LONG TIME DYNAMICS OF NERNST-PLANCK-NAVIER-STOKES SYSTEMS

ELIE ABDO AND MIHAELA IGNATOVA

ABSTRACT. We consider the Nernst-Planck-Navier-Stokes system describing the electrodiffusion of ions in a
viscous Newtonian fluid. We prove the exponential nonlinear stability of constant steady states in the case of
periodic boundary conditions in any dimension of space without constraints on the number of species, valences
and diffusivities. We consider also the case of two spatial dimensions, and we prove the exponential stability
from arbitrary large data.

1. INTRODUCTION

Electrodiffusion is the motion of ions interacting with a fluid through electrical forces, and among them-
selves due to molecular diffusion and electrostatic forces. Electrodiffusion has a wide variety of applications
in computational physics, electrochemisty, biophysics, electrophysiology, and neurophysiology (see [9] and
references therein).

We consider an electrodiffusion model describing the evolution of n ionic species in a d-dimensional
fluid. The ionic concentrations ¢;(x,t)’s evolve according to the Nernst-Planck equations

0sci +u- Ve = DiAc; + DV - (2i¢;V ) (1)
for: =1,...,n, where z1,...,2, and Dq,..., D, are respectively the valences and diffusivities of the
species. The potential ®(z,t) obeys the Poisson equation

-eAd=p (2)
where
p=z1€C1+ -+ 2ZpCy (3)

and € is a positive constant proportional to the square of the Debye length. The velocity of the fluid u(x,t)
satisfies the Navier-Stokes equations

du+u-Vu+Vp=vAu-pvd 4)

and the divergence-free condition
V-u=0. 5)
Here p(z,t) represents the pressure of the fluid, and v is the kinematic viscosity.

In this paper we consider the Nernst-Planck-Navier-Stokes (NPNS) system given in (1)—(5) on the d-
dimensional torus T¢ = [0, 27T]d with periodic boundary conditions. We prove the exponential nonlinear
stability of constant steady states in the case of periodic boundary conditions in any dimension of space
without constraints on the number of species, valences and diffusivities. We consider also the case of two
spatial dimensions, and we prove the exponential stability from arbitrary large data.

The NPNS system has been intensely studied in different situations and dimensions. In [12] and [13], it
has been shown that the system has global weak solutions in the two and three dimensional cases for homo-
geneous Dirichlet boundary conditions and Neumann boundary conditions respectively. In [6], the NPNS
system was considered in a two-dimensional bounded domain with different types of boundary conditions.
Blocking boundary conditions, which are conditions imposing the vanishing of the normal flux of ions at the
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boundary model the situations where ions do not cross the boundary of the domain. Other boundary condi-
tions were also studied, where some ions may cross some parts of the boundary while being blocked from
crossing others. These kind of boundary conditions are called selective. A special case of selective bound-
ary conditions, where the chemical potentials are constant on the boundary were singled out as uniform
selective. In all three cases (blocking, uniform selective, general selective), the existence of global smooth
solutions has been shown in [6] and the global convergence to steady states was shown for blocking and
uniform selective boundary conditions. In [7], existence of global regular solutions on a three-dimensional
bounded domain has been established for general selective boundary conditions in the cases of two ionic
species and many ionic species having equal diffusivities.

The different types of boundary conditions described above give rise to different dynamical consequences.
In the cases of a 2D or a 3D bounded domain with blocking or uniform selective boundary conditions,
nonlinear stability of Boltzmann states has been obtained in [8]. Instabilities have been studied numerically
[11, 15], and observed physically [10] for general selective boundary conditions.

In [2], we considered the NPNS system on the two-dimensional torus with periodic boundary conditions
for two ionic species with valences 1 and —1 and same diffusivities, and we proved that the velocity of the
fluid converges exponentially in time to zero and the ionic concentrations converge exponentially in time
to their initial average. In the presence of body forces in the fluid and/or some added charge density, we
showed that the system has a finite dimensional global attractor. In [4], we addressed the forced NPNS
system for n ionic species with different valences and diffusivities and we proved the existence of a global
analytic solution on the two-dimensional torus and a local analytic solution in the three-dimensional case.

In this paper, we first investigate the existence of global regular solutions of the NPNS system for n ionic
species in higher dimensions without imposing any restrictions on the diffusivities and the valences of the
species but rather on the size of the initial data. We consider natural spaces in which we measure the size of
initial data and prove a nonlinear global stability result, namely that small initial data yield global solutions
(Theorem 1) and these global solutions converge exponentially to steady states, which in the periodic setting
are constant concentrations and zero velocity. Thus we generalize our previous result from [2] to arbitrary
dimension, arbitrary number of species and arbitrary valences and diffusivities. Secondly, we consider the
case of two spatial dimensions, with large regular initial data, different diffusivities, and different valences.
We obtain global exponential decay (Theorem 5) meaning that the solutions converge exponentially fast to
steady states. This result is based on a new application of a logarithmic Sobolev inequality for the basic
energy principle of the NPNS equations.

2. MAIN RESULTS

2.1. Functional setting. Let D(T%) be the space of C*(R?) functions that are 27 periodic, and Dy(T?)
be the subspace of mean-free functions in D(T¢). We denote by D'(T¢) and D} (T?) their dual spaces
respectively. For f € D(’]I'd), we define the Fourier transform of f by

keZ' - Ff(k)= w fw f(z)e *ody (6)

and we denote its inverse by F .

Let ® be a nonnegative, decreasing, infinitely differentiable, radial function such that ®(r) = 1 for
re[0,5] and @(r) = 0forr e [2,00]. Foreach j € Z, welet U(r) = ® (2797'r) - ©(27r), and we define
the homogeneous blocks

Ajf(x) = (F1u5(]-1) = f)(2) @)
and the lower frequency cutoff functions
Sif(z)= Y Arf(x). (®)
k<j-1

for f e D} (T?).



Let LP(T%) be the space of 27-periodic functions with the norm

Ul = [, 15 par) ©)

for p € [1, 00) with the usual convention when p = oo.
For s e R, 1 < p, ¢ < oo, we define the homogeneous Besov space

1/q
By (T%) = 4 f € DG(TY) : | £l 3,y = (%2fsq\|Ajf"Lp(W)) <o (10)
J€
and the time-dependent homogeneous Besov spaces
1/q
L7073 B3, (1) = 3 £ € DT+ [ £l o783, vy = (Z 2”qHAjf\QT(O,T;LP(W))) <oof. (11)

JEZ

For s > 0, we denote by H*® ('H‘d) the Sobolev spaces of measurable periodic functions f

f=> fre*. (12)
keZd
obeying
1 £ = >0 (L + k) ful® < oo (13)
keZd

2.2. Results. In this paper, we address the global well-posedness and long-time behavior of solutions to the
Nernst-Planck-Navier-Stokes system described by (1)—(5). The conservation of the spatial averages of the
velocity v and ionic concentrations ¢; in time is a key property of the model that is frequently used in the

paper:

Remark 1. Let (u,cy,...,cy) be a solution to (1)—(5). Integrating the ionic concentration equation (1) in
the spatial variable over the d-dimensional torus, and using the divergence-free property satisfied by u, we
infer that

d
pn [Td ci(z,t)dx =0

foranyt>0andie€{1,---,n}, and consequently

/H‘d ci(z,t)dxr = de ¢i(z,0)dx

foranyt >0and i€ {1,---,n}. Similarly, we integrate the velocity equation (4) over T, use the vanishing
of the nonlinear term in p that follows from the identity

f pvcbda;:—ef Acbvqm:ef vqm-(v@)da::—f v pdr, (14)
Td Td Td Td

integrate in time, and deduce that

,A‘d u(z,t)dr = /?;d u(x,0)dx (15)
foranyt > 0.

We prove first the global existence and uniqueness of regular solutions of the d-dimensional NPNS system
(1)—(5) with small initial data:
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d
Theorem 1. Let 1 < p < oco. Let ug € B;}l(Td) be divergence-free with a zero spatial average. Let
d

c1(0),...,¢c,(0) € B;l(']l‘d). For 1< p < oo, let Ey be the functional space defined by

E, = {F eDY(TY) : |Flp, = IFl_ 4 +IF] 4.0 00}- (16)
LeBP LiBP

t p,1 t~p,1

There exists an € > 0 such that for any € € (0,€), if

n
[uoll a + D, lles(O)] 4 <eo (17)
By 2; By
then the the system (1)~(5) has a unique global-in-time solution (u,ci, ..., cy) in (E,)"" obeying
n
lulg, + 3 leillg, < 2¢0. (18)
i=1

The proof of Theorem 1 is based on a fixed point iteration introduced in [5]. Namely, we let S° = 0 and
S(™) be the solution of the linear parabolic system approximating (1)—(5), forced by matching nonlinear
terms depending only on S ("=1) 'We show that the iterative inequality

1S™ g, < Co+C1|ST V3, (19)

holds for all n € N, where Cj is a positive constant depending only on the size of the initial data and C' is
a positive universal constant. This estimate yields global unique regular solutions when Cj is sufficiently
small. The main challenges arise from estimating the nonlinearities in the functional space £, which is
based on decomposing the nonlinear terms using the paraproduct decomposition and estimating using the
uniform boundedness of the dyadic blocks in LP spaces, Bernstein’s inequality, the localization of the heat
kernel, and the boundedness of the Riesz transform in Besov spaces.

Preserved for all positive times, the smallness of the solution of (1)—(5) in £}, can be used to show that
the L2 norm of the velocity decays exponentially in time to zero and the L? norm of the ionic concentrations
decay exponentially in time to their initial spatial averages:

. d
Theorem 2. Let ug € B2, (T%) be divergence-free with a zero spatial average. Let c¢1(0),...,c,(0) €

. d . d
32271('11“1). Suppose the initial data (ug, c1(0),...,c,(0)) is sufficiently small in B2271(']I‘d), and the initial
concentrations (c1(0), ..., cn(0)) are sufficiently small in LZ(']I‘d). Then the unique solution of (u,c1, ..., cp)
of (1)-(5) obeys

lu(®)]Z2 + flei(t) - :(0) |72 < (IluO IZ2 + ; i(0) - 5@'(0)%2) e (20)

where c is a positive constant depending only on the parameters of the problem, and ¢;(0) is the initial
spatial average of the ionic concentration c;.

It is shown in [4] that the two-dimensional electrodiffusion model (1)-(5) has a unique global regular
solution for arbitrary initial data, that is if the initial velocity is H'(T?) regular and the initial concentrations

are nonnegative and H*(T?) regular, then the system (1)—(5) has a unique solution (u, c1,. .., c,) on [0, c0)
satisfying

we L®(0,T; HY(T?)) n L*(0,T; H*(T?)) 1)
and

ci € L0, T; H'(T?)) n L*(0, T; H*(T?)) (22)
fort=1,...,n and for any T' > 0. Moreover, the ionic concentrations are nonnegative for all positive times
t>0.

In fact, the solution to the model (1)—(5) is smooth provided that the initial data is smooth:
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Remark 2. Ler k > 1. Suppose ug € H*(T?) is divergence-free and mean-free, and ¢;(0) € H*(T?) is non-
negative. Then the solution to the Nernst-Planck-Navier-Stokes system (1)~(5) belongs to L* (0, T; H*(T?))
and L*(0,T; H**1(T?)). Indeed, a Galerkin approximation scheme can be adapted to show that the solu-
tion lies in the aforementioned Lebesgue spaces on a short time interval [0, T}, ], and this regularity propa-
gates to the whole interval [0, T by a continuity criterion that follows from the uniform-in-time boundedness
of the solution in Sobolev spaces (see Theorem 4).

We prove in this paper the exponential decay to steady state of the unique solution of (1)—(5) for any
regular large initial data for the case where the ionic species have equal diffusivities:

Theorem 3. Let d = 2 and suppose Dy = --- = D,,. Let ug € H'(T?) be divergence-free and c;(0) € H'(T?)
be nonnegative. Then there is a positive constant Cy depending exponentially on the initial data and the
parameters of the problem, and a positive constant vy depending only on the parameters of the problem
such that the unique solution (u,ci,...,c,) of (1)=(5) obeys

n t+1 n 0
[Va(®)fe + Y 19e®)lF+ | [HAu(s)H%z + 3 |Aei(s)]7a | ds < Coe™#! (23)
i=1 =1
foranyt > 0.

We note that Theorem 3 generalizes the time decay obtained in [2] for two ionic species with valences 1
and —1 and same diffusivities. We show furthermore that the exponential decay in time holds in all Sobolev
spaces:

Theorem 4. Let d = 2 and suppose Dy = --- = D,,. Let k > 2. Let ug € H*(T?) be divergence-free and
¢i(0) e H k('I[‘Q) be nonnegative. Suppose there is a positive constant Cy_1 depending only on the initial
data and the parameters of the problem, and a positive constant v depending only on the parameters of the
problem such that the solution (u,cy, ..., cp) of (1)—~(5) obeys

[(-A) S u(t)2, + Z T@NE PO

t+1 k n k s
ISR R S I e s < e F en

for any t > 0. Then there is a positive constant Cy, depending only on the initial data and the parameters of
the problem such that the solution (u,cy, ..., cp) of (1)~(5) obeys

[-A)Su(t) |2, + z [(-A)Sei(t) 2

t+1 + n i v
o A O TOT A WSS EO A TR 25
=1
foranyt > 0.

Our main result for the two-dimensional NPNS system is the global exponential decay to steady state for
n ionic species with different valences and diffusivities:

Theorem 5. Let d = 2 and consider the Nernst-Planck-Navier-Stokes system (1)—(5) on T2 with different
valences and diffusivities. Let k > 1. Let ug € H*(T?) be divergence-free and ¢;(0) € H*(T?) be nonnega-
tive. Then there exist a positive constant C j, depending only on k, the H * norm of the initial data and the
parameters of the problem, and a positive constant Iy depending only on the parameters of the problem,
such that the solution (u,cy,...,cp) of (1)—~(5) obeys for all k >0

X n T
(=AY 2u(t)|2 + Y I(~A) 2 ei(t) |22 < Cre 71! (26)
=1
foranyt > 0.
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The proof of Theorem 5 exploits the dissipative structure of the NPNS system. A logarithmic Sobolev
inequality (182) is used to show that the dissipation dominates the energy (187). The proof of decay of
higher norms is based on the proofs of Theorems 3 and 4.

Remark 3. We point out that the tools required to prove Theorem 5 in the case of n ionic species with
arbitrary diffusivities are different from those employed in Theorem 3 when the ions have equal diffusiv-
ities. Indeed, this latter case relies only on the boundedness of the potential ® in L*=(0,T; H*(T?)) n
L?(0,T; H*(T?)) and yields the time decay of the ionic concentrations in L*(T?) to their initial spatial
averages. In contrast, the case of different diffusivities requires c; In c; bounds in L*(T?) for the concentra-
tions and a novel logarithmic Sobolev inequality to obtain the desired decay in L*(T?). We shed light on
these differences in the proofs of Theorems 3 and 5.

3. PRELIMINARIES
We recall some estimates from the Littlewood-Paley theory:

Proposition 1. [3, 14] Let f € D}(T%).
(1) Let 1 < p < 0. Let k be a nonnegative integer. For all j € Z, we have

‘STIZ 10%“A; fll o (ray < CijkHAjf”Lp(’JI‘d)' 27

(2) Let 1 <p<q<oo. Forall j € Z, we have

di(i-1
185 1 acaay < C2P 1 £l ey 28)
Moreover, the continuous Besov embedding
. Ls—d -1
B;mh (Td) e sz,q(zpl pQ)(Td) (29)

holds for 1 <p; <py<o0,1<q; <ga<ooandsceR.
(3) Let 1 <p<o00,t>0,c0> 0. Then
A _-1 j o
le " Ajf||m(1rd) <Ce @ ”AijLP(’]Td) (30)

holds for all j € Z. Here A® is the Fourier multiplier with symbol |k|*.

(4) For k€ {1,...,d}, let Ry, = O,A™". Let R = (Ry,...,Ry) be the periodic Riesz transform. For
each p € [1,00], there is a positive constant C > 0 depending only on p and d (independent of j)
such that

|AjRf| Lo(ray < ClA;f] Lo (ray 3D
holds for all j € Z. Hence, for s€c Rand 1 < p,q < oo, R is bounded from B;q(Td) onto itself.

We note that there exists a negative integer jo such that A; f vanishes for j < jo, a fact that follows from
the definitions.
The following proposition is used to decompose the dyadic blocks of the product of two functions:

Proposition 2. [3] Let f,g € D)(T<). Then
Aj(fg) = > Aj(SkafArg)+ >, Aj(SkgArf)

k>j-2 k>j-2
= > Aj(Skr1gAef) + > Aj(SkfArg) (32)
k>j-2 k>j-2

holds for any j € Z.

We recall the uniform Gronwall lemma for decay:



Lemma 1. [1] Let y(t) > 0 obey a differential inequality
d
—y+ <Fi+F(t
dty ay 1 (1)

with initial datum y(0) = yo with F| a nonnegative constant, and F(t) > 0 obeying
t+1
f F(s)ds < goe™ " + Fy
t

where c1,ca, g are positive constants and F» is a nonnegative constant. Then

1 eCt
y(t) <yoe '+ goe (L + 1)e™ + —Fy +
c1 l-e@

Fy
holds with ¢ = min {c1, c2}.
Finally, we state and prove the following fractional product estimate:

Lemma 2. Let k > 1. Let f,g e H k(TQ) be mean-zero functions. Then there is a positive constant Cl,
depending on k such that

k 1 1 k1 k+1 L
[(=A)2(fg)lr2 < Cul FIZ- IV A0 (=D)2 gl -1 (=A) = gl7,
koL k1 1 1 1
+ Ck”(_A)zf”[Qg (ICAVRE f”i2”g”z2 HVQHEQ (33)
holds.
Proof. The bound (33) follows from the fractional inequality

[(=2)%(f9) 2 < Ci [IF 1l (-2) 2 gl s + [ (~A)% fl gl 4] (34)

followed by applications of the Ladyzhenskaya’s interpolation inequality. We omit further details.

In this paper, the letter C' (or C;,7 = 1,2,...) will be frequently used to denote a positive constant
depending only on universal constants and the parameters of the problems, and this constant may change
from line to line along the proofs.

4. PROOF OF THEOREM 1
In the proof of Theorem 1 below, we use the following auxiliary propositions.

Proposition 3. Suppose F,G € D}(T?). Let

t
B(F,G) - fo DAY L (FG)(5)ds. (35)
and
P ot-s)a
B'(F,G) = fo APy . (FG)(s)ds (36)
where P is the Leray-Hodge projector on divergence-free vector fields. Then
|B(F,G)|E, <CI|F|E, |G|z, (37)
and
|B'(F.G)|E, < CIFlg,|GlE,- (38)

Proof. For j € Z, we apply A to B(F,G). Since A; and V commutes, we have
t
AB(F,G) = fo DAY A(FG)(s)ds (39)

and hence .
25 s
I8B(F,G)r<C [ 02| 8,(FG)(5)] 1rds (40)
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in view of Bernstein’s inequality (27) and the localization of the heat kernel (30). Now we use Proposition
2 to decompose A;(F'G) as

AJ(FG) = Z Aj(S].HlFAkG) + Z AJ(SkGAkF) (41)
k>j-2 k>j-2

Taking the L? norm and using the uniform-in-j boundedness of A; on L?, we obtain

[8;(FG)rr <C 37 |1Sk1 Fllre |AkG o + C 37 |SkG 1 [ARF | 1o (42)
k>j-2 k>j-2

and consequently

t P
IABF.G) <€ [ 12 5 |Si0F () |1e | AG(s)] rds
k>j-2

t P
+C[0 090 S |SkG(5) | L= | ARF(5) | Lods

k>j2
IBLJ'(F, G)"I‘BQJ(F,G) 43)
where
Bii(F.G)=C [ ety T 180 O 184G (44)
and
Bry(F.G)=C [ L2y T 1 GE |8eF() ods. 45)

We start by estimating B j(F, G) in L;* and L;. In view of Bernstein’s inequality (28), we estimate

d
1Skt F(s) |z < S IAF(8) |1 < C Y 2% |AF ()| e < CIF|_ (46)
I<k I<k LyEBY

t p,1

hence

t . .
fo 212 SN A LG (s) | Lods

[BLi(F, G <CIF|__ 4
L7 Bp,1 k>j-2 Le
<CIFl__ a 3 218G Lo (47)
LyeBr, k;,g b
Since A G has a zero spatial average for any k € Z, we bound
[AkGlLize < CIVARG| L1y < OQkHAkGHLgLP (48)

.d
in view of Poincaré’s inequality and Bernstein’s inequality. Multiplying | B1,;(F,G)| L by 2’7, we obtain

id i d et
2jp||Bl7j(F,G)”L§° < CHFHZOO g Z 2(J k)(p+1)2k(p+1)”AkG”L%LP

t Bp,1 k>j-2
(G-k)(2+41) ok(£+2)
<SCIF|__ o 35 29728 ™ ALG (49)
We apply the ¢' norm in j and we use Young’s convolution inequality to conclude that

- d
277 | By (F,G)]| e (50)

<CIF].
o Iy

d. oo
S+2

ol
Bp’1 Lth,l



On the other hand, taking the L} norm of B j(F,G) yields

f 0f o~ (t-5)2% Z [ALG(8)]Lrds
k>j-2

|13 (F, Gy < CHFH

. d

:D 1
1

P Lt

SCHF\L > 272G L (51)

Lt Bpl k>] -2

. . J (é+2) :
We multiply both sides by 2°\» "“/, and we obtain

p,1 k>j-2

o > 2(j—k)(g+1)2k(g+2)HAkGHLtle’ (52)
?Bp,l k>j-2

25+ )||31,J<FG)HL1<0||F|| 4y 2GR AG

<C|F|

hence

2(5°2) 18, ,(F.G)|
t 61

<C|F]_ 4 HG\L
L B

t pl

(33)

Now, we estimate B ;(#'G) in L;® and L;. In view of Bernstein’s 1nequa11ty (28) and Poincaré’s inequality,
we estimate

d
[SkG ()= < X [AG(8) e < C Y 202 [AG(s) 1o < C2F[G]_ (54)
I<k-1 I<k-1 LyEBY,
hence
jd G- k)( +1) kz(i+2)
27| Baj (F.G) |1 < CIG] > 2 7 ARF | g1 (55)
t B p,1 k>j-2
We take the ¢! norm in j and we obtain
d
20 || By (F, (||| <CIGI|_ a|F|_ a (56)
o L BP 1

t p,1 t~p,1

(d
Taking the L norm of Bz ;(F, @), multiplying both sides by 2’ (5+2) and then taking the /! norm in j yield

292 1By (PG
gl

<ClGI_ 4 IFI. (57)
L B

t “p,l tpl

Putting (50), (53), (56) and (57) together, we obtain (37). The proof of (38) is similar to that of (37) and is
based on the fact that the Leray projector [P is bounded on Besov spaces. We omit further details.

Remark 4. The product estimates (37) and (38) hold in the whole space setting and were used in [5] to
estimate the transport nonlinear term driving the Navier-Stokes equations in R%. The proof in the periodic

setting provided above is somewhat simpler due to the Poincaré inequality (48), which is not available in
R

Proposition 4. Let g € D(’)(']I‘d), and let v be the solution of the d-dimensional Laplace equation
Av=g (58)

with periodic boundary conditions. Let

S(g.0)= | LR [gyy] (s)ds. (59)

Then
18(g,v)l 5, <ClglZ, (60)
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Proof. For j € Z, we have

t o y92
18;8(g. )l <€ [ 02159 0)(3)] o

in view of (30) and the boundedness of the Leray projector on L? spaces. Decomposing A;(gVv) as

Aj(gVv) = >0 Aj(Ske1gArVo) + Y. Aj(SpVulig),
k>j-2 k>j-2

we estimate

t .
||AjS(g,v)||Lngf0 e 2 S 18 19(5) | L= | ARV (s) | Lods

k>j-2
t —(1—5)22]
0 [[ S 15,v0(s) e 1 Akg ()] e ds
0 k>j-2
= Sl,j(g’v) + SQ,j(Q?”)
where

t )
S1i(g,0)=C [0 D2 S 16 0(8) | | Ak V(s) | Lods
k>j—2
and .
Ss(g,v) =C [0 e (=02 SN 16, 9u(s) | 1 | Arg(s) | Lods.
ke>j—2

Now we estimate S1 j(g,v) and Sz j(g,v) in L{° and L}.
In view of Bernstein’s inequality (28), we have

|Ske19(s) L= < Cllgl
Lt

d
ooBP
p,

1

and consequently

181509, )2 < Clgll__ .4 > 2evol L.

t Pp,1 k2j-2

In view of Poincaré’s inequality and Bernstein’s inequality, we have

[AeVv[ L1 < CIVVALAD| L1 < C22kHAk9HL}LP
d
for all k € Z. We multiply |Sy ;(g,v)| Lz by 2’ and we obtain

id k)4 k4
2581509 0) | <Clgl__ 0 3 27025 |ALu] 1y
LBy k>j-2

k)4 k(4
<Clol. 0 3 2952 Avg) g
P t

L¥ B, k>j-2

We apply the ¢! norm in j and we use Young’s convolution inequality to conclude that

jé
27|81, (g,v)| e

<C d d.o-
QSO g ol

Now we take the L} norm of S; ;(F, G), and we obtain

t )
fo o (t=5)2% Z |ARVo(s)|eds

k>j-2

IS1i(g, )Ly <Clgll__ 4
L BP

p,1

<Clgl. 4 > 27%[Apvo e
LyB)) kzj-2 '

1
Lt

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71
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. . J (é+2) :
We multiply both sides by 2°\» "/, and we obtain

DG s g0l <Clal__ s 3 29052 |Avul
LB k>j-2

k)< k(242
<Clgl_ 4 % 20522 ag) 1, )
L?B;l k>j—2

where we have used the Poincaré inequality. Hence

(4
2(52))151,(9,0) 1, (73)

<C d d.o-
QSO ol e

p,1
Similarly, we estimate Sz (g, v) in L{° and L}. In view of Poincaré’s inequality and Bernstein’s inequality,
we have

14 14
|SkVv|ere <C Y 20 |AVO|Leore <C Y 27| Ayglpeery <Cllgll . 4 74)
1<k-1 I<k-1 LyEBY,

d
for all k € Z. Multiplying ||S2 j(g,v)|| Lz by 2’», applying the Poincaré inequality twice, taking the ¢! norm
in j, and finally using Young’s convolution inequality, we obtain

id
27 |S2,5(g.0) el <Clgl__ allgl_  a. (75)
o LeBP, LIBP
For the L] norm of Sz (g, v), we have
182,3(a )2 <Cllgl_ a3 27| Argl i (76)
L?B;J,l k>j-2
(d
We multiply both sides by 2’ (5+2) and we estimate. We obtain
(d 2
2S00 <Clal 4 lgl g 77)
et LBl IiBE,
Putting (70), (73), (75) and (77) together, we obtain (60).
Proof of Theorem 1. Let u(*) = cgo) = .= c!® = 0. For each positive integer m, let (u(™), cgm), ™)y
be the solution of
plm) = zlcgm) +ooe 4 znc%m) (78)
—eADM) = p(m)
8tc§m) - DiAcgm) = —q(m-1) -chm_l) +D;V - (zicgm_l)vﬁb(m_l)),i =1,...,n
posed on T? x [0, c0). For simplicity, suppose v = Dy = --- = D,, = 1. For each m, the smooth solution
(ul™) cgm), . cflm)) of (78) can be written in the form
u™(8) = g~ B (u™ L um ) = S(p Y, @) (79)
and
(1) = B ei(0) = B e + 2B, ve ) (80)
fori=1,...,n, where the operators B, B’ and S are defined in the previous two propositions.

For each integer m, we let

am = [0 ™) g, + | g, 1)
=1
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and we show that

lam|E, < ClHaoHBpgl + Callam-1%,- (82)
First, we note that |
|2 A jul| e < Clle™ Ajuo|| v < CAjuo)| e (83)
and
" Ajuo| 110 < Clle™ Ajuol| 1o < €27 Ajuo| 1o (84)

for each j € Z. Thus

le®uoll s, = le"uoll__ g +leuol . a.o <Clluol a - (85)
co P p
t Tp,1 Lt p 1 p,l
Similarly, we have
Z e 2ei(0)]15, < OZ (0] ¢ (86)
p
In view of Proposition 3, we have
B, ety < Clu™ g, |V g, &7)
and
1o m-1 _ m-1 (m-1) 2
B'(u™ ", u™ ) < Clut™ g, (88)
and in view of Proposition 4, we have
n
_ - - -1
S(ptm D, @Dy <OV, <P I, (89)
i=1

where we have bounded the valences in absolute value by their maximum value which is absorbed by the
constant C'. In view of Proposition 3 and the Poincaré inequality, we have

B(cgm—1)7vq)(m—1)) < CHCEm—l)”Ep ”vq)(m—l)HEp
-1 m—
<Cle™ Vg, 10V s,

&y (m-1) (m-1)
<C Y™ e le;™ g, (90)
j=1
Putting (85)-(90) together and applying Young’s inequality, we obtain (82).
Remark 5. The unique solution (u,ci,...,cy,) obtained in Theorem 1 when p = 2 obeys
we L™ (0,00 H2) A LY(0, 00; H22) ©1)
and
¢; € L®(0,00; H2) N LL (0, 00; H2*2) 92)
fori=1,...,n, provided that the initial concentrations are in L?. Indeed, in view of the continuous Besov

embedding (29), we have

lu(®)] .4 <Clu@®] 4 = =C Y 2% Aju(t)] 2 < C X 2% | Aju(t Migrz=Clul._ 4 (93)

22 2 1 JEZ JEZ t P21

and similarly

le:) .o <Clle; ” %94)

d . d
B2 2
2 t 21



13

d . d
fori=1,...,n. But 322’2 = B22’2 n L? coincides with the Sobolev space Hg, hence the velocity of the fluid

d
and the ionic concentrations are in L* (0, 00; H2). On the other hand,

Jy T gt <O 7 Ol gt =C [ 52Ol o

JEZ
-0y 26 +2)HAU(t)HL1L2—CHUH . (95)
JeZ t 21
and
JRCOIN gl 00 96)
0 t321

d

- D T EP : dig .o 1 dyo
fori=1,....n. But By, =By, NL” coincides with the Sobolev space H ", yielding the L (0,00; H?™7)

d
regularity of the velocity in view of the Poincaré inequality and the the L} (0,00, H 5+2) regularity of the

concentrations .

loc

Remark 6. The unique solution (u,c1,...,cy) is sufficiently small in the Sobolev space H 5 provided that
d

the initial ionic concentrations is sufficiently small in L* n Bg 1 and the initial velocity is sufficiently small
. d

; 2

in B3 .

5. PROOF OF THEOREM 2

Proof of Theorem 2. We take the L? inner product of the velocity equation with w. In view of the
divergence-free condition obeyed by u, the nonlinear term vanishes, that is

/Td(u-Vu)-ud:EzO o7
and we obtain the differential equation
1d

soluls +vivulle == [ pve-u ©8)

Elliptic regularity together with the Gagliardo-Nirenberg interpolation inequality applied to the mean zero
function p yield the bound

IVelL> < Clplpan < Clol & glelz B < Clel 4 (99)

hence

poV<I>~u

<[Ve|z=lplr2lulrz < Clol g IVolr2lul 2

n
< . .
< ¢ () (S 19idi2 ) Ful ool

a3

=1

v
vl ok, g + S1ul: (100)

in view of the Poincaré inequality applied to the mean zero functions u and p. Here C depends on n, the va-
lences z;’s, and the diffusivities D;’s. Referring to Remark 6, we can choose the initial ionic concentrations

to be small enough in 5 so that

n
Cillpl g < CL Y ailleil g <1 (101)
i=1



14 ELIE ABDO AND MIHAELA IGNATOVA

‘.[TrdPVQ).u Z

Now we take the L? inner product of the ith ionic concentration equation with ¢;. We obtain the differential
equation

yielding the bound

D;
o Iveilia+ g S IvulZ. (102)

thucz il}e + Dillvel3s = ~Dizi [ (ci-e)V®-Vei=Dizes [ v@-ve  (103)

where ¢; = ¢;(0) is the time-independent spatial average of the ionic concentration ¢;. In view of Holder’s
inequality, the Poincaré inequality applied to the mean zero function c¢; — ¢;, elliptic regularity and the
Gagliardo-Nirenberg inequality, we estimate

D;z; .[]I‘d(Ci —EZ‘)VCI)'VCZ‘

< Dilzilllci = ill 2 [ VR L [ Veil| 2
< OD;ilz||Veil 72| V| L~

D; 9
<Oy (Fveilis) 1ol 4 (104

where Co depends on z;. We choose the initial concentrations to be small enough in H 5 so that
Colpll, 4 <1 (105)

which gives the bound
n n

D.
3 Dizi[ (ci - @)V Vei| < 3 = vei] 2. (106)
i=1 T4 i-18
Using the Poisson equation obeyed by the potential ®, the boundedness of the Riesz transforms R =
(Ry,...,Ry) on L?(T%), and the Poincaré inequality, we have

[vely = %HRA*pHLQ <CIA plp2 < Clvpl L2 (107)
and thus
‘—Dizi@- [T Vo Ve < Dzl VOl Ve 12 (108)
n
< CODjlzilleil (j; |zl [ Ve; HL2) IVeil 12 (109)
< Csc Zl Dijves 2. (110)
J

Here Cj is a positive constant that depends on D;, z; and n. We choose the initial concentrations to be small
enough in L? so that

Cs3y lai| <1 (111)
=1

and we obtain the bound
n n

> |-piziei [, ve ve| <> Srvali (112)

i=1 i=1
Adding the equations of the velocity and the ionic concentrations, we obtain the differential inequality,

d
(10 Bl el ) 9l s 3 Dol 50 a13)
1=1 i=1

Let
c=min{v,D1,...,D,} (114)
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In view of the Poincaré inequality, we have

(unmzncz cz<o>L2)+c(u|L2+z||cz o>||L2)<o (115)

Integrating in time from O to ¢ gives the exponentially decaying bound (20).

6. PROOF OF THEOREM 3

Proof of Theorem 3. The proof will be divided into three main steps. For simplicity, we assume that € = 1.
Step 1. Bounds for the L? norm of the velocity u and the H™' norm of the charge density p. The ionic
concentrations evolve according to the equations

O (zic;) +u-V(zic;) = DA(zic;) = DV - (z?c,-V@) (116)
foralli e {1,...,n}. Consequently, the charge density p obeys
n
Op+u-Vp-DAp=DY V-(22¢;VP). (117)
i=1

Now we take the L? inner product of this latter equation with A~2p. We obtain the equation

n
MHA 'pliz + Dlpl 7 =—fw(u-Vp>A‘2p—D[T2;z§ciV®-vA‘2p (118)

The L? norm of the velocity u satisfies

: dtuuup+u|rwup— [, pve-u (119)

We add the equations (118) and (119), and we estimate. Integrating by parts, using the divergence-free
condition obeyed by the velocity, and using the Poisson equation obeyed by the potential ®, we obtain the
cancellation

) _
_[W(u Vp)A2p+ /w pUP - u = 0. (120)
The nonnegativity of the ionic concentrations implies

n n n
D [ Y atave-vA =D [ Y kave-ve--D [ Y :Eevef<o. 21
T2 7 T2 3 T3

Putting (118)—(121) together we get the differential inequality

 {luls + 1A 03} + 20| valZs + 2Dl 13 <0 (122)
Letting
~v=min{2v,2D}, (123)
we obtain the bounds
lu() 172 + A7 p(8) 72 < (Juo II%z + A ol 72)e 7, (124)
[ Iva()3 + Dlp(s) B2} ds < 5 (luoll + 1A p0l2,). (125)
and ol )
+
ft {pIvu(s)zz + Dlp(s)Iz2} ds < 5 (luolz2 + 1A polz2) e (126)
forall ¢ > 0.

Step 2. Bounds for the L* norm of c; - ¢;(0). Foreachi € {1,...,n}, we take the L? inner product of the
equation (1) obeyed by c; with ¢; and we obtain

¢ - cZ(O)HL2+D||VcZ||L2:—Df (i - 6(0)) V- Ve, - Df L (V- ver  (127)
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In view of the Ladyzhenskaya’s interpolation inequality, we have

1 1
V@[ s < CIA o] 250 2
and
1 1
lei =€i(0)| e < Cllei =il .| Veil 72
and hence

1 1 1 3
-1 5 5 T 5
<ODIz[[Apl 7ol 7 e - el Lo Vel 72

D [EQ Zi(Ci - Ei(O))V(I’ -V
In view of the boundedness of the Riesz transform on L2, we bound
D /]I“Q Ziéi(O)V(I) -V

This yields the differential inequality

D
sglei= &i(0)]72 + 3||V0i\|i2
< CIA™ plZ2lplZ2 lei = @ (0)72 + Ces(0) A~ p| 7
after an application of Young’s inequality. Hence
d

pr e ci(0)[72 + Dlci = @(0) |72
<2C|AT pl 2z ol 7z lei = €(0) 72 + 2CE(0)* A7 o[ 72
in view of the Poincaré inequality applied to the mean-free function ¢; — ¢;, and so
Slei- a1 + (2 - 2010 0l a01R2 ) e - e (0) 2 < 200 (021A
since v/2 < D. Let
0= [(Z-2010 o Bl ) s
Multiplying by the factor ¢"®) we obtain
% (e eit) - 2:(0)[32) < 2CE(0)2e" D A p(1) 32 < 202 (0) 23! A~ p(t)] -
Integrating in time from O to ¢ and using (124), we obtain
e"Dlei(t) - a(0)[7 - ei(0) - @(0)[7
< ["2Ce(07e3 e (uols + 1A~ pol2)ds
< C4@(0)* (Juol 72 + 1A~ poll72)
for any ¢ > 0. In view of (124) and (125),

t
r@)zgt—m?ﬁ;FOW(QH;dszgt—Fg

< D&(0)[Ve 2] Veil 2 < CDE(0)|A™ pf 2] Vil -

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

for any ¢ > 0. Here Iy and I'{, are constants depending only on the initial data and the parameters of the

problem. Therefore, we have
It

lei(t) = € (0)|32 <Te™2 (139)
forany ¢t >0 and all i € {1,...,n}. Integrating (132) in time from ¢ to ¢ + 1, we obtain
b+l 2 1 -2t
ﬁ'\wq@wngrea (140)
forany ¢t > 0 and all 4 € {1,...,n}. Here I and I are positive constants depending exponentially on the

initial data.
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Step 3. L? gradient bounds. The L? norm of the gradient of u evolves according to the energy equality

1d
s lvulle +vjaults = [ pve-au (141)
‘We bound
1 F S T |
/TQ pV® - Au| < | Aul 2] pl s | VR s < Cl AU 2] p) 2. Vo] 2. A ol 221 0] 2, (142)

using Holder’s inequality with exponents 2,4, 4 and Ladyzhenskaya’s inequality. This yields the differential
inequality

d -
ZIVulis +viAulze < Clplza1VolLe + Clolz2 1A ol (143)

In view of the Gronwall lemma 1, and the exponentially decaying estimates (124), (139) and (140), we
conclude that

[vu(t)|7. <Tie 2! (144)
and .
[ 18u(s) s < T3 (145)

for all ¢ > 0. Now we take the L? inner product of the equation (1) obeyed by ¢; with —Ac¢; and we estimate.
We obtain

”VCZHL? + D”ACZHLQ < D|ZZ’

f V- (VD) Ac| +
'[1T2(VCZ"V‘I>)ACZ'

We bound the three terms in (146) using interpolation inequalities, and we get

‘[]1‘2 (Ci - El)A(I)ACZ

T2(u Vi) Ac

2dt

< C’[W(CZ —Ei)A(I)ACi +C (146)

+C‘f GADAc| +
T2

/TZ(MVci)Aci

1 1 1 1
<llei =Gl pa[A®| af Acil 2 < Cllei @l Lo [ Veil Lol 22 1V ol 72 | Acill 2

D _
< gIIACi 122 + Clpl321Vpl 7 + Clei - &l 3 [ Vel (147)
for the first term,

1 3 1 1
VTQ(V@ V) Aci| < || Vil pa| V[ L Acil 2 < CVeil | Acil 2. 1A ol 22 Dl 2

D -
< SlAcilzz + CIA ol ol 7 Vel 2 (148)

for the second term, and

‘f ;AP Ac;
T2

for the third term. As for the nonlinear term in u, we integrate by parts and we estimate to get

‘[TQ (u-Vei)Ac

_ D _
<[ (0)1A2] 2| Acil 12 < [ Acilzz + Cle(0) Pl ol (149)

D
< |Vull 2 Veil 7 < ClVul 2| Ve 2| Aci] 2 < gIIACz‘II%Q +C|VulZ2 ] veilZ..

(150)
Putting (146)—(150) together, we end up with the energy inequality
d
aHch-Hi? + D|Ac;|72 < C|Vul7:|Veil 72 + Clol2 Vol 72
+ Clei =&l ol Teilfa + CIA™ ol ol Vel a + Cler() Pl (1sn
The decaying-in-time estimates (124), (126), (139), (140) and (144) give the bounds
[vei()7. <THes! (152)
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and
t+
f |Aci(s)[22ds < Te 3! (153)
t

for all ¢ > O, after an application of the uniform Gronwall lemma 1. This ends the proof of Theorem 3.

7. PROOF OF THEOREM 4

Proof of Theorem 4. We take the L? inner product of the equation satisfied by the velocity  in (1)—(5)
with (-~A)*u. We obtain

S ICAY Sl - (-8 Fule = [ vu)- (A [(pve)- (M) (s
The nonlinear term in u is estimated as
k=1 ktl
\ [I2<u-Vu>-<—A>ku\ < (-2 (u- V) 2| (-A) F uf 12 (155)

via integration by parts followed by an application of the Cauchy-Schwarz inequality. In view of the
divergence-free condition obeyed by u and the product estimate given by Lemma 2, we bound

[(-A)7 (u-Tu)| 12 = | (-A ﬁwu-u)nm < cu<—A>%<u-u)HL2
< Cillul 22 1Vl 24 (- Fu) 2, | (-A) 53 ) 2, (156)

and hence
| [Ww-w)-(—m’“u < Cilul 22 Vel (-8) Ful 1 (-2) # ul
21-8) 5wl + Celule 9ull (-2) fulf;
< ZH(—A)TuHé + Crl[ Tulfa | (-2)2ul 7 (157)

by Young’s inequality followed by an application of the Poincaré inequality to the mean-free function u. As
for the nonlinear term in p, we integrate by parts and we estimate
k+1

L (07®)- () ul < |(-8) T (490 12 (-2) -l

14 k+1 k-1
<122 ulfe + C1(-8)F (Vo) 7. (158)

‘We bound
[(-A)% (pv®)[22 < Crlpll 2 Vol 12| (-A) T V@[ 12| (~A) 2V 12
+ Rl (=A) T pl 2| (~A) % ] 12| VD] 12| VB .2 (159)

in view of Lemma 2. The potential ¢ obeys the Poisson equation —A® = p, hence

k-2
[(~A) 7 VP2 < C|(-A) 7 p 12, (160)
k—
[(~A)2 V|2 < C(-A) 7 pl 12, (161)
V@[ 2 <CIA ™ p] 12 (162)
and
VY@ L2 < C|pl 2 (163)

Putting (159)—(163) together and applying the Poincaré inequality, we end up with
k-1
[(-8) " (p7®) 32 < Ci(-2) % pl2[(-2) % pl 3. (164)
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This yields the differential inequality

d k k1l k k=1 k
ﬁ\l(—A)WII%ﬁV\I(—A) 2 ul 72 < Cr| Vul 12 (~A) 2ul 7, + Cr(-A) 2 p[721(-A)2p|72.  (165)

Recalling that
p= izicia (166)
using the hypothesis of Theorem 4 given by (24), ar:c_i applying the uniform Gronwall Lemma 1, we obtain
|(-8)2ulj, < Tje 71" (167)
and
L 1-8) 2 u(s) [ads < TR (168)
for any ¢ > 0.

Now we take the L? inner product of the equation obeyed by the ionic concentration ¢; in (1)—~(5) with
(—A)kci and we get

S Tl 4 DI-8) el = - [ (wve)(-A) e+ Dz [ 9 (ve)(-A)te
—[EQ(U'VCi)(—A)kci + Dz A2(V0i-v®)(—A)kCi
+ Dz A (¢~ @)AB)(~A)'e; + Dzi(0) fT AB(-A)e;, (169)
Integrating by parts, using the divergence-free condition obeyed by u, and applying Lemma 2, we estimate
f (u-Ve;)(~A)ee; f (u-V(ci - &) (~A)e;
< CI(-A)% (ules - @)l 2l (-A) F e 2
< CkIIUIIEQ HVUIIEQ H(—A)icilliz H(_A)%lciléz
+ail- A)Full (-8) Fulfale - el fa Vel 221 (-2) F il o

< 212 el + CulTulbal-a) b2,

k+
£ Crll(~A)7u) 22 [ (~A) 5 ul2a + Cr | Ve | L. (170)

As for the terms involving the potential ®, we integrate by parts, apply the fractional product inequality
given by Lemma 2, use the Poisson equation —~A® = p and estimate. The first term in ¢ is bounded as

Dz [ (Ve v0)(-8)6i| < CI-2)'F (Ver - V)12l (-2) F il
< ClVal 1A 21 (-2) 5 Vo2, [(-A) b Vol 2, (-A) 5 ¢l 12
+ckn(—A)TvCianH(—A)iv@nzzHwné||A<I>||%2||(—A>%cinm
<ck||v«:z||L2||AcZ|\L2||< N plleH( A5 21 (-2) "5 ¢l 12
Gl (~A) el 21 (-A) il Lol 2 (-2) 5 il
<2182 el + G2 2l

+ Oy VeilRa | Acil3a + Cel(-A)F pl321 (-4) T pl2. (171)
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The second term in ® is bounded as follows

Dz [ (e e a)(-a) | < CI-2)' (- ) AD) 12| (-2) F cil

< Cilei - cznpuvmuzn( AT A<1>||L2||< A)zA@\|L2||< )T il e
+@H(—A)Tciuz?\\(—A)aciuzz\\A@H;vauzzH(—A)Tciuy

< el 2l (-8)F ol (-8) ol 72l (-2) F il
+ OUI(-)'F el ) (-8) il 2 Vol (-8) il

< U8 F el + Cull Vel + il (-8)'F pl3al (-8) £ pli
+ CrlVplLa + Crll(-0) 7 eil f2 [ (-2) il 3. (172)

The estimation of the last term in ® is given by

<

D
2I-8)F il + Cl(-)'5 ol (73)

’Dzici(O) [, a8-a)

Putting (169)—(173) together and applying the Poincaré inequality, we obtain the differential inequality

H( A)ecil}a+ DI(-A) F el

IV

E k k4l
SCkIIVUIILzII(—A)QCiHLQ+Ck||(— )zu||%2\|(—A) 2 |72 + Cill(-A) Cilliz\\plliz
+ Ol (=A) 7 pl2[(-A)2 |22 + Cill(-A) T el 22 (-A) 2|20 + Crl(-A) % p)22. (174)

In view of the exponentially decaying bounds for the velocity (167) and (168), the decaying assumptions
imposed on the ionic concentrations in the hypothesis of Theorem 4, and the Gronwall Lemma 1, we obtain

[(-A)2ei(t)]32 < The ot (175)
and
/;Hl H(—A)%ci(s)ﬂizds < Fieiﬁt (176)
forany ¢t >0and i€ {1,...,n}. This completes the proof of Theorem 4.

Remark 7. As a consequence of theorems 3 and 4, the solution (u, c1, . . ., cy,) to the periodic two-dimensional
NPNS system (1)~(5) decays exponentially in time in all Sobolev spaces H* provided that the initial data
is smooth. Due to the 2D continuous embedding of the Sobolev spaces H* in the Hélder spaces CF~1=%
fork>1and «a € (0,1), we conclude that the solution of (1)—(5) decays exponentially in time in all Hélder
spaces Ck-1=2a and so does its time derivatives .

Remark 8. The ionic species are assumed to have equal diffusivities. This assumption is needed to obtain
the diffusion term —DAp in (117) when summing the equations (116) obeyed by the ionic concentrations,
and consequently obtain the boundedness of the charge density p in the space L*(0,T; LQ(']IQ)) which is
crucial to prove the base step decay.

Remark 9. The decaying bounds established for the solution of (1)—(5) depend exponentially on the initial
data due to (139) and (140). In the case of two ionic species with valences 1 and -1 and equal diffusivities,
the dependence on the initial data is at most polynomial (see [2]).
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8. PROOF OF THEOREM 5

In this section, we study the long-time behavior of solutions to the two-dimensional periodic NPNS sys-
tem for n ionic species with different valences and diffusivities on the periodic box T2. The main challenges
arise from the fact that the charge density p does not obey the differential equation (117) that holds in the
case of equal diffusivities.

Proof of Theorem 5. The following quantities are the basic relative energy and its dissipation of the

NPNS system,
n c c ¢ 1
5:] ]-(—11(1)——1 1) 2 pd | da, 177
TQ[;C Ci . Ci 5i+ +2p v 77

n
D- [TZ S Dici|VIne + zV0[ da, (178)
=1
and
C; = fci(ac)d:c - 4n2z;, (179)

introduced in [6] and used to obtain the global regularity for the NPNS system in two spatial dimensions on
bounded domains. We note that the constant C; is time-independent, a fact that follows from the conserva-
tion of the spatial integral of the i-th ionic concentration for all positive times. Without loss of generality,
we assume that C; is nonzero. For simplicity, we assume that € = 1.

Step 1. Nonnegativity of the energy £. In view of the Poisson equation (2) obeyed by the potential ®, we
have

fp pbdz = fT2 pA2pdz = [A7p|2, >0 (180)

at any time ¢ > 0. Moreover, the inequality x Inxz — x + 1 > 0 that holds for any « > 0 implies that

S = C’L Cz CZ
/Tz [;Ci(c_zln(cz)_c_iJrl)]deO (181)

at any time ¢ > 0. Putting (180) and (181) together, we conclude that the energy £ is nonnegative.
Step 2. Logarithmic Sobolev estimate. For eachi € {1,...,n}, we show that the logarithmic estimate

f e Cm( %) - % 1) de < 4n%6 n 2 (182)
T2 C; C; C;

holds, where C' is a positive universal constant. Indeed, we apply Jensen’s inequality to the natural logarith-
mic concave function and the probability measure C—?dm to bound

LalGm(E)-Gen)e-c Lan(E)e
<Cln( CClda:) Cln( 5 (2;)2 2da;)

:Cﬂn(” G ) (183)

We let g := \/(\/__) and denote its spatial average over T2 by g. In view of Ladyzhenskaya’s interpolation

inequality, we have

lal7a <la@l7s + Clla-ali2valiz < lal7s + Clal7z1val7 (184)

where the last inequality follows from the boundedness of g by the L? norm of g. Since |q[?. = 2, we

have . )
= @n (m Jraa)te) < g (fLa@Pae) = Ghem?-1 ass
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by Holder’s inequality. Hence
lalzs <1+ Clvalie, (186)

Putting (183) and (186) together gives the desired bound (182), finishing the proof of Step 2.
Step 3. Dissipation controls energy inequality. We show that

E<ID (187)

where I'; is a positive constant depending only on the diffusivities. Indeed, we have

’Dz(mlnD)Z[ cl|vlncl+zZV(I>| dx

min D; ) Z f (ci|VIne|? + cil 2P|V +22i¢;(VIne;) - V@) do

(

- (im0 );/p(
( n )Z;f 2v./cil dw+(m1nD)f 2Wp- Vodx
=4(mmD)(anauLz+ ”PL?) (188)

Since p is mean-free, we have the Poincaré estimate

1. 1
5”A "ol < §||P||L2- (189)

In view of the logarithmic Sobolev estimate derived in Step 2, and the inequality In(1 + ) < x that holds
for any = > 0, we bound

C;

+¢i|ziP |V + 22V ¢ - V@) dx

Ji Ei(—ln(cz)—&+1)dx§0||v\/c_,-||iz (190)
T2 C; C; C;
Adding (189) and (190), we conclude that
L 1
£<C Y vValis+ 5 lole (191)
i=1
Therefore, we obtain the bound
DZC’(mlnD)E (192)
1<i<n
from which we conclude that o
E<—D (193)
( min Di)
1<i<n

for some positive universal constant C'. This finishes the proof of Step 3.
Step 4. Energy equality. The following energy equality

d
dt

holds for all £ > 0. We refer the reader to the proof of Proposition 2 in [4] for details.
Step 5. Decaying bounds up to uniform constants. The equality (194) implies that

{Fuliz +&}+vival + D=0 (194

T 1
[ (D +vivulis) de < Suole + & (195)
for any 7" > 0. But

D> 2( in i) ol (196)

ISzS
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and so
T : 2 2 1 2
[ (2 (min D) 1013 + vIvul?a) de < (51wl + &). (197)
0 1<i<n 2
Moreover, the energy equality (194) and the Poincaré inequality (187) yield the differential inequality
d (1 1
TAGI% + €} + viulfa + £ <0 (19%)
and so 41 .
2 2
A1 e} + o {5l + €} <0 (199)
where I's > 0 depends on the diffusivities Dy, . .., D,, and the kinematic viscosity v. Therefore, we conclude
that ) .
Sl + £(8) < (5 luol + o) e T (200)
for any ¢ > 0. Since
1, .-
E(t) 2 ZIA (1) |72 (201)
for any ¢ > 0, we infer that
lu@®IZ2 + 1A~ (072 < (luolZ2 +280) ™" (202)

The bounds (26) can be obtained by following the proof of Steps 2 and 3 of Theorem 3 and then the proof
of Theorem 4. We omit further details.
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