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We demonstrate that an interferometer based on modulated magnetic field pulses enables precise characteriza-

tion of the energies and lifetimes of Efimov trimers irrespective of the magnitude and sign of the interactions in
85Rb thermal gases. Despite thermal effects, interference fringes develop when the dark time between the pulses

is varied. This enables the selective excitation of coherent superpositions of trimer, dimer, and free-atom states.

The interference patterns possess two distinct damping timescales at short and long dark times that are either

equal to or twice as long as the lifetime of Efimov trimers, respectively. Specifically, this behavior at long dark

times provides an interpretation of the unusually large damping timescales reported in a recent experiment with
7Li thermal gases [Yudkin et al., Phys. Rev. Lett. 122, 200402 (2019)]. Apart from that, our results constitute a

stepping stone towards a high precision few-body state interferometry for dense quantum gases.

DOI: 10.1103/PhysRevResearch.5.043134

I. INTRODUCTION

Efimovian trimers constitute an infinite set of particle

triplets occurring in the absence of two-body binding [1–7].

Owing to their universal character, they have been explored

in both nuclear and atomic physics [4,8–11] and in the con-

text of many-body physics as the binding mechanism for

magnons [12] and polaritons [13]. Furthermore, the role

of Efimov states is pivotal for some ultracold gases in

equilibrium, e.g., polarons [14–17] and in some out of equi-

librium [18–23], despite their short lifetime due to collisional

decay, i.e., three-body recombination processes. Recent in-

vestigations in dense gas mixtures demonstrate that such

processes can be suppressed due to medium effects [24].

Specifically, this puts forward the idea that the intrinsic prop-

erties of Efimov states, i.e., the binding energies and lifetimes,

are potentially modified. Hence, dynamically probing simul-

taneously both intrinsic properties of Efimov trimers could

provide alternative ways to study the impact of an environ-

ment.

To address such effects, a promising dynamical protocol

is to expose a many-body system in a double sequence of
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magnetic field modulations (pulses). The latter has been used

successfully to precisely measure the binding energies and

lifetimes of dimers [25] near a Feshbach resonance [26].

Beyond two-body physics, employing this Ramsey-type pro-

tocol for a thermal gas of 7Li atoms, Yudkin et al. precisely

probed Efimov molecules even near the atom-dimer thresh-

old [27,28]; an experimentally challenging region. Specifi-

cally, the surviving atom number exhibited damped Ramsey

fringes that were robust against thermal effects. However,

the corresponding damping timescale was found to exceed

the typical lifetime of Efimov trimers even for 85Rb3 [22].

In this regard, it has remained elusive how the lifetime of

Efimov trimers emerges in the interference fringes induced

by magnetic-field pulses. To address the intricate dynamics

of a three-body system requires a time-dependent theoretical

framework establishing a systematic pathway to also explore

the role of few-body physics in out-of-equilibrium many-body

systems [20,22].

Such an approach is developed here to investigate the

three-body dynamics of a thermal gas. We consider 85Rb

atoms since the lifetimes of the ensuing trimers and dimers

are known experimentally [22] in contrast to 7Li [27]. Our

study establishes that, by implementing double magnetic field

pulses, the intrinsic properties of Efimov trimers are readily

probed regardless of the sign or magnitude of the scatter-

ing length; at which these states occur. Rich interferometric

spectra exhibit both low and high frequencies independent of

the gas temperature. The low-frequency components originate

from the coherent superposition of the trimer with the dimer

state, consistent with the observations in Ref. [27]. The ad-
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FIG. 1. (a) Energy spectrum of three harmonically trapped 85Rb particles with ωr/(2π ) = 350 Hz. Efimov trimer (T), atom-dimer (AD),

and trap (A) states are depicted. Initially, the scattering length is set at abg = 819 a0 (dashed vertical line), then modulated with amplitude am

(gray region). Note a0 is the Bohr radius. (b) A schematic illustration of the Ramsey-type interferometer: A first pulse with envelope χ (t )

associates atom dimers and Efimov states out of trap states [first and second subgraphs in (b)]; the system then evolves freely during the dark

time td [third subgraph in (b)], while a second pulse further admixes the states together with their dynamical phases that were accumulated

during td [fourth subgraph in (b)]. (c) The ratio of thermally averaged (RTA) probabilities, PT (td ) at abg = 819 a0, and distinct temperatures

(see legend). Inset: A zoom-out plot of RTA at early td . (d) [(e)] Frequency spectra referring to region I (II) of the RTA quantifying its single

(multifrequency) behavior at different values of temperature T . The vertical dotted lines correspond to the three-level model (TLM) predictions

for E (2)
T , E (1)

AD , and a trap state (see text).

ditional high frequencies arise from the coherent population

of the trimer or dimer states with the ones lying at the “at

breakup” threshold. The characteristic damping time of the

field-generated interference fringes is shown to be twice the

lifetime of the Efimov trimers, providing an explanation for

the unusually long decay times observed in Ref. [27].

This work begins by introducing the time-dependent

framework for the three-body system in Sec. II, also providing

details on the employed techniques. Subsequently, in Sec. III,

the association mechanisms of the dynamical scheme are ex-

amined. The role of the lifetime of the Efimov states is studied

in Sec. IV for both repulsive and attractive background inter-

actions. Section V summarizes our major findings and future

perspectives are discussed. Appendix A outlines the steps to

numerically solve the three-body time-dependent Schrödinger

equation (TDSE) in hyperspherical coordinates, while the

explicit form of the interaction potential matrix elements us-

ing field-free eigenstates is given in Appendix B. Further

insights into the three-level model (TLM) via first-order time-

dependent perturbation theory are provided in Appendix C.

II. TIME-DEPENDENT THREE-BODY SYSTEM AND
INTERFEROMETRY PROTOCOL

Our paradigm system consists of three 85Rb atoms of

mass m confined in a spherically symmetric harmonic trap

with radial frequency ωr . Following the prescription of

Refs. [29–34], we set ωr = 2π × 350Hz, yielding a single

atom trap length ar =
√

h̄/(mωr ) that compares to the inter-

particle spacing (∼〈n〉−1/3) used in Ref. [22] for a local peak

density n0 = 5 × 1012 cm−3. The dynamics and the univer-

sal characteristics of the three-body system are addressed by

employing contact interactions with a time-dependent s-wave

scattering length, i.e., a(t ). The three-body Hamiltonian reads

H(t ) =
3

∑

i=1

(

−h̄2∇2
i

2m
+

mω2
r

2
r

2
i

)

+
∑

i< j

4π h̄2a(t )

m
δ(ri j )Ôi j,

(1)

where ri denotes the position of the ith atom and Ôi j =
∂ri j

(ri j ·) is the Fermi-Huang regularization operator with ri j =
|ri − r j |. Figure 1(b) depicts the dynamical profile of a(t )

determined by the double pulse magnetic field sequence used

in Ref. [27], namely,

a(t ) = abg + am cos (�t )[χ (t ) + χ (t − td − 2t0 − τ )], (2)

with χ (t) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

sin2
(

πt
2t0

)

, 0 � t < t0

1, t0 � t < t0 + τ

sin2
(

π (t−τ )

2t0

)

, t0 + τ � t � 2t0 + τ

0, otherwise.

(3)
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Here, abg indicates the background scattering length of the

time-independent system, and am is the pulse’s amplitude

yielding ∼20% change to abg. � is the driving frequency and

χ (t ) denotes the envelope of the pulse where t0 and τ are

the ramp on and off times and length of the pulse envelope,

respectively. The time between the two pulses is represented

by td , i.e., dark time, where the system freely evolves.

Owing to Eq. (2), it suffices to simulate the correspond-

ing TDSE in the center-of-mass of the three-body system,

namely, only the relative Hamiltonian depends explicitly on

time, i.e., H(t ) = Hcm + Hrel(t ). Regarding the center-of-

mass Hamiltonian Hcm, we assume from here on that the

three-atom setting always resides in its ground state, |0〉cm.

Subsequently, the Hrel(t ) is further decomposed into two

terms: (i) a field-free Hamiltonian that describes three atoms

in a spherical trap interacting with abg scattering length and

(ii) an explicit time-dependent interaction term (for more

details, see Appendix A 1). The spectrum of the relative field-

free Hamiltonian is obtained via the adiabatic hyperspherical

approach [4–7,35]. In this method, all the relative degrees

of freedom are expressed by a hyperradius R that describes

the overall system size and a set of five hyperangles � that

address the relative particle positions. Subsequently, the field-

free eigenstates |n〉 are expanded in a set of hyperangular basis

functions, 	ν (R; �), treating the hyperradius as an adiabatic

parameter [4,5],

〈R,�|n〉 = R−5/2
∑

ν

F (n)
ν (R)	ν (R; �), (4)

where the expansion coefficients F (n)
ν (R) are the so-called

hyperradial channel functions.

Within the adiabatic hyperspherical approach, the determi-

nation of the eigenstates |n〉 along with their corresponding

eigenenergies is performed in two steps. The hyperangular

wave functions are obtained first, treating R as an adiabatic

parameter. Subsequently, the hyperradial channel functions

and E (n) are calculated from the resulting equations that in-

clude all the relevant nonadiabatic coupling terms. A more

elaborate discussion on the adiabatic hyperspherical approach

is provided in Appendix A 2.

The stationary eigenenergies E (n) versus the scattering

length abg are shown in Fig. 1(a). Their corresponding eigen-

states, |n〉, fall into three classes: Efimov trimers (T), atom

dimers (ADs), and trap (A) states [red, blue, and green lines in

Fig. 1(a)]. Furthermore, the adiabatic hyperspherical approach

allows us to express the time-dependent wave function of

Eq. (1) in terms of the field-free eigenstates, i.e., |� (α)
3b (t )〉 =

∑

n c(α)
n (t ) |n〉 |0〉cm with c(α)

n (t ) being the probability ampli-

tude of the nth stationary state. The initial boundary condition

is c(α)
n (0) = δnα where the index α enumerates solely trap

states, i.e., α ∈ A. Plugging this expansion into the TDSE

under the Hamiltonian of Eq. (1) leads to a matrix differential

equation for the time-dependent expansion coefficients:

ih̄
dc

(α)(t )

dt
= Hrel(t ) · c

(α)(t ). (5)

Here, Hrel(t ) represents the relative Hamiltonian matrix ex-

pressed in the field-free basis. Given the decomposition of

Hrel(t ) into a field-free Hamiltonian and an explicit time-

dependent interaction term, it is convenient to employ the

second-order split-operator method [36,37] for solving Eq. (5)

(for additional information, refer also to Appendix A 3).

According to Fig. 1(b), initially the three particles inter-

act with a(t = 0) = abg = 819 a0 [see dashed vertical line in

Fig. 1(a)], residing in a specific trap state. Similar to Ref. [27],

at abg the system supports two Efimov trimer states, with

the second (excited) one at energy E (2)
T lying close to the

first atom-dimer energy in the trap, E (1)
AD , which represents the

atom-dimer threshold. At t �= 0, the first pulse turns on with

an envelope χ (t ) of amplitude am [gray region in Fig. 1(a)],

where a(t ) modulates with angular frequency � [27,38].

The latter is equal to the energy difference between the first

trap and atom-dimer states, i.e., �/2π = (E (1)
A − E (1)

AD )/h =
63.8 kHz, as in the experiment of Ref. [27]. Furthermore,

the pulse’s full width at half maximum is 27 μs, providing

an energy bandwidth of 6.5 kHz matching the energy differ-

ence between the second trimer and first atom-dimer states,

|E (2)
T − E (1)

AD |/h. This implies that the first excited trimer E (2)
T

and atom-dimer E (1)
AD states are coherently populated since

the pulse cannot energetically resolve them. After the first

pulse, the system occupies several |n〉 eigenstates which freely

evolve during the dark time td , each accumulating a dynamic

phase [see Fig. 1(b)]. At t = td , a second pulse, identical to the

first one, is applied, admixing different stationary eigenstates

and their corresponding dynamical phases. By the end of the

second pulse, we extract the probability to occupy the Efimov

trimer state as a function td .

In a typical experiment, the three-body dynamics takes

place in a thermal gas at temperature T [27,28]. Hence, after

the double pulse sequence, the probability density to occupy

the Efimov trimer needs to be thermally averaged over a

Maxwell-Boltzmann ensemble of initial trap states. For our

purposes, we introduce a ratio of thermally averaged (RTA)

probabilities, PT (td ), to populate Efimov trimer states after

two pulses (numerator) versus one pulse (denominator),

PT (td ) =
∑

α∈A

∑

j∈ T e
− E

(α)
A

kBT

∣
∣c(α)

j (2τ̃ + td )
∣
∣
2

∑

α∈A

∑

j∈ T e
− E

(α)
A

kBT

∣
∣c(α)

j (τ̃ )
∣
∣
2

, (6a)

c(α)
j (2τ̃ + td ) =

∑

n

U jn(2τ̃ + td , τ̃ + td )e−iE (n)td /h̄Unα (τ̃ , 0),

(6b)

where kB is the Boltzmann constant, τ̃ = 2t0 + τ is the pulse

duration, and Ui j (·, ·) represents the three-body evolution op-

erator during a single pulse, expressed in the field-free basis.

III. DYNAMICAL SUPERPOSITION OF EFIMOV TRIMERS

Figure 1(c) depicts PT (td ) for two characteristic temper-

atures T , where oscillatory fringes are observed that persist

after thermal averaging, namely, PT (td ) exhibits fast oscilla-

tions throughout regions I and II, and additional slow ones

only in region II. The contributing frequencies are identified

in the Fourier spectra of RTA demonstrated in Figs. 1(d)

and 1(e) for regions I and II, respectively. In region I, inde-

pendently of the temperature, a single frequency dominates

in PT (td ) at ω/(2π ) = 71.8 kHz [Fig. 1(d)] corresponding to

the energy difference |E (1)
A − E (2)

T |/h. For longer dark times

043134-3



G. BOUGAS et al. PHYSICAL REVIEW RESEARCH 5, 043134 (2023)

(region II), three distinct frequencies occur, Fig. 1(e), with the

high ones, i.e., ω/(2π ) = 63.7 and 69.9 kHz, referring to the

superposition of the first trap state with the first atom-dimer

and excited Efimov states, respectively. The low-frequency

peak at ω/(2π ) = 6.5 kHz originates from interfering ampli-

tudes between the first atom-dimer and first excited Efimov

state pathways. Note that region II (∼1.2 kHz) shows better

frequency resolution than region I (∼10 kHz), which re-

sults in small deviations between the highest frequencies in

both regions. Due to the finite resolution, a small mismatch

also occurs between the difference 69.9 − 63.7 kHz and the

low-frequency peak in region II. Similar low-frequency and

temperature-independent oscillatory fringes were also experi-

mentally observed for 7Li atoms [27,28]. However, the present

analysis reveals that high-frequency interferences are also

imprinted in the RTA probability, where the early dark time
fringes can be experimentally utilized to measure the Efimov

binding energy at a given abg.

The fact that PT (td ) features three main frequencies, ir-

respectively of T , is traced back to the incoherent sum of

the trimer probability [see Eq. (6a)], namely, all contributions

involving higher-lying trap states peter out, except for three

arising from the ground trap state E (1)
A , the first atom-dimer

E (1)
AD and the first excited Efimov state E (2)

T . This particular

set of eigenstates survives upon the thermal average due to

the specifics of the pulse and its envelope. Recall that the

driving frequency is in resonance between the E (1)
A and E (1)

AD
stationary eigenstates, whereas the duration of the pulse is

short to coherently populate only the first atom-dimer and first

excited Efimov states.

Focusing on this aspect, a TLM Hamiltonian containing

E (2)
T , E (1)

AD , and a single trap state is constructed [39]. The

three-level system is initialized in the single trap state and we

apply square pulses of the scattering length [Eqs. (2) and (3)]

to trigger the dynamics of the three-body setup. Within this

picture, the probability amplitude to occupy the first excited

Efimov state at the end of the second pulse is obtained by

employing first-order time-dependent perturbation theory (for

additional details, see also Appendix C). Moreover, approxi-

mations for the energy levels of the trap states and the matrix

elements to occupy the trimer state lead to analytical expres-

sions for PT (td ) (see also Appendixes B and C). It is shown

that the latter is decomposed into three oscillatory terms. The

TLM predictions for the frequencies, illustrated as vertical

dotted lines in Figs. 1(d) and 1(e), are found to be in excellent

agreement with the full numerical calculations.

IV. IMPACT OF THE LIFETIME OF THE TRIMER

In Figs. 1(c)–1(e), our analysis neglects the decay of the

Efimov trimers and dimer states. However, in thermal gases,

three-body recombination or relaxation processes are present,

resulting in finite lifetimes of the trimers and dimers. In the

following, we choose abg = 2030 a0, which is significantly

larger than the van der Waals length scale lvdW = 82.5 a0 for
85Rb, yielding negligible finite range effects [26]. Therefore,

in this universal regime, the zero-range theory predicts that the

lifetime of the first excited Efimov state is h̄/
(2) = 212 μs
(
(2) denotes the decay width) [22,40–42]. Also, since the

decay of dimers lie within the range 2–9 ms, for local peak

FIG. 2. (a) PT (td ) for different temperatures (see legend), taking

into account the decay width, 
(2)/h = 748 Hz, of the first excited

Efimov state at abg = 2030 a0. The gray solid lines outline the upper

and lower peak envelopes. The inset presents the frequency spectrum

pertaining to region II, |FII(ω)|. (b) The mean peak-to-peak envelope,

P
p

T (td ), is fitted with the exponentials fi/ii(td ) = gi/iie
−
i/ii (td −t0

i/ii )/h̄ +
wi/ii at dark time intervals i and ii (black and green dashed lines) with

gi/ii, wi/ii representing fitting constants. The characteristic decay time

of the oscillations at long td is twice as long as the intrinsic Efimov

lifetime h̄/
(2).

density n0 = 5 × 1012 cm−3 [43–45], they can be safely ne-

glected within the considered range, td � 1 ms, rendering the

lifetime of Efimov trimers the most relevant decay mecha-

nism. Furthermore, the pulse frequency is �/2π = 10.8 kHz

over a time span 2t0 + τ = 134.7 μs, ensuring that the Efimov

trimers do not decay during the pulse. Under these considera-

tions, it suffices after the first pulse to multiply the amplitude

of the E (2)
T state with the factor e−
(2)td /(2h̄), as was employed

in Refs. [46,47].

The interference fringes of the RTA probability including

the effect of the decay at 150 and 270 nK are provided in

Fig. 2(a). Owing to the large abg, the frequencies are in the

range of tenths of kHz adequately agreeing with the TLM

calculations [see dashed lines in the inset Fig. 2(a)]. Isolating

the impact of the Efimov states decay on the RTA probability,

Fig. 2(b) shows the mean peak-to-peak envelopes of PT (td ),

i.e., P
p
T (td ). Fitting P

p
T (td ) with fi/ii(td ) = gi/iie

−
i/ii (td −t0
i/ii )/h̄ +

wi/ii at the dark time intervals i and ii [see dashed lines

in Fig. 2(b)] reveals two distinct decay widths indepen-

dent of the temperature, namely, 
i/h = 749.925(1.47) Hz

close to 
(2)/h, while at later td , 
ii/h = 375.03(1.63) Hz,

043134-4



INTERFEROMETRY OF EFIMOV STATES IN THERMAL … PHYSICAL REVIEW RESEARCH 5, 043134 (2023)

approximately 
(2)/(2h). This means that at early dark times,

PT (td ) falls off according to the intrinsic lifetime of the E (2)
T

Efimov trimer. In region II, where the interference between the

first atom dimer and the first excited trimer is pronounced, the

decay of the RTA probability is nearly twice the lifetime of the

E (2)
T state. This effect can, in principle, explain the unusually

long decay times observed in the experiment [27].

Including the trimer’s lifetime in the TLM allows us to gain

insights on the decay of the RTA probability, where PT (td )

becomes proportional to

PT (td ) ∝ [BT,A(td ) + BT,AD(td )]e− 
(2)td
2h̄ + BAD,A(td )

+ e− 
(2)td
h̄ . (7)

The terms Bi, j (td ) = Ai, j (td ) sin[(E (σ )
i − E (1)

j )td/h̄] with σ =
1 + δi,T originate from the superposition of states i, j, and

Ai, j (td ) refer to their amplitudes (see details in Appendix C).

The first three terms correspond to the three dominant fre-

quencies shown as dashed lines in the inset of Fig. 2(a).

The mixed contributions that involve E (2)
T with another state

contain only the factor e−
(2)td /(2h̄). Therefore, within region II

where the coherent admixture between the E (1)
AD and E (2)

T states

is manifested, the decay time of PT (td ) is virtually twice as

long as the intrinsic Efimov lifetime. The last nonoscillatory

term in Eq. (7) involves only the Efimov state and thus decays

according to e−
(2)td /h̄. The above expression holds in general
for any atomic species and abg > 0, provided that both the first

excited Efimov and first atom dimer are coherently populated.

As a generalization, the RTA probability is demonstrated

in Fig. 3 at negative scattering lengths, e.g., abg = −2030 a0,

where the atom-dimer pathways are intrinsically absent since

no universal dimer exists. The pulse frequency �/2π =
|E (1)

T − E (1)
A |/h = 232.2 kHz and its duration is 2t0 + τ =

3.7 μs. Note that here the pulse resonantly couples the

first trap and the Efimov ground state, whereas the pulse’s

length is shorter than the ground Efimov state lifetime

h̄/
(1)=3.9 μs [48]. As expected, the PT (td ) in Fig. 3(a)

oscillates with a single frequency, i.e., ω/(2π ) = |E (1)
T −

E (1)
A |/h = 233.5 kHz, only in region I and vanishes fast due to

the large 
(1) decay width. Moreover, Fig. 3(b) showcases the

mean peak-to-peak amplitude P
p
T (td ) and their fittings at the

dark time intervals i and ii [see dashed lines in Fig. 3(b)]. Sim-

ilar to Fig. 2(b), we extract two decay widths with their values

being 
i/h = 41.35(5.35) kHz and 
ii/h = 17.56(7.02) kHz

at T = 270 nK, which within error bars are close to 
(1)/h
and 
(1)/(2h), respectively. These findings are in accordance

with the description of Eq. (7), omitting terms associated with

atom-dimer transitions.

V. CONCLUSIONS AND OUTLOOK

In summary, the present theory demonstrates that the

double magnetic field interferometer has broad applicability,

namely, it permits the simultaneous extraction of the binding

energy and the lifetime of Efimov states regardless of the sign

or magnitude of the scattering length and the temperature of

the gas. This is feasible due to the generated superpositions of

the trimer with the first atom dimer and trap state at repulsive

interactions, or only with the first trap eigenstate at attractive

FIG. 3. (a) PT (td ) at abg = −2030 a0 and various temperatures

(see legend). The driving frequency is resonant with the transition be-

tween the ground Efimov and the first trap state, and the decay width

of the former 
(1)/h = 41 kHz. The inset presents the frequency

spectrum of region I, |FI (ω)|. (b) The mean peak-to-peak envelope,

P
p

T (td ) at T = 270 nK is fitted with fi/ii(td ) = gi/iie
−
i/ii (td −t0

i/ii )/h̄ +
wi/ii at the dark time intervals i and ii. Even at attractive interac-

tions, the energy and lifetime of Efimov states can be simultaneously

assessed.

interactions. These superpositions are manifested as interfer-

ence (Ramsey) fringes in the probability to occupy trimers,

observed over a wide range of temperatures. Corroborating

our results, a TLM is constructed, taking into account only

the contributions stemming from the Efimov trimer, the first

atom dimer, and trap state.

Going beyond previous studies, our analysis demonstrates

that the Ramsey fringes possess long damping times equal to

twice the intrinsic lifetime of Efimov trimers. This behavior is

illustrated at long dark times between the pulses, attributed to

the superposition of the trimer with the first atom-dimer state.

This relation, in particular, also provides an upper bound to

the lifetime of 7Li Efimov trimers which has remained un-

known to date. Furthermore, our paper predicts that there are

additional interference terms surviving the thermal average at

short dark times, namely, in this regime the system exhibits

interference fringes with frequencies that coincide with the

binding energy of the Efimov states, whereas the decay of

these oscillations is dictated by the lifetime of the trimers. This

demonstrates that it is possible to extract the binding energy

of the trimer at this early dark time regime, irrespective of

the interaction strength. This extends the current experimental

practice, exploring the long dark time region [27,49].

Owing to the sensitivity of the Ramsey-type dynamical

protocol, the corresponding interferometric signals could be
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further employed for probing Efimov states, especially at at-

tractive interactions. At this regime, trimers merge with the

three-atom continuum at a scattering length related only to the

van der Waals length, the so-called van der Waals universal-

ity [50–55]. The interferometry scheme can thus be utilized

at this regime, providing stringent tests on the universality.

Furthermore, recent experiments explore the modifications of

three-body recombination processes in mixtures of a bosonic

thermal gas with a degenerate fermion gas [24]. Hence,

creation of dynamically coherent superpositions between few-

body states can reveal the influence of a dense many-body

environment on them.
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APPENDIX A: THE THREE-BODY TIME-DEPENDENT
SCHRÖDINGER EQUATION IN HYPERSPHERICAL

COORDINATES

The time-dependent three-body Hamiltonian is decom-

posed in the center-of-mass frame and further expressed in

hyperspherical coordinates. An expansion in the field-free

eigenstates is subsequently utilized to cast the TDSE in matrix

form, tackled with the split operator method.

1. Center-of-mass decomposition

According to Eq. (1) in the main text, the three-body

Hamiltonian in the laboratory frame reads

H(t ) =
3

∑

i=1

(

−h̄2∇2
i

2m
+

mω2
r

2
r

2
i

)

+
∑

i< j

4π h̄2a(t )

m
δ(ri j )Ôi j .

(A1)

To eliminate the three degrees of freedom associated to

the center-of-mass Hamiltonian, we perform a transformation

from the laboratory to the center-of-mass frame. The Hamil-

tonian splits into a time-independent center-of-mass part and

another one describing the relative degrees of freedom, i.e.,

H(t ) = Hcm + Hrel(t ). Evidently, Hrel(t ) encapsulates the

relevant three-body dynamics, which in hyperspherical coor-

dinates, [4,35,56] takes the following expression:

Hrel(t ) = −
h̄2

2μ

1

R5/2

∂2

∂R2
(R5/2·) +

15h̄2

8μR2
+

h̄2
�

2

2μR2

+
1

2
μω2

r R2 + Vbg(R; �) + V (R; �) f (t ). (A2)

In this coordinate system, R describes the overall sys-

tem size and the five hyperangles collectively indicated by

� address the relative particle positions. Vbg(R; �) and

V (R; �) are the contact interaction potentials associated to

the background (abg) and amplitude scattering length (am)

respectively, expressed in hyperspherical coordinates. More-

over, we have isolated the time-dependence in the function

f (t ) = [a(t ) − abg]/am. �
2 is the grand angular momentum

operator describing the total angular momentum of the three

atoms [57] and μ is the three-body reduced mass.

According to Eq. (A2), Hrel(t ) splits into a field-free

Hamiltonian that describes three particles interacting with abg

scattering length and a time-dependent part which contains the

pulse field, i.e., Hrel(t ) = Hbg + V (R; �) f (t ). This particular

structure of Hrel(t ) suggests that the time-dependent three-

body wave function pertaining to the Hamiltonian Eq. (A1)

can be conveniently expanded on the field-free basis set, |n〉,
a basis such that Hbg is a diagonal matrix.

2. Eigenstates of the background Hamiltonian

Therefore, to obtain the eigenstates {|n〉} of Hbg, we em-

ploy the adiabatic hyperspherical representation [4,5], where

the hyperradius R is treated as an adiabatic parameter. For

completeness reasons, a brief description on the calculation of

|n〉 in this formalism is provided below, namely, Hbg is recast

as follows:

Hbg = −
h̄2

2μ

1

R5/2

∂2

∂R2
(R5/2·)

+
15h̄2

8μR2
+

h̄2
�

2

2μR2
+

1

2
μω2

r R2 + Vbg(R; �)

︸ ︷︷ ︸

Had(R;�)

, (A3)

where Had(R; �) refers to the adiabatic hyperangular Hamil-

tonian which parametrically depends on the hyperradius R. In

addition, the eigenstates |n〉 are expressed by the ansatz

〈R,�|n〉 = R−5/2
∑

ν

F (n)
ν (R)	ν (R; �), (A4)

where F (n)
ν (R) [	ν (R; �)] denotes the hyperradial (hyper-

angular) component of |n〉. More specifically, 	ν (R; �) are

obtained by diagonalizing Had(R; �) at fixed hyperradius

R [35,56] according to the expression

Had(R; �)	ν (R; �) = Uν (R)	ν (R; �), (A5)

where Uν (R) represents the νth hyperspherical potential curve

that depends only on R. The hyperradial functions F (n)
ν (R)

are determined by acting with Hbg on |n〉 and integrat-

ing over all the hyperangles �. This yields a system of

coupled hyperradial equations that include the nonadiabatic

couplings [4,35]. By diagonalizing the resulting matrix equa-

tions, we obtain the eigenenergies E (n) and hyperradial wave

functions F (n)
ν (R) [4,35].
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3. Solution of the TDSE

Expanding the time-dependent three-body wave function

in terms of |n〉 yields the following relation:

|� (α)
3b (t )〉 =

∑

n

c(α)
n (t ) |n〉 |0〉cm , (A6)

where the time-dependent coefficients initially satisfy c(α)
n (t =

0) = δnα , and the α index refers to an initial trap state. |0〉cm

is the center-of-mass ground state.

Plugging Eq. (A6) into the TDSE under the Hamiltonian of

Eq. (A1) leads to a matrix differential equation for the time-

dependent expansion coefficients:

ih̄
dc

(α)(t )

dt
= (Hbg + f (t )V ) · c

(α)(t ). (A7)

Equation (A7) is solved numerically by utilizing the

second-order split-operator method [36], namely, the propa-

gator of the c
(α)(t ) vectors within the time interval (t , t + dt)

reads

c
(α)(t + dt ) = e−iHbgdt/(2h̄)e−iV/h̄

∫ t+dt
t dt ′ f (t ′ )

× e−iHbgdt/(2h̄)
c

(α)(t ) + O(dt3). (A8)

APPENDIX B: MATRIX ELEMENTS OF THE
INTERACTION POTENTIAL WITH THE FIELD-FREE

EIGENSTATES

Having at hand the set of field-free eigenstates {|n〉},
obtained from the adiabatic hyperspherical formalism, the

matrix elements of the interaction potential associated to am,

V n′n, can be evaluated as

V n′n =
∑

ν,ν ′

∫

dR F (n′ )∗
ν ′ (R)Mν ′ν (R)F (n)

ν (R), (B1)

Mν ′ν (R) = 〈	ν ′ (R)|V |	ν (R)〉� , (B2)

where 〈·〉� indicates that the integral is performed over the

hyperangles.

Equation (B2) can be recast in a simple form by exploiting

the property V (R; �) = −(am/abg) R
3
∂RVbg(R; �) between

the contact potentials and utilizing the Hellman-Feynman

theorem [58], namely, for ν �= ν ′ the relation Mν ′ν (R) =
−(am/abg)R 〈	ν ′ (R)|∂R	ν (R)〉� [Uν ′ (R) − Uν (R)] holds.

Similar expressions are derived for ν = ν ′ which can be

regrouped as follows:

Mν ′ν (R) =
am

abg

h̄2

2μR
(−)1+sgn(ν−ν ′ )

√

∂Rs2
ν (R)∂Rs2

ν ′ (R). (B3)

Here, s2
ν (R) are related to the potential curves, i.e.,

2μR2/h̄2Uν (R) = s2
ν (R) − 1/4, and sgn(·) denotes the sign

function.

APPENDIX C: THREE-LEVEL MODEL AND
PERTURBATION THEORY

To provide a simplified picture of the full dynamics of

the few-body bound states, we next construct an effective

TLM. Within this model, we consider only three field-free

eigenstates, the first excited Efimov trimer (T), the first atom

dimer (AD), and an initial trap state α.

At the end of the first pulse, the probability amplitude to

occupy the T state, c̄(α)
T , within first-order time-dependent

perturbation theory [59], reads

c̄(α)
T (t0 + τ ) = V T,αRT,α (t0 + τ ), (C1a)

Rn,m(t0 + τ ) =
−ei(ωn,m+�)(t0+τ )/2 sin

[

(ωn,m + �) t0+τ

2

]

h̄(ωn,m + �)

−(� ↔ −�), (C1b)

where ωn,m ≡ (E (n) − E (m))/h̄.

During the dark time td , the probability amplitude of the

nth state acquires the phase factor e−iE (n)td /h̄c̄(α)
n (t0 + τ ). In

particular, the amplitude of the first excited Efimov state is

supplemented with the factor e−
(2)td /(2h̄), due to the width 
(2)

of the Efimov state, leading to the decay of the latter during

td .

The second pulse mixes all states together, and the proba-

bility amplitude to occupy the T state at the end of this pulse

reads

d̄ (α)
T (2t0 + 2τ + td )

=
∑

j=T,AD

[

V T, jRT, j (t0 + τ )

× c̄(α)
j (t0 + τ )e−iE (σ )

j td /h̄−
(2)td /(2h̄)δT, j
]

+ V T,αRT,α (t0 + τ )c̄(α)
A (t0 + τ )e−iE (α)

A td /h̄, (C2)

where σ = 1 + δ j,T .

To obtain the ratio of the thermally averaged probability

PT (td ), we weight the probabilities |d̄ (α)
T (2t0 + 2τ + td )|2 and

|c̄(α)
T (t0 + τ )|2 according to the Maxwell-Boltzman distribu-

tion for the trap states of energy E (α)
A at temperature T ,

PT (td ) =
∑

α∈A e
− E

(α)
A

kBT

∣
∣d̄ (α)

T (2t0 + 2τ + td )
∣
∣
2

∑

α∈A e
− E

(α)
A

kBT

∣
∣c̄(α)

T (t0 + τ )
∣
∣
2

, (C3)

where kB is the Boltzmann constant.

To derive an analytical expression for Eq. (C3) addi-

tional approximations are used, namely, the expressions for

d̄ (α)
T (2t0 + 2τ + td ) and c̄(α)

T (t0 + τ ) can be further simplified

by employing the rotating-wave approximation [59].

Furthermore, the energy of the αth trap state is roughly

approximated by the noninteracting energy spectrum, E (α)
A =

E (1)
A + 2αh̄ωr , where E (1)

A is the energy of the first trap state.

In addition, we approximate the V T,α matrix elements with a

quartic root of the energy of the αth trap state, a dependence

corroborated by a fitting procedure. Under these considera-

tions, Eq. (C3) obtains the same form as Eq. (5) in the main

text,

PT (td ) ∝ [BT,A(td ) + BT,AD(td )]e−
(2)td /(2h̄) + BAD,A(td )

+ e−
(2)td /h̄, (C4)
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where the B terms are given by the expressions

BT,A(td ) = C1 Im

[

e−i�φ1	

(

e f (kBT ,td ,ωr ),−0.5,
E (1)

A

2h̄ωr

)]

(C5a)

BT,AD(td ) =
∑

±
(−)±C±

2 sin
[(

E (2)
T − E (1)

AD

)

td/h̄ ± �(t0 + τ )/2
]

(C5b)

BAD,A(td ) =
∑

±
C±

3 Re

[

e−i�φ2±i�(t0+τ )/2	

(

e f (kBT ,td ,ωr ),−0.5,
E (1)

A

2h̄ωr

)]

(C5c)

f (kBT , td , ωr ) = −
2h̄ωr

kBT
+ 2iωr[td + 1.5(t0 + τ )]. (C5d)

	(a, b, z) is the Hurwitz-Lersch zeta function [60] and the phases �φ1 and �φ2 are defined as follows:

�φ1 ≡
(

E (2)
T − E (1)

A

)

td

h̄
− 3E (1)

A

t0 + τ

2h̄
(C6)

�φ2 ≡
(

E (1)
AD − E (1)

A

)

td

h̄
− 3E (1)

A

t0 + τ

2h̄
. (C7)

The explicit form of the prefactors C1,C±
2 ,C±

3 is given by

C1 =
h̄�

V T,T

[

	
(

e−2h̄ωr/(kBT ),−0.5,
E (1)

A

2h̄ωr

)]−1

sin2[�(t0 + τ )/2]
, (C8)

C±
2 =

V T,AD

V T,T

h̄�

sin2[�(t0 + τ )/2]

sin[(ωT,AD ± �)(t0 + τ )/2]

h̄(ωT,AD ± �)
, (C9)

C±
3 = (−)±

V T,AD

|V T,T |2
sin[(ωT,AD ± �)(t0 + τ )/2]

2h̄(ωT,AD ± �)

h̄2�2

sin4[�(t0 + τ )/2]
×

[

	

(

e−2h̄ωr/(kBT ),−0.5,
E (1)

A

2h̄ωr

)]−1

, (C10)

Note that there are revivals of the oscillatory signals BT,A(td ) and BAD,A(td ) at later dark times nπ
ωr

− 1.5(t0 + τ ), which are

attributed to the trap [33].

[1] V. Efimov, Energy levels arising from resonant two-body forces

in a three-body system, Phys. Lett. B 33, 563 (1970).

[2] V. Efimov, Energy levels of three resonantly interacting parti-

cles, Nucl. Phys. A 210, 157 (1973).

[3] V. N. Efimov, Weakly bound states of three resonantly interact-

ing particles. Sov. J. Nucl. Phys. 12, 589 (1971).

[4] C. H. Greene, P. Giannakeas, and J. Pérez-Ríos, Universal

few-body physics and cluster formation, Rev. Mod. Phys. 89,

035006 (2017).

[5] E. Nielsen, D. V. Fedorov, A. S. Jensen, and E. Garrido, The

three-body problem with short-range interactions, Phys. Rep.

347, 373 (2001).

[6] P. Naidon and S. Endo, Efimov physics: A review, Rep. Prog.

Phys. 80, 056001 (2017).

[7] J. P. D’Incao, Few-body physics in resonantly interacting ultra-

cold quantum gases, J. Phys. B: At. Mol. Opt. Phys. 51, 043001

(2018).

[8] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B.

Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, and

R. Grimm, Evidence for Efimov quantum states in an ultracold

gas of caesium atoms, Nature (London) 440, 315 (2006).

[9] M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. Ph. H.

Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R. E.

Grisenti, T. Jahnke, D. Blume, and R. Dörner, Observation

of the Efimov state of the helium trimer, Science 348, 551

(2015).

[10] S. Endo, A. M. García-García, and P. Naidon, Universal clusters

as building blocks of stable quantum matter, Phys. Rev. A 93,

053611 (2016).

[11] A. Kievsky, M. Gattobigio, L. Girlanda, and M. Viviani, Efimov

physics and connections to nuclear physics, Annu. Rev. Nucl.

Part. Sci. 71, 465 (2021).

[12] Y. Nishida, Y. Kato, and C. D. Batista, Efimov effect in quantum

magnets, Nat. Phys. 9, 93 (2013).

[13] M.J. Gullans, S. Diehl, S.T. Rittenhouse, B.P. Ruzic, J.P.

D’Incao, P. Julienne, A.V. Gorshkov, and J.M. Taylor, Efimov

states of strongly interacting photons, Phys. Rev. Lett. 119,

233601 (2017).

[14] B. Tran, M. Rautenberg, M. Gerken, E. Lippi, B. Zhu,

J. Ulmanis, M. Drescher, M. Salmhofer, T. Enss, and M.

Weidemüller, Fermions meet two bosons’the heteronuclear Efi-

mov effect revisited, Braz. J. Phys. 51, 316 (2021).

043134-8



INTERFEROMETRY OF EFIMOV STATES IN THERMAL … PHYSICAL REVIEW RESEARCH 5, 043134 (2023)

[15] A. Christianen, J. I. Cirac, and R. Schmidt, Bose polaron and the

Efimov effect: A Gaussian-state approach, Phys. Rev. A 105,

053302 (2022).

[16] P. Naidon, Two impurities in a Bose-Einstein condensate: From

Yukawa to Efimov attracted polarons, J. Phys. Soc. Jpn. 87,

043002 (2018).

[17] M. Sun and X. Cui, Efimov physics in the presence of a Fermi

sea, Phys. Rev. A 99, 060701(R) (2019).

[18] S. Musolino, H. Kurkjian, M. Van Regemortel, M. Wouters,

S. J. J. M. F. Kokkelmans, and V. E. Colussi, Bose-Einstein

condensation of Efimovian triples in the unitary Bose gas, Phys.

Rev. Lett. 128, 020401 (2022).

[19] V. E. Colussi, S. Musolino, and S. J. J. M. F. Kokkelmans,

Dynamical formation of the unitary Bose gas, Phys. Rev. A 98,

051601(R) (2018).

[20] P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cornell, and

D. S. Jin, Universal dynamics of a degenerate unitary Bose gas,

Nat. Phys. 10, 116 (2014).

[21] C. Eigen, J. A. P. Glidden, R. Lopes, E. A. Cornell, R. P. Smith,

and Z. Hadzibabic, Universal prethermal dynamics of Bose

gases quenched to unitarity, Nature (London) 563, 221 (2018).

[22] C. E. Klauss, X. Xie, C. Lopez-Abadia, J. P. D’Incao, Z.

Hadzibabic, D. S. Jin, and E. A. Cornell, Observation of Efimov

molecules created from a resonantly interacting Bose gas, Phys.

Rev. Lett. 119, 143401 (2017).

[23] R. J. Fletcher, R. Lopes, J. Man, N. Navon, R. P. Smith, M. W.

Zwierlein, and Z. Hadzibabic, Two-and three-body contacts in

the unitary Bose gas, Science 355, 377 (2017).

[24] X.-Y. Chen, M. Duda, A. Schindewolf, R. Bause, I. Bloch,

and X.-Y. Luo, Suppression of unitary three-body loss in a

degenerate Bose-Fermi mixture, Phys. Rev. Lett. 128, 153401

(2022).

[25] E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E.

Wieman, Atom–molecule coherence in a Bose-Einstein con-

densate, Nature (London) 417, 529 (2002).

[26] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach

resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[27] Y. Yudkin, R. Elbaz, P. Giannakeas, C. H. Greene, and L.

Khaykovich, Coherent superposition of Feshbach dimers and

Efimov trimers, Phys. Rev. Lett. 122, 200402 (2019).

[28] Y. Yudkin, R. Elbaz, and L. Khaykovich, Efimov energy level

rebounding off the atom-dimer continuum, arXiv:2004.02723.

[29] K. Góral, T. Köhler, S. A. Gardiner, E. Tiesinga, and P. S.

Julienne, Adiabatic association of ultracold molecules via

magnetic-field tunable interactions, J. Phys. B: At. Mol. Opt.

Phys. 37, 3457 (2004).

[30] A. G. Sykes, J. P. Corson, J. P. D’Incao, A. P. Koller, C. H.

Greene, A. M. Rey, K. R. A. Hazzard, and J. L. Bohn, Quench-

ing to unitarity: Quantum dynamics in a three-dimensional Bose

gas, Phys. Rev. A 89, 021601(R) (2014).

[31] J. P. Corson and J. L. Bohn, Bound-state signatures in quenched

Bose-Einstein condensates, Phys. Rev. A 91, 013616 (2015).

[32] B. Borca, D. Blume, and C. H. Greene, A two-atom picture of

coherent atom–molecule quantum beats, New J. Phys. 5, 111

(2003).

[33] J. P. D’Incao, J. Wang, and V. E. Colussi, Efimov physics in

quenched unitary Bose gases, Phys. Rev. Lett. 121, 023401

(2018).

[34] J. von Stecher and C. H. Greene, Spectrum and dynamics of the

BCS-BEC crossover from a few-body perspective, Phys. Rev.

Lett. 99, 090402 (2007).

[35] S. T. Rittenhouse, N. P. Mehta, and C. H. Greene, Green’s

functions and the adiabatic hyperspherical method, Phys. Rev.

A 82, 022706 (2010).

[36] S. Z. Burstein and A. A. Mirin, Third order difference methods

for hyperbolic equations, J. Comput. Phys. 5, 547 (1970).

[37] M. Tarana and C. H. Greene, Femtosecond transparency in the

extreme-ultraviolet region, Phys. Rev. A 85, 013411 (2012).

[38] P. Giannakeas, L. Khaykovich, J.-M. Rost, and C. H. Greene,

Nonadiabatic molecular association in thermal gases driven

by radio-frequency pulses, Phys. Rev. Lett. 123, 043204

(2019).

[39] P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum

Optics and Quantum Information (Springer-Verlag, Berlin, Hei-

delberg, 2006).

[40] F. Werner and Y. Castin, Unitary quantum three-body problem

in a harmonic trap, Phys. Rev. Lett. 97, 150401 (2006).

[41] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Weakly

bound dimers of fermionic atoms, Phys. Rev. Lett. 93, 090404

(2004).

[42] E. Nielsen, H. Suno, and B. D. Esry, Efimov resonances in

atom-diatom scattering, Phys. Rev. A 66, 012705 (2002).

[43] E. Braaten and H.-W. Hammer, Enhanced dimer relaxation in

an atomic and molecular Bose-Einstein condensate, Phys. Rev.

A 70, 042706 (2004).

[44] N. R. Claussen, S. J. J. M. F. Kokkelmans, S. T. Thompson,

E. A. Donley, E. Hodby, and C. E. Wieman, Very-high-

precision bound-state spectroscopy near a 85Rb feshbach

resonance, Phys. Rev. A 67, 060701(R) (2003).

[45] Th. Köhler, E. Tiesinga, and P. S. Julienne, Spontaneous disso-

ciation of long-range Feshbach molecules, Phys. Rev. Lett. 94,

020402 (2005).

[46] V. E. Colussi, J. P. Corson, and J. P. D’Incao, Dynamics of three-

body correlations in quenched unitary Bose gases, Phys. Rev.

Lett. 120, 100401 (2018).

[47] V. E. Colussi, B. E. van Zwol, J. P. D’Incao, and S. J. J. M. F.

Kokkelmans, Bunching, clustering, and the buildup of few-body

correlations in a quenched unitary Bose gas, Phys. Rev. A 99,

043604 (2019).

[48] E. Braaten and H. W. Hammer, Universality in few-body

systems with large scattering length, Phys. Rep. 428, 259

(2006).

[49] Y. Yudkin, R. Elbaz, J. P. D’Incao, P. S. Julienne, and L.

Khaykovich, The reshape of three-body interactions: Obser-

vation of the survival of an Efimov state in the atom-dimer

continuum, arXiv:2308.06237.

[50] J. Etrych, G. Martirosyan, A. Cao, J. A. P. Glidden, L. H.

Dogra, J. M. Hutson, Z. Hadzibabic, and C. Eigen, Pinpointing

feshbach resonances and testing Efimov universalities in 39K,

Phys. Rev. Res. 5, 013174 (2023).

[51] X. Xie, M. J. Van de Graaff, R. Chapurin, M. D. Frye, J. M.

Hutson, J. P. D’Incao, P. S. Julienne, J. Ye, and E. A. Cornell,

Observation of Efimov universality across a nonuniversal fesh-

bach resonance in 39K, Phys. Rev. Lett. 125, 243401 (2020).

[52] M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Nägerl,

F. Ferlaino, R. Grimm, P. S. Julienne, and J. M. Hutson, Univer-

043134-9



G. BOUGAS et al. PHYSICAL REVIEW RESEARCH 5, 043134 (2023)

sality of the three-body parameter for Efimov states in ultracold

cesium, Phys. Rev. Lett. 107, 120401 (2011).

[53] J. Johansen, B. J. DeSalvo, K. Patel, and C. Chin, Testing uni-

versality of Efimov physics across broad and narrow Feshbach

resonances, Nat. Phys. 13, 731 (2017).

[54] P. Naidon, S. Endo, and M. Ueda, Microscopic origin and uni-

versality classes of the Efimov three-body parameter, Phys. Rev.

Lett. 112, 105301 (2014).

[55] J. Wang, J. P. D’Incao, B. D. Esry, and C. H. Greene, Origin of

the three-body parameter universality in Efimov physics, Phys.

Rev. Lett. 108, 263001 (2012).

[56] G. Bougas, S. I. Mistakidis, P. Giannakeas, and P. Schmelcher,

Few-body correlations in two-dimensional Bose and Fermi ul-

tracold mixtures, New J. Phys. 23, 093022 (2021).

[57] J. Avery, Hyperspherical Harmonics: Applications in Quantum

Theory (Kluwer Academic Publishers, Norwell, MA, 1989).

[58] R. P. Feynman, Forces in molecules, Phys. Rev. 56, 340 (1939).

[59] J. J. Sakurai, Advanced Quantum Mechanics (Pearson Educa-

tion, India, 1967).

[60] I. S. Gradshteyn, I. M. Ryzhik, D. Zwillinger, and V. Moll,

Table of Integrals, Series, and Products, 8th ed. (Academic

Press, Amsterdam, 2015).

043134-10


