LONG TIME BEHAVIOR OF SOLUTIONS OF AN ELECTROCONVECTION MODEL
IN R?

ELIE ABDO AND MIHAELA IGNATOVA

ABSTRACT. We consider a two dimensional electroconvection model which consists of a nonlinear
and nonlocal system coupling the evolutions of a charge distribution and a fluid. We show that the
solutions decay in time in L?(R?) at the same sharp rate as the linear uncoupled system. This is
achieved by proving that the difference between the nonlinear and linear evolution decays at a faster
rate than the linear evolution. In order to prove the sharp L? decay we establish bounds for decay in
H?(R?) and a logarithmic growth in time of a quadratic moment of the charge density.

1. INTRODUCTION

We consider the electroconvection model

Og+u-Vg+Aqg=0, (D)
Ou+u-Vu+Vp-Au=-qRgq, 2)
V-u=0 3)

in R? describing the evolution of a surface charge density ¢ in a two-dimensional incompressible
fluid flowing with a velocity u and a pressure p. Here A = (—A)% is the square root of the two-
dimensional Laplacian, and R = VA~ is the two-dimensional Riesz transform. The initial data

u(+,0) =ug 4)
and

q(+,0) = qo )
are assumed to be regular enough and have good decay properties. The model is motivated by
physical and numerical studies of electroconvection [9, 22, 23]. The nonlocal aspect of the evolu-
tion of the charge density and the nonlocal forcing on the Navier-Stokes equations in the model are
due to the fact that the fluid and charges are confined to a thin two dimensional film. The global
well-posedness of the system in bounded domains was obtained in [7] using commutator estimates
and nonlocal nonlinear analysis. In [1], we investigated the long time dynamics of the model in
two dimensions, with periodic boundary conditions and with applied voltage. When the fluid is
forced by time-independent smooth mean zero body forces, we proved that the model (1)—(5) has
a finite dimensional global attractor. In the absence of body forces, the charge density ¢ converges
exponentially in time to a unique limit due to the applied voltage, and the velocity u converges
exponentially in time to zero. The rate of exponential decay depends on the periodic boundary
conditions.

In this paper, we consider the time asymptotic behavior of solutions of (1)—(5) in R2, and adapt
the Fourier splitting method [17, 18] of Schonbek to the present system. The method was initially
used in [17] to prove decay of Leray weak solutions [14] of Navier-Stokes equations and to further
decay studies for Navier-Stokes equations [3, 11, 18, 20, 24] and many other partial differential
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equations (see for instance [4, 8, 10, 15, 25, 26]). Different approaches were employed as well to
investigate the time decay [16] and space-time decay [2, 12, 13, 21] of higher-order derivatives of
solutions to Navier-Stokes equations.

The electroconvection model (1)—(5) couples Navier-Stokes equations to a scalar equation for a
surface charge density ¢, evolving via advection by « and diffusion by A. We obtain in Theorem 1
of section 2 the long time L? decay of the type

lqlz2 = O(t™)
and
lullzz = O(t™2).

This rate of decay is sharp for the linear uncoupled system if the initial data have non vanishing
finite L' norms, because functions of the form Q(t) = e~*A" ¢y obey

2
8 1Q(0) ey = Coo (v

for any a > 0 and n > 1. The fact that such a decay is sharp for the nonlinear evolution as well
is a consequence of Theorem 4 of section 3 where we prove that u — U with U(t) = e*®uq and
q - Q with Q(t) = e7*Aqq decay faster in L? than v and g, respectively. Similar results were proved
for the solutions to the critical SQG in [8] and their higher-order derivatives in [19]. The critical
SQG velocity u = R*q decays in L? like ¢, that is at the rate ¢~!, which helps lower the size of the
nonlinear term v - Vq in that equation. In our case, the velocity has slower decay in L? due to the
Navier-Stokes equation, namely of the order ¢°2, and the nonlinear term is larger. The influence
of the charge density ¢ is felt by the Navier-Stokes velocity via the electric force —qRq. In order
to obtain a key fast enough decay at low wave numbers for the difference v = u — U, we need to
control a moment of g, [g» |z|?|q(x,t)[2dx = M?(t), in view of the inequality

lgRa()] < Clellgf =M (1)

M(t) = O(\/logt)

for long time, by analyzing the evolution of the quantity a(x)q(z,t) with a(z) = \/|z|?> + 1. This
analysis uses the boundedness of the commutator between A and multiplication by a(z), which
we establish in Lemma 1. In addition, in order to achieve the necessary sharp .2 bounds we have
to obtain bounds for the decay of higher norms of both u and ¢. For instance, H' norms of ¢ are
of the order

(see Lemma 3). We prove that

[Valzz = O(™).
and are obtained by somewhat involved nonlinear and nonlocal analysis.

The paper is organized as follows. In section 2, we study the asymptotic behavior of solutions
to the electroconvection model (1)—(5): we prove that the L? norm of the surface charge density ¢
decays in time to zero with a rate of order t~! whereas the velocity u decays in time to zero with
a rate of order ¢"2. We also investigate the rate of decay of their higher-order derivatives, and we
obtain decaying-in-time bounds in Holder spaces C%2. In section 3, we prove that the differences
q— @ and u — U decay to zero in L? faster than ¢ and u, with rates of order t~1-% and t’%’%,
respectively. In the Appendix, we present results on the existence and uniqueness of solutions
to (1)—(5), based on the Banach fixed point theorem, the Aubin-Lions lemma and commutator
estimates.



2. LONG TIME BEHAVIOR OF SOLUTIONS

In this section, we consider the long-time behavior of solutions of the electroconvection model
described by (1)—(5). We show that the charge density ¢ and the velocity u converge to 0 in the H?
norm, and we investigate the rate of convergence.

For a function f € L!(IR?), we denote its Fourier transform by

F©) = [, f@)e e ©

Theorem 1. Let ug € L?n L' be divergence-free and qy € L> N L'. There exist positive constants Iy

and I'{ depending only on the initial data and some universal constants such that the global-in-time
solution (q,u) of (1)—(5) obeys

L'y
O3 < — 7
o1 < o7 e ™
and
IV
lu@IZ: < 775 (8)
forallt>0.

Proof: The proof is divided into several steps.

Step 1 (Basic energy estimates). We take the L? inner product of equation (1) with A~'q and the
L? inner product of equation (2) with u. Then we add the resulting energy equalities. Integrating
by parts, we have the cancellations

(u-Vu,u)p2 = (Vp,u)2 =0 )
and
(u- Vg, A q) 2 + (qRg, u) 2 = —(u- VAT ¢, q) 2 + (qRg, u) 2
=—(u-Rq,q) 2 + (¢Rq, u)2 =0 (10)
due to the divergence-free condition (3). Thus, we obtain
S (1Al + Jul3.) + gl + [ 9ulZ =0, (1n

We integrate in time from 0 to ¢ and we take the supremum over all positive times ¢ > 0. We get

1 t 1
sup [IA-ba(0)2s + 1O+ [ 2(1a(9) s+ 19u() 132 s} = IA-baolls + ol (12

ending the proof of Step 1.
Step 2 (Pointwise bounds for the Fourier transform of the charge density q). The Fourier trans-
form of ¢ evolves according to

(& 1) + (uVa)(&.1) + Ag(&.1) = 0. (13)
The fractional Laplacian A is a Fourier multiplier with symbol |¢|, hence
O +[€[7=—u-Vq. (14)

We estimate the Fourier transform of the nonlinear term

- V| = |V - (ug)| < Clllul 2] gl - (15)
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using the divergence-free condition (3), the boundedness of the Fourier transform of a function by
its L' norm, and the Cauchy-Schwarz inequality. This yields the differential inequality

g+ [€[7 < Cle]ul 2 ]lg > (16)

We multiply both sides by the integrating factor el and integrate in time from 0 to . We obtain
the bound

@EDI < @O+ Clel [ Ju()]z2la(s) |2, a7

As a consequence of Step 1 and the Cauchy-Schwarz inequality, we get the pointwise bound

@& )| < lqofl 1 + Colé[Vt (18)

where Cj is a time-independent constant depending only on | ug| 2 and | A"Zqo| z2. This finishes
the proof of Step 2.

Step 3 (Decaying bound for the L? norm of the charge density). The L? norm of ¢ evolves
according to

1d
S dt —llql7. + ”A2Q||L2 = V. (19)
In view of Parseval’s identity and the fact that A2 is a Fourier multiplier with symbol [¢] 2, we have
IA%ql: = |A%ql3: = [ leliate,nPde. 20)
We bound the dissipation from below
[ late opde > [ jeliate t)e @1
R? [€>p(t)
where p(t) is the function defined on [0, oo) by
= 22
for some positive constant r to be determined later. We note that
[ el nrde > o) [ qatenPa
|E>p(t) I€l>p(t)
—p(t) [ ate OPds-p(t) [ e, ek
R I€1<p(t)
—p(Ollalz (1) [ [P (23)
[€l<p(t)
where we used Parseval’s identity. Consequently, we obtain the energy inequality
d
Slalz + 200 lal3 <200 [ @€ D, (24)
dt lel<p(t)
By the pointwise bound (18) and Fubini’s theorem for spherical coordinates, we estimate
| Jaenracs [ (ol =leviae=c [ r(als +corvi)'
<p
<C f r(lqol2, + C2r2t) dr < Ty (p(£)? + to(t)*) 25)

where [y depends only on the initial data. We obtain

d
%HqH% +2p(t)|lqll72 < 2T1(p(t)* + tp(t)°) (26)



for all £ > 0. We multiply both sides of the inequality by the integrating factor
62f0t p(s)ds _ rfot —qds _ rln(t+1) (t + 1) (27)
and then we integrate in time from O to ¢. We get

0 I'y t 1 1
|<ﬂm;_£i”) (t+nrﬁ;(@+1w*<s+n4)“+ly“
lgol? . Iy ((t+1)T2_ 1 +(t+1)’”*3_ 1 )
T+ (t+1)"\ r-2 r—2 r-3 r—3
< ||Q0||%2 N Iy N Iy
T+ (r=-2)(t+1)2 (r-3)(t+1)3

for any r > 3. Here I'; depends on r and the initial data. We choose 7 = 4 and we obtain the bound

(28)

I's
2 < 29
Hq“ L (t 1)2 ( )
where ['; is a positive constant depending only on the initial data. This completes the proof of (7)
and Step 3.
Step 4 (Pointwise bounds for the Fourier transform of the velocity u). Applying the Leray
Projector P to equation (2), we have

Oyu+P(u-Vu) - Au=-P(qRq), (30)

where we used the incompressibility condition (3) and the fact that P and —A are Fourier multipli-
ers so they commute. Hence the Fourier transform of u obeys

8@+ P(u-vu) - Au = -P(¢Rq). (31)
We estimate
[P(u-Tu)(&, 1)] < ClEllae, I < Cll[u(t) |3 (32)
and
P(qRq)(&,1)] < Cll(gRq) (1) [+ < Cla(t) ]2 (33)
in view of the boundedness of the Riesz transforms on L?(R?). We obtain
O+ €T < Clgl[ull . + Cllall7: (34)
and hence . t
(601 < ol +Clel [ () Bads +C [ la(s)]3ads (35)
for all £ € R? and ¢ > 0. In view of the bound (12), we get
(e )| <Ta+ Ol [ () [ads (36)

where [’ is a positive constant depending only on the initial data. This completes the proof of
Step 4.

Step 5 (Bounds for fot(s +1)7|Azq(s) |3,ds where ~y # 2 is a real number). Let y # 2 be a real
number. The time evolution of (¢ + 1)7|¢|3, is described by the energy equality

d

2 (1) alz) + 28+ 1) A2 g7 = 7+ 1) all . (37)
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We integrate in time from 0O to ¢, make use of the L? decay of the charge density ¢ given by (7),
and obtain the bound

t Al ‘ r N r
A (s+1)wAzq(s)n;dsgc(qoiﬁ%(ml)v 2_%). (38)

Step 6 (Decaying bound for the L? norm of the velocity). The L? norm of the velocity evolves
according to

1d
Sl + vult == [ aRq-ude. (39)

In view of Holder’s inequality, the boundedness of the Riesz transforms on L*(R?), and Ladyzhen-
skaya’s interpolation inequality, we bound

f qRq-u
]R2

d 4 4 2
g1 lze + IVulzz < Clal g lal 2l .- @1

1 1
<Cllalr2llalpallwl - 1vul z. (40)

yielding

In view of (12), this latter energy inequality reduces to

d ‘ 4 4
Jlulze + [ Vuliz <Tslal 2. lql 2, (42)

where ['5 is a positive constant depending only on the initial data. By Parseval’s identity, we have

d - 4 4
Sl + [ IePmE OPde < Tslalalal (43)

For a positive function p; (¢) continuous on [0, o), we have

A 2 2|~ 2 2 —~ 2
Julemenracs [ jemE ez o0 [ e npde
2 =~ 2 ¢ —~ 2
2002 ([ 0P [ e o)

_ 21,12 _ 2 — 2
SORL AR ORY N G (44

Consequently, we obtain the energy inequality

d 4 4 .
Ellulliz +p1(t)?ul 72 < Tsllalallal s + pr(t)? f [a(&, ) de. (45)
l€l<p1(2)
Using (36), we have
pi(t) t 2
[ [a(&,t)|2d€ < Cf r (F?1 +Cr? {f |u(s)||%2ds} )dr
|€l<p1(t) 0 0
t 2
<Copn (02 + Opn()* [ 1)) (46)

and thus

d t 2 4 4
s+ (0l < Comn @)+ Con() ([ (o) ) +Talalalalfs @



Multiplying by the integrating factor /o #1(=)°%_ and integrating in time from 0 to ¢, we obtain

2
Ug F t s
Ju(t)]2. < ol _,__Te fo el %y, (5)4ds

efotpl(s)2d5 efot p1(s)?ds

C t s s 2
' fo (&) (] 1ur)
[ alalal e s )

la 01(8)2d5

In view of Young’s inequality for products, the continuous embedding of 2 in L4, and the bound
(29), we estimate

L ; 3 ofs pr(r)ar L t s o (P 2dr
/0 lal7:lg] Zaeto 7+ dsgcfo IQ(s)IIiQdHCfO [q(s)|2.0eC T3 pr P g
t t S
SO/O |q(3)|\izd8+0fo (la(s)122 + [A3q(s)[2,)eC Jo 1 (Ddr s

t 1 s
<Tr+C [ (Jla() s + [A¥q(s)[3)e7 0 as (49)

for any ¢ > 0, and so

Juo 7. T's Lo
Ju(®)]?, € ——2— 4 — 8 / eJ5 T ) (Y1

6[{) p1(s)3ds cfo p1(s)2ds

_C Ji pr(r)dr ‘)
iy (60 (@) ([ 1) aar

F 1 S 2
7 [0 (lg(o) 72 + [Azq(s)[72)e ™o 70 ds - (50)

+ t + t
€f0 p1(s)2ds 6-[0 pl(s)st
forany ¢ > 0. Inorder to obtain the sharp decaying bound for the velocity u, we need the following

three sub-steps:
Step 6.1 ( Logarithmic decaying bound for the L? norm of the velocity). We take p;(t) = (e +

)72 [In(e + )] 3. In this case, the integrating factor is given by

elo P1(5ds = oo G @ = ln(en)] 2 (e 1 1) (51)
and so (50) becomes
[uolZ5 1
)3, < L / d
Ju®)le In(e +t) ! In(e+t) Jo (e+s)%In(e+s) °
Cluol?. r? 52 I's

(52)

In(e+t) Jo (e+s)3[In(e+ s)]QdS ' In(e +1)

in view of the uniform boundedness of |ul|z2 by |ugl|z2 and the bound (38) with v = 1. Here I'g is
a positive constant depending only on the size of the initial charge density. We note that

t 82 t 1 1
fo (e+s)3[ln(e+s)]zdsgf0 (e+s)[ln(e+s)]zds_1 ln(eﬂt)‘1 &)

for any ¢ > 0. Therefore,
Iy
t — 54
Ol < s (54)

for all ¢ > 0, where I'y is a constant depending only on the initial data.
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Step 6.2 (Almost sharp decaying bound for the L? norm of the velocity). In order to improve the
logarithmic decay (54), we take p; (t) = 72 (¢ + 1)~ for some  to be chosen later. In this case, the
integrating factor is given by

Gfot p1(s)2ds _ eTfot (Sfll)ds _ erln(t+1) — (t + 1)7‘ (55)
and so (50) becomes

Juol 7, Lg t(s+1) C t(s+1)" s ) 2
el < Gy Ty o G ey o (e 1) ([0 ’“(T)”Lm) s

t f )
" (t+1)”/o (s+ 1) [Aq(s)|2.ds (56)
for all £ > 0. We have
F@ t (S + 1)T F F6
t+ -1) —FF—— 57
(t+1)"Jo (s+1)2 o= (r-=1)(t+1)r (( D ) (r=1)(t+1) 57)
for any r > 1. Moreover, applying the Cauchy-Schwarz inequality in the time variable yields
S 2 S
([ luzear) <s [l 58)
so that
C t (S + 1)7” § 9 2 C t ~ t
Jdr) ds < A 1”d)(f 42d)
oy o (o ar) s < o (v w2 ([ o) s
C t 4
<——F——— d 59
(’I“— 1)(t+ 1) (A ”u(s)”L2 8) ( )
for any r > 1. Taking r = 3 and using (54) and (38) give
Ty Tyt fu(s)l7
)72 < d 60
Ju(®)l t+1 t+1Jo In(e +s) ° (60)
e (5 + V(o) 2
t(s+1)]u(s
t+1)|u(t)|?: <Tiy+CT L2 61
(t+ Dlu®)l} 0FE R0 J, (s+e)ln(e+s) b
for any ¢ > 0. By Gronwall’s inequality, we obtain
J: ey dt
(t+ 1) |u(t)|2s < T+ CT2, [ =
== 9 Jo (e+s)In(e+s)
— In(e +1) 2
~ Ty + C'T2, f ~ds < T+ C'T2 In(e + 1), (62)
0 (e+s)[Iln(e+s)]
Therefore,
IM'iln(t+e
Ju(t) 2, < ) (63)

t+1
for any ¢ > 0, where I'y; is a constant depending only on the initial data.
Step 6.3 (Sharp decaying bound for the L? norm of the velocity). Finally, we prove (8). We take

pr(t) =V/2(t + 1)’% as in the previous sub-step, and we obtain the bound

Hu(JH22 F12
7 2 L
[u(®)]z: < (t+1)3 i t+ 1 (t+ 1)3 / ([ [ T)|L2d7) ° (o4




for all £ > 0. We note that
| 5]
[ Ju()|22dr < s [ n(r+ e)dT cr, [ H(T i e)dT <Tu[n(s+e)]> (65

+

fot(fo |U(T)|2LQdT)2dS gr15f0t¢s+_1ds (66)

I'e

2
lu(®)|- < 1 (67)

forall ¢ > 0, where I'y4 1s a positive constant depending only on the initial data. This ends the proof
of Theorem 1.
Now we study the rate of convergence of the gradients of the charge density and the velocity.

and so

for all ¢ > 0. Therefore,

Theorem 2. Let ug € H' n L' be divergence-free and qy € H' n L. There exist positive constants
Ky and K|, depending only on the initial data and some universal constants such that the unique
global-in-time solution (q,u) of (1)—(5) obeys

IV u( (68)

t)HLZ = (t 1)2

and .

t)]7 < W (69)

[va(
forallt>0.

Proof: The proof is divided into 4 steps.
Step 1 (Decaying bounds for the L* norm of q). The evolution of the L* norm of ¢ is described
by the energy equality

Tl [ a*Agdz =0 (10)
In view of the Cérdoba-Cdrdoba inequality [6], the dissipation is bounded from below
1,1
[ a*Aade > SIAF ()] 7
and thus
[, @ hade > clals (12)

due to Gagliardo-Nirenberg inequalities. Using interpolation inequalities in L? spaces and the
uniform boundedness of the L? norm of the charge density ¢ by |qo| 72, we have the bound

1 2 1 2
lallzs < lalzalalzs < laoll 2 lall ;s (73)
from which we conclude that
|, 4*Aade > Claol 2 gl (74)
and hence p
awbH‘PMm_- (75)

Letting y = ||¢| 7., we obtain the Bernouilli ordinary differential inequality
dy C

3
— 2
l907

IN

0. (76)
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We apply a change of variable given by u = y’% and we get
-2 du C 1

— < 77
ud dt ||q0 ||L2 ud a7
SO J o
T~ (78)
dt 2] g7
Integrating in time from O to ¢, we arrive at the bound
Il > ool + - “ Tt 2 K(1+t) (79)
where K is a constant depending on the initial data. Consequently, we obtain
gl 1 (80)
q
o f K (1+1)3

forall £ > 0.
Step 2 (Decaying bound for the L? norm of Vu). We take the L? inner product of equation (2)
with —Aw and we get

LIl + 18ult = [ aRg-du 81)

The nonlinear term (u - Vu, Au)2 vanishes due to the fact that the matrix A/?M? has a zero trace
where M is the two-by-two traceless matrix whose entries are given by M;; = gzj and M? is
its transpose. In view of Holder’s inequality with exponents 4,4,2, the boundedness of the Riesz

transforms on L*(RR?), the continuous embedding of H >in L*, and Young’s inequality, we obtain

d 1
Zvulie + 1Al < Clala< Clala (lalfe + 1A%al3.) (82)
Using the L* estimate (80) and the L? decay (7), we have
Clal3s (a3 + [A%q]32) < K (1+) + Ko(1+8) 7 [A%q[2, (83)

where /i’y and /, are positve constants depending on the initial data. We note that the initial charge
density is assumed to be in H'! and so it belongs to L* due to the Sobolev embedding of H!(RR?)
into L*(IR?). Going back to (82), we have

d 1
£||VU||%2 +[Auf?, < Ky (1+6)7° + Ko(1+ ) [Azq7. (84)

For t € [0, 00), we let
pa(t) =r2(t+1)2 (85)
for some 7 > 0 to be chosen later. By Parseval’s identity, we get

d
ZIvul, + pa0 1l

<K (1) + Ko (1) [AZql 7, + pa(t)? [K | VEE DI, (86)
<p2

In view of the inequality [Vu(&,t)[? < |£[2[a@(€, t)|? that holds for all £ € R? and all ¢ > 0, Parseval’s
identity, and the L? decay of the velocity u given by (8), we have

4@2( 9 [Vu(E, )PdE < pa () |u(t)]|5. < Thpa(t)?(t+1)7, (87)
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and consequently, it holds that
HVUHLa +pa(0)2|Vul2s € Ki(1+1)2 + Ka(1+ ) AZq)2. + Thpa()'(t+ 1)1 (88)

for ¢t > 0. We multiply by the integrating factor (¢ + 1)", integrate in time from 0 to ¢, apply (38)
with v =7 — 1, and obtain

HV“OH%z i Kl ¢ (S+1)T
(t+1)  (t+1)"Jo (s+1)3

K, 1 r— 1 Lir? (9+1)
Ty(t+ 1) - ) f ds.
+(t+1)”‘(||qo||L2+r 3 o(t+1) (t+1)r Eh (89)

Now we chose any r > 3 and we obtain the bound (68).
Step 3 (Bounds for fot(s +1)7|Au(s)|3.ds where vy ¢ {2,3} is a real number). Let v ¢ {2,3}.
The differential inequality (82) yields

[Vul3. < ds

d _
Z((t+ 1) |VulE) =y (t+ 177Vl e + 6+ 1) Au
<C(t+1)al3: (lal3: + [A%q]3) (90)

for all ¢ > 0. Integrating in time from 0 to ¢ and using (80), (38), and (68), we obtain

t t
/0(5+1)’V|Au||%2dss||Vu0|2LQ+(7K3+K4)/O (s+1)3ds

v-1 L y—1
+ K 2+ —To(t+1)773 - F)
5(‘Q0L2 ~_3 o( ) ~-3 0

vK3+ K DIy K5 .

< Ko+ 1237 4[(7‘ 1)2-1]+ %[(tu)”—ﬂ 91)
for some positive constants K3, K4, K5, K¢ depending on |Vug| 2 and | ol za-

Step 4 (Decaying bound for the L? norm of Vq). The L? norm of the gradient of ¢ evolves

according to the energy equality
1d

2t ”VQHL? + HAZQHL? = (u-Vq,Aq)re. 92)
In view of the Ladyzhenskaya interpolation inequality
1 1
|VulLs < Clvul i, | Aul (93)
and the interpolation inequality [1]
15 03
Ival®s < Clal7.lAzql, %4)
we estimate the nonlinear term
1 1 15 03
|(u- Vg, AQ)r2| < [Vul e[ Val? y < CIVullz.] Aulz gl 7. 1A% gl 7. (95)

Applying Young’s inequality, we obtain

d 8
ZIvalze + 1A2q[7. < Cvulia | Aulz: ]l 5. (96)
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In view of (68) and (83), we have

d 1 K7
ai1Valze + 142 Valh: < =g Al o7

for all £ > 0. Here K7 depends only the initial data. Letting
ps(t) =r(t+1)7", (98)

we split the dissipation term,
3 —
IABalEe 2 pa(D19alte —pat) [ (e D 99)
<p3

yielding the differential inequality

K7
IIVQIILz +p3(t) | Vall7: < EE Sl Au]z + ps(t) e IVQ(f t)[*d¢ (100)
3
In view of the pointwise bound [V¢q(&,t)| < |€]|q(¢,t)], we have
oo [FAEDPAE < pa(0) a3 < opat)?(t+1), (o)
<p3
and so q %
gl Valie + paOIValLe € sl Al + Kapa(0) (4 1) (102)
We multiply both sides by (¢ + 1)" and we integrate in time from 0O to ¢t. We obtain
[Vaolz
12, < 0L f 1) Au(s)|2.d 103
qu( )HL = (f+1) (t-’rl) (S+ ) H U(S)HL s ( )
3Ky
1) °d 104
(t+1)" f (s+1)ds. (104

In view of (91) applied with v = r — 3, we have

s 1y du(s) s < 5+ EEDEE I g1y ]
* L)EO& [(t+1)°-1] (105)
for any r ¢ {5,6}, and so
s ) DA s < (106)

for any r > 6. Putting (103) and (106) together and choosing r = 7 give the desired decay (69).
This completes the proof of Theorem 2.

Now we establish decaying bounds for higher order derivatives. We need the following propo-
sition.

Proposition 1. Let ug € H' n L' be divergence-free and qy € H' n L' . Let B > 6. There exists
a positive constant C’g depending on 3, the size of the initial data, and some universal constants
such that the solution q of (1)—(5) obeys

t
[ 1P 10Tg(5) Bads < 1900135 + I ol + C(e+ 1) (107)
forallt > 0.
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Proof: In view of the differential inequality (96), we have
d _ 3
SO+ D7 1ValLe =B+ D)7Vl + (E+ 1)7[A2q[7 < O+ 1)7 | Vul Lo | Aul 7 ]lg] i (108)

Integrating in time from 0 to ¢, using the bounds (80) and (68) and applying (91) with v = 5 — 3,
we obtain (107).

Theorem 3. Let ug € H? n L' be divergence-free and qy € H? n L'. There exist positive constants
My and M/ depending only on the initial data and some universal constants such that the unique
global-in-time solution (q,u) of (1)—~(5) obeys

My
[Au(®)]7: < EE (109)
and
M
[Aq(®)]7: < (110)
(RS
forallt>0.
Proof: The L? norm of Au evolves according to the energy equality
2 = Ly Auf2, + [vAul2, = [R A(qRq) - Audz - fR A(u-vu)-Aude. (111

Integrating by parts, using (3), and applying Ladyzhenskaya’s interpolation inequality, we estimate
the second term on the right hand side in (111) as

UR A(u-vu) - Aud| < C|Vul 2| Al 2 |V Aul 2. (112)

In view of the boundedness of the Riesz transforms on L* and the continuous embedding of Hz in
L*, we obtain for the first term on the right hand side in (111)

| [, AaRa) - Suds| < Clglus|A2al 2 v Aul o (113)

From (111)—(113) and using Young’s inequality, we obtain the energy inequality

d 3

Sl AulLz + [VAulL: < ClalL A qlze + Clvulp. | Aul.. (114)
In view of Parseval’s identity, we have

d 3
%HAUHiz +pa(t)?|Aul. < Cllql 7l Azq|7. + ClVul7z | Aul.

IO NSRRI (115)
[€l<p2(t)
where p, is the function defined by (85). The decay bounds (7), (68), and (83) yield
d M : My
@HAUH%z + p2()?| Aull7, < t+11 |AZq|2, + 1) | Aul?, + Mypa(8)°(t+ 1)~ (116)
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for all ¢ > 0, where My, M; and Mj are positive constants depending only on the initial data.
Multiplying by the integrating factor and integrating in time from O to ¢, we obtain

HAuoH 2 Ml
Au2, < L f 1)1 A3 g[2.d

M, . 7 Ms ¢ e
+(t+1)r/o(s+1) 2|Au|izds+(t+l>rf0(5+1) 44 (117)

We choose = 8. In view of the bound (91) applied with v =  — 2 and Proposition 1 applied with
£ =r -1, we obtain (109).
Now, we establish decaying estimate for | Ag[?, which evolves according to

2 o ||AQI|L2 +[AZg|3, =2 f (Vu-v(Vq))Agdz + f (Au-vq)Aqdz. (118)
In view of the Gagliardo-Nirenberg interpolation inequality
4 1
|Aq] 2 < ClAZ g}l . (119)
the Sobolev embedding inequality
[Aq] s < CIA3q] 2, (120)
and the bound
Vg2 = [VAT VAT AqlL: < CAg| . (121)

that follows from the boundedness of the Riesz transforms on L2, we obtain

5
5 dt IIACIHLz +[A2q]7, < CHVUHL4 HAqHLzHAqu + CHAUHLzHVqllL4 | Aq] 4

< 5\!/\501!@2 +C|vulz HAUH“Za lal7> + ClAulf.|A%q]3..  (122)

Consequently,

d
Z12gl2: + ()| Al < CIVulial Aulislal: (123)
+ Ol auffAbglha+ p(0) [ 1Ra(e0)Pde

where p is defined by (22). In view of the estimates (7), (68) and (109), and Proposition 1 applied
with [ = r — 3, we obtain (110). This ends the proof of Theorem 3.
Let C%2 be the space of bounded 1/2-Holder continuous functions on R? with

7] oy = Ifl=+ sup D=7 (124)

x,yeR2 2y |x‘ - y|%

In view of the continuous Sobolev embedding of W4 into C"3, the Ladyzhenskaya interpolation
inequality, and Theorems 1, 2, and 3, we obtain the following statement.



15

Corollary 1. Let ug € H?> n L' be divergence-free and qo € H? n L. There exist positive constants
Ay and A|, depending only on the initial data and some universal constants such that the unique
global-in-time solution (q,u) of (1)—~(5) obeys

A
[u®I2,, : (125)
3 (t+1)z
and
Al
t2 < —0 126
eI,y < 75 (126)
forallt>0.

3. DECOMPOSITION OF THE SOLUTION

In this section, we decompose the charge density ¢ and the velocity u solutions of (1)—(5) in the
sum of solutions () and U of the linear equations

0:Q+AQ =0 (127)
and
OU-AU=0 (128)

with initial datum Q(0) = gp and U (0) = uo and remainders. We study the decays of the remainders
g—Q and u - U in L? and we show that they are faster than the decays of the L? norms of ¢ and u
respectively. The solutions of (127) and (128) are given explicitly by

Q) = [, K= w)go(w)du (129)
and
Ut) = [, K2 = w)ug(w)du (130)
where K is the kernel defined by its Fourier transform
FK7)(E) = e, (131)

We address the pointwise behavior of the Fourier transforms of the differences ¢ — ) and u —U.
We need first the following lemmas.

Lemma 1. For f € L?2(R?) and x € R?, we let

yP+1-+/|z]?+1
f(z) =lim [ \/| | \/3| | f(y)dy. (132)
=0 J|z—y|>e |ZL‘ - y|
There exists a universal constant C' > 0 (independent of f) such that
|7 fllz2 <Clf |22 (133)
Proof: We write
1) =lim [ (aly) - ()b ~9)f ()dy. (134

where a(z) is the function defined on R? by

a(z) =+/|z)?+1 (135)



16 ELIE ABDO AND MIHAELA IGNATOVA

and k() is the function defined on R? \ {0} by
1
k() = — (136)

Jf?

We note that £ is homogeneous of degree —3. Moreover, the gradient of a is given by

(137)

T )
VCL(ZE) = )
(\/|ac|2 +1 \/|x|2 + 1)
and satisfies |Va| -~ < 1. Therefore, T is a well-defined operator and bounded on L? (see page

435 in Section 2 of [5]).
Using Lemma 1, we study the evolution of (\/|z|? + 1)g(x) in L?(IR?).

Lemma 2. Let ug € H' n L' be divergence-free and qy € H' n L'. Furthermore, suppose that
Jge [212qo(x)2dx < oo. Then there exists a positive constant Ry > 0 depending only on the initial

data such that
VTP + D)2 < Byln(e+ 1) + (V] + 1) () [ 2 (138)
holds for all t > 0.
Proof: Let a(x) = \/|z|> + 1. The evolution of aq is described by

i(aq) + au-Vq+alg=0. (139)
Multiplying by aq and integrating in the space variable over R?, we obtain
1d
Slaglie+ [ (adq)ag=~ [ (au-Vg)ag (140)

The cancellation
AQ(u -V(ag))ag =0 (141)
holds due to (3), so we can rewrite the nonlinear term as

- [ (ow-Vo)ag= [ (u-Va)a. (142)

By Holder’s inequality, Ladyzhenskaya’s interpolation inequality, and the decaying bounds for the
L? norms of ¢, u, Vu and V¢ given by (7), (8), (68) and (69), respectively, we estimate

|‘/RQ(u -Va)¢*a

1 1 1 1 9
< C|lq|2. | Va2, u) 2, | Vu) 2, ag) 2 < Ro(t + 1)~ |ag| 1 (143)

< |[valz=llgles|ulzslag] -

for some constant > depending only on the initial data. Now we write the linear term as the sum
‘42(aAq)aq = v/;[@ agA(aq) + '[RQ(aq) [aAg - A(aq)]
~ A} @)l + [ (an) [arg - Adag)]. (144)

By the Cauchy-Schwarz inequality, we bound

| [ (@) Taq - Aaq))| < gl akq - Aag)] 12 (143)
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The pointwise formula for the fractional Laplacian of order 1 yields

(aAg - A(aq))(z) =C fRz [G(QC)Q(:U) —alnaly) _ele)ate) —olw)atu) |,

G o =P !
-o [, =0y (146)

where C' is positive universal constant. As a consequence of Lemma 1 and (7), we obtain

laAg - A(ag)|z2 < Cllalz2 < C(E+ 1) (147)
Therefore, the L? norm of aq obeys the energy inequality
1d 9
§£||ozq||%2 + HA%(aq)HLz < [Rg(t +1) 1+C(t+ 1)‘1] laq| 2 (148)
SO
1d 9 .
§£HQQHL2 <Rs(t+1)" |ag] e (149)

for some positive constant R3 depending only on the initial data. Dividing both sides of the in-
equality by ||ag| 2, we get

d
EHGQHIQ SR3(t+1)_1. (150)

Integrating in time from O to ¢, we obtain (138).
The following lemma is needed to obtain a growth in || for the Fourier transform of P(qRq).

Lemma 3. Ler f € L2(R?) such that [, |z|* f(x)?dx < co. Then

FURN©] < Clllflue [ Pl (o)) (1s1)
where P is the Leray projector and R = (Ry, Ry) is the Riesz transform vector on R2.
Proof: The Leray projector is a Fourier multiplier with a symbol denoted by m(&). We have
E(FRF)(€) = m(§)TRI(€) (152)

for all £ € R2. We note that m(¢) is bounded uniformly in . Now, the Fourier transform of f R f
at £ is given by

TRI©) = [, f@)Rf(x)e e da (153
for £ € R2. Since the Riesz transform is antisymmetric, we have
|, F@Rf@)dz =0 (154)
and so we can write fRf at £ as
TRI©) = [ F@)Rf(@) (7 - 1) da. (155)
Using the identity ‘
e = 1] < [¢]l] (156)

that holds for all x, £ € R?, we estimate

FRIOI< k] [ lallf @R @lde < IR [ oPlr@)Paz)” as)

in view of the Cauchy-Schwarz inequality. This gives the pointwise estimate (151).
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As a consequence of lemmas 2 and 3, we obtain the following statement.

Proposition 2. Let ug e H' n L' be divergence-free and qy € H' n L' . Furthermore, suppose that
Jge [212qo(x)2dx < oo. Let (q,u) be the solution of (1)—(5). Let ¢ = ¢—Q and v = u—U. Then there
exist positive constants R4, Rs and Rg depending only on the initial data such that the Fourier
transforms of  and v satisfy the pointwise bounds

IC(&.1)| < Ryl¢| (158)

and
[B(&, )] < Rs|¢]n(t + 1) + Rel¢|In (¢ +1) (159)
forall $ e R? and t > 0.

Proof: The Fourier transform of ( obeys

O+ KIC =~ Va < Kllul iz lal e (160)
Consequently,
e ol [ lellulielalse < Rl (s
in view of the decaying bounds (7) and (8). The Fourier transform of v evolves according to
00 + €20 = —P(u- Vu) - P(qRq). (162)
Thus )
PO <Clel [ Nuliads+Clel [ lalls ([ lPa?an) as a6y

by Lemma 3. In view of Lemma 2 and the decaying estimates (7) and (8), we obtain (159).

Theorem 4. Let ug € H' n L' be divergence-free and qo € H' n L' . Furthermore, suppose that
Jge [22qo(x)2dx < oo. Let (q,u) be the solution of (1)~(5). Then there exist positive constants Ry
and Rg depending only on the initial data such that the differences q — () and v — U satisfy

la(t) - Q11172 < % (164)
and
[u(t) -U®)]2 < % (165)
forallt>0.
Proof: Let ( = ¢q— () and v = u - U. We have
h(+A(=-u-Vvq. (166)

Taking the L? inner product of equation (166) with ¢ and estimating the nonlinearity via interpo-
lation, we obtain

1d, .. .
S ZICI + INRCR, = [ (v Va)Qde < Jul s Val 12| Qlus

1 1 1 1
< Cllul;.lvul 721val 2 Q7 [ VQI ;- (167)

As a consequence of Theorems 1 and 2, we obtain the energy inequality

d 1o R
I3 + 1A < ——

0 168
(t+1)*1 (108)
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where Ry is a positive constant depending only on the initial data. For a fixed r, we let p(t) =
r(t+1)~'. Then

Ry = 2
2 2 ,D)|7dE. 169
HCIIL +pO¢)7: € ———= (1) T+ p(t) oot C(& D)PdE (169)
Using (158), we estimate
oo CCEDPAE < Rugp(0)' (170)
and we obtain
d 2 2 R9 5
E”C”B +p(t)[Cll7: < m + Riop(t)”. (171)

Multiplying by the factor (s + 1)", integrating in the time variable s from 0 to ¢, and choosing any
r > 4, we obtain the desired bound (164). Now, v obeys

O — Av = —u-Vu-qRq - Vp. (172)

Taking the L? inner product of this latter equation with v and using the fact that v is divergence-
free, we get the energy equation

2dt“v||Lz+HVv||L2—f (u-vVu)-Udx - / (¢Rq) - vdz. (173)

We estimate

R
/Rz(u vu) -Udz < |ul) 2| VU | 2 < Cllul 2| Vu| 2 [ VU | 12 € ———— (174)

(t+1)2*2

in view of Theorems 1 and 2, and

R
| (aRa)-vda < Clal ol iz < Clal 2 Val 2ol 2 < T (175)

in view of the decaying estimate (7), (8), and (69). This yields the energy inequality

1d Ri3
0o (1) |v|? <— v(&,1)[2d 176
3l + Ol s =S ne e 0 de (176)

where po(t)? = r(t+1)~1. Using the pointwise bound for the Fourier transform of v given by (159),
we have

/a o PEDPAE < Rag [In*(t+ 1) + 't + D] pa(0)' < RasVE+ 10o(0)", (A7)
<p2
hence
T t s RisVt t)° 178
2dt”v||L2+p2( ) ”U”L? = (i + )1 .3 tiusvit Lpa(1)°. (178)

We multiply both sides by (s + 1), we integrate from 0 to ¢, we choose any r > 3/2, and we obtain
(165).
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4. APPENDIX: EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this appendix, we prove the existence of weak and strong solutions for the electroconvection
model (1)-(5).

Definition 1. A solution (q,u) of (1)—(5) is said to be a weak solution on [0, T'] if it solves (1)—(5)
in the sense of distributions, u is divergence-free in the sense of distributions,

we L°(0,T; L*) n L2(0,T; H') (179)

and
qe L=(0,T;L?) n L?(0,T; H'?). (180)

Theorem 5. Let ug € L? be divergence-free, let qy € L?. Let T > 0 be arbitrary. There exists a
weak solution (q,u) of the system (1)—~(5) on [0, T].

Proof. We briefly sketch the main ideas of the proof. For 0 < € < 1, we consider a viscous
approximation of (1)—(5) given by
Ot +uc- Vg +Ag-—eAgc =0
Apuc + u - Vus = Auc + Vp = —¢° Rq* (181)
V-ut=0

with smoothed out initial data uf = Jeug and g = J.qo, where J is a standard mollifier operator.
For each € > 0, we consider the map

(q(),u(t)) = Pc((q,w))(t) = (e Jeqo — Af (¢, uc), €' Jeug — Bi (¢, u)) (182)
where . t
A (g uf) = [ DBy - vg) (s)ds + / e“IBNG(5)ds (183)
0 0
and

t t
Bi(q'su) = [ e IAP(ut - Tu)(s)ds + [ eIP(g Ry ) (s)ds. (184)

There exists a time T, = T.(e, |uo| 2, |qo]zz) > O such that the map ®. is a contraction on the
Banach space
XT = LOO(O, T, BL2(2HqOHL2) ® LOO(O, T, BL3(2HUUHL2) (185)

where B;2(r) is the closed ball in L2, and B 12 is the closed ball in the space of L? divergence-free
vectors. Consequently, ®. has a fixed point (¢¢,u¢) € X7, solving (181). This solution extends
to the time interval [0,7'], and this can be obtained by establishing uniform-in-time bounds for
(¢¢,u¢) on [0,T"]. Indeed, we have

1 d _1 € € € L €

57 (1A 3 + T3 + a3 + Vel + e A2qe[3 = 0 (186)
as shown in (11). Hence the family of mollified velocities (u€). is uniformly bounded in L*°(0,7"; L?)n
L2(0,T; H'). On the other hand, the L? norm of ¢¢ evolves according to

1d

1 € €
571415 + [A2q 7z + €] verlz =0, (187)

and so the family of mollified charge densities (¢¢). is uniformly bounded in L*(0,7; L?) n
L%(0,T;H %). The ¢¢ and u¢ equations imply that the sequence of time derivatives (0;¢¢). and
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(8yu). are uniformly bounded in L2(0,T: H™) and L2(0,T; H-') respectively. By the Aubin-
Lions lemma, the sequence ((¢¢, u¢)). has a subsequence that converges strongly in L2(0,7’; L?)
to a weak solution (¢, u) of (1)—(5). We omit further details.
Definition 2. A weak solution (q,u) of (1)~(5) is said to be a strong solution on [0, T'] if

we L°(0,T; HYY n L2(0,T; H?) (188)
and

qe L=(0,T; L") n L?(0,T; H'?). (189)
Theorem 6. Ler ug € H' be divergence-free and qy € L*. Let T > 0 be arbitrary. There exists a
unique strong solution (u, q) of the system (1)—(5) on [0, T].

Proof. We take the L? inner product of the equation satisfied by ¢¢ in (181) with (¢¢)3. In view
of the divergence-free condition satisfied by u¢, the nonlinear term vanishes, that is

fRQ -V (g6)dz = 0. (190)
By the Cérdoba-Coérdoba inequality ([6]), we have
[Rz(qe):gAqedas >0 (191)
and
- [RQ(qG)BAqux >0, (192)
Consequently, we obtain
el <0 (193)

which yields the boundedness of g in L>=(0,T’; L*(R?)) by the Banach Alaoglu theorem and the
lower semi-continuity of the norm. The L? norm of Vu¢ obeys the energy inequality

d
7 Vullie + 1Au5e < Cla] s (194)

as shown in (81), yielding the boundedness of w in L*>°(0,7; H') n L2(0,T; H?). Now we prove
the uniqueness of strong solutions. Suppose (¢, u1) and (go, us) are strong solutions of (1)—(5)
with same initial data. Let ¢ = g1 — ¢2, u = w1 — us and p = p; — po. Then ¢ satisfies
Qg+ Aqg=-u1-Vg-u-Vg (195)

and v satisfies

Ou—Au+Vp=—-qRq — aRq—uy - Vu—u-Vus. (196)
We take the L? inner product of (195) with A~'¢q and the L? inner product of (196) with u. We add
the resulting energy equalities. We have a cancellation

—f (u-VQ2)/\_1qd:c—f (2Rq) - udz = 0 (197)
R2 R2

obtained from integration by parts. In view of the Ladyzhenskaya’s interpolation inequality, we
estimate

1 11 1
| [ (aRar) -uds| < Clalallas sl 1 vl < 319l + ol + Claslialulz (198
and ]
[ us) - uda| < Jula | Vualie < 1Vl + Clvwlhafulte: (199)
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Now we write

fR (u1-Vg)A " gda = f (A-%(ul-Vq)—ul-vA-%q)A-%qu (200)

RQ

via integration by parts, and we show below that

UR (A2 (ur - vg) =i - VA“3q) A2 qda| < Clur | al 2 [A % g] 2. 201)

Putting (197)-(201) together, we obtain the energy inequality

d _1 _1
A3l + Julfe | < © [lulie + 1Vl + o] 1A 2al3e + ulZa] - 202)

from which we obtain uniqueness. Finally, we show that the estimate (201) holds by establishing
the commutator estimate

[A™2 (uy - Vq) = us - VA 3q] 12 < Cllun | 2 g 2. (203)
Indeed, let w € L2(R?). By Parseval’s identity, we have
[ A v - vA R @) = [ FAE (wTe) - VA ) (€ Fu(€)ds. (204)
But
FOH - va)(©) = [ Fu(€ - ) Fa(y)dy (205)
and
F(ur-VA“2q)(¢) = A@ W72 (¢ Fur (€= 9) Faly)dy. (206)

Consequently,

‘AQ(A‘i(ul Vq) -y - VA 2q) (2)w(z)dz

< [, [ min el ol j67F - ol |1 (€ - pIFa@)IF(©ldyds  207)
where we used
€+ Fur(§ = y)| < min{[¢], [y[} [Fur (€ - y) (208)
which holds due to the fact that the velocity is divergence-free. We note that
. 1 _1p_ min{|§}, |y 1 1
min (¢} 4 2| < B ol < el 209)

for all £, y € R2. Therefore,

1
<2 Fur () 2] gl 2 w] 22
< Cluy|m2 gl p2[w] 22 (210)

’fRZ (A_%(Ih -Vq) —uy - VA_%Q)(JI)w(x)dx

by Holder’s inequality and Young’s convolution inequality. This gives (203) completing the proof
of Theorem 6.
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