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ABSTRACT. We consider a two dimensional electroconvection model which consists of a nonlinear

and nonlocal system coupling the evolutions of a charge distribution and a fluid. We show that the

solutions decay in time in L
2(R2) at the same sharp rate as the linear uncoupled system. This is

achieved by proving that the difference between the nonlinear and linear evolution decays at a faster

rate than the linear evolution. In order to prove the sharp L
2 decay we establish bounds for decay in

H
2(R2) and a logarithmic growth in time of a quadratic moment of the charge density.

1. INTRODUCTION

We consider the electroconvection model

∂tq + u ⋅ ∇q +Λq = 0, (1)

∂tu + u ⋅ ∇u +∇p −∆u = −qRq, (2)

∇ ⋅ u = 0 (3)

in R2 describing the evolution of a surface charge density q in a two-dimensional incompressible

fluid flowing with a velocity u and a pressure p. Here Λ = (−∆) 12 is the square root of the two-

dimensional Laplacian, and R = ∇Λ−1 is the two-dimensional Riesz transform. The initial data

u(⋅,0) = u0 (4)

and

q(⋅,0) = q0 (5)

are assumed to be regular enough and have good decay properties. The model is motivated by

physical and numerical studies of electroconvection [9, 22, 23]. The nonlocal aspect of the evolu-

tion of the charge density and the nonlocal forcing on the Navier-Stokes equations in the model are

due to the fact that the fluid and charges are confined to a thin two dimensional film. The global

well-posedness of the system in bounded domains was obtained in [7] using commutator estimates

and nonlocal nonlinear analysis. In [1], we investigated the long time dynamics of the model in

two dimensions, with periodic boundary conditions and with applied voltage. When the fluid is

forced by time-independent smooth mean zero body forces, we proved that the model (1)–(5) has

a finite dimensional global attractor. In the absence of body forces, the charge density q converges

exponentially in time to a unique limit due to the applied voltage, and the velocity u converges

exponentially in time to zero. The rate of exponential decay depends on the periodic boundary

conditions.

In this paper, we consider the time asymptotic behavior of solutions of (1)–(5) in R2, and adapt

the Fourier splitting method [17, 18] of Schonbek to the present system. The method was initially

used in [17] to prove decay of Leray weak solutions [14] of Navier-Stokes equations and to further

decay studies for Navier-Stokes equations [3, 11, 18, 20, 24] and many other partial differential
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equations (see for instance [4, 8, 10, 15, 25, 26]). Different approaches were employed as well to

investigate the time decay [16] and space-time decay [2, 12, 13, 21] of higher-order derivatives of

solutions to Navier-Stokes equations.

The electroconvection model (1)–(5) couples Navier-Stokes equations to a scalar equation for a

surface charge density q, evolving via advection by u and diffusion by Λ. We obtain in Theorem 1

of section 2 the long time L2 decay of the type

∥q∥L2 = O(t−1)
and ∥u∥L2 = O(t− 1

2 ).
This rate of decay is sharp for the linear uncoupled system if the initial data have non vanishing

finite L1 norms, because functions of the form Q(t) = e−tΛα

q0 obey

lim
t→∞

t
n

α ∥Q(t)∥2L2(Rn) = Cn,α (∫
Rn

q0dx)2
for any α > 0 and n ≥ 1. The fact that such a decay is sharp for the nonlinear evolution as well

is a consequence of Theorem 4 of section 3 where we prove that u − U with U(t) = et∆u0 and

q −Q with Q(t) = e−tΛq0 decay faster in L2 than u and q, respectively. Similar results were proved

for the solutions to the critical SQG in [8] and their higher-order derivatives in [19]. The critical

SQG velocity u = R⊥q decays in L2 like q, that is at the rate t−1, which helps lower the size of the

nonlinear term u ⋅ ∇q in that equation. In our case, the velocity has slower decay in L2 due to the

Navier-Stokes equation, namely of the order t−
1

2 , and the nonlinear term is larger. The influence

of the charge density q is felt by the Navier-Stokes velocity via the electric force −qRq. In order

to obtain a key fast enough decay at low wave numbers for the difference v = u − U , we need to

control a moment of q, ∫R2 ∣x∣2∣q(x, t)∣2dx =M2(t), in view of the inequality

∣q̂Rq(ξ)∣ ≤ C ∣ξ∣∥q∥L2M(t)
(see Lemma 3). We prove that

M(t) = O(√log t)
for long time, by analyzing the evolution of the quantity a(x)q(x, t) with a(x) = √∣x∣2 + 1. This

analysis uses the boundedness of the commutator between Λ and multiplication by a(x), which

we establish in Lemma 1. In addition, in order to achieve the necessary sharp L2 bounds we have

to obtain bounds for the decay of higher norms of both u and q. For instance, H1 norms of q are

of the order ∥∇q∥L2 = O(t−2).
and are obtained by somewhat involved nonlinear and nonlocal analysis.

The paper is organized as follows. In section 2, we study the asymptotic behavior of solutions

to the electroconvection model (1)–(5): we prove that the L2 norm of the surface charge density q

decays in time to zero with a rate of order t−1 whereas the velocity u decays in time to zero with

a rate of order t−
1

2 . We also investigate the rate of decay of their higher-order derivatives, and we

obtain decaying-in-time bounds in Hölder spaces C0, 1
2 . In section 3, we prove that the differences

q − Q and u − U decay to zero in L2 faster than q and u, with rates of order t−1−
5

8 and t−
1

2
−

1

4 ,

respectively. In the Appendix, we present results on the existence and uniqueness of solutions

to (1)–(5), based on the Banach fixed point theorem, the Aubin-Lions lemma and commutator

estimates.
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2. LONG TIME BEHAVIOR OF SOLUTIONS

In this section, we consider the long-time behavior of solutions of the electroconvection model

described by (1)–(5). We show that the charge density q and the velocity u converge to 0 in the H2

norm, and we investigate the rate of convergence.

For a function f ∈ L1(R2), we denote its Fourier transform by

f̂(ξ) = ∫
R2

f(x)e−iξ⋅xdx. (6)

Theorem 1. Let u0 ∈ L2∩L1 be divergence-free and q0 ∈ L2∩L1. There exist positive constants Γ0

and Γ′
0

depending only on the initial data and some universal constants such that the global-in-time

solution (q, u) of (1)–(5) obeys

∥q(t)∥2L2 ≤
Γ0(t + 1)2 (7)

and

∥u(t)∥2L2 ≤
Γ′
0

t + 1
(8)

for all t ≥ 0.

Proof: The proof is divided into several steps.

Step 1 (Basic energy estimates). We take the L2 inner product of equation (1) with Λ−1q and the

L2 inner product of equation (2) with u. Then we add the resulting energy equalities. Integrating

by parts, we have the cancellations

(u ⋅ ∇u, u)L2 = (∇p, u)L2 = 0 (9)

and

(u ⋅ ∇q,Λ−1q)L2 + (qRq, u)L2 = −(u ⋅ ∇Λ−1q, q)L2 + (qRq, u)L2

= −(u ⋅Rq, q)L2 + (qRq, u)L2 = 0 (10)

due to the divergence-free condition (3). Thus, we obtain

1

2

d

dt
(∥Λ− 1

2 q∥2L2 + ∥u∥2L2) + ∥q∥2L2 + ∥∇u∥2L2 = 0. (11)

We integrate in time from 0 to t and we take the supremum over all positive times t ≥ 0. We get

sup
t≥0

{∥Λ− 1

2 q(t)∥2L2 + ∥u(t)∥2L2 +∫
t

0

2 (∥q(s)∥2L2 + ∥∇u(s)∥2L2)ds} = ∥Λ− 1

2 q0∥2L2 + ∥u0∥2L2 (12)

ending the proof of Step 1.

Step 2 (Pointwise bounds for the Fourier transform of the charge density q). The Fourier trans-

form of q evolves according to

∂tq̂(ξ, t) + (û ⋅ ∇q)(ξ, t) + Λ̂q(ξ, t) = 0. (13)

The fractional Laplacian Λ is a Fourier multiplier with symbol ∣ξ∣, hence

∂tq̂ + ∣ξ∣q̂ = −û ⋅ ∇q. (14)

We estimate the Fourier transform of the nonlinear term

∣û ⋅ ∇q∣ = ∣∇̂ ⋅ (uq)∣ ≤ C ∣ξ∣∥u∥L2∥q∥L2 (15)
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using the divergence-free condition (3), the boundedness of the Fourier transform of a function by

its L1 norm, and the Cauchy-Schwarz inequality. This yields the differential inequality

∂tq̂ + ∣ξ∣q̂ ≤ C ∣ξ∣∥u∥L2∥q∥L2 . (16)

We multiply both sides by the integrating factor e∣ξ∣t and integrate in time from 0 to t. We obtain

the bound

∣q̂(ξ, t)∣ ≤ ∣q̂0(ξ)∣ +C ∣ξ∣∫ t

0

∥u(s)∥L2∥q(s)∥L2ds. (17)

As a consequence of Step 1 and the Cauchy-Schwarz inequality, we get the pointwise bound

∣q̂(ξ, t)∣ ≤ ∥q0∥L1 +C0∣ξ∣√t (18)

where C0 is a time-independent constant depending only on ∥u0∥L2 and ∥Λ− 1

2 q0∥L2 . This finishes

the proof of Step 2.

Step 3 (Decaying bound for the L2 norm of the charge density). The L2 norm of q evolves

according to
1

2

d

dt
∥q∥2L2 + ∥Λ 1

2 q∥2L2 = 0. (19)

In view of Parseval’s identity and the fact that Λ
1

2 is a Fourier multiplier with symbol ∣ξ∣ 12 , we have

∥Λ 1

2 q∥2L2 = ∥Λ̂ 1

2 q∥2L2 = ∫
R2

∣ξ∣∣q̂(ξ, t)∣2dξ. (20)

We bound the dissipation from below

∫
R2

∣ξ∣∣q̂(ξ, t)∣2dξ ≥ ∫
∣ξ∣>ρ(t)

∣ξ∣∣q̂(ξ, t)∣2dξ (21)

where ρ(t) is the function defined on [0,∞) by

ρ(t) = r

2(t + 1) (22)

for some positive constant r to be determined later. We note that

∫
∣ξ∣>ρ(t)

∣ξ∣∣q̂(ξ, t)∣2dξ ≥ ρ(t)∫
∣ξ∣>ρ(t)

∣q̂(ξ, t)∣2dξ
= ρ(t)∫

R2

∣q̂(ξ, t)∣2dξ − ρ(t)∫
∣ξ∣≤ρ(t)

∣q̂(ξ, t)∣2dξ
= ρ(t)∥q∥2L2 − ρ(t)∫

∣ξ∣≤ρ(t)
∣q̂(ξ, t)∣2dξ (23)

where we used Parseval’s identity. Consequently, we obtain the energy inequality

d

dt
∥q∥2L2 + 2ρ(t)∥q∥2L2 ≤ 2ρ(t)∫

∣ξ∣≤ρ(t)
∣q̂(ξ, t)∣2dξ. (24)

By the pointwise bound (18) and Fubini’s theorem for spherical coordinates, we estimate

∫
∣ξ∣≤ρ(t)

∣q̂(ξ, t)∣2dξ ≤ ∫
∣ξ∣≤ρ(t)

(∥q0∥L1 +C0∣ξ∣√t)2 dξ = C ∫ ρ(t)

0

r (∥q0∥L1 +C0r
√
t)2 dr

≤ C ∫
ρ(t)

0

r (∥q0∥2L1 +C
2

0r
2t)dr ≤ Γ1 (ρ(t)2 + tρ(t)4) (25)

where Γ1 depends only on the initial data. We obtain

d

dt
∥q∥2L2 + 2ρ(t)∥q∥2L2 ≤ 2Γ1(ρ(t)3 + tρ(t)5) (26)
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for all t ≥ 0. We multiply both sides of the inequality by the integrating factor

e2 ∫
t

0
ρ(s)ds = er ∫

t

0

1

s+1
ds = er ln(t+1) = (t + 1)r (27)

and then we integrate in time from 0 to t. We get

∥q(t)∥2L2 ≤
∥q0∥2L2(t + 1)r + Γ2(t + 1)r ∫

t

0

( 1(s + 1)3 + 1(s + 1)4)(s + 1)rds
≤
∥q0∥2L2(t + 1)r + Γ2(t + 1)r ((t + 1)

r−2

r − 2
−

1

r − 2
+
(t + 1)r−3
r − 3

−
1

r − 3
)

≤
∥q0∥2L2(t + 1)r + Γ2(r − 2)(t + 1)2 + Γ2(r − 3)(t + 1)3 (28)

for any r > 3. Here Γ2 depends on r and the initial data. We choose r = 4 and we obtain the bound

∥q∥2L2 ≤
Γ3(t + 1)2 (29)

where Γ3 is a positive constant depending only on the initial data. This completes the proof of (7)

and Step 3.

Step 4 (Pointwise bounds for the Fourier transform of the velocity u). Applying the Leray

Projector P to equation (2), we have

∂tu + P(u ⋅ ∇u) −∆u = −P(qRq), (30)

where we used the incompressibility condition (3) and the fact that P and −∆ are Fourier multipli-

ers so they commute. Hence the Fourier transform of u obeys

∂tû +
̂P(u ⋅ ∇u) − ∆̂u = −P̂(qRq). (31)

We estimate ∣ ̂P(u ⋅ ∇u)(ξ, t)∣ ≤ C ∣ξ∣∣û(ξ, t)∣2 ≤ C ∣ξ∣∥u(t)∥2L2 (32)

and ∣P̂(qRq)(ξ, t)∣ ≤ C∥(qRq)(t)∥L1 ≤ C∥q(t)∥2L2 (33)

in view of the boundedness of the Riesz transforms on L2(R2). We obtain

∂tû + ∣ξ∣2û ≤ C ∣ξ∣∥u∥2L2 +C∥q∥2L2 (34)

and hence

∣û(ξ, t)∣ ≤ ∥u0∥L1 +C ∣ξ∣∫ t

0

∥u(s)∥2L2ds +C ∫
t

0

∥q(s)∥2L2ds (35)

for all ξ ∈ R2 and t ≥ 0. In view of the bound (12), we get

∣û(ξ, t)∣ ≤ Γ4 +C ∣ξ∣∫ t

0

∥u(s)∥2L2ds (36)

where Γ4 is a positive constant depending only on the initial data. This completes the proof of

Step 4.

Step 5 (Bounds for ∫ t

0
(s + 1)γ∥Λ 1

2 q(s)∥2
L2ds where γ ≠ 2 is a real number). Let γ ≠ 2 be a real

number. The time evolution of (t + 1)γ∥q∥2
L2 is described by the energy equality

d

dt
((t + 1)γ∥q∥2L2) + 2(t + 1)γ∥Λ 1

2 q∥2L2 = γ(t + 1)γ−1∥q∥2L2 . (37)
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We integrate in time from 0 to t, make use of the L2 decay of the charge density q given by (7),

and obtain the bound

∫
t

0

(s + 1)γ∥Λ 1

2 q(s)∥2L2ds ≤ C (∥q0∥2L2 +
γΓ0

γ − 2
(t + 1)γ−2 − γΓ0

γ − 2
) . (38)

Step 6 (Decaying bound for the L2 norm of the velocity). The L2 norm of the velocity evolves

according to

1

2

d

dt
∥u∥2L2 + ∥∇u∥2L2 = −∫

R2

qRq ⋅ udx. (39)

In view of Hölder’s inequality, the boundedness of the Riesz transforms on L4(R2), and Ladyzhen-

skaya’s interpolation inequality, we bound

∣∫
R2

qRq ⋅ u∣ ≤ C∥q∥L2∥q∥L4∥u∥ 12
L2∥∇u∥ 12L2 (40)

yielding

d

dt
∥u∥2L2 + ∥∇u∥2L2 ≤ C∥q∥ 43L2∥q∥ 43L4∥u∥ 23L2 . (41)

In view of (12), this latter energy inequality reduces to

d

dt
∥u∥2L2 + ∥∇u∥2L2 ≤ Γ5∥q∥ 43L2∥q∥ 43L4 (42)

where Γ5 is a positive constant depending only on the initial data. By Parseval’s identity, we have

d

dt
∥u∥2L2 +∫

R2

∣ξ∣2∣û(ξ, t)∣2dξ ≤ Γ5∥q∥ 43L2∥q∥ 43L4 . (43)

For a positive function ρ1(t) continuous on [0,∞), we have

∫
R2

∣ξ∣2∣û(ξ, t)∣2dξ ≥ ∫
∣ξ∣>ρ1(t)

∣ξ∣2∣û(ξ, t)∣2dξ ≥ ρ1(t)2∫
∣ξ∣>ρ1(t)

∣û(ξ, t)∣2dξ
≥ ρ1(t)2 (∫

R2

∣û(ξ, t)∣2dξ −∫
∣ξ∣≤ρ1(t)

∣û(ξ, t)∣2dξ)
= ρ1(t)2∥u∥2L2 − ρ1(t)2∫

∣ξ∣≤ρ1(t)
∣û(ξ, t)∣2dξ. (44)

Consequently, we obtain the energy inequality

d

dt
∥u∥2L2 + ρ1(t)2∥u∥2L2 ≤ Γ5∥q∥ 43L2∥q∥ 43L4 + ρ1(t)2∫

∣ξ∣≤ρ1(t)
∣û(ξ, t)∣2dξ. (45)

Using (36), we have

∫
∣ξ∣≤ρ1(t)

∣û(ξ, t)∣2dξ ≤ C ∫ ρ1(t)

0

r (Γ2

4 +Cr2 {∫ t

0

∥u(s)∥2L2ds}2)dr
≤ Γ6ρ1(t)2 +Cρ1(t)4 (∫ t

0

∥u(s)∥2L2ds)2 (46)

and thus

d

dt
∥u∥2L2 + ρ1(t)2∥u∥2L2 ≤ Γ6ρ1(t)4 +Cρ1(t)6 (∫ t

0

∥u(s)∥2L2ds)2 + Γ5∥q∥ 43L2∥q∥ 43L4 . (47)
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Multiplying by the integrating factor e∫
t

0
ρ1(s)

2ds, and integrating in time from 0 to t, we obtain

∥u(t)∥2L2 ≤
∥u0∥2L2

e∫
t

0
ρ1(s)2ds

+
Γ6

e∫
t

0
ρ1(s)2ds

∫
t

0

e∫
s

0
ρ1(τ)

2dτρ1(s)4ds
+

C

e∫
t

0
ρ1(s)2ds

∫
t

0

(e∫ s

0
ρ1(τ)

2dτρ1(s)6)(∫ s

0

∥u(τ)∥2L2dτ)2 ds
+

Γ5

e∫
t

0
ρ1(s)2ds

∫
t

0

∥q∥ 43
L2∥q∥ 43L4e∫

s

0
ρ1(τ)

2dτds. (48)

In view of Young’s inequality for products, the continuous embedding of H
1

2 in L4, and the bound

(29), we estimate

∫
t

0

∥q∥ 43
L2∥q∥ 43L4e∫

s

0
ρ1(τ)

2dτds ≤ C ∫
t

0

∥q(s)∥4L2ds +C ∫
t

0

∥q(s)∥2L4e
C ∫

s

0
ρ1(τ)

2dτds

≤ C ∫
t

0

∥q(s)∥4L2ds +C ∫
t

0

(∥q(s)∥2L2 + ∥Λ 1

2 q(s)∥2L2)eC ∫ s

0
ρ1(τ)

2dτds

≤ Γ7 +C ∫
t

0

(∥q(s)∥2L2 + ∥Λ 1

2 q(s)∥2L2)eC ∫ s

0
ρ1(τ)

2dτds (49)

for any t ≥ 0, and so

∥u(t)∥2L2 ≤
∥u0∥2L2

e∫
t

0
ρ1(s)2ds

+
Γ6

e∫
t

0
ρ1(s)2ds

∫
t

0

e∫
s

0
ρ1(τ)

2dτρ1(s)4ds
+

C

e∫
t

0
ρ1(s)2ds

∫
t

0

(e∫ s

0
ρ1(τ)

2dτρ1(s)6)(∫ s

0

∥u(τ)∥2L2dτ)2 ds
+

Γ7

e∫
t

0
ρ1(s)2ds

+
C

e∫
t

0
ρ1(s)2ds

∫
t

0

(∥q(s)∥2L2 + ∥Λ 1

2 q(s)∥2L2)eC ∫ s

0
ρ1(τ)

2dτds (50)

for any t ≥ 0. In order to obtain the sharp decaying bound for the velocity u, we need the following

three sub-steps:

Step 6.1 (Logarithmic decaying bound for the L2 norm of the velocity). We take ρ1(t) = (e +
t)− 1

2 [ln(e + t)]− 1

2 . In this case, the integrating factor is given by

e∫
t

0
ρ1(s)

2ds = e∫
t

0

1

(e+s) ln(e+s)
ds
= eln[ln(e+t)] = ln(e + t) (51)

and so (50) becomes

∥u(t)∥2L2 ≤
∥u0∥2L2

ln(e + t) + Γ6

ln(e + t) ∫
t

0

1(e + s)2 ln(e + s)ds
+
C∥u0∥2L2

ln(e + t) ∫
t

0

s2

(e + s)3 [ln(e + s)]2ds +
Γ8

ln(e + t) (52)

in view of the uniform boundedness of ∥u∥L2 by ∥u0∥L2 and the bound (38) with γ = 1. Here Γ8 is

a positive constant depending only on the size of the initial charge density. We note that

∫
t

0

s2

(e + s)3 [ln(e + s)]2ds ≤ ∫
t

0

1

(e + s) [ln(e + s)]2ds = 1 −
1

ln(e + t) ≤ 1 (53)

for any t ≥ 0. Therefore,

∥u(t)∥2L2 ≤
Γ9

ln(e + t) (54)

for all t ≥ 0, where Γ9 is a constant depending only on the initial data.
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Step 6.2 (Almost sharp decaying bound for the L2 norm of the velocity). In order to improve the

logarithmic decay (54), we take ρ1(t) = r 1

2 (t + 1)− 1

2 for some r to be chosen later. In this case, the

integrating factor is given by

e∫
t

0
ρ1(s)

2ds = e
r ∫

t

0

1

(s+1)
ds
= er ln(t+1) = (t + 1)r (55)

and so (50) becomes

∥u(t)∥2L2 ≤
∥u0∥2L2(t + 1)r + Γ6(t + 1)r ∫

t

0

(s + 1)r(s + 1)2ds + C(t + 1)r ∫
t

0

(s + 1)r(s + 1)3 (∫
s

0

∥u(τ)∥2L2dτ)2 ds
+

C(t + 1)r ∫
t

0

(s + 1)r∥Λ 1

2 q(s)∥2L2ds (56)

for all t ≥ 0. We have

Γ6(t + 1)r ∫
t

0

(s + 1)r(s + 1)2ds = Γ6(r − 1)(t + 1)r ((t + 1)r−1 − 1) ≤ Γ6(r − 1)(t + 1) (57)

for any r > 1. Moreover, applying the Cauchy-Schwarz inequality in the time variable yields

(∫ s

0

∥u(τ)∥2L2dτ)2 ≤ s∫ s

0

∥u(τ)∥4L2dτ, (58)

so that

C(t + 1)r ∫
t

0

(s + 1)r(s + 1)3 (∫
s

0

∥u(τ)∥2L2dτ)2 ds ≤ C(t + 1)r (∫
t

0

(s + 1)r−2ds)(∫ t

0

∥u(s)∥4L2ds)
≤

C(r − 1)(t + 1) (∫
t

0

∥u(s)∥4L2ds) (59)

for any r > 1. Taking r = 3 and using (54) and (38) give

∥u(t)∥2L2 ≤
Γ10

t + 1
+

Γ10

t + 1
∫

t

0

∥u(s)∥2
L2

ln(e + s)ds (60)

and so

(t + 1)∥u(t)∥2L2 ≤ Γ10 +C
′Γ10∫

t

0

(s + 1)∥u(s)∥2
L2(s + e) ln(e + s)ds (61)

for any t ≥ 0. By Gronwall’s inequality, we obtain

(t + 1)∥u(t)∥2L2 ≤ Γ10 +C
′Γ2

10∫
t

0

e∫
t

s
1

(e+τ) ln(e+τ)
dτ

(e + s) ln(e + s)ds
= Γ10 +C

′Γ2

10∫
t

0

ln(e + t)
(e + s) [ln(e + s)]2ds ≤ Γ10 +C

′Γ2

10 ln(e + t). (62)

Therefore,

∥u(t)∥2L2 ≤
Γ11 ln(t + e)

t + 1
(63)

for any t ≥ 0, where Γ11 is a constant depending only on the initial data.

Step 6.3 (Sharp decaying bound for the L2 norm of the velocity). Finally, we prove (8). We take

ρ1(t) =√2(t + 1)− 1

2 as in the previous sub-step, and we obtain the bound

∥u(t)∥2L2 ≤
∥u0∥2L2(t + 1)3 + Γ12

t + 1
+

C(t + 1)3 ∫
t

0

(∫ s

0

∥u(τ)∥2L2dτ)2 ds (64)
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for all t ≥ 0. We note that

∫
s

0

∥u(τ)∥2L2dτ ≤ Γ13∫
s

0

ln(τ + e)
τ + 1

dτ ≤ CΓ13∫
s

0

ln(τ + e)
τ + e

dτ ≤ Γ14 [ln(s + e)]2 (65)

and so

∫
t

0

(∫ s

0

∥u(τ)∥2L2dτ)2 ds ≤ Γ15∫
t

0

√
s + 1ds (66)

for all t ≥ 0. Therefore,

∥u(t)∥2L2 ≤
Γ16

t + 1
(67)

for all t ≥ 0, where Γ16 is a positive constant depending only on the initial data. This ends the proof

of Theorem 1.

Now we study the rate of convergence of the gradients of the charge density and the velocity.

Theorem 2. Let u0 ∈ H1 ∩L1 be divergence-free and q0 ∈ H1 ∩L1. There exist positive constants

K0 and K ′
0

depending only on the initial data and some universal constants such that the unique

global-in-time solution (q, u) of (1)–(5) obeys

∥∇u(t)∥2L2 ≤
K0(t + 1)2 (68)

and

∥∇q(t)∥2L2 ≤
K ′

0(t + 1)4 (69)

for all t ≥ 0.

Proof: The proof is divided into 4 steps.

Step 1 (Decaying bounds for the L4 norm of q). The evolution of the L4 norm of q is described

by the energy equality
1

4

d

dt
∥q∥4L4 +∫

R2

q3Λqdx = 0. (70)

In view of the Córdoba-Córdoba inequality [6], the dissipation is bounded from below

∫
R2

q3Λqdx ≥
1

2
∥Λ 1

2 (q2)∥2L2 (71)

and thus

∫
R2

q3Λqdx ≥ c∥q∥4L8 (72)

due to Gagliardo-Nirenberg inequalities. Using interpolation inequalities in Lp spaces and the

uniform boundedness of the L2 norm of the charge density q by ∥q0∥L2 , we have the bound

∥q∥L4 ≤ ∥q∥ 13
L2∥q∥ 23L8 ≤ ∥q0∥ 13L2∥q∥ 23L8 (73)

from which we conclude that

∫
R2

q3Λqdx ≥ C∥q0∥−2L2∥q∥6L4 (74)

and hence
d

dt
∥q∥4L4 +

C∥q0∥2L2

∥q∥6L4 ≤ 0. (75)

Letting y = ∥q∥4
L4 , we obtain the Bernouilli ordinary differential inequality

dy

dt
+

C∥q0∥2L2

y
3

2 ≤ 0. (76)
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We apply a change of variable given by u = y−
1

2 and we get

−2

u3

du

dt
+

C∥q0∥2L2

1

u3
≤ 0 (77)

so
du

dt
≥

C

2∥q0∥2L2

. (78)

Integrating in time from 0 to t, we arrive at the bound

∥q∥−2L4 ≥ ∥q0∥−2L4 +
C∥q0∥2L2

t ≥K(1 + t) (79)

where K is a constant depending on the initial data. Consequently, we obtain

∥q∥L4 ≤
1√
K

1

(1 + t) 12 (80)

for all t ≥ 0.

Step 2 (Decaying bound for the L2 norm of ∇u). We take the L2 inner product of equation (2)

with −∆u and we get
1

2

d

dt
∥∇u∥2L2 + ∥∆u∥2L2 = ∫

R2

qRq ⋅∆u. (81)

The nonlinear term (u ⋅ ∇u,∆u)L2 vanishes due to the fact that the matrix M tM2 has a zero trace

where M is the two-by-two traceless matrix whose entries are given by Mij =
∂ui

∂xj
and M t is

its transpose. In view of Hölder’s inequality with exponents 4,4,2, the boundedness of the Riesz

transforms on L4(R2), the continuous embedding of H
1

2 in L4 , and Young’s inequality, we obtain

d

dt
∥∇u∥2L2 + ∥∆u∥2L2 ≤ C∥q∥4L4≤ C∥q∥2L4 (∥q∥2L2 + ∥Λ 1

2 q∥2L2) (82)

Using the L4 estimate (80) and the L2 decay (7), we have

C∥q∥2L4 (∥q∥2L2 + ∥Λ 1

2 q∥2L2) ≤K1(1 + t)−3 +K2(1 + t)−1∥Λ 1

2 q∥2L2 (83)

where K1 and K2 are positve constants depending on the initial data. We note that the initial charge

density is assumed to be in H1 and so it belongs to L4 due to the Sobolev embedding of H1(R2)
into L4(R2). Going back to (82), we have

d

dt
∥∇u∥2L2 + ∥∆u∥2L2 ≤K1(1 + t)−3 +K2(1 + t)−1∥Λ 1

2 q∥2L2 (84)

For t ∈ [0,∞), we let

ρ2(t) = r 1

2 (t + 1)− 1

2 (85)

for some r > 0 to be chosen later. By Parseval’s identity, we get

d

dt
∥∇u∥2L2 + ρ2(t)2∥∇u∥2L2

≤K1(1 + t)−3 +K2(1 + t)−1∥Λ 1

2 q∥2L2 + ρ2(t)2∫
∣ξ∣≤ρ2(t)

∣∇̂u(ξ, t)∣2dξ. (86)

In view of the inequality ∣∇̂u(ξ, t)∣2 ≤ ∣ξ∣2∣û(ξ, t)∣2 that holds for all ξ ∈ R2 and all t ≥ 0, Parseval’s

identity, and the L2 decay of the velocity u given by (8), we have

∫
∣ξ∣≤ρ2(t)

∣∇̂u(ξ, t)∣2dξ ≤ ρ2(t)2∥u(t)∥2L2 ≤ Γ
′

0ρ2(t)2(t + 1)−1, (87)
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and consequently, it holds that

d

dt
∥∇u∥2L2 + ρ2(t)2∥∇u∥2L2 ≤K1(1 + t)−3 +K2(1 + t)−1∥Λ 1

2 q∥2L2 + Γ
′

0ρ2(t)4(t + 1)−1 (88)

for t ≥ 0. We multiply by the integrating factor (t + 1)r, integrate in time from 0 to t, apply (38)

with γ = r − 1, and obtain

∥∇u∥2L2 ≤
∥∇u0∥2L2(t + 1)r + K1(t + 1)r ∫

t

0

(s + 1)r(s + 1)3ds
+

K2(t + 1)r (∥q0∥2L2 +
r − 1

r − 3
Γ0(t + 1)r−3 − r − 1

r − 3
Γ0) + Γ′

0
r2

(t + 1)r ∫
t

0

(s + 1)r(s + 1)3ds. (89)

Now we chose any r > 3 and we obtain the bound (68).

Step 3 (Bounds for ∫ t

0
(s + 1)γ∥∆u(s)∥2

L2ds where γ ∉ {2,3} is a real number). Let γ ∉ {2,3}.
The differential inequality (82) yields

d

dt
((t + 1)γ∥∇u∥2L2) − γ(t + 1)γ−1∥∇u∥2L2 + (t + 1)γ∥∆u∥2L2

≤ C(t + 1)γ∥q∥2L4 (∥q∥2L2 + ∥Λ 1

2 q∥2L2) (90)

for all t ≥ 0. Integrating in time from 0 to t and using (80), (38), and (68), we obtain

∫
t

0

(s + 1)γ∥∆u∥2L2ds ≤ ∥∇u0∥2L2 + (γK3 +K4)∫ t

0

(s + 1)γ−3ds
+K5 (∥q0∥2L2 +

γ − 1

γ − 3
Γ0(t + 1)γ−3 − γ − 1

γ − 3
Γ0)

≤K6 +
γK3 +K4

γ − 2
[(t + 1)γ−2 − 1] + (γ − 1)Γ0K5

γ − 3
[(t + 1)γ−3 − 1] (91)

for some positive constants K3,K4,K5,K6 depending on ∥∇u0∥L2 and ∥q0∥L4 .

Step 4 (Decaying bound for the L2 norm of ∇q). The L2 norm of the gradient of q evolves

according to the energy equality

1

2

d

dt
∥∇q∥2L2 + ∥Λ 3

2 q∥2L2 = (u ⋅ ∇q,∆q)L2 . (92)

In view of the Ladyzhenskaya interpolation inequality

∥∇u∥L4 ≤ C∥∇u∥ 12
L2∥∆u∥ 12

L2 (93)

and the interpolation inequality [1]

∥∇q∥2
L

8
3

≤ C∥q∥ 12
L4∥Λ 3

2 q∥ 32
L2 , (94)

we estimate the nonlinear term

∣(u ⋅ ∇q,∆q)L2 ∣ ≤ ∥∇u∥L4∥∇q∥2
L

8
3

≤ C∥∇u∥ 12
L2∥∆u∥ 12

L2∥q∥ 12L4∥Λ 3

2 q∥ 32
L2 . (95)

Applying Young’s inequality, we obtain

d

dt
∥∇q∥2L2 + ∥Λ 3

2 q∥2L2 ≤ C∥∇u∥2L2∥∆u∥2L2∥q∥2L4 . (96)
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In view of (68) and (83), we have

d

dt
∥∇q∥2L2 + ∥Λ 1

2∇q∥2L2 ≤
K7(t + 1)3 ∥∆u∥2L2 (97)

for all t ≥ 0. Here K7 depends only the initial data. Letting

ρ3(t) = r(t + 1)−1, (98)

we split the dissipation term,

∥Λ 3

2 q∥2L2 ≥ ρ3(t)∥∇q∥2L2 − ρ3(t)∫
∣ξ∣≤ρ3(t)

∣∇̂q(ξ, t)∣2dξ (99)

yielding the differential inequality

d

dt
∥∇q∥2L2 + ρ3(t)∥∇q∥2L2 ≤

K7(t + 1)3 ∥∆u∥2L2 + ρ3(t)∫
∣ξ∣≤ρ3(t)

∣∇̂q(ξ, t)∣2dξ (100)

In view of the pointwise bound ∣∇̂q(ξ, t)∣ ≤ ∣ξ∣∣q̂(ξ, t)∣, we have

∫
∣ξ∣≤ρ3(t)

∣∇̂q(ξ, t)∣2dξ ≤ ρ3(t)2∥q∥2L2 ≤ Γ0ρ3(t)2(t + 1)−2, (101)

and so
d

dt
∥∇q∥2L2 + ρ3(t)∥∇q∥2L2 ≤

K7(t + 1)3 ∥∆u∥2L2 +K8ρ3(t)3(t + 1)−2. (102)

We multiply both sides by (t + 1)r and we integrate in time from 0 to t. We obtain

∥∇q(t)∥2L2 ≤
∥∇q0∥2L2(t + 1)r + K7(t + 1)r ∫

t

0

(s + 1)r−3∥∆u(s)∥2L2ds (103)

+
r3K8(t + 1)r ∫

t

0

(s + 1)r−5ds. (104)

In view of (91) applied with γ = r − 3, we have

∫
t

0

(s + 1)r−3∥∆u(s)∥2L2ds ≤K6 +
(r − 3)K3 +K4

r − 5
[(t + 1)r−5 − 1]

+
(r − 4)Γ0K5

r − 6
[(t + 1)r−6 − 1] (105)

for any r ∉ {5,6}, and so

K7(t + 1)r ∫
t

0

(s + 1)r−3∥∆u(s)∥2L2ds ≤
K9(t + 1)5 (106)

for any r > 6. Putting (103) and (106) together and choosing r = 7 give the desired decay (69).

This completes the proof of Theorem 2.

Now we establish decaying bounds for higher order derivatives. We need the following propo-

sition.

Proposition 1. Let u0 ∈ H1 ∩ L1 be divergence-free and q0 ∈ H1 ∩ L1 . Let β > 6. There exists

a positive constant C0

β depending on β, the size of the initial data, and some universal constants

such that the solution q of (1)–(5) obeys

∫
t

0

(s + 1)β∥Λ 3

2 q(s)∥2L2ds ≤ ∥∇q0∥2L2 +C∥∇u0∥2L2 +C
0

β(t + 1)β−4 (107)

for all t ≥ 0.
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Proof: In view of the differential inequality (96), we have

d

dt
(t+1)β∥∇q∥2L2 −β(t+1)β−1∥∇q∥2L2 + (t+1)β∥Λ 3

2 q∥2L2 ≤ C(t+1)β∥∇u∥2L2∥∆u∥2L2∥q∥2L4 . (108)

Integrating in time from 0 to t, using the bounds (80) and (68) and applying (91) with γ = β − 3,

we obtain (107).

Theorem 3. Let u0 ∈ H2 ∩L1 be divergence-free and q0 ∈ H2 ∩L1. There exist positive constants

M0 and M ′

0
depending only on the initial data and some universal constants such that the unique

global-in-time solution (q, u) of (1)–(5) obeys

∥∆u(t)∥2L2 ≤
M0(t + 1)3 (109)

and

∥∆q(t)∥2L2 ≤
M ′

0(t + 1)6 (110)

for all t ≥ 0.

Proof: The L2 norm of ∆u evolves according to the energy equality

1

2

d

dt
∥∆u∥2L2 + ∥∇∆u∥2L2 = −∫

R2

∆(qRq) ⋅∆udx −∫
R2

∆(u ⋅ ∇u) ⋅∆udx. (111)

Integrating by parts, using (3), and applying Ladyzhenskaya’s interpolation inequality, we estimate

the second term on the right hand side in (111) as

∣∫
R2

∆(u ⋅ ∇u) ⋅∆udx∣ ≤ C∥∇u∥L2∥∆u∥L2∥∇∆u∥L2 . (112)

In view of the boundedness of the Riesz transforms on L4 and the continuous embedding of Ḣ
1

2 in

L4, we obtain for the first term on the right hand side in (111)

∣∫
R2

∆(qRq) ⋅∆udx∣ ≤ C∥q∥L4∥Λ 3

2 q∥L2∥∇∆u∥L2 . (113)

From (111)–(113) and using Young’s inequality, we obtain the energy inequality

d

dt
∥∆u∥2L2 + ∥∇∆u∥2L2 ≤ C∥q∥2L4∥Λ 3

2 q∥2L2 +C∥∇u∥2L2∥∆u∥2L2 . (114)

In view of Parseval’s identity, we have

d

dt
∥∆u∥2L2 + ρ2(t)2∥∆u∥2L2 ≤ C∥q∥2L4∥Λ 3

2 q∥2L2 +C∥∇u∥2L2∥∆u∥2L2

+ ρ2(t)2∫
∣ξ∣≤ρ2(t)

∣∆̂u(ξ, t)∣2dξ (115)

where ρ2 is the function defined by (85). The decay bounds (7), (68), and (83) yield

d

dt
∥∆u∥2L2 + ρ2(t)2∥∆u∥2L2 ≤

M1

t + 1
∥Λ 3

2 q∥2L2 +
M2(t + 1)2 ∥∆u∥2L2 +M3ρ2(t)6(t + 1)−1 (116)
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for all t ≥ 0, where M1,M2 and M3 are positive constants depending only on the initial data.

Multiplying by the integrating factor and integrating in time from 0 to t, we obtain

∥∆u∥2L2 ≤
∥∆u0∥2L2(t + 1)r + M1(t + 1)r ∫

t

0

(s + 1)r−1∥Λ 3

2 q∥2L2ds

+
M2(t + 1)r ∫

t

0

(s + 1)r−2∥∆u∥2L2ds +
M3(t + 1)r ∫

t

0

(s + 1)r−4ds. (117)

We choose r = 8. In view of the bound (91) applied with γ = r − 2 and Proposition 1 applied with

β = r − 1, we obtain (109).

Now, we establish decaying estimate for ∥∆q∥2
L2 which evolves according to

1

2

d

dt
∥∆q∥2L2 + ∥Λ 5

2 q∥2L2 = 2∫
R2

(∇u ⋅ ∇(∇q))∆qdx +∫
R2

(∆u ⋅ ∇q)∆qdx. (118)

In view of the Gagliardo-Nirenberg interpolation inequality

∥∆q∥L2 ≤ C∥Λ 5

2 q∥ 45
L2∥q∥ 15L2 , (119)

the Sobolev embedding inequality

∥∆q∥L4 ≤ C∥Λ 5

2 q∥L2 , (120)

and the bound

∥∇∇q∥L2 = ∥∇Λ−1∇Λ−1∆q∥L2 ≤ C∥∆q∥L2 (121)

that follows from the boundedness of the Riesz transforms on L2, we obtain

1

2

d

dt
∥∆q∥2L2 + ∥Λ 5

2 q∥2L2 ≤ C∥∇u∥L4∥∆q∥L2∥∆q∥L4 +C∥∆u∥L2∥∇q∥L4∥∆q∥L4

≤ C∥∇u∥ 12
L2∥∆u∥ 12

L2∥Λ 5

2 q∥ 95
L2∥q∥ 15L2 +C∥∆u∥L2∥Λ 3

2 q∥L2∥∆q∥L4

≤
1

2
∥Λ 5

2 q∥2L2 +C∥∇u∥5L2∥∆u∥5L2∥q∥2L2 +C∥∆u∥2L2∥Λ 3

2 q∥2L2 . (122)

Consequently,

d

dt
∥∆q∥2L2 + ρ(t)∥∆q∥2L2 ≤ C∥∇u∥5L2∥∆u∥5L2∥q∥2L2 (123)

+C∥∆u∥2L2∥Λ 3

2 q∥2L2 + ρ(t)∫
∣ξ∣≤ρ(t)

∣∆̂q(ξ, t)∣2dξ
where ρ is defined by (22). In view of the estimates (7), (68) and (109), and Proposition 1 applied

with β = r − 3, we obtain (110). This ends the proof of Theorem 3.

Let C0, 1
2 be the space of bounded 1/2-Hölder continuous functions on R2 with

∥f∥
C0, 1

2
= ∥f∥L∞ + sup

x,y∈R2,x≠y

∣f(x) − f(y)∣
∣x − y∣ 12 . (124)

In view of the continuous Sobolev embedding of W 1,4 into C0, 1
2 , the Ladyzhenskaya interpolation

inequality, and Theorems 1, 2, and 3, we obtain the following statement.
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Corollary 1. Let u0 ∈H2 ∩L1 be divergence-free and q0 ∈H2 ∩L1. There exist positive constants

A0 and A′
0

depending only on the initial data and some universal constants such that the unique

global-in-time solution (q, u) of (1)–(5) obeys

∥u(t)∥2
C0, 1

2

≤
A0

(t + 1) 32 (125)

and

∥q(t)∥2
C0, 1

2

≤
A′

0(t + 1)3 (126)

for all t ≥ 0.

3. DECOMPOSITION OF THE SOLUTION

In this section, we decompose the charge density q and the velocity u solutions of (1)–(5) in the

sum of solutions Q and U of the linear equations

∂tQ +ΛQ = 0 (127)

and

∂tU −∆U = 0 (128)

with initial datum Q(0) = q0 and U(0) = u0 and remainders. We study the decays of the remainders

q −Q and u −U in L2 and we show that they are faster than the decays of the L2 norms of q and u

respectively. The solutions of (127) and (128) are given explicitly by

Q(t) = ∫
R2

K1

t (x −w)q0(w)dw (129)

and

U(t) = ∫
R2

K2

t (x −w)u0(w)dw (130)

where Ks
t is the kernel defined by its Fourier transform

F(Ks
t )(ξ) = e−∣ξ∣st. (131)

We address the pointwise behavior of the Fourier transforms of the differences q −Q and u−U .

We need first the following lemmas.

Lemma 1. For f ∈ L2(R2) and x ∈ R2, we let

Tf(x) = lim
ε→0
∫
∣x−y∣>ε

√∣y∣2 + 1 −√∣x∣2 + 1
∣x − y∣3 f(y)dy. (132)

There exists a universal constant C > 0 (independent of f ) such that

∥Tf∥L2 ≤ C∥f∥L2 . (133)

Proof: We write

Tf(x) = lim
ε→0
∫
∣x−y∣>ε

(a(y) − a(x))k(x − y)f(y)dy. (134)

where a(x) is the function defined on R2 by

a(x) =√∣x∣2 + 1 (135)
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and k(x) is the function defined on R2 ∖ {0} by

k(x) = 1∣x∣3 . (136)

We note that k is homogeneous of degree −3. Moreover, the gradient of a is given by

∇a(x) = ⎛⎝
x1√∣x∣2 + 1 ,

x2√∣x∣2 + 1
⎞
⎠ (137)

and satisfies ∥∇a∥L∞ ≤ 1. Therefore, T is a well-defined operator and bounded on L2 (see page

435 in Section 2 of [5]).

Using Lemma 1, we study the evolution of (√∣x∣2 + 1)q(x) in L2(R2).
Lemma 2. Let u0 ∈ H1 ∩ L1 be divergence-free and q0 ∈ H1 ∩ L1. Furthermore, suppose that

∫R2 ∣x∣2q0(x)2dx < ∞. Then there exists a positive constant R1 > 0 depending only on the initial

data such that ∥(√∣ ⋅ ∣2 + 1)q(⋅, t)∥L2 ≤ R1 ln(t + 1) + ∥(√∣ ⋅ ∣2 + 1)q0(⋅)∥L2 (138)

holds for all t ≥ 0.

Proof: Let a(x) =√∣x∣2 + 1. The evolution of aq is described by

∂t(aq) + au ⋅ ∇q + aΛq = 0. (139)

Multiplying by aq and integrating in the space variable over R2, we obtain

1

2

d

dt
∥aq∥2L2 +∫

R2

(aΛq)aq = −∫
R2

(au ⋅ ∇q)aq. (140)

The cancellation

∫
R2

(u ⋅ ∇(aq))aq = 0 (141)

holds due to (3), so we can rewrite the nonlinear term as

−∫
R2

(au ⋅ ∇q)aq = ∫
R2

(u ⋅ ∇a)q2a. (142)

By Hölder’s inequality, Ladyzhenskaya’s interpolation inequality, and the decaying bounds for the

L2 norms of q, u,∇u and ∇q given by (7), (8), (68) and (69), respectively, we estimate

∣∫
R2

(u ⋅ ∇a)q2a∣ ≤ ∥∇a∥L∞∥q∥L4∥u∥L4∥aq∥L2

≤ C∥q∥ 12
L2∥∇q∥ 12L2∥u∥ 12L2∥∇u∥ 12L2∥aq∥L2 ≤ R2(t + 1)− 9

4 ∥aq∥L2 (143)

for some constant R2 depending only on the initial data. Now we write the linear term as the sum

∫
R2

(aΛq)aq = ∫
R2

aqΛ(aq) +∫
R2

(aq) [aΛq −Λ(aq)]
= ∥Λ 1

2 (aq)∥2L2 +∫
R2

(aq) [aΛq −Λ(aq)] . (144)

By the Cauchy-Schwarz inequality, we bound

∣∫
R2

(aq) [aΛq −Λ(aq)]∣ ≤ ∥aq∥L2∥aΛq −Λ(aq)∥L2 . (145)
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The pointwise formula for the fractional Laplacian of order 1 yields

(aΛq −Λ(aq))(x) = C ∫
R2

[a(x)q(x) − a(x)q(y)∣x − y∣3 −
a(x)q(x) − a(y)q(y)∣x − y∣3 ]dy

= C ∫
R2

a(y) − a(x)∣x − y∣3 q(y)dy (146)

where C is positive universal constant. As a consequence of Lemma 1 and (7), we obtain

∥aΛq −Λ(aq)∥L2 ≤ C∥q∥L2 ≤ C(t + 1)−1. (147)

Therefore, the L2 norm of aq obeys the energy inequality

1

2

d

dt
∥aq∥2L2 + ∥Λ 1

2 (aq)∥L2 ≤ [R2(t + 1)− 9

4 +C(t + 1)−1] ∥aq∥L2 (148)

so
1

2

d

dt
∥aq∥2L2 ≤ R3(t + 1)−1∥aq∥L2 (149)

for some positive constant R3 depending only on the initial data. Dividing both sides of the in-

equality by ∥aq∥L2 , we get
d

dt
∥aq∥L2 ≤ R3(t + 1)−1. (150)

Integrating in time from 0 to t, we obtain (138).

The following lemma is needed to obtain a growth in ∣ξ∣ for the Fourier transform of P(qRq).
Lemma 3. Let f ∈ L2(R2) such that ∫R2 ∣x∣2f(x)2dx <∞. Then

∣ ̂P(fRf)(ξ)∣ ≤ C ∣ξ∣∥f∥L2 (∫
R2

∣x∣2∣f(x)∣2dx) 1

2

. (151)

where P is the Leray projector and R = (R1,R2) is the Riesz transform vector on R2.

Proof: The Leray projector is a Fourier multiplier with a symbol denoted by m(ξ). We have

̂P(fRf)(ξ) =m(ξ)f̂Rf(ξ) (152)

for all ξ ∈ R2. We note that m(ξ) is bounded uniformly in ξ. Now, the Fourier transform of fRf

at ξ is given by

f̂Rf(ξ) = ∫
R2

f(x)Rf(x)e−iξ⋅xdx (153)

for ξ ∈ R2. Since the Riesz transform is antisymmetric, we have

∫
R2

f(x)Rf(x)dx = 0 (154)

and so we can write f̂Rf at ξ as

f̂Rf(ξ) = ∫
R2

f(x)Rf(x) (e−iξ⋅x − 1)dx. (155)

Using the identity ∣e−iξ⋅x − 1∣ ≤ ∣ξ∣∣x∣ (156)

that holds for all x, ξ ∈ R2, we estimate

∣f̂Rf(ξ)∣ ≤ ∣ξ∣∫
R2

∣x∣∣f(x)∣∣Rf(x)∣dx ≤ ∣ξ∣∥Rf∥L2 (∫
R2

∣x∣2∣f(x)∣2dx) 1

2

(157)

in view of the Cauchy-Schwarz inequality. This gives the pointwise estimate (151).
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As a consequence of lemmas 2 and 3, we obtain the following statement.

Proposition 2. Let u0 ∈H1 ∩L1 be divergence-free and q0 ∈H1 ∩L1 . Furthermore, suppose that

∫R2 ∣x∣2q0(x)2dx <∞. Let (q, u) be the solution of (1)–(5). Let ζ = q−Q and v = u−U . Then there

exist positive constants R4, R5 and R6 depending only on the initial data such that the Fourier

transforms of ζ and v satisfy the pointwise bounds

∣ζ̂(ξ, t)∣ ≤ R4∣ξ∣ (158)

and ∣v̂(ξ, t)∣ ≤ R5∣ξ∣ ln(t + 1) +R6∣ξ∣ ln2(t + 1) (159)

for all ξ ∈ R2 and t ≥ 0.

Proof: The Fourier transform of ζ obeys

∂tζ̂ + ∣ξ∣ζ̂ = −û ⋅ ∇q ≤ ∣ξ∣∥u∥L2∥q∥L2 . (160)

Consequently,

∣ζ̂(ξ, t)∣ ≤ ∫ t

0

∣ξ∣∥u∥L2∥q∥L2 ≤ R4∣ξ∣ (161)

in view of the decaying bounds (7) and (8). The Fourier transform of v evolves according to

∂tv̂ + ∣ξ∣2v̂ = − ̂P(u ⋅ ∇u) − P̂(qRq). (162)

Thus

∣v̂(ξ, t)∣ ≤ C ∣ξ∣∫ t

0

∥u∥2L2ds +C ∣ξ∣∫ t

0

∥q∥L2 (∫
R2

∣x∣2q(x)2dx) 1

2

ds (163)

by Lemma 3. In view of Lemma 2 and the decaying estimates (7) and (8), we obtain (159).

Theorem 4. Let u0 ∈ H1 ∩ L1 be divergence-free and q0 ∈ H1 ∩ L1 . Furthermore, suppose that

∫R2 ∣x∣2q0(x)2dx <∞. Let (q, u) be the solution of (1)–(5). Then there exist positive constants R7

and R8 depending only on the initial data such that the differences q −Q and u −U satisfy

∥q(t) −Q(t)∥2L2 ≤
R7

(t + 1)2+ 5

4

(164)

and

∥u(t) −U(t)∥2L2 ≤
R8

(t + 1)1+ 1

2

(165)

for all t ≥ 0.

Proof: Let ζ = q −Q and v = u −U . We have

∂tζ +Λζ = −u ⋅ ∇q. (166)

Taking the L2 inner product of equation (166) with ζ and estimating the nonlinearity via interpo-

lation, we obtain

1

2

d

dt
∥ζ∥2L2 + ∥Λ 1

2 ζ∥2L2 = ∫
R2

(u ⋅ ∇q)Qdx ≤ ∥u∥L4∥∇q∥L2∥Q∥L4

≤ C∥u∥ 12
L2∥∇u∥ 12L2∥∇q∥L2∥Q∥ 12

L2∥∇Q∥ 12L2 . (167)

As a consequence of Theorems 1 and 2, we obtain the energy inequality

d

dt
∥ζ∥2L2 + ∥Λ 1

2 ζ∥2L2 ≤
R9

(t + 1)4+ 1

4

(168)
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where R9 is a positive constant depending only on the initial data. For a fixed r, we let ρ(t) =
r(t + 1)−1. Then

d

dt
∥ζ∥2L2 + ρ(t)∥ζ∥2L2 ≤

R9

(t + 1)4+ 1

4

+ ρ(t)∫
∣ξ∣≤ρ(t)

∣ζ̂(ξ, t)∣2dξ. (169)

Using (158), we estimate

∫
∣ξ∣≤ρ(t)

∣ζ̂(ξ, t)∣2dξ ≤ R10ρ(t)4 (170)

and we obtain

d

dt
∥ζ∥2L2 + ρ(t)∥ζ∥2L2 ≤

R9

(t + 1)4+ 1

4

+R10ρ(t)5. (171)

Multiplying by the factor (s + 1)r, integrating in the time variable s from 0 to t, and choosing any

r > 4, we obtain the desired bound (164). Now, v obeys

∂tv −∆v = −u ⋅ ∇u − qRq −∇p. (172)

Taking the L2 inner product of this latter equation with v and using the fact that v is divergence-

free, we get the energy equation

1

2

d

dt
∥v∥L2 + ∥∇v∥2L2 = ∫

R2

(u ⋅ ∇u) ⋅Udx −∫
R2

(qRq) ⋅ vdx. (173)

We estimate

∫
R2

(u ⋅ ∇u) ⋅Udx ≤ ∥u∥2L4∥∇U∥L2 ≤ C∥u∥L2∥∇u∥L2∥∇U∥L2 ≤
R11

(t + 1)2+ 1

2

(174)

in view of Theorems 1 and 2, and

∫
R2

(qRq) ⋅ vdx ≤ C∥q∥2L4∥v∥L2 ≤ C∥q∥L2∥∇q∥L2∥v∥L2 ≤
R12

(t + 1)2+ 3

2

(175)

in view of the decaying estimate (7), (8), and (69). This yields the energy inequality

1

2

d

dt
∥v∥2L2 + ρ2(t)2∥v∥2L2 ≤

R13

(t + 1)1+ 3

2

+ ρ2(t)2∫
∣ξ∣≤ρ2(t)

∣v̂(ξ, t)∣2dξ (176)

where ρ2(t)2 = r(t+1)−1. Using the pointwise bound for the Fourier transform of v given by (159),

we have

∫
∣ξ∣≤ρ2(t)

∣v̂(ξ, t)∣2dξ ≤ R14 [ln2(t + 1) + ln4(t + 1)]ρ2(t)4 ≤ R15

√
t + 1ρ2(t)4, (177)

hence

1

2

d

dt
∥v∥2L2 + ρ2(t)2∥v∥2L2 ≤

R13

(t + 1)1+ 3

2

+R15

√
t + 1ρ2(t)6. (178)

We multiply both sides by (s+ 1)r, we integrate from 0 to t, we choose any r > 3/2, and we obtain

(165).
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4. APPENDIX: EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this appendix, we prove the existence of weak and strong solutions for the electroconvection

model (1)–(5).

Definition 1. A solution (q, u) of (1)–(5) is said to be a weak solution on [0, T ] if it solves (1)–(5)

in the sense of distributions, u is divergence-free in the sense of distributions,

u ∈ L∞(0, T ;L2) ∩L2(0, T ;H1) (179)

and

q ∈ L∞(0, T ;L2) ∩L2(0, T ;H1/2). (180)

Theorem 5. Let u0 ∈ L2 be divergence-free, let q0 ∈ L2. Let T > 0 be arbitrary. There exists a

weak solution (q, u) of the system (1)–(5) on [0, T ].
Proof. We briefly sketch the main ideas of the proof. For 0 < ε ≤ 1, we consider a viscous

approximation of (1)–(5) given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tqε + uε ⋅ ∇qε +Λqε − ε∆qε = 0

∂tuε + uε ⋅ ∇uε −∆uε +∇pε = −qεRqε

∇ ⋅ uε = 0

(181)

with smoothed out initial data uε
0
= Jεu0 and qε

0
= Jεq0, where Jε is a standard mollifier operator.

For each ε > 0, we consider the map

(q(t), u(t))↦ Φε((q, u))(t) = (eεt∆Jεq0 −Aε
t(qε, uε), et∆Jεu0 − B

ε
t(qε, uε)) (182)

where

A
ε
t(qε, uε) = ∫ t

0

eε(t−s)∆(uε
⋅ ∇qε)(s)ds +∫ t

0

eε(t−s)∆Λqε(s)ds (183)

and

B
ε
t(qε, uε) = ∫ t

0

e(t−s)∆P(uε
⋅ ∇uε)(s)ds +∫ t

0

e(t−s)∆P(qεRqε)(s)ds. (184)

There exists a time Tε = Tε(ε, ∥u0∥L2 , ∥q0∥L2) > 0 such that the map Φε is a contraction on the

Banach space

XT = L
∞(0, T ; B̄L2(2∥q0∥L2)⊕L∞(0, T ; B̄L2

σ
(2∥u0∥L2) (185)

where B̄L2(r) is the closed ball in L2, and B̄L2
σ

is the closed ball in the space of L2 divergence-free

vectors. Consequently, Φε has a fixed point (qε, uε) ∈ XTε
solving (181). This solution extends

to the time interval [0, T ], and this can be obtained by establishing uniform-in-time bounds for(qε, uε) on [0, T ]. Indeed, we have

1

2

d

dt
(∥Λ− 1

2 qε∥2L2 + ∥uε∥2L2) + ∥qε∥2L2 + ∥∇uε∥2L2 + ε∥Λ 1

2 qε∥2L2 = 0 (186)

as shown in (11). Hence the family of mollified velocities (uε)ε is uniformly bounded in L∞(0, T ;L2)∩
L2(0, T ;H1). On the other hand, the L2 norm of qε evolves according to

1

2

d

dt
∥qε∥2L2 + ∥Λ 1

2 qε∥2L2 + ε∥∇qε∥2L2 = 0, (187)

and so the family of mollified charge densities (qε)ε is uniformly bounded in L∞(0, T ;L2) ∩
L2(0, T ;H 1

2 ). The qε and uε equations imply that the sequence of time derivatives (∂tqε)ε and
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(∂tuε)ε are uniformly bounded in L2(0, T ;H− 3

2 ) and L2(0, T ;H−1) respectively. By the Aubin-

Lions lemma, the sequence ((qε, uε))ε has a subsequence that converges strongly in L2(0, T ;L2)
to a weak solution (q, u) of (1)–(5). We omit further details.

Definition 2. A weak solution (q, u) of (1)–(5) is said to be a strong solution on [0, T ] if

u ∈ L∞(0, T ;H1) ∩L2(0, T ;H2) (188)

and

q ∈ L∞(0, T ;L4) ∩L2(0, T ;H1/2). (189)

Theorem 6. Let u0 ∈ H1 be divergence-free and q0 ∈ L4. Let T > 0 be arbitrary. There exists a

unique strong solution (u, q) of the system (1)–(5) on [0, T ].
Proof. We take the L2 inner product of the equation satisfied by qε in (181) with (qε)3. In view

of the divergence-free condition satisfied by uε, the nonlinear term vanishes, that is

∫
R2

uε
⋅ ∇qε(qε)3dx = 0. (190)

By the Córdoba-Córdoba inequality ([6]), we have

∫
R2

(qε)3Λqεdx ≥ 0 (191)

and

−∫
R2

(qε)3∆qεdx ≥ 0. (192)

Consequently, we obtain
1

4

d

dt
∥qε∥4L4 ≤ 0 (193)

which yields the boundedness of q in L∞(0, T ;L4(R2)) by the Banach Alaoglu theorem and the

lower semi-continuity of the norm. The L2 norm of ∇uε obeys the energy inequality

d

dt
∥∇uε∥2L2 + ∥∆uε∥2L2 ≤ C∥qε∥4L4 (194)

as shown in (81), yielding the boundedness of u in L∞(0, T ;H1) ∩ L2(0, T ;H2). Now we prove

the uniqueness of strong solutions. Suppose (q1, u1) and (q2, u2) are strong solutions of (1)–(5)

with same initial data. Let q = q1 − q2, u = u1 − u2 and p = p1 − p2. Then q satisfies

∂tq +Λq = −u1 ⋅ ∇q − u ⋅ ∇q2 (195)

and u satisfies

∂tu −∆u +∇p = −qRq1 − q2Rq − u1 ⋅ ∇u − u ⋅ ∇u2. (196)

We take the L2 inner product of (195) with Λ−1q and the L2 inner product of (196) with u. We add

the resulting energy equalities. We have a cancellation

−∫
R2

(u ⋅ ∇q2)Λ−1qdx −∫
R2

(q2Rq) ⋅ udx = 0 (197)

obtained from integration by parts. In view of the Ladyzhenskaya’s interpolation inequality, we

estimate

∣∫
R2

(qRq1) ⋅ udx∣ ≤ C∥q∥L2∥q1∥L4∥u∥ 12
L2∥∇u∥ 12L2 ≤

1

4
∥∇u∥2L2 +

1

4
∥q∥2L2 +C∥q1∥4L4∥u∥2L2 (198)

and

∣∫
R2

(u ⋅ ∇u2) ⋅ udx∣ ≤ ∥u∥2L4∥∇u2∥L2 ≤
1

4
∥∇u∥2L2 +C∥∇u2∥2L2∥u∥2L2 . (199)
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Now we write

∫
R2

(u1 ⋅ ∇q)Λ−1qdx = ∫
R2

(Λ− 1

2 (u1 ⋅ ∇q) − u1 ⋅ ∇Λ
−

1

2 q)Λ− 1

2 qdx (200)

via integration by parts, and we show below that

∣∫
R2

(Λ− 1

2 (u1 ⋅ ∇q) − u1 ⋅ ∇Λ
−

1

2 q)Λ− 1

2 qdx∣ ≤ C∥u1∥H2∥q∥L2∥Λ− 1

2 q∥L2 . (201)

Putting (197)-(201) together, we obtain the energy inequality

d

dt
[∥Λ− 1

2 q∥2L2 + ∥u∥2L2] ≤ C [∥u1∥2H2 + ∥∇u2∥2L2 + ∥q1∥4L4] [∥Λ− 1

2 q∥2L2 + ∥u∥2L2] (202)

from which we obtain uniqueness. Finally, we show that the estimate (201) holds by establishing

the commutator estimate

∥Λ− 1

2 (u1 ⋅ ∇q) − u1 ⋅ ∇Λ
−

1

2 q∥L2 ≤ C∥u1∥H2∥q∥L2 . (203)

Indeed, let w ∈ L2(R2). By Parseval’s identity, we have

∫
R2

(Λ− 1

2 (u1⋅∇q)−u1⋅∇Λ
−

1

2 q)(x)w(x)dx = ∫
R2

F(Λ− 1

2 (u1⋅∇q)−u1⋅∇Λ
−

1

2 q)(ξ)Fw(ξ)dξ. (204)

But

F(Λ− 1

2 (u1 ⋅ ∇q))(ξ) = ∫
R2

∣ξ∣− 1

2 (ξ ⋅Fu1(ξ − y))Fq(y)dy (205)

and

F(u1 ⋅ ∇Λ
−

1

2 q)(ξ) = ∫
R2

∣y∣− 1

2 (ξ ⋅Fu1(ξ − y))Fq(y)dy. (206)

Consequently,

∣∫
R2

(Λ− 1

2 (u1 ⋅ ∇q) − u1 ⋅ ∇Λ
−

1

2 q)(x)w(x)dx∣
≤ ∫

R2
∫
R2

min{∣ξ∣, ∣y∣} ∣∣ξ∣− 1

2 − ∣y∣− 1

2 ∣ ∣Fu1(ξ − y)∣∣Fq(y)∣∣Fw(ξ)∣dydξ (207)

where we used

∣ξ ⋅Fu1(ξ − y)∣ ≤min{∣ξ∣, ∣y∣} ∣Fu1(ξ − y)∣ (208)

which holds due to the fact that the velocity is divergence-free. We note that

min{∣ξ∣, ∣y∣} ∣∣ξ∣− 1

2 − ∣y∣− 1

2 ∣ ≤ min{∣ξ∣, ∣y∣}
∣ξ∣ 12 ∣y∣ 12 ∣ξ − y∣ 12 ≤ ∣ξ − y∣ 12 (209)

for all ξ, y ∈ R2. Therefore,

∣∫
R2

(Λ− 1

2 (u1 ⋅ ∇q) − u1 ⋅ ∇Λ
−

1

2 q)(x)w(x)dx∣ ≤ ∥∣.∣ 12Fu1(.)∥L1∥q∥L2∥w∥L2

≤ C∥u1∥H2∥q∥L2∥w∥L2 (210)

by Hölder’s inequality and Young’s convolution inequality. This gives (203) completing the proof

of Theorem 6.
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