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In this article, we introduce a new nanoscale electromechanical device — a leaky memcapacitor — and show that
it may be useful for the hardware implementation of spiking neurons. The leaky memcapacitor is a movable-
plate capacitor that becomes quite conductive when the plates come close to each other. The equivalent
circuit of the leaky memcapacitor involves a memcapacitive and memristive system connected in parallel.
In the leaky memcapacitor, resistance and capacitance depend on the same internal state variable, which is
the displacement of the movable plate. We have performed a comprehensive analysis showing that several

types of spiking observed in biological neurons can be implemented with the leaky memcapacitor. Significant
attention is paid to the dynamic properties of the model. As in leaky memcapacitors the capacitive, leaking
resistive, and reset functionalities are implemented naturally within the same device structure, their use will
simplify the creation of spiking neural networks.

1. Introduction

Information processing in biological systems is based on a complex
network of interacting neurons. Each neuron, when subjected to a stim-
ulus, responds by outputting a signal that typically has a form of un-
harmonic spikes. A variety of models of the spiking phenomenon have
been proposed, most famously the Hodgkin-Huxley (HH) model, which
successfully captured many observed features of spiking in neuronal
membranes [1-7]. This model led to the development of biochemically
based information processing models in subsequent decades [6,8-10].

HH model attempts to accurately capture the properties of ion
channels with memory and, consequently, is quite complex. Several
simplified models, such as the integrate-and-fire model, appeared that
can achieve a variety of spiking behaviors in response to different types
of stimulation [6,7,11-15]. Although distinct from HH, one may expect
that qualitative features such as instabilities/bifurcations, limit cycles,
and synchronization among neurons are quite universal and robust
due to the general underlying principles of dynamical systems [16].
However, simplified models may have the important advantage of
being easier to implement artificially using existing materials and de-
vices [17]. This leads to the exciting possibility of biologically inspired
neuromorphic information processing systems implemented in the solid
state.

* Corresponding author.

In the above context, the class of memory circuit elements [18]
becomes increasingly important because of the capacity of memory
circuit elements to store and process information on the same physical
platform [19]. The memory circuit elements (in a pure form) are
resistors, capacitors, and inductors with memory whose response is
defined by the equations

) = gxwu) , @

x =fxu , 2)

where y(r) and u(t) are any two complementary circuit variables (i.e.,
current, charge, voltage, or flux), g (x,u) is a generalized response, x is
a set of n state variables describing the internal state of the device, and
f (x,u) is a continuous n-dimensional vector function. Depending on the
choice of the complementary circuit variables, Egs. (1) and (2) are used
to define memristive, memcapacitive, or meminductive systems [18].
Examples of physical realizations of memory circuit elements can be
found in the review paper [20].

For more than a decade, significant attention has been paid to
the application of memristive systems in neuromorphic computing.
Indeed, memristive systems share several common characteristics with
biological synapses, such as the two-terminal structure, adaptivity,
and high integration density. One of the first works in this area was
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Fig. 1. (a) An electromechanical leaky memcapacitor connected to a voltage source through a resistor. (b) Equivalent electronic circuit of the leaky memcapacitor: a memcapacitive
system, Cy, and a memristive system, Ry, connected in parallel. Both systems depend on the same state variable x.

the demonstration of associative memory with memristive neural net-
works by one of us [21]. Interestingly, the relevance of the memristive
equations to the HH model was established in 1976 by Chua and
Kang [22,23]. According to these authors, “the potassium channel
of the Hodgkin-Huxley model should be identified as a first-order
time-invariant voltage-controlled memristive one-port and the sodium
channel should be identified as a second-order time-invariant voltage-
controlled memristive one-port” [22]. Typically, the capacitive compo-
nent in the response of memristive cells [24-28] is considered parasitic.
Although most of the existing research focuses on purely electronic
schemes, there are also models that rely on the mechanical realization
of memory and spikes [24-28].

Neuromorphic applications of memcapacitive systems have received
much less attention. This may be explained by the fact that in general
memcapacitive devices [29-32] have been much less studied (com-
pared to memristive ones). At the same time, the reactive nature of the
capacitive response is very promising for low-power computing appli-
cations as, at equilibrium, the memcapacitive devices do not consume
any power. Therefore, currently, the application of memcapacitors
in neuromorphic circuits [33,34] is a narrow but highly promising
research field. In fact, the possibility of energy-efficient neuromorphic
computing with solid-state memcapacitive structures has been recently
demonstrated [35].

The mechanical aspect of biological neurons is also becoming in-
creasingly recognized as important in the study of neuroscience. It plays
a role in several physiological processes, including the generation of
action potentials [36]. Mechanical changes in the cell membrane can
influence the opening and closing of ion channels, which can affect the
electrical signaling of the neuron. The soliton model combines mechan-
ical and electrical factors of signal propagation through axons and has
been able to account for some experimental effects in anesthesiology
beyond the Hodgkin—-Huxley model [37-40].

In this work, in part inspired by biological neurons, we propose
a simple neuromorphic electromechanical model based on a leaky
memcapacitor. The proposed model can be used to generate periodic
spike timing sequences under constant stimulation. As the operation of
the leaky memcapacitor is based on the mechanical degree of freedom,
its behavior is pretty unique and different from that of memristive
ReRAM cells. Applying the methods of dynamical systems, we explore
the qualitative features of this model in terms of its fixed points,
bifurcations, and limit cycles under DC stimulation. In addition, we
demonstrate that the system is capable of complex dynamical adap-
tations, such as synchronization with periodic external drives, spiking
frequency drift, bursting, and other adaptations (for some behaviors,
an additional memory circuit element is required).

2. The model

In this section, we introduce a leaky memcapacitor, its model, and
the circuit we use to simulate the spiking neurons. The circuit, the
physical diagram of the leaky memcapacitor, and its equivalent circuit
are shown in Fig. 1.

The central element of our spiking neuron is a leaky memcapacitor
— a capacitor with a plate that moves in response to the force exerted
by the internal electric field and the restoring force of the spring (the
spring constant is k). In the absence of charges on the plates, ¢ = 0, the
distance between two plates is d. It is assumed that the displacement
of the top plate, x, is positive for the displacement towards the bottom
plate, see Fig. 1(a). Thus, the distance between the plates is d — x. The
response of this capacitor to the change in voltage takes a finite time
as physically the response cannot be instantaneous. Consider a fully
discharged leaky memcapacitor subjected to a small step-like voltage.
It is evident that right after the step, the displacement of its top plate
remains the same as the initial one (zero), and only after a finite time
the top plate will approach a new equilibrium position. Such memory
of the prior state, of course, is volatile. Below, we explicitly show that
the model of the capacitive component of the system in Fig. 1(b) (left)
belongs to the class of memcapacitive systems [18].

We assume that the capacitor is leaky: there is a finite resistance
R(x), which depends on the distance between the plates, rapidly drop-
ping in the ‘contact’ region, x > x.. The leaky memcapacitor has
memory (which justifies the term memcapacitor) because the current
position of the moving plate (and hence the capacitance itself) depends
on the prior history of the charge on the capacitor, which in turn
depends on the history of applied voltage. It is this history dependence,
the memory, that is responsible for the emergence of complex behaviors
that the simple circuit in Fig. 1(a) exhibits.

The main operating principle of this device is straightforward.
Starting from the equilibrium position at x = 0, upon turning on the
voltage V, the capacitor begins to charge up. This leads to the attraction
between its plates, which brings them closer together. For a sufficiently
large applied voltage, the top plate reaches the contact region, the
capacitor discharges, and the plate recoils back from the contact region.
Note that the charging process is limited by the resistor with resistance
r (Fig. 1(@)).

We found that the proximity-induced attraction between the two
surfaces (plates) is helpful to prevent the plates from finding a new
static equilibrium position in the contact region. We model this part
of the interaction with a Lennard-Jones-like potential. The short-range
attraction between the plates allows for a more effective discharge
process, leading to a periodic approach of the top plate to the bottom
plate followed by recoil. The exact form of R(x) and the form of the
potential do not matter, to a certain extent. In the biological context,
our memcapacitor may represent two lipid monolayers forming a cell
membrane. As the membrane swells or thins, the resistance of the
membrane (through ion channels) is affected, as modeled by R(x).

In our modeling of membrane dynamics, we neglect the kinematic
mass (in a biological setting, that would be because membranes reside
in an aqueous environment that has considerable viscosity). This over-
damped regime makes it non-trivial to have oscillatory behavior, and
new types of mechanism are required to perform the periodic spiking
that we see possible.

Egs. (1) and (2) provide the general framework for the description of
leaky memcapacitor. For the capacitive and resistive responses, Eq. (1)
is written as

€A
d—x

q = Ve =Cx)- Ve, 3
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Fig. 2. (a) Resistance as a function of the displacement of the top plate (Eq. (4)). (b) Potential energy as a function of the displacement of the top membrane (Eq. (6)). The insets

show a zoomed-in contact region. The dashed line refers to x,.

Table 1
Parameters used in simulations. Some of the parameters are not shown,
as they play the role of units of measure (e.g. R,).

Parameter Value Parameter Value

d 8 r 1073

X, 6.4 Po 1.25x 107*
B 5% 10* y 1.25x 107*
k 5/6

d—x

Ve = [RO . (%arctanﬂ (x, —x) +0.5> + 9o ]IM =Rx) -1y, @

where g is the memcapacitor charge, V- is the voltage across the leaky
memcapacitor, I,, is the leakage current, ¢ is the permittivity, A is the
plate area, and R, f, p, are the parameters defining the memristance.
In the normal regime, R(x) ~ R, while in the contact regime, R(x) is
mainly determined by the p, term; g describes the rate of change of the
R, component in R(x) in the vicinity of x,.

The leaky memcapacitor is described by a single internal state vari-
able x, which is the displacement of the top plate from its equilibrium

position (at ¢ = 0) in the downward direction (see Fig. 1(a)). Its
dynamics (corresponding to Eq. (2)) is represented by
2
._ 4 dU(x)
== - , 5
rx €A dx ®

where y is the dissipation coefficient, and the potential U(x) is chosen

(dix)12_<dix>6] : ©

Here, the first term is the spring potential energy, while the second term
is the Lennard-Jones-like potential that we use to describe the contact
interaction between the plates. In Eq. (6), k is the spring constant, ¢; is
the depth of the Lennard-Jones potential well, and ¢ is the distance at
which the Lennard-Jones potential energy is zero.

In the following, we measure the distances in units of o, resistances
in Ry, U in ¢, k in ¢;/c?, time in RyAe/o, charge in \/ee;A/o, v in
€€, AR, /o3, voltage in \/oe,/(eA), and current in \/c¢;/eA/ R, To min-
imize clutter in the text, the original notation is used for dimensionless
variables and parameters. The parameters used in our simulations are
given in Table 1. Fig. 2(a) shows R(x) as defined by Eq. (4); Eq. (6) is
presented in Fig. 2(b).

Note that qualitatively similar results (to the ones presented in this
paper) may be obtained using a different choice of parameters and
functional dependencies. In particular, we have verified that the results
remain nearly the same when the constant resistance for x < 6 in
Fig. 2(a) is replaced with a resistance linearly dependent on x (for more
details, see Supplemental Information (SI) Sec. S1).

To simulate Fig. 1(a) circuit, we use Kirchhoff’s voltage law

U(x) = %ka +4¢,

VOy=r(g+1Iy)+Ve , )]

which is applied together with the equations defining the leaky mem-
capacitor, Egs. (3)—(6). Trajectories (x(),q(¢)) are found by numerical

integration of Egs. (5) and (7). Integration was performed using the
ODE solver ode45 for non-stiff differential equations in MATLAB® ver.
R2022a.

For the convenience of the reader, Egs. (5) and (7) can be presented
as

. qz kx 24¢ 2012 e

f= — =1l =___~ _ (8)
veA vy v ld-0% @d-x)7

R 4G d—x|1 1

j= (0 _gt=x| Ly )

r €A d—x

" Ry (ﬁ arctan § (x, — x) +O.5> + o0
We note that our model of spiking neurons (Egs. (8) and (9)) is distinct

from all other spiking models (see, e.g., [6,17]).
3. Spiking behavior and phase diagram

Figs. 3(a) and (b) show two selected simulation results that demon-
strate the transient dynamics from zero initial conditions, x, = 0 and
gy = 0, to the regime of periodic spiking. These results indicate a
significant dependence of the shape of the spike on the magnitude
of the applied voltage (V' = 8.0829 in Fig. 3(a) and V' = 15.0111 in
Fig. 3(b)). According to Figs. 3(a) and (b), the spikes are smoother at
V = 8.0829, and sharper at V' = 15.0111. The sharper spikes show a
closer qualitative resemblance to biological spikes.

A notable feature of the transient dynamics is the initial sharp in-
crease in the voltage across the leaky memcapacitor, V.. This property
(clearly observed in Figs. 3(a) and (b)) is associated with the smaller
capacitance at short times (close to 7 = 0) due to the initially large plate
separation. Within the transient region, the leaky memcapacitor adapts
to the applied voltage: the Coulomb attraction reduces the distance be-
tween the plates, which increases the capacitance. The voltage plateau
in Fig. 3(a) is close to the bifurcation point at Vl’ = 7.9582 (for more
information, see SI Sec. S1). This explains the relatively long duration
of the transient region.

Moreover, in Fig. 3(c) we present an example of nonspiking behav-
ior. In this case, the trajectory ends in a sink (attractor).

We systematically analyzed the behavior of the circuit by studying
its fixed points and limit cycles. For this purpose, we used vector field
diagrams of solutions and Jacobi matrices (for more information, see
SI Sec. S1). This analysis resulted in the phase diagram presented in
Fig. 4(a). The diagram indicates the presence of a global limit cycle in
a wide range of applied voltage, from V| to ¥,, which accounts for the
presence of the spiking regime.

The main features of the phase diagram are as follows. First, since
the behavior is symmetric with respect to the sign of V', we show only
the positive voltage region of the phase diagram. Around V = 0, the
only global attractor is a sink. As V increases, at V;, ~ 3.4156 there is
a bifurcation that nucleates a saddle and a spiral source; they do not
influence the global attractor, however, until they separate sufficiently
at V| where the saddle divides the phase space into two disconnected
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Fig. 3. Response to a step-like voltage applied at ¢ = 0: starting from zero initial conditions (x =0, ¢ = 0), the circuit transits to (a), (b) a periodic spiking regime, or (c) a static
regime. These graphs were obtained using (a) V = 8.0829, (b) V = 15.0111, and (c) V = 7.8520. In the top panels, the black dashed line refers to ¢ and the brown one refers to
x.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. (a) Fixed points and attractors as a function of the applied voltage V. Phase diagrams in (b) V' = 7.0437 (the sink and limit cycle case in (a)), (c) V = 7.9674 (the limit
cycle case in (a)) and (d) ¥ = 15.5000 (the sink case on the right of the limit cycle one in (a)). In (b), the phase space is divided into two parts by the flow lines towards the
saddle, as depicted with a dashed line. The semi-transparent gray thick line represents the limit cycle. The saddle, the sink, and the spiral source are labeled with black arrows,
and the yellow star inside the limit cycle is located at the spiral source. The blue arrows in (b) and the orange arrows in (d) depict the direction of the shift of the three fixed
points as V increases. In (d), the vector fields are added in small blue arrows to help show the fixed points. The initial conditions of the solutions are set discretely along the
edge as well as around the spiral source. In (b)-(d), the evolution time  was 0.05. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

regions (saddle homoclinic orbit bifurcation (SHOB)), one of which
hosts a limit cycle and the other the original sink that corresponds
to a static state, as shown in Fig. 4(b). In SI Sec. S2 we show the
possibility of switching between these two attractors using voltage
pulses. Another bifurcation (saddle-node bifurcation) occurs when the
sink and saddle points annihilate at V] = 7.9582, transforming the limit
cycle into a global attractor with stable spikes, as shown in Fig. 4(c).
At V,, another bifurcation generating a sink-saddle pair cuts off the
limit cycle, shifting the global attractor to the sink (saddle-node on
the invariant circle (SNIC)), as shown in Fig. 4(d). As V continues to
increase, the saddle and spiral source point move toward each other
and then annihilate through a saddle-node bifurcation, leaving only a
sink (for more information, see SI Sec. S1).

To better understand the properties of the spikes, the natural fre-
quency of the spikes, w,,,..;» Was calculated as a function of the
applied voltage (see Fig. 5(a)). Interestingly, the calculated points
are distributed in the half-of-the-oval shape in the frequency-voltage

plot. Fig. 5(a) shows that the frequency approaches zero when V —
V., V,. The Fourier transform of the voltage across the memcapacitor is
presented in Fig. 5(b). Qualitatively, the entire spiking regime can be
divided into three parts, I, II, and III, which are different by the pattern
of spikes (see Figs. 5(c)-(e)). The regime of “negative spikes” I, and the
regime of “positive spikes”, III, are connected by the regime of more
symmetric (harmonic) spikes, II.

4. Synchronization with external source

To study synchronization with an external source, an ac voltage was
added to the constant driving voltage V., V(1) = V. + 6V sin(@,rcel)s
with 6V = 0.1155. To initialize the system close to the limit cycle,
we used the initial conditions x, = 6.60 and g, = 2.02. The Fourier
transforms for the regimes I-III of oscillations in Fig. 5(a) are presented
in Fig. 6. When the circuit is in regime II (Fig. 6(b)), i.e., away
from the thresholds, the synchronization occurs only when the source
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Fig. 5. (a) Spike frequency as a function of ¥, and (b) Fourier transform of V. as a function of V. The dashed lines, from left to right, refer to ¥}, ¥/ and V,, respectively. Here,
P, is the single-sided amplitude of the Fourier transform. In these calculations, to keep the system close to the limit cycle, the initial condition was selected as x, = 6.6000 and
gy = 2.0207. The evolution time r was 1.5, and we skipped the initial transient interval. (c)-(e) Steady-state oscillations at (c) V' = 7.0183 (regime I), (d) V = 11.5470 (regime II)
and (e) V = 15.0561 (regime III). In (c)-(e), the black dashed line refers to d and the brown line refers to x,. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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In the other two cases in Fig. 6, the external source has a much
stronger influence on spike generation. Figs. 6(a) and (c) represent the
cases when V,, is close to the thresholds V; and V. In these cases,
the regions of synchronized driving frequencies are largely extended
in both integer multiples and rational fractions of the self-oscillation
frequencies. In regime I, when the driving frequency is small, the
system responds harmonically to the drive, as shown in Fig. 6(a), where
only the component of w,,,,.. is evident. This is because once V' drops
below ¥, the spiral source and saddle vanish simultaneously, and the
system can easily switch to the sink, which is away from the contact
regime as depicted in Figs. 4(a) and (b), and may not return. On the
contrary, in regime III, when V crosses over V,, the bifurcation of
a sink-saddle pair SNIC bifurcation appears in the contact regime on
the previous limit cycle, as depicted in Figs. 4(a) and (d), thus the

system will not go away from the contact regime, resulting in a spiking
waveform even at low source frequency. Fourier transforms for these
three regimes are provided in SI Sec. S3.

5. Other types of dynamics

In this section, we show that the dynamics of Fig. 1(a) circuit can
be further enriched by the use of additional components with memory.
Specifically, we demonstrate that the replacement of the resistor r
in Fig. 1(a) with a thermistor (a type of memristor [20,22]) may
qualitatively change the pattern of spikes in several ways. Five types of
modified behavior have been identified including bursting (a pattern of
firing wherein the periods of rapid spiking are separated by quiescent
periods).

In principle, it is evident that at a suitable constant applied voltage
V, the resistance r controls the generation of spikes. As in the limiting
cases of r - 0 and r — oo the dynamics of Fig. 1(a) circuit should not
be oscillatory, one can assume that the spiking behavior occurs within
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certain resistance thresholds, say, when r, < r < r;. Consequently,
a suitable memristor (e.g., with resistance changing across r, and/or
r,) may be used to control the spike pattern. Here we use a negative
temperature coefficient thermistor

rt) = roeﬁl(%_%ﬂ> s

(10)
O = V,(0L(t) + (T, —T) 1)
or positive temperature coefficient thermistor
r(t) = roeﬂZ(T_TO) > a2
CT=V.0OLO+6T,-T) , a3

where T is the absolute temperature of the thermistor, g, §, are (posi-
tive) material-specific constants, C;, C, are the heat capacitance, §;, 5,
are the dissipation constants of the thermistor, T,;,T,, are the back-
ground temperatures and r, is the resistance at T = T;. According to
the above equations, in thermistors, the temperature plays the role of
the internal state variable [22].

Figs. 7(a) and (b) show the results of simulations with a negative
temperature coefficient thermistor defined by Egs. (10) and (11). Ap-
proximately, the picture is as follows: The current heats the thermistor
and then r starts to decrease. In Figs. 7(a), as soon as r(r) < ro,
the spiking terminates, and over a longer time the temperature and
resistance reach equilibrium values. For Figs. 7(b), at equilibrium, the
circuit spikes at a lower rate as r(t) > r, at equilibrium.

Figs. 7(c), (d), (e), and (f) show the results of simulations with a
positive temperature coefficient thermistor defined by Egs. (12) and

(13). Now the heating of the thermistor increases r(¢), and in Figs. 7(c)
the equilibrium is reached with the system spiking at a higher rate. In
Fig. 7(d), the equilibrium is reached with r(r) > r;, therefore, there is
no spiking at longer times.

However, it is also possible to obtain more complex intermittent
behaviors, switching between spiking and non-spiking. In Figs. 7(e), the
increase of r is slower than in Figs. 7(d), which avoids runaway heating
in the non-spiking regime. After reaching the non-spiking regime,
dominated by a single sink, both voltage and current on the thermistor
drop, causing it to cool and reduce its resistance, bringing the system
back to the spiking regime r < r;. As a consequence, the system cycles
between the spiking regime and the quiescent regime. Note that the
behaviors of Figs. 7(d), (e) and (f) occur only when R, is finite (for
more details, see SI Sec. S1).

Additional results on spike generation in the memristor-leaky mem-
capacitor circuit can be found in SI Sec. S4 for other types of memristor.

6. Discussion and conclusion

In summary, we have proposed a leaky memcapacitor — an elec-
tromechanical crossbreed of a memcapacitor and memristor — that can
generate neuromorphic spikes. Its model is based on the potential that
combines linear elasticity with non-linear Lennard-Jones-like interac-
tion between the plates at short distances, attempting to represent
realistic interaction potential. Due to the presence of the nonlinear
interaction, the dynamical behavior of the system in the contact region
is different from the one when the plates are relatively far from each
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other. This helps to achieve stable spiking behavior when a constant
voltage is applied.

In order to fully understand the spiking behavior, we have con-
ducted the stability analysis in the (x, g)-space and discovered several
interesting regimes characterized by different configurations of fixed
points and attractors. We have shown that for some ranges of param-
eters, one can use a voltage pulse to switch the system from a sink to
a limit cycle and vice versa. We have also found that the shape of the
spike depends on the applied voltage.

An important feature of the system is that the spike frequency
may adapt to the external perturbation frequency (depending on the
model and excitation parameters). A rich dynamical behavior has been
observed including synchronization when a small-amplitude ac signal
was added to the constant driving voltage. In addition, replacing a
constant external resistor with a memristor extends the variety of
spike waveforms that the circuit generates. With this modification, the
circuit can be tuned to mimic the behaviors of some types of biological
neurons.

Experimentally, the proposed devices can be realized using mem-
branes of suspended two-dimensional materials, including graphene
[41,42]. An effective strategy is based on the use of the graphene
drum capacitor [43,44]. This involves placing a layer of graphene,
either single-layer [45], or multi-layer [43,44], over circular holes with
typical diameters of a few micrometers [43-45]' and suitable depths.

Wong et al. [46] used the classical theory of plates [47] to analyze
graphene drums. They proposed that the drum deflection can be ex-
pressed as d = dy(1 — r*/a®), where d,, represents the deflection at the
center and «a is the radius. The total elastic energy of the drum com-
prises both the bending and stretching energies, which have quadratic
and quartic dependences on d,, respectively [46]. As a result, the theory
developed by us pertains to the scenario of small deflections. It is
worth mentioning that the Lennard-Jones potential (the second term in
Eq. (6)) is frequently used to characterize the bond between graphene
and a solid surface [48]. An alternative involves the combination of an
exponential term and a power term [49].

Other considerations should be taken into account. The distance
between the plates should be carefully selected to allow the possibil-
ity of plate contact. The properties of the bottom electrode must be
properly selected to provide a suitable contact potential and resistance.
Finally, for damped dynamics (as in the model), a fluid environment
may be introduced. Overall, more research and development is needed
to implement the leaky memcapacitor in practice.

In general, the system introduced in this article provides a new
avenue for the practical realization of neuromorphic devices based on
memcapacitive and memristive effects. Our study may lead to novel
energy-efficient realizations of neural dynamics with electromechanical
structures, including artificial analogs of biological membranes.
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