
t

a

d

H

b

v

n

s

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

journal homepage: www.elsevier.com/locate/chaos

Electromechanical memcapacitor model offering biologically plausible

spiking

Zixi Zhang a, Yuriy V. Pershin b,∗, Ivar Martin c

a School of Physics, Peking University, Beijing, 100871, China
b Department of Physics and Astronomy, University of South Carolina, Columbia, SC, 29208, USA
cMaterials Science Division, Argonne National Laboratory, Argonne, IL, 08540, USA

A R T I C L E I N F O

Keywords:

Memcapacitor

Neuron

Artificial neural networks

Spiking neurons

Nonlinear dynamics

Memristor

A B S T R A C T

In this article, we introduce a new nanoscale electromechanical device – a leaky memcapacitor – and show that

it may be useful for the hardware implementation of spiking neurons. The leaky memcapacitor is a movable-

plate capacitor that becomes quite conductive when the plates come close to each other. The equivalent

circuit of the leaky memcapacitor involves a memcapacitive and memristive system connected in parallel.

In the leaky memcapacitor, resistance and capacitance depend on the same internal state variable, which is

the displacement of the movable plate. We have performed a comprehensive analysis showing that several

types of spiking observed in biological neurons can be implemented with the leaky memcapacitor. Significant

attention is paid to the dynamic properties of the model. As in leaky memcapacitors the capacitive, leaking

resistive, and reset functionalities are implemented naturally within the same device structure, their use will

simplify the creation of spiking neural networks.
1. Introduction

Information processing in biological systems is based on a complex

network of interacting neurons. Each neuron, when subjected to a stim-

ulus, responds by outputting a signal that typically has a form of un-

harmonic spikes. A variety of models of the spiking phenomenon have

been proposed, most famously the Hodgkin–Huxley (HH) model, which

successfully captured many observed features of spiking in neuronal

membranes [1–7]. This model led to the development of biochemically

based information processing models in subsequent decades [6,8–10].

HH model attempts to accurately capture the properties of ion

channels with memory and, consequently, is quite complex. Several

simplified models, such as the integrate-and-fire model, appeared that

can achieve a variety of spiking behaviors in response to different types

of stimulation [6,7,11–15]. Although distinct from HH, one may expect

hat qualitative features such as instabilities/bifurcations, limit cycles,

nd synchronization among neurons are quite universal and robust

ue to the general underlying principles of dynamical systems [16].

owever, simplified models may have the important advantage of

eing easier to implement artificially using existing materials and de-

ices [17]. This leads to the exciting possibility of biologically inspired

euromorphic information processing systems implemented in the solid

tate.
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In the above context, the class of memory circuit elements [18]

becomes increasingly important because of the capacity of memory

circuit elements to store and process information on the same physical

platform [19]. The memory circuit elements (in a pure form) are

resistors, capacitors, and inductors with memory whose response is

defined by the equations

𝑦(𝑡) = 𝑔 (𝐱, 𝑢) 𝑢(𝑡) , (1)

𝐱̇ = 𝐟 (𝐱, 𝑢) , (2)

where 𝑦(𝑡) and 𝑢(𝑡) are any two complementary circuit variables (i.e.,
current, charge, voltage, or flux), 𝑔 (𝐱, 𝑢) is a generalized response, 𝐱 is
a set of 𝑛 state variables describing the internal state of the device, and

𝐟 (𝐱, 𝑢) is a continuous 𝑛-dimensional vector function. Depending on the
choice of the complementary circuit variables, Eqs. (1) and (2) are used

to define memristive, memcapacitive, or meminductive systems [18].

Examples of physical realizations of memory circuit elements can be

found in the review paper [20].

For more than a decade, significant attention has been paid to

the application of memristive systems in neuromorphic computing.

Indeed, memristive systems share several common characteristics with

biological synapses, such as the two-terminal structure, adaptivity,

and high integration density. One of the first works in this area was
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Fig. 1. (a) An electromechanical leaky memcapacitor connected to a voltage source through a resistor. (b) Equivalent electronic circuit of the leaky memcapacitor: a memcapacitive
system, CM, and a memristive system, RM, connected in parallel. Both systems depend on the same state variable 𝑥.
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the demonstration of associative memory with memristive neural net-
works by one of us [21]. Interestingly, the relevance of the memristive
equations to the HH model was established in 1976 by Chua and
Kang [22,23]. According to these authors, ‘‘the potassium channel
of the Hodgkin–Huxley model should be identified as a first-order
time-invariant voltage-controlled memristive one-port and the sodium
channel should be identified as a second-order time-invariant voltage-
controlled memristive one-port’’ [22]. Typically, the capacitive compo-
nent in the response of memristive cells [24–28] is considered parasitic.
Although most of the existing research focuses on purely electronic
schemes, there are also models that rely on the mechanical realization
of memory and spikes [24–28].

Neuromorphic applications of memcapacitive systems have received
much less attention. This may be explained by the fact that in general
memcapacitive devices [29–32] have been much less studied (com-
pared to memristive ones). At the same time, the reactive nature of the
capacitive response is very promising for low-power computing appli-
cations as, at equilibrium, the memcapacitive devices do not consume
any power. Therefore, currently, the application of memcapacitors
in neuromorphic circuits [33,34] is a narrow but highly promising
research field. In fact, the possibility of energy-efficient neuromorphic
computing with solid-state memcapacitive structures has been recently
demonstrated [35].

The mechanical aspect of biological neurons is also becoming in-
creasingly recognized as important in the study of neuroscience. It plays
a role in several physiological processes, including the generation of
action potentials [36]. Mechanical changes in the cell membrane can
influence the opening and closing of ion channels, which can affect the
electrical signaling of the neuron. The soliton model combines mechan-
ical and electrical factors of signal propagation through axons and has
been able to account for some experimental effects in anesthesiology
beyond the Hodgkin–Huxley model [37–40].

In this work, in part inspired by biological neurons, we propose
a simple neuromorphic electromechanical model based on a leaky
memcapacitor. The proposed model can be used to generate periodic
spike timing sequences under constant stimulation. As the operation of
the leaky memcapacitor is based on the mechanical degree of freedom,
its behavior is pretty unique and different from that of memristive
ReRAM cells. Applying the methods of dynamical systems, we explore
the qualitative features of this model in terms of its fixed points,
bifurcations, and limit cycles under DC stimulation. In addition, we
demonstrate that the system is capable of complex dynamical adap-
tations, such as synchronization with periodic external drives, spiking
frequency drift, bursting, and other adaptations (for some behaviors,
an additional memory circuit element is required).

2. The model

In this section, we introduce a leaky memcapacitor, its model, and
the circuit we use to simulate the spiking neurons. The circuit, the
physical diagram of the leaky memcapacitor, and its equivalent circuit
are shown in Fig. 1.
2

The central element of our spiking neuron is a leaky memcapacitor
– a capacitor with a plate that moves in response to the force exerted
by the internal electric field and the restoring force of the spring (the
spring constant is 𝑘). In the absence of charges on the plates, 𝑞 = 0, the
distance between two plates is 𝑑. It is assumed that the displacement
of the top plate, 𝑥, is positive for the displacement towards the bottom
plate, see Fig. 1(a). Thus, the distance between the plates is 𝑑 − 𝑥. The
esponse of this capacitor to the change in voltage takes a finite time
s physically the response cannot be instantaneous. Consider a fully
ischarged leaky memcapacitor subjected to a small step-like voltage.
t is evident that right after the step, the displacement of its top plate
emains the same as the initial one (zero), and only after a finite time
he top plate will approach a new equilibrium position. Such memory
f the prior state, of course, is volatile. Below, we explicitly show that
he model of the capacitive component of the system in Fig. 1(b) (left)
elongs to the class of memcapacitive systems [18].

We assume that the capacitor is leaky : there is a finite resistance
(𝑥), which depends on the distance between the plates, rapidly drop-
ing in the ‘contact’ region, 𝑥 > 𝑥𝑐 . The leaky memcapacitor has
emory (which justifies the term memcapacitor) because the current
osition of the moving plate (and hence the capacitance itself) depends
n the prior history of the charge on the capacitor, which in turn
epends on the history of applied voltage. It is this history dependence,
he memory, that is responsible for the emergence of complex behaviors
hat the simple circuit in Fig. 1(a) exhibits.

The main operating principle of this device is straightforward.
tarting from the equilibrium position at 𝑥 = 0, upon turning on the
oltage 𝑉 , the capacitor begins to charge up. This leads to the attraction

between its plates, which brings them closer together. For a sufficiently
large applied voltage, the top plate reaches the contact region, the
capacitor discharges, and the plate recoils back from the contact region.
Note that the charging process is limited by the resistor with resistance
𝑟 (Fig. 1(a)).

We found that the proximity-induced attraction between the two
surfaces (plates) is helpful to prevent the plates from finding a new
static equilibrium position in the contact region. We model this part
of the interaction with a Lennard-Jones-like potential. The short-range
attraction between the plates allows for a more effective discharge
process, leading to a periodic approach of the top plate to the bottom
plate followed by recoil. The exact form of 𝑅(𝑥) and the form of the
potential do not matter, to a certain extent. In the biological context,
our memcapacitor may represent two lipid monolayers forming a cell
membrane. As the membrane swells or thins, the resistance of the
membrane (through ion channels) is affected, as modeled by 𝑅(𝑥).

In our modeling of membrane dynamics, we neglect the kinematic
ass (in a biological setting, that would be because membranes reside

n an aqueous environment that has considerable viscosity). This over-
amped regime makes it non-trivial to have oscillatory behavior, and
ew types of mechanism are required to perform the periodic spiking
hat we see possible.

Eqs. (1) and (2) provide the general framework for the description of
leaky memcapacitor. For the capacitive and resistive responses, Eq. (1)
is written as

𝑞 = 𝜖𝐴 𝑉 ≡ 𝐶(𝑥) ⋅ 𝑉 , (3)

𝑑 − 𝑥 𝐶 𝐶
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Fig. 2. (a) Resistance as a function of the displacement of the top plate (Eq. (4)). (b) Potential energy as a function of the displacement of the top membrane (Eq. (6)). The insets
show a zoomed-in contact region. The dashed line refers to 𝑥𝑐 .
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Table 1
Parameters used in simulations. Some of the parameters are not shown,
as they play the role of units of measure (e.g. 𝑅0).

Parameter Value Parameter Value

𝑑 8 𝑟 10−3

𝑥𝑐 6.4 𝜌0 1.25 × 10−4

𝛽 5 × 104 𝛾 1.25 × 10−4

𝑘 5∕6

𝑉𝐶 =
[

𝑅0 ⋅
( 1
𝜋

arctan𝛽
(

𝑥𝑐 − 𝑥
)

+ 0.5
)

+ 𝜌0
𝑑 − 𝑥
𝐴

]

𝐼𝑀 ≡ 𝑅(𝑥) ⋅ 𝐼𝑀 , (4)

here 𝑞 is the memcapacitor charge, 𝑉𝐶 is the voltage across the leaky
emcapacitor, 𝐼𝑀 is the leakage current, 𝜖 is the permittivity, 𝐴 is the
late area, and 𝑅0, 𝛽, 𝜌0 are the parameters defining the memristance.
n the normal regime, 𝑅(𝑥) ≈ 𝑅0, while in the contact regime, 𝑅(𝑥) is
ainly determined by the 𝜌0 term; 𝛽 describes the rate of change of the
0 component in 𝑅(𝑥) in the vicinity of 𝑥𝑐 .

The leaky memcapacitor is described by a single internal state vari-
ble 𝑥, which is the displacement of the top plate from its equilibrium
osition (at 𝑞 = 0) in the downward direction (see Fig. 1(a)). Its
ynamics (corresponding to Eq. (2)) is represented by

𝑥̇ =
𝑞2

𝜖𝐴
−

d𝑈 (𝑥)
d𝑥 , (5)

here 𝛾 is the dissipation coefficient, and the potential 𝑈 (𝑥) is chosen
s

(𝑥) = 1
2
𝑘𝑥2 + 4𝜖𝑙

[

( 𝜎
𝑑 − 𝑥

)12
−
( 𝜎
𝑑 − 𝑥

)6
]

. (6)

ere, the first term is the spring potential energy, while the second term
s the Lennard-Jones-like potential that we use to describe the contact
nteraction between the plates. In Eq. (6), 𝑘 is the spring constant, 𝜖𝑙 is
he depth of the Lennard-Jones potential well, and 𝜎 is the distance at
hich the Lennard-Jones potential energy is zero.

In the following, we measure the distances in units of 𝜎, resistances
n 𝑅0, 𝑈 in 𝜖𝑙, 𝑘 in 𝜖𝑙∕𝜎2, time in 𝑅0𝐴𝜖∕𝜎, charge in

√

𝜖𝜖𝑙𝐴∕𝜎, 𝛾 in
𝜖𝜖𝑙𝐴𝑅0∕𝜎3, voltage in

√

𝜎𝜖𝑙∕(𝜖𝐴), and current in
√

𝜎𝜖𝑙∕𝜖𝐴∕𝑅0. To min-
imize clutter in the text, the original notation is used for dimensionless
variables and parameters. The parameters used in our simulations are
given in Table 1. Fig. 2(a) shows 𝑅(𝑥) as defined by Eq. (4); Eq. (6) is
presented in Fig. 2(b).

Note that qualitatively similar results (to the ones presented in this
paper) may be obtained using a different choice of parameters and
functional dependencies. In particular, we have verified that the results
remain nearly the same when the constant resistance for 𝑥 ≲ 6 in
Fig. 2(a) is replaced with a resistance linearly dependent on 𝑥 (for more
details, see Supplemental Information (SI) Sec. S1).

To simulate Fig. 1(a) circuit, we use Kirchhoff’s voltage law

𝑉 (𝑡) = 𝑟
(

𝑞̇ + 𝐼𝑀
)

+ 𝑉𝐶 , (7)

which is applied together with the equations defining the leaky mem-
capacitor, Eqs. (3)–(6). Trajectories (𝑥(𝑡), 𝑞(𝑡)) are found by numerical
3

a

integration of Eqs. (5) and (7). Integration was performed using the
ODE solver ode45 for non-stiff differential equations in MATLAB® ver.
R2022a.

For the convenience of the reader, Eqs. (5) and (7) can be presented
as

𝑥̇ =
𝑞2

𝛾𝜖𝐴
− 𝑘𝑥

𝛾
−

24𝜖𝑙
𝛾

[

2𝜎12

(𝑑 − 𝑥)13
− 𝜎6

(𝑑 − 𝑥)7

]

, (8)

𝑞̇ =
𝑉 (𝑡)
𝑟

− 𝑞 𝑑 − 𝑥
𝜖𝐴

⎡

⎢

⎢

⎢

⎣

1
𝑟
+ 1

𝑅0

(

1
𝜋 arctan 𝛽

(

𝑥𝑐 − 𝑥
)

+ 0.5
)

+ 𝜌0
𝑑−𝑥
𝐴

⎤

⎥

⎥

⎥

⎦

. (9)

e note that our model of spiking neurons (Eqs. (8) and (9)) is distinct
rom all other spiking models (see, e.g., [6,17]).

. Spiking behavior and phase diagram

Figs. 3(a) and (b) show two selected simulation results that demon-
trate the transient dynamics from zero initial conditions, 𝑥0 = 0 and
0 = 0, to the regime of periodic spiking. These results indicate a
ignificant dependence of the shape of the spike on the magnitude
f the applied voltage (𝑉 = 8.0829 in Fig. 3(a) and 𝑉 = 15.0111 in
ig. 3(b)). According to Figs. 3(a) and (b), the spikes are smoother at
= 8.0829, and sharper at 𝑉 = 15.0111. The sharper spikes show a

loser qualitative resemblance to biological spikes.
A notable feature of the transient dynamics is the initial sharp in-

rease in the voltage across the leaky memcapacitor, 𝑉𝐶 . This property
clearly observed in Figs. 3(a) and (b)) is associated with the smaller
apacitance at short times (close to 𝑡 = 0) due to the initially large plate
eparation. Within the transient region, the leaky memcapacitor adapts
o the applied voltage: the Coulomb attraction reduces the distance be-
ween the plates, which increases the capacitance. The voltage plateau
n Fig. 3(a) is close to the bifurcation point at 𝑉 ′

1 = 7.9582 (for more
nformation, see SI Sec. S1). This explains the relatively long duration
f the transient region.

Moreover, in Fig. 3(c) we present an example of nonspiking behav-
or. In this case, the trajectory ends in a sink (attractor).

We systematically analyzed the behavior of the circuit by studying
ts fixed points and limit cycles. For this purpose, we used vector field
iagrams of solutions and Jacobi matrices (for more information, see
I Sec. S1). This analysis resulted in the phase diagram presented in
ig. 4(a). The diagram indicates the presence of a global limit cycle in
wide range of applied voltage, from 𝑉 ′

1 to 𝑉2, which accounts for the
resence of the spiking regime.

The main features of the phase diagram are as follows. First, since
he behavior is symmetric with respect to the sign of 𝑉 , we show only
he positive voltage region of the phase diagram. Around 𝑉 = 0, the
nly global attractor is a sink. As 𝑉 increases, at 𝑉0 ≈ 3.4156 there is
bifurcation that nucleates a saddle and a spiral source; they do not

nfluence the global attractor, however, until they separate sufficiently
t 𝑉 where the saddle divides the phase space into two disconnected
1
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Fig. 3. Response to a step-like voltage applied at 𝑡 = 0: starting from zero initial conditions (𝑥 = 0, 𝑞 = 0), the circuit transits to (a), (b) a periodic spiking regime, or (c) a static
egime. These graphs were obtained using (a) 𝑉 = 8.0829, (b) 𝑉 = 15.0111, and (c) 𝑉 = 7.8520. In the top panels, the black dashed line refers to 𝑑 and the brown one refers to

𝑐 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. (a) Fixed points and attractors as a function of the applied voltage 𝑉 . Phase diagrams in (b) 𝑉 = 7.0437 (the sink and limit cycle case in (a)), (c) 𝑉 = 7.9674 (the limit
ycle case in (a)) and (d) 𝑉 = 15.5000 (the sink case on the right of the limit cycle one in (a)). In (b), the phase space is divided into two parts by the flow lines towards the

addle, as depicted with a dashed line. The semi-transparent gray thick line represents the limit cycle. The saddle, the sink, and the spiral source are labeled with black arrows,

nd the yellow star inside the limit cycle is located at the spiral source. The blue arrows in (b) and the orange arrows in (d) depict the direction of the shift of the three fixed

oints as 𝑉 increases. In (d), the vector fields are added in small blue arrows to help show the fixed points. The initial conditions of the solutions are set discretely along the

dge as well as around the spiral source. In (b)–(d), the evolution time 𝑡 was 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the

eb version of this article.)
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regions (saddle homoclinic orbit bifurcation (SHOB)), one of which

hosts a limit cycle and the other the original sink that corresponds

to a static state, as shown in Fig. 4(b). In SI Sec. S2 we show the

ossibility of switching between these two attractors using voltage

ulses. Another bifurcation (saddle–node bifurcation) occurs when the

ink and saddle points annihilate at 𝑉 ′
1 = 7.9582, transforming the limit

ycle into a global attractor with stable spikes, as shown in Fig. 4(c).

t 𝑉2, another bifurcation generating a sink-saddle pair cuts off the

limit cycle, shifting the global attractor to the sink (saddle–node on

the invariant circle (SNIC)), as shown in Fig. 4(d). As 𝑉 continues to

ncrease, the saddle and spiral source point move toward each other

nd then annihilate through a saddle–node bifurcation, leaving only a

ink (for more information, see SI Sec. S1).

To better understand the properties of the spikes, the natural fre-

uency of the spikes, 𝑤𝑛𝑎𝑡𝑢𝑟𝑎𝑙, was calculated as a function of the

applied voltage (see Fig. 5(a)). Interestingly, the calculated points

are distributed in the half-of-the-oval shape in the frequency-voltage
plot. Fig. 5(a) shows that the frequency approaches zero when 𝑉 →

1, 𝑉2. The Fourier transform of the voltage across the memcapacitor is

resented in Fig. 5(b). Qualitatively, the entire spiking regime can be

ivided into three parts, I, II, and III, which are different by the pattern

f spikes (see Figs. 5(c)–(e)). The regime of ‘‘negative spikes’’ I, and the

egime of ‘‘positive spikes’’, III, are connected by the regime of more

ymmetric (harmonic) spikes, II.

. Synchronization with external source

To study synchronization with an external source, an ac voltage was

dded to the constant driving voltage 𝑉𝑑𝑐 , 𝑉 (𝑡) = 𝑉𝑑𝑐 + 𝛿𝑉 sin(𝜔𝑠𝑜𝑢𝑟𝑐𝑒𝑡),
with 𝛿𝑉 = 0.1155. To initialize the system close to the limit cycle,

e used the initial conditions 𝑥0 = 6.60 and 𝑞0 = 2.02. The Fourier
transforms for the regimes I-III of oscillations in Fig. 5(a) are presented

in Fig. 6. When the circuit is in regime II (Fig. 6(b)), i.e., away

rom the thresholds, the synchronization occurs only when the source
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Fig. 5. (a) Spike frequency as a function of 𝑉 , and (b) Fourier transform of 𝑉𝐶 as a function of 𝑉 . The dashed lines, from left to right, refer to 𝑉1, 𝑉
′
1 and 𝑉2, respectively. Here,

1 is the single-sided amplitude of the Fourier transform. In these calculations, to keep the system close to the limit cycle, the initial condition was selected as 𝑥0 = 6.6000 and
𝑞0 = 2.0207. The evolution time 𝑡 was 1.5, and we skipped the initial transient interval. (c)–(e) Steady-state oscillations at (c) 𝑉 = 7.0183 (regime I), (d) 𝑉 = 11.5470 (regime II)
and (e) 𝑉 = 15.0561 (regime III). In (c)–(e), the black dashed line refers to 𝑑 and the brown line refers to 𝑥𝑐 . (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 6. Synchronization with external source: The Fourier transform of 𝑉𝐶 for (a) 𝑉𝑑𝑐 = 7.0645 (regime I), (b) 𝑉𝑑𝑐 = 11.5470 (regime II) and (c) 𝑉𝑑𝑐 = 15.0688 (regime III). 𝑃1 is the
ingle-sided amplitude of the Fourier transform. In these calculations, to keep the system close to the limit cycle, the initial condition was selected as 𝑥0 = 6.6000 and 𝑞0 = 2.0207.
hese plots were obtained using the integration time 𝑡 of 2; the initial interval of transient dynamics was omitted. In (a)–(c), the horizontal and vertical dashed lines correspond

o 𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙(𝑉𝑑𝑐 ).
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frequency is very close to the spike frequency, 𝜔𝑠𝑜𝑢𝑟𝑐𝑒 ≈ 𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙(𝑉𝑑𝑐). In
his regime, the Fourier plot features various combinations of integer

ultiples of 𝜔𝑠𝑜𝑢𝑟𝑐𝑒 and 𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙, 𝑁𝜔𝑛𝑎𝑡𝑢𝑟𝑎𝑙 ± 𝑀𝜔𝑠𝑜𝑢𝑟𝑐𝑒, where 𝑀,𝑁 =
, 1, 2,…
In the other two cases in Fig. 6, the external source has a much

tronger influence on spike generation. Figs. 6(a) and (c) represent the

ases when 𝑉𝑑𝑐 is close to the thresholds 𝑉1 and 𝑉2. In these cases,

the regions of synchronized driving frequencies are largely extended

in both integer multiples and rational fractions of the self-oscillation

frequencies. In regime I, when the driving frequency is small, the

system responds harmonically to the drive, as shown in Fig. 6(a), where

only the component of 𝜔𝑠𝑜𝑢𝑟𝑐𝑒 is evident. This is because once 𝑉 drops

elow 𝑉1, the spiral source and saddle vanish simultaneously, and the

system can easily switch to the sink, which is away from the contact

regime as depicted in Figs. 4(a) and (b), and may not return. On the

contrary, in regime III, when 𝑉 crosses over 𝑉2, the bifurcation of

sink-saddle pair SNIC bifurcation appears in the contact regime on

he previous limit cycle, as depicted in Figs. 4(a) and (d), thus the
 b
ystem will not go away from the contact regime, resulting in a spiking

aveform even at low source frequency. Fourier transforms for these

hree regimes are provided in SI Sec. S3.

. Other types of dynamics

In this section, we show that the dynamics of Fig. 1(a) circuit can

e further enriched by the use of additional components with memory.

pecifically, we demonstrate that the replacement of the resistor 𝑟

n Fig. 1(a) with a thermistor (a type of memristor [20,22]) may

ualitatively change the pattern of spikes in several ways. Five types of

odified behavior have been identified including bursting (a pattern of

iring wherein the periods of rapid spiking are separated by quiescent

eriods).

In principle, it is evident that at a suitable constant applied voltage

, the resistance 𝑟 controls the generation of spikes. As in the limiting

ases of 𝑟 → 0 and 𝑟 → ∞ the dynamics of Fig. 1(a) circuit should not
e oscillatory, one can assume that the spiking behavior occurs within
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Fig. 7. Achieving complex spiking behaviors by substituting the resistor with a thermistor. (a), (b) A negative temperature coefficient thermistor of Eq. (10) and (11). (c), (d),
e), (f) A positive temperature coefficient thermistor of Eq. (12) and (13). Panel (f) is zoom-in of (e). In the simulation (a), the parameters were set as 𝑉 = 13.8564, 𝛽1 = 1.70,
𝐶1 = 5 × 103 and 𝛿1 = 2 × 106. In the simulation (b), the parameters were set as 𝑉 = 13.8564, 𝛽1 = 1.51, 𝐶1 = 5 × 103 and 𝛿1 = 2 × 106. In the simulation (c), the parameters were set
as 𝑉 = 15.0111, 𝛽2 = 10, 𝐶2 = 2.5 × 104 and 𝛿2 = 2 × 106. In the simulation (d), the parameters were set as 𝑉 = 15.0111, 𝛽2 = 50, 𝐶2 = 250 and 𝛿2 = 100. In the simulation (e), the
parameters were set as 𝑉 = 8.0829, 𝛽2 = 50, 𝐶2 = 75 and 𝛿2 = 100. In (e) and (f), the black dashed lines refer to 𝑟1, and the brown dashed lines refer to 𝑟′1. For all simulations, the
background temperature 𝑇𝑒1 or 𝑇𝑒2 is set 1. The initial conditions are set 𝑥 = 0, 𝑞 = 0, and 𝑇 = 1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
certain resistance thresholds, say, when 𝑟2 < 𝑟 < 𝑟1. Consequently,
a suitable memristor (e.g., with resistance changing across 𝑟1 and/or
𝑟2) may be used to control the spike pattern. Here we use a negative
temperature coefficient thermistor

𝑟(𝑡) = 𝑟0𝑒
𝛽1
(

1
𝑇 − 1

𝑇0

)

, (10)

1𝑇̇ = 𝑉𝑟(𝑡)𝐼𝑟(𝑡) + 𝛿(𝑇𝑒1 − 𝑇 ) , (11)

r positive temperature coefficient thermistor

(𝑡) = 𝑟0𝑒
𝛽2(𝑇−𝑇0) , (12)

2𝑇̇ = 𝑉𝑟(𝑡)𝐼𝑟(𝑡) + 𝛿(𝑇𝑒2 − 𝑇 ) , (13)

here 𝑇 is the absolute temperature of the thermistor, 𝛽1, 𝛽2 are (posi-
ive) material-specific constants, 𝐶1, 𝐶2 are the heat capacitance, 𝛿1, 𝛿2
re the dissipation constants of the thermistor, 𝑇𝑒1, 𝑇𝑒2 are the back-
round temperatures and 𝑟0 is the resistance at 𝑇 = 𝑇0. According to
he above equations, in thermistors, the temperature plays the role of
he internal state variable [22].

Figs. 7(a) and (b) show the results of simulations with a negative
emperature coefficient thermistor defined by Eqs. (10) and (11). Ap-

proximately, the picture is as follows: The current heats the thermistor
and then 𝑟 starts to decrease. In Figs. 7(a), as soon as 𝑟(𝑡) < 𝑟2,
the spiking terminates, and over a longer time the temperature and
resistance reach equilibrium values. For Figs. 7(b), at equilibrium, the
circuit spikes at a lower rate as 𝑟(𝑡) > 𝑟2 at equilibrium.

Figs. 7(c), (d), (e), and (f) show the results of simulations with a
positive temperature coefficient thermistor defined by Eqs. (12) and
6

(13). Now the heating of the thermistor increases 𝑟(𝑡), and in Figs. 7(c)
the equilibrium is reached with the system spiking at a higher rate. In
Fig. 7(d), the equilibrium is reached with 𝑟(𝑡) > 𝑟1, therefore, there is
no spiking at longer times.

However, it is also possible to obtain more complex intermittent
behaviors, switching between spiking and non-spiking. In Figs. 7(e), the
increase of 𝑟 is slower than in Figs. 7(d), which avoids runaway heating
in the non-spiking regime. After reaching the non-spiking regime,
dominated by a single sink, both voltage and current on the thermistor
drop, causing it to cool and reduce its resistance, bringing the system
back to the spiking regime 𝑟 < 𝑟1. As a consequence, the system cycles
between the spiking regime and the quiescent regime. Note that the
behaviors of Figs. 7(d), (e) and (f) occur only when 𝑅0 is finite (for
more details, see SI Sec. S1).

Additional results on spike generation in the memristor-leaky mem-
capacitor circuit can be found in SI Sec. S4 for other types of memristor.

6. Discussion and conclusion

In summary, we have proposed a leaky memcapacitor – an elec-
tromechanical crossbreed of a memcapacitor and memristor – that can
generate neuromorphic spikes. Its model is based on the potential that
combines linear elasticity with non-linear Lennard-Jones-like interac-
tion between the plates at short distances, attempting to represent
realistic interaction potential. Due to the presence of the nonlinear
interaction, the dynamical behavior of the system in the contact region

is different from the one when the plates are relatively far from each
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other. This helps to achieve stable spiking behavior when a constant
voltage is applied.

In order to fully understand the spiking behavior, we have con-
ducted the stability analysis in the (𝑥, 𝑞)-space and discovered several
nteresting regimes characterized by different configurations of fixed
oints and attractors. We have shown that for some ranges of param-
ters, one can use a voltage pulse to switch the system from a sink to
limit cycle and vice versa. We have also found that the shape of the

pike depends on the applied voltage.
An important feature of the system is that the spike frequency

ay adapt to the external perturbation frequency (depending on the
odel and excitation parameters). A rich dynamical behavior has been

bserved including synchronization when a small-amplitude ac signal
as added to the constant driving voltage. In addition, replacing a

onstant external resistor with a memristor extends the variety of
pike waveforms that the circuit generates. With this modification, the
ircuit can be tuned to mimic the behaviors of some types of biological
eurons.

Experimentally, the proposed devices can be realized using mem-
ranes of suspended two-dimensional materials, including graphene
41,42]. An effective strategy is based on the use of the graphene
rum capacitor [43,44]. This involves placing a layer of graphene,
ither single-layer [45], or multi-layer [43,44], over circular holes with
ypical diameters of a few micrometers [43–45]1 and suitable depths.

Wong et al. [46] used the classical theory of plates [47] to analyze
raphene drums. They proposed that the drum deflection can be ex-
ressed as 𝑑 = 𝑑0(1 − 𝑟2∕𝑎2), where 𝑑0 represents the deflection at the

center and 𝑎 is the radius. The total elastic energy of the drum com-
prises both the bending and stretching energies, which have quadratic
and quartic dependences on 𝑑0, respectively [46]. As a result, the theory
developed by us pertains to the scenario of small deflections. It is
worth mentioning that the Lennard-Jones potential (the second term in
Eq. (6)) is frequently used to characterize the bond between graphene
and a solid surface [48]. An alternative involves the combination of an
exponential term and a power term [49].

Other considerations should be taken into account. The distance
between the plates should be carefully selected to allow the possibil-
ity of plate contact. The properties of the bottom electrode must be
properly selected to provide a suitable contact potential and resistance.
Finally, for damped dynamics (as in the model), a fluid environment
may be introduced. Overall, more research and development is needed
to implement the leaky memcapacitor in practice.

In general, the system introduced in this article provides a new
avenue for the practical realization of neuromorphic devices based on
memcapacitive and memristive effects. Our study may lead to novel
energy-efficient realizations of neural dynamics with electromechanical
structures, including artificial analogs of biological membranes.
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