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We demonstrate that an interferometer based on modulated magnetic field pulses enables precise characteriza-
tion of the energies and lifetimes of Efimov trimers irrespective of the magnitude and sign of the interactions in
85Rb thermal gases. Despite thermal effects, interference fringes develop when the dark time between the pulses
is varied. This enables the selective excitation of coherent superpositions of trimer, dimer, and free-atom states.
The interference patterns possess two distinct damping timescales at short and long dark times that are either
equal to or twice as long as the lifetime of Efimov trimers, respectively. Specifically, this behavior at long dark
times provides an interpretation of the unusually large damping timescales reported in a recent experiment with
7Li thermal gases [Yudkin et al., Phys. Rev. Lett. 122, 200402 (2019)]. Apart from that, our results constitute a
stepping stone towards a high precision few-body state interferometry for dense quantum gases.
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I. INTRODUCTION

Efimovian trimers constitute an infinite set of particle
triplets occurring in the absence of two-body binding [1-7].
Owing to their universal character, they have been explored
in both nuclear and atomic physics [4,8—11] and in the con-
text of many-body physics as the binding mechanism for
magnons [12] and polaritons [13]. Furthermore, the role
of Efimov states is pivotal for some ultracold gases in
equilibrium, e.g., polarons [14—17] and in some out of equi-
librium [18-23], despite their short lifetime due to collisional
decay, i.e., three-body recombination processes. Recent in-
vestigations in dense gas mixtures demonstrate that such
processes can be suppressed due to medium effects [24].
Specifically, this puts forward the idea that the intrinsic prop-
erties of Efimov states, i.e., the binding energies and lifetimes,
are potentially modified. Hence, dynamically probing simul-
taneously both intrinsic properties of Efimov trimers could
provide alternative ways to study the impact of an environ-
ment.

To address such effects, a promising dynamical protocol
is to expose a many-body system in a double sequence of
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magnetic field modulations (pulses). The latter has been used
successfully to precisely measure the binding energies and
lifetimes of dimers [25] near a Feshbach resonance [26].
Beyond two-body physics, employing this Ramsey-type pro-
tocol for a thermal gas of "Li atoms, Yudkin et al. precisely
probed Efimov molecules even near the atom-dimer thresh-
old [27,28]; an experimentally challenging region. Specifi-
cally, the surviving atom number exhibited damped Ramsey
fringes that were robust against thermal effects. However,
the corresponding damping timescale was found to exceed
the typical lifetime of Efimov trimers even for 85Rbs [22].
In this regard, it has remained elusive how the lifetime of
Efimov trimers emerges in the interference fringes induced
by magnetic-field pulses. To address the intricate dynamics
of a three-body system requires a time-dependent theoretical
framework establishing a systematic pathway to also explore
the role of few-body physics in out-of-equilibrium many-body
systems [20,22].

Such an approach is developed here to investigate the
three-body dynamics of a thermal gas. We consider 3°Rb
atoms since the lifetimes of the ensuing trimers and dimers
are known experimentally [22] in contrast to 'Li [27]. Our
study establishes that, by implementing double magnetic field
pulses, the intrinsic properties of Efimov trimers are readily
probed regardless of the sign or magnitude of the scatter-
ing length; at which these states occur. Rich interferometric
spectra exhibit both low and high frequencies independent of
the gas temperature. The low-frequency components originate
from the coherent superposition of the trimer with the dimer
state, consistent with the observations in Ref. [27]. The ad-
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FIG. 1. (a) Energy spectrum of three harmonically trapped ®Rb particles with w,/(27) = 350 Hz. Efimov trimer (T), atom-dimer (AD),
and trap (A) states are depicted. Initially, the scattering length is set at a,, = 819 ay (dashed vertical line), then modulated with amplitude a,,
(gray region). Note a is the Bohr radius. (b) A schematic illustration of the Ramsey-type interferometer: A first pulse with envelope x(¢)
associates atom dimers and Efimov states out of trap states [first and second subgraphs in (b)]; the system then evolves freely during the dark
time #, [third subgraph in (b)], while a second pulse further admixes the states together with their dynamical phases that were accumulated
during t; [fourth subgraph in (b)]. (c) The ratio of thermally averaged (RTA) probabilities, Pr(#;) at ap, = 819 ay, and distinct temperatures
(see legend). Inset: A zoom-out plot of RTA at early #,. (d) [(e)] Frequency spectra referring to region I (I) of the RTA quantifying its single
(multifrequency) behavior at different values of temperature 7. The vertical dotted lines correspond to the three-level model (TLM) predictions

for E\?, E{}), and a trap state (see text).

ditional high frequencies arise from the coherent population
of the trimer or dimer states with the ones lying at the “at
breakup” threshold. The characteristic damping time of the
field-generated interference fringes is shown to be twice the
lifetime of the Efimov trimers, providing an explanation for
the unusually long decay times observed in Ref. [27].

This work begins by introducing the time-dependent
framework for the three-body system in Sec. II, also providing
details on the employed techniques. Subsequently, in Sec. III,
the association mechanisms of the dynamical scheme are ex-
amined. The role of the lifetime of the Efimov states is studied
in Sec. IV for both repulsive and attractive background inter-
actions. Section V summarizes our major findings and future
perspectives are discussed. Appendix A outlines the steps to
numerically solve the three-body time-dependent Schrodinger
equation (TDSE) in hyperspherical coordinates, while the
explicit form of the interaction potential matrix elements us-
ing field-free eigenstates is given in Appendix B. Further
insights into the three-level model (TLM) via first-order time-
dependent perturbation theory are provided in Appendix C.

II. TIME-DEPENDENT THREE-BODY SYSTEM AND
INTERFEROMETRY PROTOCOL

Our paradigm system consists of three ®Rb atoms of
mass m confined in a spherically symmetric harmonic trap

with radial frequency w,. Following the prescription of
Refs. [29-34], we set w, = 27 x 350Hz, yielding a single
atom trap length a, = /h/(mw,) that compares to the inter-
particle spacing (~ (n)~'/%) used in Ref. [22] for a local peak
density ng =5 x 10" cm~3. The dynamics and the univer-
sal characteristics of the three-body system are addressed by
employing contact interactions with a time-dependent s-wave
scattering length, i.e., a(¢). The three-body Hamiltonian reads
: —*V?  ma? , 4 ha(t) A
H(t) = ; ( -t r,-) + X,: ——5())0y,
ey

where r; denotes the position of the ith atom and Oij =
0y,; (rij-) is the Fermi-Huang regularization operator with r;; =
|r; —r;|. Figure 1(b) depicts the dynamical profile of a(t)
determined by the double pulse magnetic field sequence used
in Ref. [27], namely,

a(t) = apg + am cos (Q20)[x (1) + x(t —tq — 2t — 7)), (2)

sin? (%), 0<t <
1, fhh<t<ty+rt
with x ) =1{ " = 3)
sin (@) th+T <t<20+71
to
0, otherwise.
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Here, ay, indicates the background scattering length of the
time-independent system, and a,, is the pulse’s amplitude
yielding ~20% change to ayg. €2 is the driving frequency and
x (¢) denotes the envelope of the pulse where 7y and 7 are
the ramp on and off times and length of the pulse envelope,
respectively. The time between the two pulses is represented
by t4, i.e., dark time, where the system freely evolves.

Owing to Eq. (2), it suffices to simulate the correspond-
ing TDSE in the center-of-mass of the three-body system,
namely, only the relative Hamiltonian depends explicitly on
time, i.e., H({t) = Hem + Hrel(t). Regarding the center-of-
mass Hamiltonian H.,, we assume from here on that the
three-atom setting always resides in its ground state, |0).,.
Subsequently, the H.(¢) is further decomposed into two
terms: (i) a field-free Hamiltonian that describes three atoms
in a spherical trap interacting with ay, scattering length and
(i1) an explicit time-dependent interaction term (for more
details, see Appendix A 1). The spectrum of the relative field-
free Hamiltonian is obtained via the adiabatic hyperspherical
approach [4-7,35]. In this method, all the relative degrees
of freedom are expressed by a hyperradius R that describes
the overall system size and a set of five hyperangles w that
address the relative particle positions. Subsequently, the field-
free eigenstates |n) are expanded in a set of hyperangular basis
functions, ®,(R; w), treating the hyperradius as an adiabatic
parameter [4,5],

(R, wln) =R )" F"(R)D,(R; @), “

where the expansion coefficients FV(")(R) are the so-called
hyperradial channel functions.

Within the adiabatic hyperspherical approach, the determi-
nation of the eigenstates |n) along with their corresponding
eigenenergies is performed in two steps. The hyperangular
wave functions are obtained first, treating R as an adiabatic
parameter. Subsequently, the hyperradial channel functions
and E™ are calculated from the resulting equations that in-
clude all the relevant nonadiabatic coupling terms. A more
elaborate discussion on the adiabatic hyperspherical approach
is provided in Appendix A 2.

The stationary eigenenergies E™ versus the scattering
length ay,, are shown in Fig. 1(a). Their corresponding eigen-
states, |n), fall into three classes: Efimov trimers (7), atom
dimers (ADs), and trap (A) states [red, blue, and green lines in
Fig. 1(a)]. Furthermore, the adiabatic hyperspherical approach
allows us to express the time-dependent wave function of
Eq. (1) in terms of the field-free eigenstates, i.e., |\113(Z)(t)) =
> cfl"‘)(t) 1) |0) ., With c,(l"‘)(t) being the probability ampli-
tude of the nth stationary state. The initial boundary condition
is ¢ (0) = §,, where the index & enumerates solely trap
states, i.e., o € A. Plugging this expansion into the TDSE
under the Hamiltonian of Eq. (1) leads to a matrix differential
equation for the time-dependent expansion coefficients:

de@ (1)
dt

Here, H.(t) represents the relative Hamiltonian matrix ex-
pressed in the field-free basis. Given the decomposition of
Hrei(t) into a field-free Hamiltonian and an explicit time-
dependent interaction term, it is convenient to employ the

ih = Hea(t) - (). o)

second-order split-operator method [36,37] for solving Eq. (5)
(for additional information, refer also to Appendix A 3).
According to Fig. 1(b), initially the three particles inter-
act with a(t = 0) = apg = 819 ap [see dashed vertical line in
Fig. 1(a)], residing in a specific trap state. Similar to Ref. [27],
at apg the system supports two Efimov trimer states, with

the second (excited) one at energy E}Z) lying close to the

first atom-dimer energy in the trap, Ef(llD), which represents the
atom-dimer threshold. At ¢ # 0, the first pulse turns on with
an envelope x (¢) of amplitude a,, [gray region in Fig. 1(a)],
where a(f) modulates with angular frequency 2 [27,38].
The latter is equal to the energy difference between the first
trap and atom-dimer states, i.e., /27 = (E/il) - Ef(‘})))/h =
63.8kHz, as in the experiment of Ref. [27]. Furthermore,
the pulse’s full width at half maximum is 27 us, providing
an energy bandwidth of 6.5 kHz matching the energy differ-
ence between the second trimer and first atom-dimer states,
|E}2) —F ;3 |/h. This implies that the first excited trimer E;Z)
and atom-dimer E SD) states are coherently populated since
the pulse cannot energetically resolve them. After the first
pulse, the system occupies several |n) eigenstates which freely
evolve during the dark time #;, each accumulating a dynamic
phase [see Fig. 1(b)]. Att = t,, a second pulse, identical to the
first one, is applied, admixing different stationary eigenstates
and their corresponding dynamical phases. By the end of the
second pulse, we extract the probability to occupy the Efimov
trimer state as a function #,.

In a typical experiment, the three-body dynamics takes
place in a thermal gas at temperature 7 [27,28]. Hence, after
the double pulse sequence, the probability density to occupy
the Efimov trimer needs to be thermally averaged over a
Maxwell-Boltzmann ensemble of initial trap states. For our
purposes, we introduce a ratio of thermally averaged (RTA)
probabilities, Pr(z;), to populate Efimov trimer states after
two pulses (numerator) versus one pulse (denominator),

£@
“BT (@01 :
PT(td) _ ZaeA Z]ET e E|(cu{ (2T + td)| ’ (6a)

~ @ 2
D wea ZjeT e ‘&7 |C.,-a (T)}
COQF 4 1) = 3 UpQF + 14, % +10)e E W, (7, 0),

n

(6b)

where kg is the Boltzmann constant, T = 2fy + 7 is the pulse
duration, and U (-, -) represents the three-body evolution op-
erator during a single pulse, expressed in the field-free basis.

III. DYNAMICAL SUPERPOSITION OF EFIMOV TRIMERS

Figure 1(c) depicts Pr(t;) for two characteristic temper-
atures T, where oscillatory fringes are observed that persist
after thermal averaging, namely, Pr(¢;) exhibits fast oscilla-
tions throughout regions I and II, and additional slow ones
only in region II. The contributing frequencies are identified
in the Fourier spectra of RTA demonstrated in Figs. 1(d)
and 1(e) for regions I and II, respectively. In region I, inde-
pendently of the temperature, a single frequency dominates
in Pr(¢;) at /(2w) = 71.8 kHz [Fig. 1(d)] corresponding to
the energy difference |E/§1) - E;2)| /h. For longer dark times
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(region II), three distinct frequencies occur, Fig. 1(e), with the
high ones, i.e., w/(2m) = 63.7 and 69.9 kHz, referring to the
superposition of the first trap state with the first atom-dimer
and excited Efimov states, respectively. The low-frequency
peak at w/(27) = 6.5 kHz originates from interfering ampli-
tudes between the first atom-dimer and first excited Efimov
state pathways. Note that region II (~1.2kHz) shows better
frequency resolution than region I (~10kHz), which re-
sults in small deviations between the highest frequencies in
both regions. Due to the finite resolution, a small mismatch
also occurs between the difference 69.9 — 63.7kHz and the
low-frequency peak in region II. Similar low-frequency and
temperature-independent oscillatory fringes were also experi-
mentally observed for Li atoms [27,28]. However, the present
analysis reveals that high-frequency interferences are also
imprinted in the RTA probability, where the early dark time
fringes can be experimentally utilized to measure the Efimov
binding energy at a given dpg.

The fact that Py (z;) features three main frequencies, ir-
respectively of T, is traced back to the incoherent sum of
the trimer probability [see Eq. (6a)], namely, all contributions
involving higher-lying trap states peter out, except for three
arising from the ground trap state E (D the first atom-dimer

E[(AID) and the first excited Efimov state E}z). This particular
set of eigenstates survives upon the thermal average due to
the specifics of the pulse and its envelope. Recall that the
driving frequency is in resonance between the Ef‘l) and E fgg
stationary eigenstates, whereas the duration of the pulse is
short to coherently populate only the first atom-dimer and first
excited Efimov states.

Focusing on this aspect, a TLM Hamiltonian containing
E}z), EIL(‘B, and a single trap state is constructed [39]. The
three-level system is initialized in the single trap state and we
apply square pulses of the scattering length [Egs. (2) and (3)]
to trigger the dynamics of the three-body setup. Within this
picture, the probability amplitude to occupy the first excited
Efimov state at the end of the second pulse is obtained by
employing first-order time-dependent perturbation theory (for
additional details, see also Appendix C). Moreover, approxi-
mations for the energy levels of the trap states and the matrix
elements to occupy the trimer state lead to analytical expres-
sions for Pr(t;) (see also Appendixes B and C). It is shown
that the latter is decomposed into three oscillatory terms. The
TLM predictions for the frequencies, illustrated as vertical
dotted lines in Figs. 1(d) and 1(e), are found to be in excellent
agreement with the full numerical calculations.

IV. IMPACT OF THE LIFETIME OF THE TRIMER

In Figs. 1(c)-1(e), our analysis neglects the decay of the
Efimov trimers and dimer states. However, in thermal gases,
three-body recombination or relaxation processes are present,
resulting in finite lifetimes of the trimers and dimers. In the
following, we choose ay, = 2030 ag, which is significantly
larger than the van der Waals length scale [ qw = 82.5 a¢ for
85Rb, yielding negligible finite range effects [26]. Therefore,
in this universal regime, the zero-range theory predicts that the
lifetime of the first excited Efimov state is //T"® = 212 us
(T'® denotes the decay width) [22,40-42]. Also, since the
decay of dimers lie within the range 2-9 ms, for local peak
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FIG. 2. (a) Pr(z,) for different temperatures (see legend), taking
into account the decay width, I'®/h = 748 Hz, of the first excited
Efimov state at ap, = 2030 ay. The gray solid lines outline the upper
and lower peak envelopes. The inset presents the frequency spectrum
pertaining to region II, | Fii(w)]. (b) The mean peak-to-peak envelope,
PL(t), is fitted with the exponentials f;/;(t,) = g,-/,-ie_r"/"’“f’_’i(}ii)/ﬁ +
w;/; at dark time intervals i and ii (black and green dashed lines) with
8isii» Wizi; representing fitting constants. The characteristic decay time
of the oscillations at long ¢, is twice as long as the intrinsic Efimov
lifetime 71/ @,

density ng = 5 x 10'2 cm™3 [43-45], they can be safely ne-
glected within the considered range, #; < 1 ms, rendering the
lifetime of Efimov trimers the most relevant decay mecha-
nism. Furthermore, the pulse frequency is /27 = 10.8 kHz
over a time span 2ty + t = 134.7 us, ensuring that the Efimov
trimers do not decay during the pulse. Under these considera-
tions, it suffices after the first pulse to multiply the amplitude
of the E{>) state with the factor e="""4/@" a5 was employed
in Refs. [46,47].

The interference fringes of the RTA probability including
the effect of the decay at 150 and 270 nK are provided in
Fig. 2(a). Owing to the large ay,, the frequencies are in the
range of tenths of kHz adequately agreeing with the TLM
calculations [see dashed lines in the inset Fig. 2(a)]. Isolating
the impact of the Efimov states decay on the RTA probability,
Fig. 2(b) shows the mean peak-to-peak envelopes of Pr(z;),
i.e., ]P#(td) Fitting P#(l‘d) with f}/,‘,‘(ld) = g,‘/,‘ieiri/ii(tditg“)/ﬁ +
wi; at the dark time intervals i and ii [see dashed lines
in Fig. 2(b)] reveals two distinct decay widths indepen-
dent of the temperature, namely, I';/h = 749.925(1.47)Hz
close to T'®/h, while at later t;, ';;/h = 375.03(1.63) Hz,
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approximately I'® /(2h). This means that at early dark times,
Py (2;) falls off according to the intrinsic lifetime of the E}z)
Efimov trimer. In region II, where the interference between the
first atom dimer and the first excited trimer is pronounced, the
decay of the RTA probability is nearly twice the lifetime of the
E}z) state. This effect can, in principle, explain the unusually
long decay times observed in the experiment [27].

Including the trimer’s lifetime in the TLM allows us to gain
insights on the decay of the RTA probability, where Pr(z;)
becomes proportional to

r

)
Pr(ta) o< [Br.a(ta) + Brapta)le™ 7 + Bap.a(ta)
r@;
e . (7

The terms B; j(14) = A; ;(t4) sin[(E") — E](.l))td /h] with o =
1 4 §; r originate from the superposition of states i, j, and
A, j(ty) refer to their amplitudes (see details in Appendix C).
The first three terms correspond to the three dominant fre-
quencies shown as dashed lines in the inset of Fig. 2(a).
The mixed contributions that involve E;z) with another state

contain only the factor e~ @1/2h) Therefore, within region II
where the coherent admixture between the £ /S)) and E}Z) states
is manifested, the decay time of Pr(#;) is virtually twice as
long as the intrinsic Efimov lifetime. The last nonoscillatory
term in Eq. (7) involves only the Efimov state and thus decays
according to e~ T/ The above expression holds in general
for any atomic species and apg > 0, provided that both the first
excited Efimov and first atom dimer are coherently populated.

As a generalization, the RTA probability is demonstrated
in Fig. 3 at negative scattering lengths, e.g., ap, = —2030ay,
where the atom-dimer pathways are intrinsically absent since
no universal dimer exists. The pulse frequency /27 =
|ESY — E"|/h = 232.2kHz and its duration is 2fp + 7 =
3.7 us. Note that here the pulse resonantly couples the
first trap and the Efimov ground state, whereas the pulse’s
length is shorter than the ground Efimov state lifetime
h/TM=3.9 us [48]. As expected, the Pr(z,) in Fig. 3(a)
oscillates with a single frequency, i.e., w/(2w) = |E}1) —
Ejl)| /h = 233.5kHz, only in region I and vanishes fast due to
the large I'") decay width. Moreover, Fig. 3(b) showcases the
mean peak-to-peak amplitude P/ (7;) and their fittings at the
dark time intervals i and ii [see dashed lines in Fig. 3(b)]. Sim-
ilar to Fig. 2(b), we extract two decay widths with their values
being I';/h = 41.35(5.35)kHz and I';;/h = 17.56(7.02) kHz
at 7 = 270nK, which within error bars are close to 'V /A
and ' /(2h), respectively. These findings are in accordance
with the description of Eq. (7), omitting terms associated with
atom-dimer transitions.

V. CONCLUSIONS AND OUTLOOK

In summary, the present theory demonstrates that the
double magnetic field interferometer has broad applicability,
namely, it permits the simultaneous extraction of the binding
energy and the lifetime of Efimov states regardless of the sign
or magnitude of the scattering length and the temperature of
the gas. This is feasible due to the generated superpositions of
the trimer with the first atom dimer and trap state at repulsive
interactions, or only with the first trap eigenstate at attractive

I —T=150nK —T=270nK
g . 5 — : .
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— 3
S ° < |
-
E H
&‘ 4+ 150 200 250 300 350
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I | it |
5 L 4
= 451 fi(ta) --- fii(ta)
Nt
al 4f ]
By <.
3-5 [ (b) \,\ 7
0 0.01 0.02 0.03

tqg (ms)

FIG. 3. (a) Pr(#;) at a,, = —2030a, and various temperatures
(see legend). The driving frequency is resonant with the transition be-
tween the ground Efimov and the first trap state, and the decay width
of the former I'"/h = 41 kHz. The inset presents the frequency
spectrum of region I, |Fj(w)|. (b) The mean peak-to-peak envelope,
P2(t,) at T = 270K is fitted with f;/;:(t4) = gijie” i~/ 4
wi/; at the dark time intervals i and ii. Even at attractive interac-
tions, the energy and lifetime of Efimov states can be simultaneously
assessed.

interactions. These superpositions are manifested as interfer-
ence (Ramsey) fringes in the probability to occupy trimers,
observed over a wide range of temperatures. Corroborating
our results, a TLM is constructed, taking into account only
the contributions stemming from the Efimov trimer, the first
atom dimer, and trap state.

Going beyond previous studies, our analysis demonstrates
that the Ramsey fringes possess long damping times equal to
twice the intrinsic lifetime of Efimov trimers. This behavior is
illustrated at long dark times between the pulses, attributed to
the superposition of the trimer with the first atom-dimer state.
This relation, in particular, also provides an upper bound to
the lifetime of "Li Efimov trimers which has remained un-
known to date. Furthermore, our paper predicts that there are
additional interference terms surviving the thermal average at
short dark times, namely, in this regime the system exhibits
interference fringes with frequencies that coincide with the
binding energy of the Efimov states, whereas the decay of
these oscillations is dictated by the lifetime of the trimers. This
demonstrates that it is possible to extract the binding energy
of the trimer at this early dark time regime, irrespective of
the interaction strength. This extends the current experimental
practice, exploring the long dark time region [27,49].

Owing to the sensitivity of the Ramsey-type dynamical
protocol, the corresponding interferometric signals could be
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further employed for probing Efimov states, especially at at-
tractive interactions. At this regime, trimers merge with the
three-atom continuum at a scattering length related only to the
van der Waals length, the so-called van der Waals universal-
ity [50-55]. The interferometry scheme can thus be utilized
at this regime, providing stringent tests on the universality.
Furthermore, recent experiments explore the modifications of
three-body recombination processes in mixtures of a bosonic
thermal gas with a degenerate fermion gas [24]. Hence,
creation of dynamically coherent superpositions between few-
body states can reveal the influence of a dense many-body
environment on them.
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APPENDIX A: THE THREE-BODY TIME-DEPENDENT
SCHRODINGER EQUATION IN HYPERSPHERICAL
COORDINATES

The time-dependent three-body Hamiltonian is decom-
posed in the center-of-mass frame and further expressed in
hyperspherical coordinates. An expansion in the field-free
eigenstates is subsequently utilized to cast the TDSE in matrix
form, tackled with the split operator method.

1. Center-of-mass decomposition

According to Eq. (1) in the main text, the three-body
Hamiltonian in the laboratory frame reads

3 22 2
—hV; mw:
Hm_Z( m 2 ri)

i=1

4 h*a(t) A
+ Z TB(ri_i)Oij.
i<j

(AD)

To eliminate the three degrees of freedom associated to
the center-of-mass Hamiltonian, we perform a transformation
from the laboratory to the center-of-mass frame. The Hamil-
tonian splits into a time-independent center-of-mass part and
another one describing the relative degrees of freedom, i.e.,
H(t) = Hem + Hiel(t). Evidently, H,e(f) encapsulates the
relevant three-body dynamics, which in hyperspherical coor-
dinates, [4,35,56] takes the following expression:

P19 158> K2A?

Heat (1) = — — —
rel (1) ) S/LRZ + 2[,LR2

— % (RS~
P E g R+

1
+ S nol R + V(R @) + V(R @) f (1) (A2)

2

In this coordinate system, R describes the overall sys-
tem size and the five hyperangles collectively indicated by
w address the relative particle positions. Vipg(R; @) and
V(R; w) are the contact interaction potentials associated to
the background (aye) and amplitude scattering length (a,,)
respectively, expressed in hyperspherical coordinates. More-
over, we have isolated the time-dependence in the function
f@®) =1la@) — avel/am. A? is the grand angular momentum
operator describing the total angular momentum of the three
atoms [57] and p is the three-body reduced mass.

According to Eq. (A2), H.(t) splits into a field-free
Hamiltonian that describes three particles interacting with ape
scattering length and a time-dependent part which contains the
pulse field, i.e., Hye1(t) = Hpg + V(R; @) f(¢). This particular
structure of H,e () suggests that the time-dependent three-
body wave function pertaining to the Hamiltonian Eq. (A1)
can be conveniently expanded on the field-free basis set, |n),
a basis such that H,, is a diagonal matrix.

2. Eigenstates of the background Hamiltonian

Therefore, to obtain the eigenstates {|n)} of Hys, we em-
ploy the adiabatic hyperspherical representation [4,5], where
the hyperradius R is treated as an adiabatic parameter. For
completeness reasons, a brief description on the calculation of
|n) in this formalism is provided below, namely, Hyg is recast
as follows:

/N U L
__m /2,
Hbg - 20 R5/2 9R2 (R )
151

242
A + luszz + Vo (R; @),
8uR? "

2uR? 2
Had(R@)

+

(A3)

where H,4(R; @) refers to the adiabatic hyperangular Hamil-
tonian which parametrically depends on the hyperradius R. In
addition, the eigenstates |n) are expressed by the ansatz

(R.wn) =R FP(R)D,(R; @), (A4)

where F(R) [®,(R; w)] denotes the hyperradial (hyper-
angular) component of |n). More specifically, ®,(R; w) are
obtained by diagonalizing H,q(R; @) at fixed hyperradius
R [35,56] according to the expression

Hua(R; @)D, (R, w) = U, (R)D,(R; @), (A5)

where U, (R) represents the vth hyperspherical potential curve
that depends only on R. The hyperradial functions F(R)
are determined by acting with Hy, on |n) and integrat-
ing over all the hyperangles w. This yields a system of
coupled hyperradial equations that include the nonadiabatic
couplings [4,35]. By diagonalizing the resulting matrix equa-
tions, we obtain the eigenenergies £ and hyperradial wave
functions F"(R) [4,35].
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3. Solution of the TDSE

Expanding the time-dependent three-body wave function
in terms of |n) yields the following relation:

(W5 () =Y i) 1) 0)ern

n

(A6)

where the time-dependent coefficients initially satisfy c'®) (¢ =
0) = 8,4, and the « index refers to an initial trap state. |0).,
is the center-of-mass ground state.

Plugging Eq. (A6) into the TDSE under the Hamiltonian of
Eq. (A1) leads to a matrix differential equation for the time-
dependent expansion coefficients:

de®(t)
dt

Equation (A7) is solved numerically by utilizing the
second-order split-operator method [36], namely, the propa-
gator of the ¢®)(t) vectors within the time interval (¢, t + dt)
reads

c(ot)(t + dt) — e_iﬂbgdt/(ZFl)e_iv/hfr'*d’ dr' @t

ih = Hog + V) - (). (A7)

x e Hedt /D@ 1y 4 O@dr®).  (A8)
APPENDIX B: MATRIX ELEMENTS OF THE
INTERACTION POTENTIAL WITH THE FIELD-FREE
EIGENSTATES

Having at hand the set of field-free eigenstates {|n)},
obtained from the adiabatic hyperspherical formalism, the
matrix elements of the interaction potential associated to a,,,
V .vn, can be evaluated as

Von = Z / dR F"* (R)M,,(R)F™(R), (B1)
My (R) = (D (R)|IV D, (R)) 5 (B2)

where (-), indicates that the integral is performed over the
hyperangles.

Equation (B2) can be recast in a simple form by exploiting
the property V(R; W) = —(du/dvg)50rVog(R; @) between
the contact potentials and utilizing the Hellman-Feynman
theorem [58], namely, for v # V' the relation M, ,(R) =
—(am/apg )R (P (R)|0r P (R)) 5 [Uy (R) — Uy(R)]  holds.
Similar expressions are derived for v =1’ which can be
regrouped as follows:

n B /
Myy(R) = 2 2 (s foe 2 (R)des? (R). (B3)
apg 2R

Here, s%(R) are related to the potential curves, i.e.,
2uR?/F*U,(R) = s2(R) — 1/4, and sgn(-) denotes the sign
function.

APPENDIX C: THREE-LEVEL MODEL AND
PERTURBATION THEORY

To provide a simplified picture of the full dynamics of
the few-body bound states, we next construct an effective
TLM. Within this model, we consider only three field-free
eigenstates, the first excited Efimov trimer (7), the first atom
dimer (AD), and an initial trap state .

At the end of the first pulse, the probability amplitude to

occupy the T state, ngx), within first-order time-dependent

perturbation theory [59], reads

& (to + 1) = VraRro(to + 1), (Cla)
— &l @umtD+7)/2 gip [(wn.m + Q)%]

T + Q)
—(2 <« —Q),

Rn,m(t0 + 7:) =

(Clb)

where w,,, = (E™ — E™)/h.

During the dark time #,, the probability amplitude of the
nth state acquires the phase factor e#"/ig@ (1, 4 7). In
particular, the amplitude of the first excited Efimov state is
supplemented with the factor e="*/@" _due to the width ['®
of the Efimov state, leading to the decay of the latter during
tg.

The second pulse mixes all states together, and the proba-
bility amplitude to occupy the T state at the end of this pulse
reads

A (210 + 2t +14)
= Z [VT’]‘RT,J'(IO + ‘[)

j=T.AD

(o) —iE"14/h=T @ty /207, ;
X C; (to +t)e i -/]

+ViaRralto + T (W + T)e B (€2)
where o =146 7.

To obtain the ratio of the thermally averaged probability
Pr(z;), we weight the probabilities |J(Ta)(2t0 +27 +14)]* and
|E(Ta)(t0 + 7)|? according to the Maxwell-Boltzman distribu-
tion for the trap states of energy Ef(f‘) at temperature 7,

(
EA

o)
_CA = 2
Spene BT\ (210 + 2T +14)
Pr(ty) = =24 ‘; | :

_E 2
ZaeA e 7 |E§EX)(I0 + T)|

(C3)

where kg is the Boltzmann constant.

To derive an analytical expression for Eq. (C3) addi-
tional approximations are used, namely, the expressions for
d\® 2ty + 2t +14) and (1o + ) can be further simplified
by employing the rotating-wave approximation [59].

Furthermore, the energy of the «th trap state is roughly
approximated by the noninteracting energy spectrum, Ef(\“) =
E/(Xl) + 2ahw,, where E/(‘l) is the energy of the first trap state.
In addition, we approximate the Vr , matrix elements with a
quartic root of the energy of the «th trap state, a dependence
corroborated by a fitting procedure. Under these considera-
tions, Eq. (C3) obtains the same form as Eq. (5) in the main
text,

Py (t4) o [Br.a(ta) + Brap(ta)le ™ /D 4 Byp A(tq)

+ e T, (C4)
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where the B terms are given by the expressions

) , E(l)
Bra(ty) = C; Im |:e_’A¢‘ @ <ef<"BT”d’wr->, —0.5, -4 )} (C5a)
2hw,
Brap(ta) = Z(—)ic; sin [(EY” — ESp)ta/h £ Q1o + 1)/2] (C5b)
+
] ] E(l)
Bapa(ta) = ) Ci Re| e a0H%0dn g o/t T e 05 A (C5¢)
T 2hw,
2hw, .
fkgT , tg, w,) = — + 2iw,[t; + 1.5 + 1)]. (Cs5d)
kgT
®(a, b, 7) is the Hurwitz-Lersch zeta function [60] and the phases A¢; and A¢, are defined as follows:
(ED - ED)y o+t
Apy=~—L 4T _3pMh2T- Cé
1 - A or (Co)
(ES) — EP)ta fo+T
Agpy = ~AD —3g(2 c7
¢2 fi A 2% ( )
The explicit form of the prefactors Cj, Czi, C3i is given by
(1) _
o [0 20D, 05, £0)]
C = — —, (C8)
Vrr sin“[Q2(t) + 7)/2]
+ Vrap hQ sin[(wr.ap £ Q)(to + 7)/2]
G = — ; (C9)
Vrr sin’[Q(ty + 7)/2] h(wr ap £ Q)
CE = (=)t Vrap sin[(wrap £ Q)0 + 7)/2]
’ \Vrrl? 2h(wr ap £ Q)
-1
EZQZ E(])
——————— x| ®| /BT 05, A : (C10)
sin“[Q2(t) + 7)/2] 2hw,

Note that there are revivals of the oscillatory signals By 4(#;) and Bap 4(zz) at later dark times :‘U—” — 1.5(ty + t), which are

attributed to the trap [33].
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