ ℝ𝑑 , and let 
𝜇̃(𝑥) = 𝐤̃𝖳𝑥 𝜶̃ be its approximation. Then its error (scaled by the root mean square data magnitude ‖𝐲‖∕

√
𝑁) uniformly obeys

|𝜇̃(𝑥)− 𝜇(𝑥)|
‖𝐲‖∕

√
𝑁

≤
(
𝑁2

𝜎4
+ 𝑁

𝜎2

)
𝜀. (10)

These results, simplifications of [16, Thm. 4.4], show that it suffices to bound 𝜀, the uniform approximation error of the covariance 
kernel, in order to bound the error in computed posterior means.

2.2. Summary of the EFGP numerical scheme for GP regression

Suppose that 𝑘 ∶ ℝ𝑑 → ℝ describes a translation-invariant and integrable covariance kernel 𝑘(𝑥 − 𝑥′). In EFGP, this kernel is 
approximated by discretizing the Fourier transform of the covariance kernel using an equispaced quadrature rule. Specifically, using 
the Fourier transform convention of [23], we have

𝑘̂(𝜉) = ∫
ℝ𝑑

𝑘(𝑥)𝑒−2𝜋𝑖⟨𝜉,𝑥⟩ 𝑑𝑥, 𝜉 ∈ℝ𝑑 , (11)

𝑘(𝑥) = ∫
ℝ𝑑

𝑘̂(𝜉)𝑒2𝜋𝑖⟨𝜉,𝑥⟩ 𝑑𝜉, 𝑥 ∈ℝ𝑑 . (12)

Discretizing (12) with an equispaced trapezoid tensor-product quadrature rule we obtain

𝑘(𝑥− 𝑥′) ≈ 𝑘̃(𝑥− 𝑥′) =
∑
𝑗∈𝐽𝑚

ℎ𝑑𝑘̂(ℎ𝑗)𝑒2𝜋𝑖ℎ⟨𝑗,𝑥−𝑥′⟩, (13)

where the multiindex 𝑗 ∶= (𝑗(1), 𝑗(2), … , 𝑗(𝑑)) has elements 𝑗(𝑙) ∈ {−𝑚, −𝑚 + 1, … , 𝑚} and thus ranges over the tensor product set

𝐽𝑚 ∶= {−𝑚,−𝑚+ 1,… ,𝑚}𝑑

containing 𝑀 = (2𝑚 +1)𝑑 elements. Splitting the exponential in (13) we get the rank-𝑀 symmetric factorization for the approximate 
kernel

𝑘̃(𝑥,𝑥′) =
∑
𝑗∈𝐽𝑚

𝜙𝑗 (𝑥)𝜙𝑗 (𝑥′) , (14)

with basis functions 𝜙𝑗 (𝑥) ∶=
√

ℎ𝑑𝑘̂(ℎ𝑗)𝑒2𝜋𝑖ℎ⟨𝑗,𝑥⟩. Inserting the data points {𝑥𝑛}𝑁𝑛=1 shows that 𝐾̃ =ΦΦ∗, where the design matrix Φ
has elements Φ𝑛𝑗 = 𝜙𝑗 (𝑥𝑛). Then in EFGP one solves the 𝑀 -by-𝑀 weight-space system

(Φ∗Φ+ 𝜎2𝐼)𝜷 =Φ∗𝐲 (15)
iteratively using CG. Its right-hand side vector can be filled by observing that ∑𝑁

𝑛=1 𝑒
2𝜋𝑖ℎ⟨𝑗,𝑥𝑛⟩𝑦𝑛 takes the form of a type 1 𝑑-

dimensional nonuniform discrete Fourier transform, which may be approximated in (𝑁 +𝑀 log𝑀) effort via standard nonuniform 
FFT (NUFFT) algorithms [10]. Since (Φ∗Φ)𝑗,𝑗′ depends only on 𝑗 − 𝑗′, then Φ∗Φ is a Toeplitz matrix, and its Toeplitz vector can be 
computed by another NUFFT. With these two 𝑁 -dependent precomputations done, the application of Φ∗Φ in each CG iteration is 
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a discrete nonperiodic convolution, so may be performed by a standard padded 𝑑-dimensional FFT. Finally, once an approximate 
solution vector 𝜷 ∶= {𝛽𝑗}𝑗∈𝐽𝑚 is found, the posterior mean 𝜇(𝑥) = ∑

𝑗∈𝐽𝑚 𝛽𝑗𝜙𝑗 (𝑥) may be rapidly evaluated at a large number of 
targets 𝑥, now via a type 2 NUFFT. This weight-space formula for 𝜇 is equivalent to a function-space solution of (5) with 𝐾 replaced 
by its approximation 𝐾̃ (see, e.g., [16, Lem. 2.1]). The posterior variance 𝑠(𝑥) may be found similarly by iterative solution of (6), 
then evaluating (4).

Note that the equispaced Fourier grid—being the root cause of the Toeplitz structure—is crucial for the efficiency of EFGP. This 
motivates the study of the kernel approximation properties of such a Fourier grid, the subject of the next section.

3. Uniform bounds on the kernel discretization error

We now turn to the main results: we derive explicit error estimates for the equispaced Fourier kernel approximation in (13) in all 
dimensions 𝑑 for two families of commonly-used kernels: Matérn and squared-exponential. We assume that the source 𝑥 and target 
𝑥′ are contained in the set 𝐷 = [0, 1]𝑑 , as appropriate when all data and evaluation points lie in this set. Note that the coordinates 
may always be shifted and scaled to make this so.

We start by restating an exact formula for the error, by exploiting the equispaced nature of the Fourier grid (see [16]; for 
convenience we include the simple proof).

Proposition 1 (Pointwise kernel approximation). Suppose that the translationally invariant covariance kernel 𝑘 ∶ ℝ𝑑 → ℝ and its Fourier 
transform 𝑘̂ decay uniformly as |𝑘(𝑥)| ≤ 𝐶(1 + ‖𝑥‖)−𝑑−𝛿 and |𝑘̂(𝜉)| ≤ 𝐶(1 + ‖𝜉‖)−𝑑−𝛿 for some 𝐶 , 𝛿 > 0. Let ℎ > 0, 𝑚 ∈ ℕ, then define 𝑘̃
by (13). Then for any 𝑥 ∈ℝ𝑑 we have

𝑘̃(𝑥)− 𝑘(𝑥) = −
∑

𝑛∈ℤ𝑑 ,𝑛≠𝟎
𝑘
(
𝑥+ 𝑛

ℎ

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
aliasing error

+ ℎ𝑑
∑

𝑗∈ℤ𝑑 , 𝑗∉𝐽𝑚

𝑘̂(𝑗ℎ)𝑒2𝜋𝑖ℎ⟨𝑗,𝑥⟩

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
truncation error

. (16)

Proof. Writing 𝑥 in place of 𝑥 −𝑥′ in (13) gives 𝑘̃(𝑥) = ℎ𝑑
∑

𝑗∈𝐽𝑚 𝑘̂(𝑗ℎ)𝑒
2𝜋𝑖ℎ⟨𝑗,𝑥⟩. Shifting and scaling the Poisson summation formula 

[25, Ch. VII, Cor. 2.6] to give the form

ℎ𝑑
∑

𝑗∈ℤ𝑑
𝑘̂(𝑗ℎ)𝑒2𝜋ℎ𝑖⟨𝑗,𝑥⟩ =

∑

𝑛∈ℤ𝑑
𝑘
(
𝑥+ 𝑛

ℎ

)
, (17)

then splitting off the 𝑛 = 𝟎 term on the right, and 𝐽𝑚 terms on the left, completes the proof. □

Thus the error has two contributions, as illustrated in Fig. 1. The aliasing error takes the form of a lattice sum of periodic images 
(translates) of the kernel 𝑘, excluding the central element; see Fig. 1(a). Their separation is ℎ−1, and once this is a few times 𝓁 larger 
than 1, the exponential decay of the kernel ensures that this term is uniformly small over 𝑥 ∈ [−1, 1]𝑑 , the set 𝐷−𝐷 of values taken 
by 𝑥 − 𝑥′. This set is shown by a black box in the plot. The truncation error, the second term on the right-hand side of (16), arises 
due to limiting the Fourier integral to the finite box [−𝑚ℎ, 𝑚ℎ]𝑑 . It is a tail sum of 𝑘̂ over the infinite lattice minus the finite box that 
is summed computationally; see Fig. 1(b). Once ℎ is determined by the aliasing error, the truncation error may be made small by 
choosing 𝑚 such that the tail integral of 𝑘̂(𝜉) is small over the exterior of [−𝑚ℎ, 𝑚ℎ].

In practice, ℎ is set to the largest permissible value which achieves a certain aliasing error, then 𝑚 is chosen according to the 
decay of 𝑘̂ to achieve a truncation error of the same order.

We now apply the above to uniformly bound the error for approximating two common kernels defined as follows [23]. Note that 
the value at the origin for both kernels is 𝑘(𝟎) = 1, appropriate for when the data has been scaled for unit prior covariance:

• The squared exponential kernel with length scale 𝓁 (using | ⋅ | for Euclidean norm),

𝐺𝓁(𝑥) ∶= exp
(
− |𝑥|2
2𝓁2

)
. (18)

• The Matérn kernel with smoothness parameter 𝜈 ≥ 1∕2 and length scale 𝓁,

𝐶𝜈,𝓁(𝑥) ∶=
21−𝜈
Γ(𝜈)

(√
2𝜈 |𝑥|

𝓁

)𝜈
𝐾𝜈

(√
2𝜈 |𝑥|

𝓁

)
, (19)

where 𝐾𝜈 is the modified Bessel function of the second kind.

3.1. Squared-exponential kernel

Recall that for data points lying in 𝐷 = [0, 1]𝑑 , the kernel 𝑘(𝑥) must be well approximated over 𝑥 ∈ [−1, 1]𝑑 . The theorem below 
gives uniform bounds for the two contributions to the error. The result shows superexponential convergence both in ℎ (once ℎ < 1), 
and in 𝑚. In practice, for the typical case of 𝓁 ≪ 1, machine accuracy (≈ 10−16) is reached once ℎ is less than 1 by a few times 𝓁, 
and 𝑚 is a couple times 1∕𝓁.
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Fig. 1. Illustration of two contributions to the discretization error in the pointwise approximation of the kernel 𝑘(𝑥), in 𝑑 = 2; see Section 3. Panel (a) shows the 
aliasing error term imaged as a function of the displacement argument 𝑥. The black square shows the domain [−1, 1]2. Panel (b) images 𝑘̂(𝜉) (on a logarithmic scale) 
in the Fourier plane, and shows as dots the punctured infinite lattice of excluded Fourier frequencies ℎ𝑗, where 𝑗 ∈ℤ2 , 𝑗 ∉ 𝐽𝑚 , and 𝐽𝑚 is the (2𝑚 +1)-by-(2𝑚 +1) grid 
of quadrature nodes (not shown). The truncation error is bounded by the sum of 𝑘̂ at all dots. The parameters (chosen merely for visual clarity) are ℎ = 0.85, 𝑚 = 4, 
for a Matérn kernel with 𝜈 = 1∕2.

In the proof below, the following elementary bounds on Gaussian sums are useful. For any 𝑎 > 0, we have by monotonicity,
∞∑
𝑗=1

𝑒−(𝑎𝑗)2∕2 ≤
∞

∫
0

𝑒−𝑎2𝑡2∕2𝑑𝑡 =
√
𝜋

2𝑎 (20)

and hence
∑
𝑗∈ℤ

𝑒−(𝑎𝑗)2∕2 = 1 + 2
∞∑
𝑗=1

𝑒−(𝑎𝑗)2∕2 ≤ 1 +
√
𝜋
𝑎

. (21)

We also need the Fourier transform of 𝐺𝓁 in (18), using the convention (12),

𝐺̂𝓁(𝜉) = (
√
2𝜋𝓁)𝑑𝑒−2|𝜋𝓁𝜉|2 . (22)

Theorem 2 (Aliasing and truncation error for squared-exponential covariance kernel). Suppose that 𝑘(𝑥) = 𝐺𝓁(𝑥) as defined by (18), 
with length scale 𝓁 ≤ 2∕

√
𝜋 ≈ 1.13. Let ℎ < 1 be the frequency grid spacing. Then the aliasing error magnitude is bounded uniformly over 

𝑥 ∈ [−1, 1]𝑑 by

|||||
∑

𝑛∈ℤ𝑑
𝑛≠𝟎

𝑘
(
𝑥+ 𝑛

ℎ

)|||||
≤ 2𝑑 3𝑑𝑒

− 1
2

(
ℎ−1−1

𝓁

)2

. (23)

In addition, letting 𝑚 ∈ ℕ control the grid size (2𝑚 +1 in each dimension), the truncation error magnitude is bounded uniformly over 𝑥 ∈ℝ𝑑

by
|||||
ℎ𝑑

∑

𝑗∈ℤ𝑑
𝑗∉𝐽𝑚

𝑘̂(𝑗ℎ)𝑒2𝜋𝑖ℎ⟨𝑗,𝑥⟩
|||||
≤ 2𝑑 4𝑑𝑒−2(𝜋𝓁ℎ𝑚)2 . (24)

Proof of Theorem 2. We first bound the aliasing error, by exploiting the fact that it is uniformly bounded over [−1, 1] by its value 
at (1, 0, … , 0). Noting that 𝐺𝓁 is positive and isotropic, the left side of (23) is bounded by 2𝑑 equal sums over overlapping half-space 
lattices (pointing in each of the positive and negative coordinate directions),

max
𝑥∈[−1,1]𝑑

|||||
∑

𝑛∈ℤ𝑑
𝑛≠𝟎

𝐺𝓁

(
𝑥− 𝑛

ℎ

)|||||
≤ 2𝑑 max

𝑥∈[−1,1]𝑑

∞∑
𝑝=1

∑

𝑞∈ℤ𝑑−1
𝐺𝓁

(
𝑥− (𝑝, 𝑞)

ℎ

)

= 2𝑑
(

max
𝑠∈[−1,1]

∞∑
𝑝=1

𝑒−(𝑠−𝑝∕ℎ)2∕2𝓁2
)(

max
𝑡∈[−1,1]

∑
𝑞∈ℤ

𝑒−(𝑡−𝑞∕ℎ)2∕2𝓁2
)𝑑−1

(25)
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where in the second line we split off 𝑠 as the first coordinate of 𝑥, and use 𝑡 for each of the remaining coordinates since the Gaussian 
kernel is separable. The sum over 𝑞 is bounded by its value for 𝑡 = 0, because, by the Poisson summation formula (17) and (22), this 
sum is equal for any 𝑡 ∈ℝ to ℎ ∑𝑗∈ℤ 𝑒2𝜋𝑖𝑡ℎ𝑗

√
2𝜋𝓁𝑒−2(𝜋𝓁ℎ𝑗)2 . Then setting 𝑡 = 0, this sum is bounded by using 𝑎 = 1∕ℎ𝓁 in (21) to give

max
𝑡∈[−1,1]

∑
𝑞∈ℤ

𝑒−(𝑡−𝑞∕ℎ)2∕2𝓁2 ≤ ∑
𝑞∈ℤ

𝑒−𝑞2∕2ℎ2𝓁2 ≤ 1 +
√
𝜋𝓁ℎ. (26)

However, the first sum over 𝑝 in (25) is bounded by its value at 𝑠 = 1, which can be seen because ℎ < 1 thus each term is monotonically 
increasing in 𝑠. Then by writing (1 − 𝑝∕ℎ)2 = [(𝑝 − 1)ℎ−1 + (ℎ−1 − 1)]2 = (ℎ−1 − 1)2 + (𝑝 − 1)2ℎ−2 + 2(ℎ−1 − 1)ℎ−1(𝑝 − 1) and noting 
that the last term is nonnegative,

∞∑
𝑝=1

𝑒−(1−𝑝∕ℎ)2∕2𝓁2 ≤ 𝑒
− 1
2

(
ℎ−1−1

𝓁

)2 ∞∑
𝑝=1

𝑒−(𝑝−1)2∕2ℎ2𝓁2 ≤ 𝑒
− 1
2

(
ℎ−1−1

𝓁

)2 (
1 +

√
𝜋𝓁ℎ
2

)
,

where (20) was used with 𝑎 = 1∕ℎ𝓁 in the last step. Inserting this and (26) into (25) and using 1 + √
𝜋𝓁ℎ ≤ 3, implied by the 

hypotheses ℎ < 1 and 𝓁 ≤ 2∕
√
𝜋, finishes the proof of (23).

The proof of the truncation error bound is similar because 𝐺̂𝓁(𝜉) in (18) is also Gaussian. Because 𝑘̂ is always nonnegative, the 
left side of (24) is bounded by its value at 𝑥 = 𝟎. As with the aliasing error, we may now bound the sum over the punctured lattice 
by that over 2𝑑 half-space lattices,

ℎ𝑑
∑

𝑗∈ℤ𝑑
𝑗∉𝐽𝑚

𝑘̂(𝑗ℎ) = (
√
2𝜋𝓁ℎ)𝑑

∑

𝑗∈ℤ𝑑
𝑗∉𝐽𝑚

𝑒−
1
2 |2𝜋𝓁ℎ𝑗|

2

≤ 2𝑑(
√
2𝜋𝓁ℎ)𝑑

(∑
𝑝>𝑚

𝑒−
1
2 (2𝜋𝓁ℎ𝑝)

2
)(∑

𝑞∈ℤ
𝑒−

1
2 (2𝜋𝓁ℎ𝑞)

2
)𝑑−1

(27)

The 𝑞 sum is bounded by 1 + 1∕(2
√
𝜋𝓁ℎ), by choosing 𝑎 = 2𝜋𝓁ℎ in (21). The 𝑝 sum is bounded by writing 𝑝 =𝑚 + 𝑗, and dropping 

the nonnegative last term in 𝑝2 = (𝑚 + 𝑗)2 =𝑚2 + 𝑗2 + 2𝑚𝑗, then using (20), so
∑
𝑝>𝑚

𝑒−
1
2 (2𝜋𝓁ℎ𝑝)

2 ≤ 𝑒−2(𝜋𝓁ℎ𝑚)2
∞∑
𝑗=1

𝑒−
1
2 (2𝜋𝓁ℎ𝑗)

2 ≤ 𝑒−2(𝜋𝓁ℎ𝑚)2
(
1 + 1

4
√
𝜋𝓁ℎ

)
.

Replacing 4 by 2 in the above, then inserting these two bounds into (27) gives

ℎ𝑑
∑

𝑗∈ℤ𝑑
𝑗∉𝐽𝑚

𝑘̂(𝑗ℎ) ≤ 2𝑑
(√

2𝜋𝓁ℎ+ 1√
2

)𝑑
𝑒−2(𝜋𝓁ℎ𝑚)2 .

The hypotheses ℎ < 1 and 𝓁 ≤ 2∕
√
𝜋 guarantee that the factor taken to the 𝑑th power is no more than 2

√
2 + 1∕

√
2 < 4, proving 

(24). □

The above leads to the following simple rule to set ℎ and 𝑚 to guarantee a user-defined absolute kernel approximation error, in 
exact arithmetic.

Corollary 3 (Discretization parameters (ℎ, 𝑚) to guarantee uniform SE kernel accuracy 𝜀). Let 𝑘 =𝐺𝓁 be the SE kernel, and let 𝓁 ≤ 2∕
√
𝜋 as 

above. Let 𝜀 > 0. Set ℎ ≤ (
1 +𝓁

√
2 log(4𝑑 3𝑑∕𝜀)

)−1 then the aliasing error is no more than 𝜀∕2. In addition, set 𝑚 ≥√
1
2 log(4

𝑑+1𝑑∕𝜀)∕𝜋𝓁ℎ, 
then the truncation error is no more than 𝜀∕2, so that |𝑘̃(𝑥) − 𝑘(𝑥)| ≤ 𝜀 uniformly over 𝑥 ∈ [−1, 1]𝑑 .

3.2. Matérn kernel

In this section we provide proofs for the aliasing error and truncation error estimates for the Matérn kernel given by (19). Its 
Fourier transform is

𝐶̂𝜈,𝓁(𝜉) = 𝑐𝑑,𝜈

(
𝓁√
2𝜈

)𝑑 (
2𝜈 + |2𝜋𝓁𝜉|2)−𝜈−𝑑∕2 , (28)

where | ⋅ |, as before, denotes Euclidean norm, and where the prefactor 𝑐𝑑,𝜈 is

𝑐𝑑,𝜈 =
2𝑑𝜋𝑑∕2(2𝜈)𝜈Γ(𝜈 + 𝑑∕2)

Γ(𝜈) . (29)
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In order to prove the estimate for the aliasing error, we state some decay properties of the modified Bessel function 𝐾𝜈 (𝑧) (using [21, 
10.29 and 10.37] [15, §8.486]). For 𝑧 > 0, and fixed 𝜈, 𝐾𝜈(𝑧) is monotonically decreasing and positive. For fixed 𝑧, the modified 
Bessel functions are monotonically increasing in 𝜈, i.e. 𝐾𝜈(𝑧) ≤𝐾𝜇(𝑧) for 𝜇 ≥ 𝜈. Moreover,

𝑑
𝑑𝑧

(𝑧𝜈𝐾𝜈(𝑧)) = −𝑧𝜈𝐾𝜈−1(𝑧) = −𝑧𝜈
(
𝐾𝜈+1(𝑧)−

2𝜈
𝑧
𝐾𝜈(𝑧)

)
. (30)

Note that the positivity of 𝐾𝜈−1(𝑧) implies that 𝑧𝜈𝐾𝜈(𝑧) is also a monotonically decreasing function of 𝑧. The monotonicity properties 
and the positivity of 𝐾𝜈 also imply that

1
𝑧𝜈𝐾𝜈(𝑧)

𝑑
𝑑𝑧

(𝑧𝜈𝐾𝜈(𝑧)) ≤ −1
2 , ∀𝑧 ≥ 4𝜈, (31)

related to a special case in [2, Lem. 3]. Integrating the equation in 𝑧, we get the exponential upper bound

𝑓𝜈(𝑧) ∶= 𝑧𝜈𝐾𝜈(𝑧) ≤ 𝑓𝜈(4𝜈)𝑒2𝜈𝑒−𝑧∕2 , 𝑧 ≥ 4𝜈. (32)
Noting that the Matérn kernel is proportional to 𝑓𝜈(

√
2𝜈|𝑥|∕𝓁), this places a useful exponential decay bound on the kernel beyond a 

few 𝓁 away from its origin. Note that our bound is on 𝑓𝜈(𝑧) rather than 𝐾𝜈(𝑧) as in [2, Lem. 2], at the cost of a lower bound on 𝑧
and halving the exponential rate.

In order to prove the estimate for the truncation error in the following theorem, we first need the following lemma bounding 
power-law half-space lattice sums.

Lemma 4. Let 𝜈 > 0, let 𝑑 ≥ 1, and let 𝑚 ≥ 1. Then

𝐼(𝑑, 𝜈,𝑚) ∶=
∑
𝑛>𝑚

∑

𝑞∈ℤ𝑑−1

(
𝑛2 + |𝑞|2)−𝜈−𝑑∕2 ≤ 𝛽(𝑑, 𝜈)

𝑚2𝜈 (33)

where for fixed 𝜈 the prefactor 𝛽 obeys the following recursion relation in dimension 𝑑,

𝛽(𝑑, 𝜈) =
{ 1

2𝜈 , 𝑑 = 1(
4 + 2

2𝜈+𝑑−1

)
𝛽(𝑑 − 1, 𝜈), 𝑑 > 1.

(34)

In particular, for any 𝜈 ≥ 1∕2 we have

𝛽(𝑑, 𝜈) ≤ 5𝑑−1
2𝜈 , 𝑑 = 1,2,… (35)

Proof. We observe for the case 𝑑 = 1 (upper case in (34)),

∑
𝑛>𝑚

𝑛−2𝜈−1 ≤
∞

∫
𝑚

𝑦−2𝜈−1𝑑𝑦 = 𝑚−2𝜈

2𝜈 (36)

where monotonic decrease of the function was used to bound the sum by an integral. Now for 𝑑 > 1,
∑
𝑛>𝑚

∑

𝑞∈ℤ𝑑−1

(
𝑛2 + |𝑞|2)−𝜈−𝑑∕2 =

∑
𝑛>𝑚

∑

𝑤∈ℤ𝑑−2

∑
𝑞∈ℤ

(
𝑛2 + |𝑤|2 + 𝑞2

)−𝜈−𝑑∕2 ,

where in the case 𝑑 = 2 we abuse notation slightly: in that case the sum over 𝑤 is absent. We split the innermost sum into the central 
part 𝑞 ≤ ⌈

√
𝑛2 + |𝑤|2⌉, where ⌈𝑥⌉ denotes the smallest integer not less than 𝑥, plus the two-sided tail 𝑞 > ⌈

√
𝑛2 + |𝑤|2⌉. The central 

part contains at most 2(
√
𝑛2 + |𝑤|2 + 1) + 1 < 4

√
𝑛2 + |𝑤|2 terms, where this upper bound follows since 𝑛 ≥ 2, and each such term 

is bounded by the constant (𝑛2 + |𝑤|2)−𝜈−𝑑∕2. The two-sided tail is bounded by 2 ∑𝑞>⌈
√
𝑛2+|𝑤|2⌉(𝑞

2)−𝜈−𝑑∕2 ≤ 2 ∫ ∞√
𝑛2+|𝑤|2 𝑦

−2𝜈−𝑑𝑑𝑦 =
(2𝜈 + 𝑑 − 1)−1(𝑛2 + |𝑤|2)−𝜈−(𝑑−1)∕2. Combining both of these estimates, we get

𝐼(𝑑, 𝜈,𝑚) ≤ (
4 + 2

2𝜈 + 𝑑 − 1

)∑
𝑛>𝑚

∑

𝑤∈𝑍𝑑−2

(
𝑛2 + |𝑤|2)−𝜈−(𝑑−1)∕2

=
(
4 + 2

2𝜈 + 𝑑 − 1

)
𝐼(𝑑 − 1, 𝜈,𝑚).

Recursing down in 𝑑, we get (34), from which (35) follows immediately. □

We now present the main result: uniform bounds on the two contributions to the error for the Matérn kernel. The following shows 
exponential convergence with respect to ℎ for the aliasing error, but only order-2𝜈 algebraic convergence with respect to 𝑚 for the 
truncation error. The latter is due to the algebraic tail of 𝐶̂𝜈,𝓁(𝜉).
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Theorem 5 (Aliasing and truncation error for the Matérn covariance kernel). Suppose 𝑘(𝑥) = 𝐶𝜈,𝓁(𝑥) as in (19), with smoothness 𝜈 ≥ 1∕2
and length scale 𝓁 ≤ (log2)−1

√
𝜈∕2𝑑. Let ℎ ≤ (1 +

√
8𝜈𝓁)−1 be the frequency grid spacing. Then the aliasing error magnitude is bounded 

uniformly over 𝑥 ∈ [−1, 1]𝑑 by
|||||
∑

𝑛∈ℤ𝑑
𝑛≠𝟎

𝑘
(
𝑥+ 𝑛

ℎ

)|||||
≤ 4𝑑 3𝑑−1 ⋅ 2

1−𝜈

Γ(𝜈) (4𝜈)
𝜈𝑒2𝜈𝐾𝜈(4𝜈) ⋅ 𝑒

−
√

𝜈
2𝑑

ℎ−1−1
𝓁 . (37)

In addition, letting 𝑚 ∈ ℕ control the grid size (2𝑚 +1 in each dimension), the truncation error magnitude is bounded uniformly over 𝑥 ∈ℝ𝑑

by
|||||
ℎ𝑑

∑

𝑗∈ℤ𝑑
𝑗∉𝐽𝑚

𝑘̂(𝑗ℎ)𝑒2𝜋𝑖ℎ⟨𝑗,𝑥⟩
|||||
≤ 𝜈𝜈−1𝑑 5𝑑−1

2𝜈𝜋𝑑∕2+2𝜈
Γ(𝜈 + 1∕2)

Γ(𝜈)
1

(ℎ𝓁𝑚)2𝜈
. (38)

Proof of aliasing bound (37). As with the squared-exponential case, we note that the sum over 𝑛 ∈ ℤ𝑑 ⧵ {𝟎} is bounded by 2𝑑
half-spaces of the form 𝑝 ≥ 1, 𝑞 ∈ ℤ𝑑−1, with 𝑛 = (𝑝, 𝑞). Owing to the radial symmetry of the kernel, all of those half spaces can 
be bounded using the same estimate. Since 𝐶𝜈,𝓁(𝑥) is positive we may remove absolute value signs. Substituting (19), and splitting 
𝑥 = (𝑠, 𝑡′) where 𝑠 is the first coordinate and 𝑡′ ∈ℝ𝑑−1,

max
𝑥∈[−1,1]𝑑

|||||
∑

𝑛∈ℤ𝑑
𝑛≠𝟎

𝐶𝜈,𝓁

(
𝑥− 𝑛

ℎ

)|||||
≤ 2𝑑 max

𝑥∈[−1,1]𝑑

∞∑
𝑝=1

∑

𝑞∈ℤ𝑑−1
𝐶𝜈,𝓁

(
𝑥− (𝑝, 𝑞)

ℎ

)

= 2𝑑 2
1−𝜈

Γ(𝜈) ⋅ max
𝑠∈[−1,1], 𝑡′∈[−1,1]𝑑−1

∞∑
𝑝=1

∑

𝑞∈ℤ𝑑−1
𝑓𝜈
(√

2𝜈
𝓁

√
(𝑝∕ℎ− 𝑠)2 + |𝑞∕ℎ− 𝑡′|2

)

≤ 2𝑑 2
1−𝜈

Γ(𝜈) 𝑓𝜈(4𝜈)𝑒
2𝜈 ⋅ max

𝑠∈[−1,1], 𝑡′∈[−1,1]𝑑−1

∞∑
𝑝=1

∑

𝑞∈ℤ𝑑−1
exp

(
−

√
𝜈

√
2𝓁

√
(𝑝∕ℎ− 𝑠)2 + |𝑞∕ℎ− 𝑡′|2

)

where in the last step we applied the exponential decay bound (32) to each term in the sum. This is valid since no distance from 
the kernel origin (square root in the above) is less than (ℎ−1 − 1)∕𝓁, which is at least 

√
8𝜈 by the hypothesis on ℎ. We now lower-

bound the square-root via ‖𝑦‖2 ≥ ‖𝑦‖1∕
√
𝑑 for any 𝑦 ∈ℝ𝑑 , which follows from Cauchy–Schwarz. The product now separates along 

dimensions, so the above is bounded by

2𝑑 2
1−𝜈

Γ(𝜈) 𝑓𝜈(4𝜈)𝑒
2𝜈 ⋅

(
max

𝑠∈[−1,1]

∞∑
𝑝=1

𝑒−
√

𝜈
2𝑑

1
𝓁 (𝑝∕ℎ−𝑠)

)(
max

𝑡∈[−1,1]

∑
𝑞∈ℤ

𝑒−
√

𝜈
2𝑑

1
𝓁 |𝑞∕ℎ−𝑡|

)𝑑−1
. (39)

In the first sum each term is maximized at 𝑠 = 1, so writing 𝑝′ = 𝑝 − 1 we bound that sum geometrically by

𝑒−
√

𝜈
2𝑑

ℎ−1−1
𝓁

∞∑
𝑝′=0

𝑒−
√

𝜈
2𝑑

𝑝′
𝓁ℎ ≤ 𝑒−

√
𝜈
2𝑑

ℎ−1−1
𝓁

1− 𝑒−
√

𝜈
2𝑑

1
𝓁ℎ

≤ 2𝑒−
√

𝜈
2𝑑

ℎ−1−1
𝓁

where in the last step we used the hypothesis 𝓁 ≤ (log2)−1
√
𝜈∕2𝑑 and ℎ < 1 to upper-bound the geometric factor by 1∕2.

The second sum over 𝑞 in (39) is bounded by its value for 𝑡 = 0, because by the Poisson summation formula (17) it is equal for any 
𝑡 ∈ ℝ to ℎ ∑𝑗∈ℤ 𝑒2𝜋𝑖𝑡ℎ𝑗 2𝛽

𝛽2+(2𝜋ℎ𝑗)2 where 𝛽 =
√
𝜈∕2𝓁−1. This relies on the Fourier transform of 𝑒−𝛽|𝑡| being the everywhere-positive 

function 2𝛽
𝛽2+(2𝜋𝜉)2 . Thus we set 𝑡 = 0 in this second sum, write it as two geometric series with geometric factor again at most 1∕2, 

which upper bounds the sum by 3. Substituting the above two sum bounds into (39) proves (37). □

Proof of truncation bound (38). Now we use Lemma 4 of half-space lattice sums to complete the proof of Theorem 5. Noting that 
𝑘̂ = 𝐶̂𝜈,𝓁 from (28) is always positive, we may drop the phases to get a uniform upper bound,

|||||
ℎ𝑑

∑

𝑗∈ℤ𝑑
𝑗∉𝐽𝑚

𝐶̂𝜈,𝓁(𝑗ℎ)𝑒2𝜋𝑖ℎ⟨𝑗,𝑥⟩
|||||
≤ ℎ𝑑

∑

𝑗∈ℤ𝑑∖𝐽𝑚

𝐶̂𝜈(𝑗ℎ,𝓁) = 𝑐𝑑,𝜈(ℎ𝓁)𝑑
∑

𝑗∈ℤ𝑑∖𝐽𝑚

(2𝜈 + |2𝜋𝓁ℎ𝑗|2)−𝜈−𝑑∕2

≤ 𝑐𝑑,𝜈
(2𝜋)2𝜈+𝑑

(ℎ𝓁)−2𝜈
∑

𝑗∈ℤ𝑑∖𝐽𝑚

|𝑗|−2𝜈−𝑑

≤ 𝑐𝑑,𝜈
(2𝜋)2𝜈+𝑑

(ℎ𝓁)−2𝜈 ⋅ 2𝑑
∑
𝑛>𝑚

∑

𝑞∈ℤ𝑑−1
(𝑛2 + |𝑞|2)−𝜈−𝑑∕2
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=
𝑐𝑑,𝜈

(2𝜋)2𝜈+𝑑
2𝑑 𝐼(𝑑, 𝜈,𝑚)

(ℎ𝓁)2𝜈
≤ 𝑐𝑑,𝜈

(2𝜋)2𝜈+𝑑
5𝑑−1
2𝜈

2𝑑
(ℎ𝓁𝑚)2𝜈

.

Here the third inequality follows from noting (similarly to the previous proofs) that the sum over 𝑗 ∈ℤ𝑑∖𝐽𝑚 is bounded by 2𝑑 lattice 
half-spaces of the form 𝑛 > 𝑚, 𝑞 ∈ ℤ𝑑−1. The last inequality follows from Lemma 4. Substituting (29) gives (38); the theorem is 
proved. □

As with the SE kernel, this theorem leads to a simple rule to set ℎ and 𝑚 to guarantee a user-defined absolute kernel approximation 
error. In the following we restrict to small dimension, and use that the 𝜈-dependent middle factor in (37) never exceeds 3∕8, and 
(2Γ(𝜈 + 𝑑∕2)∕𝜈Γ(𝜈))1∕2𝜈∕

√
2 < 1.6 for 𝜈 ≥ 1∕2, 𝑑 ≤ 3.

Corollary 6 (Discretization parameters (ℎ, 𝑚) to guarantee uniform Matérn kernel accuracy 𝜀). Let the dimension 𝑑 be 1, 2, or 3. Let 
𝑘 = 𝐶𝜈,𝓁 be the Matérn kernel with 𝜈 ≥ 1∕2 and 𝓁 ≤ (log2)−1

√
𝜈∕2𝑑 as above. Let 𝜀 > 0. Set ℎ ≤ (

1 + 𝓁
√
2𝑑∕𝜈 log(𝑑 3𝑑∕𝜀)

)−1, then the 
aliasing error is no more than 𝜀∕2. In addition, set 𝑚 ≥ (𝑑 5𝑑−1∕𝜋𝑑∕2𝜀)1∕2𝜈 ⋅ (1.6)

√
𝜈∕𝜋ℎ𝓁, then the truncation error is no more than 𝜀∕2, 

so that the error obeys |𝑘̃(𝑥) − 𝑘(𝑥)| ≤ 𝜀 uniformly over 𝑥 ∈ [−1, 1]𝑑 .

Note that holding 𝜈, 𝓁 and ℎ fixed, 𝑚 =(1∕𝜀1∕2𝜈) as expected from truncating the Matérn Fourier transform with algebraic decay 
1∕|𝜉|2𝜈+𝑑 (see (28)). Instead holding tolerance 𝜀 fixed, 𝑚 = (1∕𝓁) as 𝓁 → 0, as expected from the growing number of oscillations 
in the interpolant across the linear extent of the domain. The above corollary should be compared with [2, (1.11)], where 𝛾 plays 
the role of ℎ−1. In order to minimize the 𝑚 used in practice, instead of the above rigorous parameters choices we recommend more 
forgiving heuristics that we state in the next section.

Remark 7. Both Theorems 2 and 5 have the very mild restrictions that 𝓁 be smaller than some (1) constant. These are in practice 
irrelevant because the domain 𝐷 is also of size 1 in each dimension, and in all applications known to us 𝓁 is set substantially smaller 
than the domain size (otherwise the prior covariance would be so long-range that the regression output would be nearly constant 
over the domain).

Remark 8. Theorems 2 and 5 have all prefactors explicit. It may be possible to improve the prefactors of the form 𝑑𝑐𝑑 where 
2 ≤ 𝑐 ≤ 5, since these are due to overcounting where half-spaces overlap and bounds on sums over ℤ𝑑−1 that could be improved. The 
1∕

√
𝑑 factor in the exponential in (37) might also be removable by using partial Poisson summation.

4. Matérn covariance matrix approximation error

For sufficiently non-smooth Matérn kernels, such as 𝜈 ≤ 3∕2, the uniform truncation error bound (38) dominates and gives 
slow algebraic convergence (1∕𝑚2𝜈), due to slow decay in Fourier space. Yet we have observed that in practice this bound is overly 
pessimistic when it comes to the more relevant root mean square error of covariance matrix elements, leading to wasted computational 
effort in practice. We instead propose (and use [16, Sec. 4.2]) the following heuristic with faster convergence (1∕𝑚2𝜈+𝑑∕2).

Conjecture 9 (equispaced Fourier Matérn covariance matrix error). Let the points 𝑥1, … , 𝑥𝑁 be iid drawn from some bounded probability 
density function 𝜌 with support in 𝐷 = [0, 1]𝑑 . Let the Matérn kernel with parameters 𝜈 and 𝓁 be approximated by equispaced Fourier modes 
as in Theorem 5, with ℎ and 𝑚 chosen so that the aliasing error is negligible compared to the truncation error. Then with high probability as 
𝑁 →∞,

‖𝐾̃ −𝐾‖𝐹 ≤𝑁𝜀̃, the root mean square error being 𝜀̃ =
𝑐𝑑,𝜈,𝜌

𝓁2𝜈(ℎ𝑚)2𝜈+𝑑∕2
, (40)

for some constant 𝑐𝑑,𝜈,𝜌 independent of 𝑁 , 𝓁, ℎ, and 𝑚.

Justification of Conjecture 9. Regardless of the kernel or its approximation method, the expectation (over data point realizations) of the 
squared Frobenius norm is

𝔼‖𝐾̃ −𝐾‖2𝐹 = 𝔼
𝑁∑

𝑛,𝑛′=1
|𝐾̃𝑛,𝑛′ −𝐾𝑛,𝑛′ |2 =𝑁2 ∫

𝐷
∫
𝐷

|𝑘̃(𝑥− 𝑥′)− 𝑘(𝑥− 𝑥′)|2𝜌(𝑥)𝜌(𝑥′)𝑑𝑥𝑑𝑥′. (41)

Now substituting the dominant truncation part of the pointwise error formula (16), and changing variable to 𝑧 = 𝑥 − 𝑥′ which ranges over the 
set 𝐷 −𝐷 = [−1, 1]𝑑 , with 𝑑𝑥𝑑𝑥′ = 𝑑𝑧𝑑𝑥′, we get

𝔼‖𝐾̃ −𝐾‖2𝐹 ≈𝑁2ℎ2𝑑
∑

𝑗,𝑗′∉𝐽𝑚

𝑘̂(ℎ𝑗)𝑘̂(ℎ𝑗′) ∫
[−1,1]𝑑

𝑒2𝜋𝑖⟨ℎ(𝑗−𝑗′),𝑧⟩
⎛
⎜
⎜⎝∫𝐷

𝜌(𝑧+ 𝑥′)𝜌(𝑥′)𝑑𝑥′
⎞
⎟
⎟⎠
𝑑𝑧

=𝑁2ℎ2𝑑
∑

𝑗,𝑗′∉𝐽𝑚

𝑘̂(ℎ𝑗)𝑘̂(ℎ𝑗′) |𝜌̂(ℎ(𝑗 − 𝑗′))|2, (42)
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Fig. 2. Estimated root mean square approximation error for the Matérn kernel in dimensions 𝑑 = 1, 2, 3 with various parameters, compared to the heuristic 𝜀̃ of (40)
with prefactor as in Remark 10. The proposed equispaced Fourier basis is used. RMS error is found via high-order accurate quadrature for the double integral (41)
rewritten as ∫[−1,1]𝑑 𝑣(𝑧)|𝑘̃(𝑧) − 𝑘(𝑧)|2𝑑𝑧 where 𝑣 is the autocorrelation of 𝜌, for the choice 𝜌 ≡ 1 in 𝐷. For each choice of 𝜈 and 𝓁, the solid line shows the error, while 
the dotted line shows the heuristic. ℎ was chosen via (44) to achieve aliasing error 𝜀 = 10−8 . (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

where the last step used the Wiener–Khintchine theorem for the Fourier transform of the autocorrelation of 𝜌. In a mean-square sense with 
respect to angle we expect Fourier decay 𝜌̂(𝜉) =(1∕|𝜉|(1+𝑑)∕2), even if 𝜌 has discontinuities (e.g., see [5] for the case of 𝜌 ≡ 1 in 𝐷, and we 
may approximate 𝜌 by a linear combination of such characteristic functions of convex sets). Since |𝜌̂(ℎ𝑗)|2 is then summable over 𝑗 ∈ ℤ𝑑 , 
and the small 𝑗, 𝑗′ terms dominate (as in the Gibbs phenomenon), we expect that there is a constant 𝑐𝜌 > 0 independent of 𝑚 such that

ℎ2𝑑
∑

𝑗,𝑗′∉𝐽𝑚

𝑘̂(ℎ𝑗)𝑘̂(ℎ𝑗′) |𝜌̂(ℎ(𝑗 − 𝑗′))|2 ≤ 𝑐𝜌ℎ2𝑑
∑
𝑗∉𝐽𝑚

|𝑘̂(ℎ𝑗)|2 = (1∕𝓁4𝜈(ℎ𝑚)4𝜈+𝑑
)
,

where in the last step we used the decay of 𝑘̂(ℎ𝑗) from (28), with the sum losing one power of 𝑑 as in the proof of Theorem 5. Finally, by the 
central limit theorem we expect, with high probability as 𝑁 →∞, that ‖𝐾̃ −𝐾‖2𝐹 tends to its expectation, justifying (40).

A rigorous proof of the conjecture, even for the easiest case 𝜌 ∈ 𝐶∞
0 (𝐷), is an open problem. We note that related work exists in 

the variational GP setting [6]. Although the iid assumption on data points cannot be justified in many settings (e.g., satellite data), 
we find the conjecture very useful to set numerical parameters even in such cases. We summarize the resulting empirically good 
parameter choices in the following remark.

Remark 10 (Discretization parameters (ℎ, 𝑚) to achieve empirical root-mean-square Matérn kernel accuracy 𝜀). By numerical study of 
the constant-density case 𝜌 ≡ 1 in the domain 𝐷 = [0, 1]𝑑 , we fit the prefactor 𝑐𝑑,𝜈,1 ≈ 0.15∕𝜋𝜈+𝑑∕2 in (40). Fig. 2 shows that this 
truncation prediction matches to within a fraction of a decimal digit the estimated root mean square error 𝜀̃. Inverting this gives our 
proposed numerical grid size choice

𝑚 ≈ 1
ℎ

(
𝜋𝜈+𝑑∕2𝓁2𝜈 𝜀

0.15

)−1∕(2𝜈+𝑑∕2)
(43)

to achieve root-mean square truncation error around the given 𝜀. The scaling 𝑚 =(1∕𝜀1∕(2𝜈+𝑑∕2)) is more forgiving than the rigorous (1∕𝜀1∕2𝜈) of Corollary 6, resulting in a smaller grid. For instance, for 𝜈 = 1∕2 this lowers 𝑀 = (𝑚𝑑 ), the total number of modes 
to achieve a Frobenius norm of 𝑁𝜀, from 𝑀 =(1∕𝜀𝑑 ) to 𝑀 =(1∕𝜀2𝑑∕(2+𝑑)), a significant reduction in numerical effort when 𝑑 is 
“large” (e.g. 3).

We also find that a practical choice of ℎ to bound aliasing error by a given 𝜀 is

ℎ ≈
(
1 + 0.85(𝓁∕

√
𝜈) log1∕𝜀

)−1, 1∕2 ≤ 𝜈 ≤ 5∕2. (44)
This is also verified (for a single 𝜀 choice) by the saturation of error at a minimum around 10−8 in Fig. 2. This ℎ is larger than that 
in Corollary 6, allowing 𝑀 , hence the computation time, to be further reduced.

We provide extensive numerical experiments using these parameter choices in [16], but do not dwell on them further, since the 
meat of the present work is the rigorous analysis.

5. Conditioning of function-space and weight-space systems

In [16] it was observed that the iteration count for conjugate gradient solution with EFGP often grew with the number of data 
points, and alarmingly so at smaller tolerance 𝜀. To grapple with this, in this final section we present some preliminary analysis 



Applied and Computational Harmonic Analysis 71 (2024) 101640

11

A. Barnett, P. Greengard and M. Rachh

that applies to any approximate global factorization method for GP regression, connect their weight-space and function-space linear 
system condition numbers, and perform a numerical study in the EFGP case. We do not address preconditioning, but note that it has 
been beneficial in the GP context [12,26,27].

Recall that “exact” GP regression requires a solution to the function space linear system

(𝐾 + 𝜎2𝐼)𝜶 = 𝐲, (45)
and that GP regression using an approximate global factorization of the kernel, in function or weight space, requires solutions to 
linear systems with system matrices

𝐴FS =ΦΦ∗ + 𝜎2𝐼 , 𝐴WS =Φ∗Φ+ 𝜎2𝐼 , (46)
respectively, where Φ is some 𝑁 -by-𝑀 design matrix with ΦΦ∗ = 𝐾̃ ≈𝐾 . In the special case of EFGP we described the matrix Φ in 
Section 2.2. We recall that there are other hierarchical rank-structured factorization approaches that can also be used for approximate 
GP regression; see [1,4,7,19], for example. These methods admit a different factorization in the function space linear system, and 
do not typically have an analogous weight space representation. From now we assume that the data size 𝑁 is large enough so that 
𝑁 >𝑀 .

We start with a simple bound for the exact GP regression function space system.

Proposition 11 (Exact function space condition number bound). Let 𝑘 ∶ℝ𝑑 →ℝ be a translationally invariant positive semidefinite covari-
ance kernel with 𝑘(𝟎) = 1. Let 𝑥1, … , 𝑥𝑁 ∈ℝ𝑑 , and 𝐾 be the 𝑁 ×𝑁 covariance matrix with 𝑖𝑗 ’th element 𝑘(𝑥𝑖 − 𝑥𝑗 ). Then the condition 
number of the GP function space system matrix obeys

𝜅(𝐾 + 𝜎2𝐼) ≤ 𝑁
𝜎2

+ 1. (47)

Proof. Since 𝑘 is a positive semidefinite kernel, meaning 𝑘̂ is nonnegative [23, §4.1], then |𝑘(𝑥)| = | ∫ℝ𝑑 𝑒2𝜋𝑖⟨𝑥,𝜉⟩𝑘̂(𝜉)𝑑𝜉| ≤∫ℝ𝑑 𝑘̂(𝜉)𝑑𝜉 = 𝑘(𝟎) = 1. Thus all entries of 𝐾 are bounded in magnitude by 1, so ‖𝐾‖𝐹 ≤ 𝑁 . Since the spectral norm is bounded 
by the Frobenius norm, the largest eigenvalue of 𝐾 is no more than 𝑁 (or see [29, p. 207]), and so the hence spectral norm of 
𝐾 +𝜎2𝐼 is no more than 𝑁 +𝜎2. Since 𝐾 is positive definite, its eigenvalues are nonnegative, so that no eigenvalue of 𝐾+𝜎2𝐼 is less 
than 𝜎2. The proof is completed since 𝜅(𝐾 + 𝜎2𝐼) is the ratio of maximum to minimum eigenvalues, because 𝐾 is symmetric. □

The upper bound is sharp, since 𝐾 may come arbitrarily close to the matrix with all entries 1 when all data points approach the 
same point.1 The trivial lower bound 𝜅(𝐾 + 𝜎2𝐼) ≥ 1 is also sharp since 𝐾 approaches 𝐼 when all data points move far from each 
other compared to the kernel width 𝓁. Only with assumptions on the distribution of data points (their typical separation compared 
to 𝓁) could stronger statements be made. For instance, for fixed 𝑘 and data domain, as 𝑁 →∞ then 𝜅(𝐾 + 𝜎2𝐼) grows no slower 
than 𝑐𝑁∕𝜎2 for some 𝑐 > 0 (this follows from [26, p. 54]). Note that Proposition 11 could be generalized to the case 𝑘(𝟎) ≠ 1 simply 
by replacing 𝜎2 by 𝜎2∕𝑘(𝟎) in the right-hand side of (47).

Remark 12. The bound (47) is large in practice: for instance in a typical big problem with 𝑁 = 107 and 𝜎 = 0.1, the bound allows 𝜅
to be 109, with implications for accuracy in finite-precision computation and large iteration counts.

A natural question now arises: are the approximate function-space system matrix 𝐴FS and the corresponding weight-space system 
matrix 𝐴WS both similarly conditioned to the (exact) function-space matrix 𝐾 + 𝜎2𝐼? We now show rigorously that both 𝐴FS and 
𝐴WS can be no more ill-conditioned than the exact function-space matrix 𝐾 + 𝜎2𝐼 , in the limit of accurate kernel approximation 
(𝜀 → 0). To interpret the following, recall from (7) that a pointwise kernel error of 𝜀 leads to the simple bound ‖𝐾̃ −𝐾‖ ≤𝑁𝜀.

Lemma 13 (Approximated linear system condition number bounds). Let Φ ∈ ℂ𝑁×𝑀 with 𝑀 <𝑁 , such that 𝐾̃ = ΦΦ∗ approximates 𝐾
to spectral norm error ‖𝐾̃ −𝐾‖ ≤𝑁𝜀. Then the approximated function-space condition number denoted by 𝜅FS = 𝜅(𝐴FS), and the weight 
space condition number denoted by 𝜅WS = 𝜅(𝐴WS), both have an upper bound

𝜅FS,𝜅WS ≤
(
1 + 𝜀𝑁

𝜎2

)
𝜅(𝐾 + 𝜎2𝐼) + 𝜀𝑁

𝜎2
. (48)

Proof. Our main tool is eigenvalue perturbation: for each eigenvalue of 𝐾 there is an eigenvalue of 𝐾̃ within a distance of 𝜀𝑁 , 
which follows from the symmetric case of the Bauer–Fike theorem [14, Thm. 7.7.2] and ‖𝐾̃ −𝐾‖ ≤ 𝜀𝑁 . Since 𝑀 <𝑁 , 𝐾̃ has a zero 
eigenvalue, so the minimum eigenvalue of 𝐾 is 𝜆min ∈ [0, 𝜀𝑁]. Abbreviating 𝜅 ∶= 𝜅(𝐾 + 𝜎2𝐼) = (𝜆max + 𝜎2)∕(𝜆min + 𝜎2), then 𝜆max ≤
(𝜎2 + 𝜀𝑁)𝜅 − 𝜎2. Again by eigenvalue perturbation, the largest eigenvalue of 𝐾̃ is no more than 𝜆max + 𝜀𝑁 ≤ (𝜎2 + 𝜀𝑁)𝜅 − 𝜎2 + 𝜀𝑁 , 
and the same is true for Φ∗Φ since its nonzero eigenvalues match those of 𝐾̃ . Thus ‖Φ∗Φ + 𝜎2𝐼‖ ≤ (𝜎2 + 𝜀𝑁)𝜅 + 𝜀𝑁 . Finally, since 
‖(Φ∗Φ + 𝜎2𝐼)−1‖ ≤ 𝜎−2, and ‖(ΦΦ∗ + 𝜎2𝐼)−1‖ = 𝜎−2, the results then follow. □

1 Alternatively, for fixed 𝑘 and data domain, as 𝑁 →∞ the minimum eigenvalue of 𝐾 vanishes [26, p. 54].
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Fig. 3. Condition numbers of the weight-space system matrix 𝐴WS ∶= Φ∗Φ + 𝜎2𝐼 , the approximate function-space system matrix 𝐴FS ∶=ΦΦ∗ + 𝜎2𝐼 , and the exact 
function-space matrix 𝐾 + 𝜎2𝐼 , as a function of the number of data points 𝑁 , for 𝑑 = 1. The 𝜅FS curve (black) lies completely under the exact 𝜅 (green) curve. The 
data points are uniform random on [0, 1], for a squared-exponential kernel with 𝓁 = 0.1, and noise 𝜎 = 0.3. (For interpretation of the colors in the figure, the reader 
is referred to the web version of this article.)

Fig. 4. Panel (a) shows the condition number of the weight space system matrix Φ∗Φ + 𝜎2𝐼 for various 𝑁 and 𝜎2 . (b) shows its upper bound (in the limit 𝜀 → 0). (c) 
plots the ratio between the two, which is nearly constant at around 0.54. Other parameters are as in Fig. 3. (For heatmaps with color scales, the reader is referred to 
the web version of this article.)

We now report a test of empirical condition number growth vs 𝑁 and 𝜎−2, for random data point locations in 𝑑 = 1. Figs. 3 and 
4 compare 𝜅(𝐾 + 𝜎2𝐼), 𝜅FS, 𝜅WS, and also the theoretical upper bound 𝑁∕𝜎2 + 1 from (47). The upper bound applies to all three as 
𝜀 → 0. The plots show that the three condition numbers are extremely close to each other, and that the bound overestimates them 
by only a factor of roughly 2, over a wide (𝑁 , 𝜎) parameter space. Here we used dense symmetric diagonalization for the “exact” 
calculations of 𝜅(𝐾 + 𝜎2𝐼) and 𝜅FS for 𝑁 ≤ 104, and EFGP with 𝜀 converged down to 10−16 (i.e., machine precision) for the other 
cases. By Corollary 3 this requires only a small 𝑚 < 30, for which dense diagonalization of 𝐴WS is trivial.

Finally, the above has consequences for the convergence rate of conjugate gradient to solve either function-space or weight-space 
linear systems. For instance, if 𝜷 is the exact solution to (15), and 𝜷𝑘 its approximation at the 𝑘th CG iteration [14, §10.2],

‖𝜷𝑘 − 𝜷‖ = 
((√

𝜅WS − 1
√
𝜅WS + 1

)𝑘)
. (49)

Since 𝜅WS ≲ 𝑁∕𝜎2 for small 𝜀, this gives convergence no slower than 𝑒−(2𝜎∕
√
𝑁)𝑘. Thus one requires at most (log(1∕𝜀)√𝑁∕𝜎

)
iterations to reach a residual 𝜀.

6. Conclusions and generalizations

In this paper, we provided a detailed error analysis for the equispaced Fourier Gaussian process (EFGP) kernel representation of 
[16]. The main results (Theorems 2 and 5) gave uniform kernel approximation error bounds for the popular squared-exponential 
and Matérn kernels, with all constants explicit, in general dimension. This led to Fourier quadrature grid parameters that guarantee 
a desired kernel error (Corollaries 3 and 6). Since this equispaced Fourier grid is maybe the simplest spectral kernel approximation, 
we expect these to find applications in other kernel methods.

For the Matérn kernel with small 𝜈, these uniform error bounds are in practice pessimistic when it comes to root mean square
errors, because of the slow Fourier decay of the kernel. Thus we proposed a conjecture on the root mean square kernel error, and 
supported it by numerical tests. A proof, even for iid random data coming from a smooth density function, remains open.
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Finally, we proved an upper bound on the condition number of the approximate function- and weight-space linear systems for 
arbitrary data distributions, showing how they approach the “exact” GP condition number as the kernel approximation error vanishes. 
We then showed experimentally that such condition numbers for a simple random data point distribution are about as ill-conditioned 
as possible, i.e., within a small factor of 𝑁∕𝜎2. This motivates the future study of stability (coefficient norm growth and the resulting 
rounding loss) in GP settings, especially in an era of reduced (e.g. half-) precision arithmetic. It also suggests the continued study of 
preconditioners for GP regression problems.

Many other interesting analysis questions remain, such as Fourier kernel approximation bounds for other common kernels, study 
of the conditioning of the regression problem itself, and a rigorous lower bound on 𝜅WS (analogous to Lemma 13), which would 
demand knowledge of 𝐾 ’s smallest eigenvalue.
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