

1 A genetic screen of transcription factors in the *Drosophila*
2 *melanogaster* abdomen performed in an undergraduate
3 laboratory course

4 Sarah J. Petrosky¹, Thomas M. Williams², and Mark Rebeiz^{1‡}.

5
6 ¹ Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
7 15260

8 ² Department of Biology, University of Dayton, Dayton, Ohio, USA 45469

9 [‡] corresponding author (rebeiz@pitt.edu)

10

11 Key words: gene regulation, development, pigmentation, *Drosophila*, abdomen, CRISPR/Cas9

12 Data available through FigShare: <https://figshare.com/s/8125ce60a2c3aa2381a9>

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 **Abstract**

33 Gene regulatory networks specify the gene expression patterns needed for traits to develop.
34 Differences in these networks can result in phenotypic differences between organisms. Although
35 loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function
36 screens can overcome genetic redundancy and identify loci whose expression is sufficient to
37 alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at
38 Harvard Medical school to perform both gain- and loss-of-function CRISPR/Cas9 screens for
39 abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns
40 in the *Drosophila melanogaster* abdomen for 21 of 55 transcription factors in gain-of-function
41 experiments and 7 of 16 tested by loss-of-function experiments. These included well-
42 characterized pigmentation genes, such as *bab1* and *dsx*, and transcription factors that had no
43 known role in pigmentation, such as *slp2*. Finally, this screen was partially conducted by
44 undergraduate students in a Genetics Laboratory course during the Spring semesters of 2021
45 and 2022. We found this screen to be a successful model for student engagement in research in
46 an undergraduate laboratory course, that can be readily adapted to evaluate the effect of
47 hundreds of genes on many different *Drosophila* traits, with minimal resources.

48 **Introduction**

49 The evolution of gene regulatory networks (GRNs) is thought to be a frequent mechanism for
50 morphological diversity. These genetic programs underlie developmental processes for cells,
51 tissues, and organs (Davidson 2006). In GRNs, transcription factors regulate their downstream
52 target genes by binding to non-coding DNAs (cis-regulatory elements or CREs) that control the
53 transcriptional activity (enhancers) or repression (silencers) of those targets (Arnone &
54 Davidson 1997). To identify changes within GRNs, a system is needed in which the essential
55 transcription factors involved in a trait's development can be found and, subsequently
56 connected to CREs that control the expression of downstream genes.

57 The production of transgenic tools for genetic screens provides an avenue through which these
58 essential transcription factors can be investigated. Genetic screens often utilize a loss-of-
59 function (LOF) strategy. Modern techniques, such as RNA interference (RNAi) (Dietzl et al.
60 2007) and CRISPR/Cas9 (Port et al. 2014), can quickly generate LOF via gene knockdown and
61 gene knockout, respectively. Transgenic RNAi coupled with the Gal4/UAS system (Brand &
62 Perrimon 1993) allows for precise temporal and spatial control of gene knockdown and
63 knockout, and can bypass potential lethality of global knockdown or knockout (Perrimon et al.
64 2010; Heigwer et al. 2018). These LOF studies have been instrumental in finding components of
65 GRNs, though these screens do not always capture the full impact of a gene's role in a
66 phenotype. Some phenotypes are imperceptible when a gene is knocked down or knocked out
67 (Rorth et al. 1998). In the *Drosophila* (*D.*) *melanogaster* genome, roughly 35% of genes with no
68 known gene function have paralogs (Ewen-Campen et al. 2017), and thus redundancy may
69 render some phenotypes indiscernible. To overcome these complications and complement LOF
70 studies, genes can be tested in gain-of-function (GOF) experiments. In GOF experiments, a
71 gene of interest is ectopically expressed, resulting in over- or mis-expression of that gene. GOF
72 experiments can reveal additional nuance to a gene's function when combined with LOF results,
73 and new relationships between genes and phenotypes can be identified that were not detected
74 solely in LOF experiments. Finally, GOF experiments may reveal the potential paths that may
75 exist to evolutionary change in other lineages, that may not be detected in LOF assays.

76 One model trait that has considerable potential to advance the understanding of GRNs in
77 development and evolution is abdominal pigmentation in *D. melanogaster*. *Drosophila* species
78 have evolved incredibly diverse pigmentation patterns that decorate the tergite plates covering
79 the dorsal surface of the six large abdominal segments (Wittkopp et al. 2003), including
80 phenotypes that are sexually dimorphic and which evolved from a monomorphic ancestor
81 (Jeong et al. 2006, Hughes et al. 2020). Despite the remarkable diversity in abdominal
82 pigmentation among *Drosophila* species, most transcription factors and pigmentation enzymes
83 are highly conserved between *Drosophila* (Clark et al. 2007; Richards et al. 2005). Indeed,
84 many cases of pigment evolution have been connected to mutations in gene regulatory
85 sequences of the pigment network (Rebeiz & Williams 2017), although the binding transcription
86 factors that mediate these mutational effects largely await discovery.

87 Previously, a LOF genetic screen with transgenic RNAi lines that targeted over 500 unique *D.*
88 *melanogaster* transcription factors was performed (Rogers et al. 2014), which revealed 20 novel
89 transcription factors whose reduced expression altered the pattern of abdominal pigmentation.
90 For some of the factors, their effects were shown to influence the activity of multiple enhancers
91 in this pigmentation GRN. Relatedly, another study employed a yeast-1-hybrid approach to
92 identify 125 factors that had the ability to bind to the CRE for the pigmentation enzyme gene
93 *yellow* (Kalay et al. 2016). Of these 125 transcription factor genes, RNAi knockdown of 32
94 resulted in altered tergite pigmentation to some detectable degree.

95 The Transgenic RNAi Project (TRiP) at Harvard Medical School previously generated
96 transgenic RNAi lines for LOF experiments (Perkins et al. 2015). This project has recently
97 developed a transgenic CRISPR/Cas9 approach that can be used to knockout or overexpress
98 genes in a spatially and temporally controlled manner (Zirin et al. 2020). In this study, we
99 present results from use of the TRiP CRISPR/Cas9 toolkit to knockout and overexpress
100 candidate transcription factors in the abdominal midline, driven by the endogenous regulation of
101 the *pannier* (*pnr*) gene (Calleja et al. 2000). Our screen included candidates identified in the
102 prior RNAi screen (Rogers et al. 2014) and factors that may directly bind the *yellow* body CRE
103 (Kalay et al. 2016). Gene knockouts in the transgenic CRISPR/Cas9 system largely
104 recapitulated prior observations from RNAi knockdowns. By overexpressing these transcription
105 factors in the abdominal midline, we demonstrated the utility of GOF experiments in elucidating
106 gene functions and identified a candidate that, prior to this study, did not have a known role in
107 tergite pigmentation patterning. We utilized these techniques in an undergraduate laboratory
108 course, providing an authentic research experience to undergraduate students, and the positive
109 outcomes demonstrate its utility as an educational tool.

110 **Methods**

111 *Overexpression/knockout screen*

112 Fly lines were generated as a part of the Harvard Medical School Transgenic RNAi Project (Zirin
113 et al. 2019). All lines were acquired from the Bloomington Stock Center (see Table S1 for stock
114 numbers and lines). For the knockout crosses, 6-8 virgin females with *UAS-Cas9* and *pnr-Gal4*
115 were crossed to 1-2 males with ubiquitously expressed guide RNA transgenes (Fig. 1C). In the
116 conditional knockout progeny, Cas9 cleaves the target site as directed by the guide RNAs from
117 the male parent that can induce a frameshift mutation upon repair in the protein coding
118 sequence of the first or second exon (Fig. 1C). This results in a functional knockout of the
119 targeted transcription factor in the midline of the abdomen, where *pnr* is expressed. For the

120 overexpression crosses, 6-8 virgin females from a *pnr-Gal4* driver line that additionally
121 possesses a UAS-regulated deactivated Cas9 fused to the activator domain VP64-p65-Rta
122 (dCas9 VPR) were crossed to 1-2 males possessing a pair of guide RNA transgenes (Fig 1D).
123 In the overexpression progeny, midline-expressed dCas9 VPR recruits transcriptional activation
124 machinery to the promoter region near the transcription start site of the target gene as directed
125 by the guide RNAs (Fig 1D). This results in the ectopic expression of the targeted transcription
126 factor in the midline. Both knockout and overexpression crosses used the same *pnr-Gal4*
127 construct. All crosses were raised at 25°C.

128 *Imaging and analysis*

129 The progeny from the crosses were transferred to new vials after eclosion. After culturing at
130 25°C for 7-9 days, flies were dissected by removing the wings and the legs, mounted on a slide
131 covered with double-sided sticky tape, and imaged using a Leica M205C Stereo Microscope
132 with a DFC425 camera. For each cross, around 10 male and 10 female abdomens per cross
133 were mounted and imaged. Each abdomen was imaged under the same lighting conditions with
134 an LED ring light. Extended focus brightfield images were generated using the Leica Montage
135 package. The images taken all had a white glare as the result of the ring light used in the
136 imaging process. To avoid the impact of the glare on our calculations, the pixels comprising the
137 glare were not included in our analysis.

138 We conducted statistical analysis on three traits in female flies only (Figure 1B). For
139 pigmentation intensity measurements, images were converted to greyscale and analyzed using
140 FIJI. The segment of interest was outlined with the freehand tool, and a mean light value (L) in
141 the range of 0-255 was recorded. The segment intensity was calculated in units of percent (%)
142 darkness using the following equation (Pool & Aquadro 2007):

143
$$(255-L)/255 \times 100\%$$

144 In addition, the FIJI straight-line tool was used to measure the length of the female A6 stripe and
145 the width of the A4 midline stripe. We did not quantify these two traits for the knockout crosses,
146 as these effects have already been published (Rogers et al. 2014; Kalay et al. 2016).

147 Two sets of quantitative data were compared using a two-tailed Student's t test. Boxplots were
148 generated in R, and are presented as jittered plots, with the center lines representing the
149 medians, and the borders of the box representing the 25th and 75th percentiles. The P-values
150 were adjusted by a Bonferroni correction to account for multiple testing. This increased the
151 significance threshold from less than 0.05 to less than 0.001. All image analysis was performed
152 on blinded samples to eliminate bias.

153 *TRiP in an undergraduate laboratory course*

154 We had the students in BIOSCI 0351 Genetics Lab, an upper-level university laboratory course,
155 in Spring 2021 and Spring 2022 participate in these experiments at the University of Pittsburgh.
156 35 students were enrolled in the Spring 2021 course, and 34 were enrolled in the Spring 2022
157 course. Students were broken up into groups of 4 or 5, with each group having one transcription
158 factor gene and one positive control gene (*bric-a-brac 1* for overexpression crosses and
159 *doublesex* for knockout crosses). The students established two test gene crosses and two
160 control crosses, phenotyped progeny, and analyzed images using ImageJ as described above.

161 The students were asked to organize and maintain a laboratory notebook for this experiment. At
162 the end of the laboratory course, the students presented their findings to the rest of the class.

163 See Table 1 for the course timeline and materials needed for the course. Student learning
164 objectives and methods of assessments are outlined in Table 2.

165

166 Table 1. Requirements and timeline for the Genetics Laboratory course.

Personnel & Materials		Timeline	
Professors	1-2	Week 1	Introduction to fly husbandry
Teaching Assistants	1	Week 2	Visualizing CRISPR targets
Students	34	Week 3	Journal club on CRISPR/Cas9
Fly food	4-8 vials per cross per group, plus vials to maintain stocks	Week 4	Primary literature search on gene
Fly stocks	1 sgRNA and 1 driver per group of 4	Week 5	Journal club on CRISPR/Cas9 in <i>Drosophila</i>
Brightfield microscope	Ideal: 1 per student Minimal: 1 per student group	Week 6	Setting up CRISPR cross
Microscope camera	1 per microscope	Week 7	Lab notebook check
Computers with FIJI	Ideal: 1 per student Minimal: 1 per student group	Week 8	Journal club on CRISPR in non-model organisms
		Week 9	Score progeny from CRISPR/Cas9 cross, TA mounts and images flies
		Week 10	Ethics of CRISPR discussion
		Week 11	Analyzing image data, beginning poster presentation
		Week 12	Designing poster, wrapping up image analysis
		Week 13	Poster session, final lab notebook grading

167

168 Table 2. Learning objectives for the Genetics Laboratory course.

Learning Outcomes		Assessments
Knowledge	Articulate the molecular mechanisms of CRISPR/Cas9 actions	Journal discussions on CRISPR/Cas9 technology, weekly reflection paragraphs
	Frame student results in context of the current literature	Generate a discussion for poster presentation
	Examine ethical concerns regarding genome editing	Journal discussions on genome editing ethical concerns, weekly reflection paragraphs
Technical Skills	Fly husbandry, including identifying virgin females, scoring based on sex and phenotype, and recognizing balancer chromosome phenotypes	Record their findings in a laboratory notebook
	Document lab activities reliably and consistently	Organize and maintain a laboratory notebook
Analytical Skills	Develop hypotheses based on research into primary literature	
	Use ImageJ to measure properties of fly pigmentation, such as darkness and stripe width	Generate a results section for poster presentation
	Conduct statistical tests to determine significance of results	Generate a results section for poster presentation
Communication Skills	Design graphics to convey experimental results	Final poster design
	Relay their experiments orally to their peers and colleagues	Final poster presentation

169

170 **Results and Discussion**

171 A total of 71 gene manipulations were performed, overexpressing 55 target and knocking out 16
 172 transcription factor genes known to or suspected to function in the GRN for abdomen tergite
 173 pigmentation patterning and development. All transcription factor genes tested in this assay had
 174 previously been identified in RNAi screens (Rogers et al. 2014; Kalay et al. 2016). In Rogers et
 175 al. 2014, the transcription factor genes were chosen from the *Drosophila* Transcription Factor
 176 Database (Pfreundt et al. 2010, Adryan & Teichmann 2006), while Kalay et al. 2016 surveyed a
 177 collection of transcription factors fused to the Gal4 protein (Hens et al. 2011). 21 of the
 178 overexpression crosses and 7 of the knockout crosses resulted in a phenotype that differed
 179 significantly from the control crosses. Some of the factors tested had detectable effects in more
 180 than one trait. For instance, *pdm3* resulted in reduced pigmentation in the A6 segment, the
 181 midline stripe, and background coloration (Fig. 2). Of the 8 genes for which we conducted both
 182 a GOF and LOF cross, none had detectable effects in both treatments. Representative images of
 183 progeny from the 9 knockout crosses and 34 overexpression crosses with no detectible
 184 phenotypic difference from the wild-type pigmentation patterns can be found in Figures S1 and
 185 S2, respectively.

186 The patterns in the *Drosophila* abdomen are largely determined by the presence or absence of
 187 three key enzymes, Yellow, Tan, and Ebony. Yellow is required to produce black melanin from

188 dopamine that is present in the dark cuticle of the abdomen (Drapeau 2003; Hinaux et al. 2018;
189 Jeong et al. 2008; Nash 1976; Water et al. 1991; Wittkopp et al. 2002; Wright 1987). Tan and
190 Ebony are both involved in catecholamine synthesis, with Ebony converting dopamine to beta-
191 alanyl dopamine (Richardt et al. 2003; Wittkopp et al. 2002; Wittkopp et al. 2003) and Tan
192 reversing this reaction (True et al. 2005). These enzymes are expressed in patterns, with the
193 dark producing enzymes Yellow (Wittkopp et al. 2003) and Tan (Jeong et al. 2008) localized in
194 the stripes, midline, and male A5/A6 tergites, while Ebony is restricted to lighter cuticle patches
195 (Rebeiz et al. 2009). The factors we identified may be involved in patterning the midline, either
196 by repressing Tan and Yellow or promoting the dark pigment producing enzymes.

197 **Transcription factors that affect segment A5/A6 pigmentation**

198 In some *Drosophila* species, the pigmentation in the A5 and A6 segments is sexually dimorphic.
199 This trait is recently evolved (Gompel & Carroll 2003), and is thought to evolve from a
200 monomorphic ancestor (Hughes et al. 2020, Jeong et al. 2006, Kopp et al. 2000). A number of
201 transcription factors have been implicated in shaping the male-specific melanic A5-A6
202 pigmentation. The Hox genes *abdominal-A* (*abd-A*) and *Abdominal-B* (*Abd-B*) are expressed in
203 the abdominal segments A2-A7 and A5-A7, respectively, and their expression is controlled by
204 the *iab2-8* cis-regulatory elements (Akbari et al. 2006). *Abd-B* promotes the activity of the
205 pigmentation enzymes *yellow* directly via binding sites in its cis-regulatory element, and
206 promotes *tan* indirectly (Liu et al. 2019; Camino et al. 2015; Jeong et al. 2008; Jeong et al.
207 2006) The transcription factor genes *bric-a-brac 1* (*bab1*) and *bric-a-brac 2* (*bab2*) play a large
208 role in the sexual dimorphism of this trait by regulating *yellow*, a gene that encodes a
209 pigmentation enzyme that produces black melanin (Roeske et al. 2018; Salomone et al. 2013;
210 Couderc et al. 2002; Kopp et al. 2000,). In turn, *bab1/2* expression is activated by *Abd-B*, and
211 the sex-specific isoforms (DsxF and DsxM) of the transcription factor gene *doublesex* (*dsx*)
212 regulates *bab1/2* in a sexually dimorphic pattern: DsxF activates *bab1/2* in females, and DsxM
213 represses *bab1/2* in males (Williams et al. 2008). To capture additional genes that affect this
214 sexually dimorphic pattern, we measured the width of the A6 stripe in the female progeny from
215 our crosses.

216 We identified 18 factors whose altered expression results in a significant effect on pigmentation
217 in the A5 and A6 abdominal segment tergites in either males or females (Fig. 2A). It is important
218 to note that pigmentation in the female A6 segment exhibits temperature-dependent plasticity
219 (Gibert et al. 2000). To minimize the effect of environmental factors on the development of
220 female pigmentation, all crosses were raised at 25°C. All 19 of these factors were significantly
221 different from control flies post Bonferroni correction (Table S1).

222 Of these 18 transcription factor genes, 12 were identified as melanic pigment promoters, with
223 LOF phenotypes from 2 crosses including reduced melanic pigmentation and GOF phenotypes
224 from 11 crosses including increased melanic pigmentation. 7 of these transcription factor genes
225 were previously identified in an RNAi screen (Rogers et al. 2014): *abdominal A* (*abd-A*),
226 *CG10348*, *Hormone receptor 4* (*Hr4*), *scribbler* (*sbb*), *target of Poxn* (*tap*), and *unplugged*
227 (*unpg*). *CG10348* (Fig. 3B), when knocked out, was consistent with the RNAi knockdown
228 reported in Rogers et al. When overexpressed, *abd-A* (Fig. 4B), *Hr4* (Fig. 4H), *sbb* (Fig. 4I), and
229 *tap* (Fig. 4K) all resulted in increased melanic pigmentation in the female A6 segment, while
230 *unpg* overexpression resulted in melanic pigment that appeared more diffuse yet expanded in
231 area (Fig. 4D). In Rogers et al., when knocked down, the transcription factor genes *abd-A*, *Hr4*,
232 *sbb*, and *unpg* were found to reduce pigmentation in the A5 and A6 segments, and *tap* affected

233 the thorax. The novel results are therefore consistent with the prior observations, and thereby
234 strengthens the inferred roles for these transcription factors acting as promoters of the melanic
235 pigment patterning and development.

236 The other 6 transcription factor genes that were shown here to cause increased pigmentation in
237 the female abdomen were previously identified in Kalay et al. (2016) as potential direct
238 regulators of *yellow*: *atonal* (*ato*) (Fig. 4C), *C15* (Fig. 4E), *Ecdysone-induced protein 78C*
239 (*Eip78C*) (Fig. 4G), and *u-shaped* (*ush*) (Fig. 4L). When overexpressed, increased melanic
240 pigmentation formed in the female A5 and A6 segments. This is consistent with the prior study
241 (Kalay et al. 2016), as these factors resulted in reduced pigmentation when knocked down. The
242 transcription factor genes *bigmax* (Fig. 4F) and *Suppressor of variegation 3-7* (*Su(var)3-7*) (Fig.
243 4J), when overexpressed, increased pigmentation in the female A5 and A6 segments. In the
244 prior study (Kalay et al. 2016), when knocked down, these factors had no effect on
245 pigmentation, despite being identified as potential direct regulators of the pigmentation enzyme
246 *yellow*. This suggests that, although knockdown of these factors has no effect on pigmentation
247 in *D. melanogaster* lab strains, these factors may promote dark pigmentation when expressed in
248 the abdomen, possibly by activating the expression of *yellow*.

249 The remaining 6 transcription factor genes were implicated as repressors of the melanic
250 pigmentation, including well-characterized transcription factor genes like *bric-à-brac 1* (*bab1*)
251 (Fig. 5B) and *doublesex* (*dsx*) (Fig. 3C). Additional factors with compelling phenotypes were
252 *Hairy/E(spl)-related with YRPW motif* (*Hey*) (Fig. 5C), *Hormone receptor-like in 38* (*Hr38*) (Fig.
253 5D), *labial* (*lab*) (Fig. 5G), and *pou domain motif 3* (*pdm3*) (Fig. 5E), which, when
254 overexpressed, resulted in reduced melanic pigmentation. The transcription factor genes *bab1*,
255 *dsx*, and *pdm3* have verified roles in the patterning of the A5 and A6 segments. The
256 transcription factors Bab1 and Bab2 repress *yellow* in a dimorphic pattern, due to the notable
257 absence of *bab1/2* expression in the male A5 and A6 abdominal segment epidermis (Couderc
258 et al. 2002; Kopp et al. 2000; Roeske et al. 2018; Salomone et al. 2013). This dimorphic pattern
259 is controlled by Abd-B and Dsx, in which the DsxF splice variant activates Bab in females and
260 the DsxM splice variant represses Bab in males (Williams et al. 2008). The factor *pdm3* has
261 been implicated as a potential indirect repressor of *yellow* (Liu et al. 2019, Yassin et al. 2016).
262 Our results are consistent with prior studies that investigated these three genes as repressors of
263 the endogenous melanic pigment formation.

264 **Transcription factors that affect midline patterning**

265 In *D. melanogaster*, both male and female flies exhibit a darkly pigmented vertical stripe in the
266 dorsal-ventral midline of the abdomen. This pattern is at least partially controlled by
267 Decapentaplegic (Dpp) signaling. Ectopic Dpp activity promotes increased pigmentation in the
268 dorsal-ventral midline of the abdomen (Kopp et al. 1999). To assess the effects of additional
269 factors on the width of the midline stripe, we measured the width of the stripe in the A4
270 segment.

271 We identified 6 transcription factor genes that impacted the width of the midline stripe in the A4
272 segment. When overexpressed, the transcription factor genes *lab* (Fig. 5G), *pdm3* (Fig. 5E), and
273 *sloppy paired 2* (*slp2*) (Fig. 5F) produced a thinner or nonexistent midline stripe. Two of the
274 tested transcription factor genes, *C15* (Fig. 4E) and *unpg* (Fig. 4D), when overexpressed,
275 resulted in faded pigmentation in the midline region, but the boundaries of the midline appear to
276 be wider than wild-type. Notably, *C15* also promotes dark pigment in the female A5 and A6

277 tergites, indicating that it acts as both a promoter and repressor of melanic pigmentation.
278 Although *unpg* is involved in both A5/A6 pigmentation and midline pigmentation, the pigment in
279 flies overexpressing *unpg* in the dorsal midline appears diffuse compared to the wild-type
280 pattern. Another factor, *CG10348*, resulted in a reduced midline stripe when knocked out.

281 The *s/p2* result is notable because *s/p2* previously had no known role in pigmentation. It had
282 been identified in a yeast 1-hybrid screen as capable of binding to the *yellow wing+body cis*-
283 regulatory element, but *s/p2* LOF experiments did not produce detectable effects on abdominal
284 pigmentation (Kalay et al. 2016). In this GOF assay, we observed that *s/p2* could reduce
285 pigmentation in the midline when overexpressed (Fig. 5F). These results indicate that *s/p2*
286 either has a redundant function in abdominal pigmentation, which would make detecting its
287 effects difficult in LOF screens, or that *s/p2* is not endogenously expressed in the *pnr* domain of
288 the abdominal cuticle in *D. melanogaster*, but can nevertheless repress it. Much of our
289 knowledge on the pigmentation network comes from experiments with *D. melanogaster*, so the
290 identification of new factors like *s/p2* may lead to insights in the pigmentation networks of other
291 *Drosophila* species.

292 **Transcription factors that affect background coloration**

293 In addition to the sexual dimorphism in the A5 and A6 segment tergites and the patterning of the
294 midline stripes, we were interested in evaluating the changes to the lighter (yellow-brown)
295 colored cuticle, or background coloration, of the progeny. Background pigmentation has been
296 implicated in adaptation of *D. melanogaster* populations. In African *D. melanogaster*
297 populations, background pigmentation is correlated with altitude, with populations at higher
298 altitudes exhibiting darker background pigmentation (Pool & Aquadro 2007; Bastide et al. 2014).
299 Previously, the gene *ebony* was found to underlie the increased dark background pigment in a
300 Ugandan population (Rebeiz et al. 2009), and single-nucleotide polymorphisms (SNPs) in
301 regulatory regions for *tan* and *bab1* have been associated with pigmentation variation in
302 European populations (Bastide et al. 2013). To capture factors that may affect background
303 coloration, we measured the difference in background coloration intensity in our crosses.

304 We identified 9 transcription factor genes that had subtle effects on the background coloration
305 (Fig. 2C). In many cases, these shifts in coloration are subtle, shifting the background coloration
306 as little as 3-5%. When knocked out, the factors *CG17806* (Fig. 3D), *scalloped (sd)* (Fig. 3E),
307 and *space blanket (spab)* (Fig. 3F) shifted the background pigmentation slightly lighter,
308 indicating these genes may have normally function as promoters of darker background
309 coloration. When overexpressed, the transcription factor genes *bab1/2*, *CG10348*, *CG30020*,
310 and *cro1* shifted the background pigmentation slightly darker, while *pdm3* shifted the background
311 pigmentation lighter. Some of these alterations are counterintuitive. For example, *bab1/2* is
312 characterized as a pigment repressor, while overexpression of *bab1/2* in this cross resulted in
313 darker background pigmentation, rather than lighter. These results might suggest a more
314 complex role for Bab1 and Bab2 in the operation of the pigmentation GRN. However, this
315 counterintuitive outcome might be due to variation in the genetic backgrounds of the guide RNA
316 lines, as the shifts in background pigmentation are subtle, with less than 5% difference in
317 pigment intensity compared to the control.

318 These screens are useful for generating candidate genes underlying adaptive phenotypes. In
319 other African populations, notably one from Fiche, Ethiopia, genome sequencing data has
320 implicated multiple genomic regions as contributing to differing phenotypes in background

321 coloration (Bastide et al. 2016). Indeed, many of the genes tested, including *bab1/2*, *CG10348*,
322 *dsx*, *Eip74EF*, *pdm3*, *Su(var)2-10*, and *unpg* among others, fall under QTL peaks associated
323 with pigmentation variation described by Bastide et al. 2016. This screen and future screens
324 may reveal causative genes underlying these adaptive phenotypes. In addition, GOF screens
325 can illuminate additional paths that adaptation can take, as the candidates identified in GOF
326 screens that were not identified in LOF screens of one species may have been important in the
327 evolutionary diversification of related species.

328 **Transcription factors that alter development in the abdomen and thorax**

329 Several factors affected the morphology of the thorax and the abdomen. The transcription factor
330 genes *abd-A* (Fig. 6B), *lab* (Fig. 6D), and *unpg* (Fig. 6E), when overexpressed, produce flies
331 with indented thoraxes. Two of these transcription factor genes, *abd-A* and *lab*, are homeotic
332 genes that are responsible for proper segmentation and development of the abdomen and
333 anterior thorax, respectively. *abd-A*, along with *Abd-B*, is part of the bithorax complex, and are
334 regulated by trithorax in proper development of the abdominal segments (Breen & Harte 1993).
335 *lab* is part of the Antennapedia Complex, which is responsible for the development of the head
336 and anterior thoracic segments (Diedrich et al. 1989).

337 The factor *ato*, when overexpressed, produces flies with additional bristles on the thorax (Fig.
338 6C), though it did not produce additional bristles in the abdomen. This may be due to
339 differences in the developmental patterning of the thorax compared to the abdomen. The factor
340 *Su(var)2-10*, when knocked out, results in a slight indentation in the thorax (Fig. 6F). The factor
341 *Motif 1 Binding Protein (M1BP)* (Fig. 6J), when knocked out, produce flies with improperly
342 developed tergites. The factors *Structure specific recognition protein (Ssfp)* and *Su(z)12* impact
343 both the thorax and the abdomen when knocked out: the thoraces develop indentations (Fig.
344 6G, Fig. 6H), while the abdomens exhibit defects in tergite development (Fig. 6K, Fig. 6L). In
345 addition to the developmental defects, *abd-A*, *ato*, *lab*, and *unpg* have effects on pigmentation
346 when overexpressed, and *Su(var)2-10* affects pigmentation when knocked out.

347 **Efficacy of CRISPR/Cas9 in genetic screens**

348 Prior LOF studies relied on RNAi technology, and we expected the results of our CRISPR/Cas9-
349 mediated knockouts to be consistent with the outcomes of prior RNAi screens (Rogers et al.
350 2014, Kalay et al. 2016). The progeny from the knockout crosses in this study are largely
351 congruent with the results from prior RNAi studies; however, some genes showed no detectable
352 phenotypic difference from wild-type abdominal pigmentation, despite a measurable phenotypic
353 effect in RNAi studies. Examples of this deviation include *Ecdysone-induced protein 74EF*
354 (*Eip74EF*), *Hormone receptor 4 (Hr4)*, and *tango (tgo)* (Rogers et al. 2014).

355 These discrepancies may be due to the design of the transgenic lines. Transgenic
356 CRISPR/Cas9 mediates gene knockout quite effectively: in the transgenic CRISPR/Cas9 library
357 generated by Port et al. (2020), less than 10% of the generated transgenic lines produce
358 insufficient target mutations, a marked improvement over current *Drosophila* RNAi libraries
359 (Perkins et al. 2015). However, there are also some caveats in experimental design. For
360 example, some transgenic knockout lines will encode one guide RNA sequence, while others
361 encode two guide RNAs. Those encoding two guide RNA sequences may produce more
362 conspicuous phenotypes compared to a line with only one guide RNA sequence (Port & Bullock
363 2016, Xie et al. 2015, Yin et al. 2015). We imaged 10 males and 10 females for as many
364 crosses as possible to capture subtle phenotypes; however, it is possible that some

365 transcription factor genes may nevertheless have subtle phenotypes below the threshold of
366 detection in this assay. Finally, it is worth noting that the Kalay et al. study (2016) used flattened
367 cuticle preparations to measure phenotypes, which is likely more sensitive to subtle effects.

368 **Educational value of transgene-based genetic screens**

369 In addition to the scientific value of the TRiP CRISPR/Cas9 system, this technique has much
370 promise an educational tool. Course-based undergraduate research experiences allow
371 undergraduate students to engage in authentic research projects in a laboratory course setting
372 (Auchincloss et al. 2014). These courses provide an accessible research experience to many
373 students and promote engagement with hypothesis-driven research at all stages of the scientific
374 process. CRISPR/Cas9 has been used for laboratory courses in *Drosophila* (Adame et al.
375 2016), bacteria (Pieczynski et al. 2019), yeast (Sehgal et al. 2018), frogs (Martin et al. 2020),
376 and butterflies (Martin et al. 2020). Students have responded positively to research-based
377 laboratory courses, compared to traditional laboratory courses (Martin et al. 2020). Incorporating
378 CRISPR/Cas9 into laboratory courses provides scientific and educational value (Wolyniak et al.
379 2019), and projects designed using the TRiP toolkit can allow students to engage with this
380 technology in most laboratory settings and pursue a wide variety of research questions with
381 relative ease.

382 This screen was conducted as part of the Genetics Lab course, comprised of primarily
383 sophomore and junior undergraduate students. In groups of 4 to 5, each student group was
384 assigned an experimental transcription factor to either overexpress or knockout, as well as a
385 positive control cross. For groups conducting a knockout assay, the positive control was *dsx*,
386 while the positive control for the overexpression groups was *bab1*. These two controls had been
387 tested prior to the start of the class to ensure that they would be effective positive controls. In
388 Spring 2021, the course had seven student groups of 5. Five of those groups conducted
389 overexpression assays for *CG10348*, *crol*, *Hr4*, *Imd*, and *unpg*, while the other two groups
390 conducted knockout assays for *CG10348* and *Hr4*. In Spring 2022, the course had seven
391 student groups of 4 and one group of 5. Six of those groups conducted overexpression assays
392 for *ato*, *bab2*, *CG10348*, *Hr4*, *osa*, and *slp2*, while the other two groups conducted knockout
393 assays for *CG10348* and *Hr4*.

394 In this approach, students are highly involved in the discovery process. The students began by
395 searching for articles on their transcription factor, and learned techniques for finding good
396 sources and reading research articles effectively with the guidance of the instructors. The
397 students were able to contribute to most portions of the experiment, even those who attended
398 remotely or asynchronously for some meetings, and all students received data that they could
399 analyze using FIJI.

400 We found that the results of this genetic screen were more productive than prior attempts to
401 incorporate CRISPR/Cas9 into an educational experience with more laborious approaches
402 involving germline editing. Although we focused on A6 pigmentation, midline patterning, and
403 background coloration in this manuscript, the students were encouraged to measure additional
404 traits, and were not directed by the instructors to measure particular traits. More than half of the
405 student groups identified significant changes from the control in at least one trait, and those that
406 did not nevertheless produced useful negative data. We attribute the relative success of the
407 educational TRiP screen to the ease with which these resources allow students to generate
408 phenotypes and explore gene functions.

409 Similar projects can be implemented in undergraduate labs to provide an authentic research
410 experience to undergraduate students. The materials needed for the project workflow are
411 minimal, requiring only the fly stocks, fly food, and a way to anesthetize the flies and image
412 body parts. This strategy can be applied to many structures using hundreds of genes.

413 In addition, this project has been implemented in both virtual and in-person formats. We
414 designed these experiments to provide activities that students could participate in when class
415 could not be fully conducted in person during 2021. Our set-up allowed for 6 students to be in
416 the room safely with the instructor and the teaching assistant. Two students from each of the
417 seven groups were able to attend lab in person for each class period. The virtual students
418 focused on literature searches while the in-person students set up the crosses. Both sets of
419 students could fully participate in image and statistical analysis. When the class was fully in
420 person in 2022, all students had the opportunity to participate in both the in lab and virtual
421 components. In both semesters, the mounting and imaging was carried out by the teaching
422 assistant. Although this screen works better for the students when they are all in person, we
423 found that it was simpler to adapt to a hybrid format than previous iterations of the class.

424 **Conclusions**

425 The purpose of this study was to confirm previous knockdown experiments and survey the
426 effects of pigmentation transcription factors when overexpressed in the abdominal midline. We
427 used a transgenic CRISPR/Cas9 system to overexpress 55 transcription factor genes identified
428 in prior RNAi screens as potential regulators of pigmentation enzymes. We identified 19 factors
429 that affected A5 and A6 tergite pigmentation, 6 that affected midline stripe patterning, 9 that
430 affected background pigmentation, and 8 factors that affected thorax and abdominal
431 morphology (Table 3). While a number of these factors, including *abd-A*, *bab1/2*, and *dsx*, have
432 been well-characterized in prior studies, we were able to observe phenotypes in the abdomen
433 caused by transcription factors that are not as well characterized in this developmental context,
434 such as *C15*, *CG10348*, and *unpg*. We determined a role for new factors that previously had not
435 been implicated in tergite pigmentation, such as *s/p2*, and provided new candidates for
436 pigmentation studies. GOF experiments, such as those conducted in this screen, can elucidate
437 potential paths to evolutionary change, as the phenotypes observed in GOF experiments but not
438 LOF experiments in one species may be important in other species. In addition, we used this
439 technique to provide an authentic research experience to undergraduate students in a Genetics
440 Laboratory course, and found that this project workflow could be easily adapted for other
441 university courses.

442

443 Table 3. Summary of observed phenotypes. Increases in pigmentation are represented by “+”.
444 Decreases in pigmentation are represented by “-”.

Treatment	Midline Pigment	A6 Pigment	Background Pigment	Defects
<i>abd-A OE</i>	none	none	none	✓
<i>ato OE</i>	none	none	none	✓
<i>bab1 OE</i>	none	none	-	none
<i>bab2 OE</i>	none	none	none	none

<i>bigmax OE</i>	none	none	none	+	none	none	none
<i>C15 OE</i>	-	-	none	+	none	none	none
<i>CG10348 OE</i>	none	none	none	none	+	none	none
<i>CG10348 KO</i>	-	-	-	-	none	none	none
<i>CG30020 OE</i>	none	none	none	none	+	none	none
<i>crol OE</i>	none	none	none	none	+	none	none
<i>dsx KO</i>	none	none	none	+	none	none	none
<i>Hey OE</i>	none	none	none	-	none	none	none
<i>Hr38 OE</i>	none	none	none	-	none	none	none
<i>Hr4 OE</i>	none	none	none	+	none	none	none
<i>lab OE</i>	-	-	none	-	none	none	none
<i>M1BP KO</i>	none	none	none	none	none	none	✓
<i>pdm3 OE</i>	-	-	none	-	-	none	none
<i>sbb OE</i>	none	none	none	+	none	none	none
<i>slp2 OE</i>	-	-	none	none	none	none	none
<i>Ssrp KO</i>	none	none	none	none	none	✓	✓
<i>Su(var)2-10 KO</i>	none	none	none	none	none	✓	none
<i>Su(var)3-7 OE</i>	none	none	none	+	none	none	none
<i>Su(z)12 KO</i>	none	none	none	none	none	✓	✓
<i>unpg OE</i>	+	+	-	+	none	+	none
<i>ush OE</i>	none	none	none	+	none	none	none

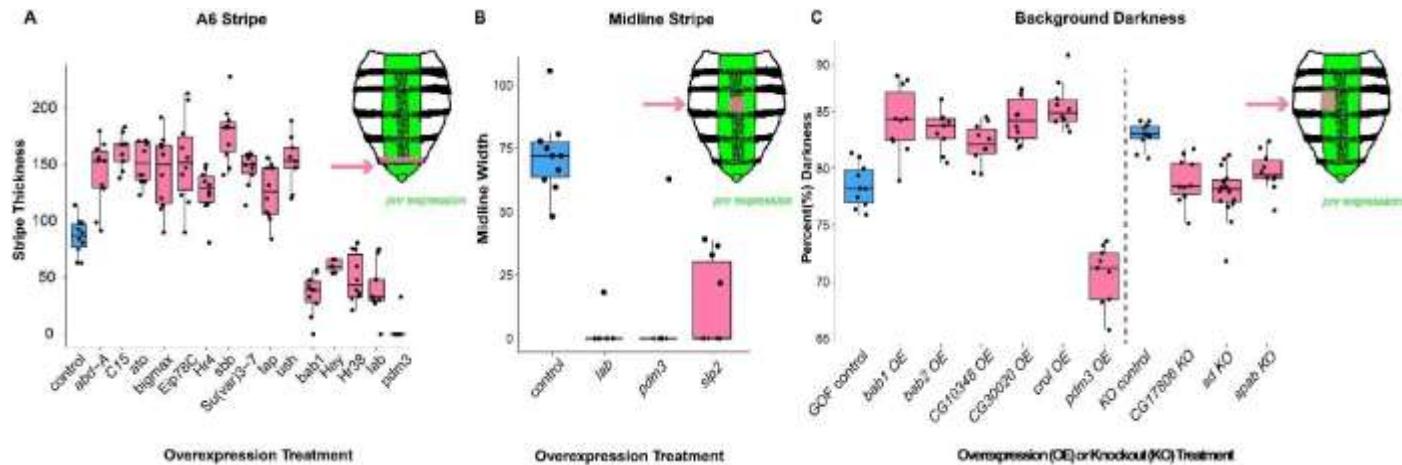
445 Table S1. Bloomington stock numbers of fly lines used in this study.

Stock Number	Effect	Target Locus/Genotype
67040	overexpression Gal4 driver	<i>pnr</i> -Gal4
67077	knockout Gal4 driver	<i>pnr</i> -Gal4
83608	overexpression sgRNA	<i>ab</i>
79520	overexpression sgRNA	<i>abd-A</i>
79861	overexpression sgRNA	<i>ato</i>
80770	overexpression sgRNA	<i>ato</i>
79801	overexpression sgRNA	<i>bab1</i>
80749	overexpression sgRNA	<i>bab2</i>
80209	overexpression sgRNA	<i>bigmax</i>
80016	overexpression sgRNA	<i>Br140</i>
78645	overexpression sgRNA	<i>brm</i>
79800	overexpression sgRNA	<i>C15</i>
78704	overexpression sgRNA	<i>caup</i>
80012	overexpression sgRNA	<i>CG10348</i>
80782	overexpression sgRNA	<i>CG1233</i>
79996	overexpression sgRNA	<i>CG30020</i>
80264	overexpression sgRNA	<i>CG33695</i>
78744	overexpression sgRNA	<i>CG9650</i>
80002	overexpression sgRNA	<i>chinmo</i>
79921	overexpression sgRNA	<i>crol</i>
79805	overexpression sgRNA	<i>dsx</i>
79883	overexpression sgRNA	<i>Eip78C</i>
80225	overexpression sgRNA	<i>fru</i>
78695	overexpression sgRNA	<i>Gsc</i>
80763	overexpression sgRNA	<i>hb</i>
79948	overexpression sgRNA	<i>Hey</i>
80027	overexpression sgRNA	<i>hng1</i>
81670	overexpression sgRNA	<i>Hr38</i>

82761	overexpression sgRNA	<i>Hr4</i>
79869	overexpression sgRNA	<i>Hr78</i>
79814	overexpression sgRNA	<i>hth</i>
80750	overexpression sgRNA	<i>ind</i>
80271	overexpression sgRNA	<i>jing</i>
80767	overexpression sgRNA	<i>lab</i>
80206	overexpression sgRNA	<i>lmd</i>
80246	overexpression sgRNA	<i>M1BP</i>
78697	overexpression sgRNA	<i>Mad</i>
80175	overexpression sgRNA	<i>MBD-like</i>
78279	overexpression sgRNA	<i>Met</i>
83602	overexpression sgRNA	<i>Mi-2</i>
77302	overexpression sgRNA	<i>nej</i>
83601	overexpression sgRNA	<i>osa</i>
78702	overexpression sgRNA	<i>otp</i>
80207	overexpression sgRNA	<i>p53</i>
83598	overexpression sgRNA	<i>pdm3</i>
80296	overexpression sgRNA	<i>pita</i>
82744	overexpression sgRNA	<i>pnt</i>
79903	overexpression sgRNA	<i>sbb</i>
78710	overexpression sgRNA	<i>scrt</i>
78689	overexpression sgRNA	<i>slp2</i>
79992	overexpression sgRNA	<i>Sox102F</i>
80753	overexpression sgRNA	<i>Ssrp</i>
79823	overexpression sgRNA	<i>Su(var)3-7</i>
78663	overexpression sgRNA	<i>Su(z)12</i>
79915	overexpression sgRNA	<i>tap</i>
79937	overexpression sgRNA	<i>Tip60</i>
85888	overexpression sgRNA	<i>tx</i>
78703	overexpression sgRNA	<i>unpg</i>
78270	overexpression sgRNA	<i>ush</i>
76963	knockout sgRNA	<i>brm</i>
82814	knockout sgRNA	<i>CG10348</i>
84047	knockout sgRNA	<i>CG17806</i>
85841	knockout sgRNA	<i>CG8765</i>
79009	knockout sgRNA	<i>dsx</i>
82781	knockout sgRNA	<i>Eip74EF</i>
82503	knockout sgRNA	<i>Hr4</i>
84062	knockout sgRNA	<i>M1BP</i>
80322	knockout sgRNA	<i>Met</i>
77331	knockout sgRNA	<i>Pfk</i>
77055	knockout sgRNA	<i>sd</i>
91969	knockout sgRNA	<i>sd</i>
80807	knockout sgRNA	<i>spab</i>
80873	knockout sgRNA	<i>Ssrp</i>
83890	knockout sgRNA	<i>Su(var)2-10</i>
77007	knockout sgRNA	<i>Su(z)12</i>
77068	knockout sgRNA	<i>tgo</i>

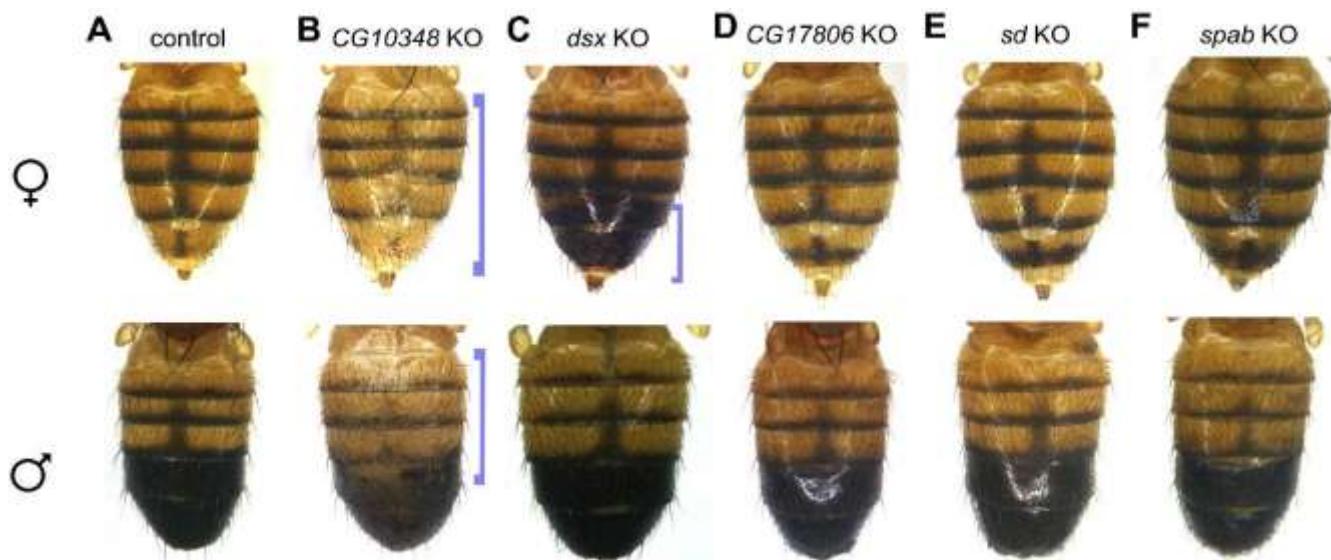

448 Table S2. Summary of T-test results for overexpression crosses, n = 10, p<0.001.

Gene	A6 Stripe Width			Midline Stripe Width			A4 Background Darkness		
	t-value	Degress of Freedom	p-value	t-value	Degrees of Freedom	p-value	t-value	Degrees of Freedom	p-value
<i>ab</i>	1.854	13.548	0.08570	0.536	16.837	0.5992	3.166	15.325	0.006255
<i>abd-A</i>	5.330	14.090	0.0001040	4.299	9.755	0.001655	2.240	14.915	0.04073
<i>ato</i>	8.387	17.868	1.417*10 ⁻⁷	1.523	16.383	0.1469	0.433	13.457	0.6721
<i>bab1</i>	6.671	17.878	3.042*10 ⁻⁶	0.971	17.661	0.3445	4.7128	13.454	0.0003701
<i>bab2</i>	1.868	16.686	0.07948	0.044	16.972	0.9656	5.378	15.975	6.186*10 ⁻⁵
<i>bigmax</i>	4.899	13.148	0.0002815	1.092	16.975	0.2902	1.201	17.419	0.2457
<i>Br140</i>	2.077	16.144	0.05419	0.498	17.068	0.6249	0.273	15.493	0.7884
<i>brm</i>	0.884	17.777	0.3885	3.430	17.987	0.002987	0.672	15.972	0.5115
<i>C15</i>	10.552	16.975	7.112*10 ⁻⁹	0.265	8.363	0.7974	2.013	15.220	0.06215
<i>caup</i>	2.689	10.784	0.02140	1.040	17.028	0.3128	0.616	0.5456	0.5456
<i>CG10348</i>	1.910	11.594	0.08120	1.742	17.813	0.9875	3.957	17.644	0.0009550
<i>CG1233</i>	2.044	14.811	0.05917	0.090	16.933	0.9292	2.044	14.811	0.0592
<i>CG30020</i>	2.892	11.963	0.01357	0.365	17.975	0.7192	6.415	16.991	6.419*10 ⁻⁶
<i>CG33695</i>	3.364	15.234	0.004188	0.558	17.305	0.5841	0.674	16.392	0.5098
<i>CG9650</i>	1.287	8.091	0.2336	1.839	17.973	0.0825	0.341	16.764	0.7371
<i>chinmo</i>	3.442	14.849	0.003675	1.778	13.372	0.09817	0.395	17.486	0.6973
<i>crol</i>	2.992	14.919	0.009168	2.401	17.504	0.02769	7.718	16.690	6.684*10 ⁻⁷
<i>dsx</i>	1.991	13.110	0.06770	2.569	17.738	0.01946	2.357	13.225	0.03445
<i>Eip78C</i>	5.061	12.057	0.0002754	2.673	17.449	0.01579	2.919	13.941	0.01125
<i>fru</i>	1.718	11.877	0.1118	2.198	17.705	0.04148	3.018	12.949	0.009930
<i>Gsc</i>	3.270	11.566	0.007011	3.701	16.152	0.001911	0.656	11.449	0.5248
<i>hb</i>	2.515	12.319	0.02674	1.050	14.361	0.3112	1.806	12.335	0.09542
<i>Hey</i>	4.581	11.612	0.0006867	2.224	14.993	0.04190	0.472	13.142	0.6447
<i>Hr38</i>	4.244	16.793	0.0005610	0.282	16.374	0.7817	0.234	15.615	0.8182
<i>Hr4</i>	4.899	17.233	0.0001304	0.398	17.051	0.6953	3.379	16.863	0.003598
<i>Hr78</i>	1.015	11.902	0.3303	1.749	16.643	0.09872	2.372	13.715	0.03290
<i>hth</i>	2.972	12.493	0.01122	1.341	12.942	0.2030	4.031	15.236	0.001058
<i>ind</i>	2.469	13.579	0.02752	0.217	16.498	0.8312	3.697	17.948	0.001655
<i>jing</i>	3.938	12.538	0.001817	1.810	17.585	0.08718	0.332	11.712	0.7456
<i>lab</i>	5.338	16.491	6.022*10 ⁻⁵	13.654	11.458	1.930*10 ⁻⁸	0.153	13.550	0.8803
<i>lmd</i>	2.510	12.006	0.02739	0.391	16.754	0.7010	0.051	17.212	0.9602
<i>M1BP</i>	1.635	14.131	0.1242	0.717	17.588	0.4827	0.621	12.961	0.5456
<i>Mad</i>	1.709	12.277	0.1127	2.014	17.432	0.05969	0.580	14.608	0.5706
<i>MBD-like</i>	1.667	11.681	0.1221	0.341	17.974	0.7370	1.806	16.747	0.08896
<i>Met</i>	2.407	13.618	0.03088	0.341	17.625	0.7374	0.595	16.232	0.5599
<i>Mi-2</i>	0.853	14.042	0.4079	1.461	14.527	0.1653	0.478	15.748	0.6391
<i>nej</i>	1.178	14.839	0.2576	1.058	17.769	0.3041	1.191	17.708	0.2493
<i>osa</i>	2.693	11.430	0.02031	1.018	7.759	0.3396	4.080	12.502	0.001407
<i>otp</i>	2.410	13.680	0.03066	1.957	18.000	0.06609	0.215	15.490	0.8325
<i>pdm3</i>	16.752	9.000	4.308*10 ⁻⁸	7.652	14.488	1.846*10 ⁻⁶	8.595	12.549	1.303*10 ⁻⁶
<i>pita</i>	1.250	16.872	0.2283	1.850	17.963	0.08090	1.730	17.497	0.1013
<i>sbb</i>	9.589	15.340	7.120*t0 ⁻⁸	3.768	15.166	0.001831	0.986	16.579	0.3383
<i>scrt</i>	1.029	13.442	0.3215	0.337	17.644	0.7400	0.208	16.731	0.8374
<i>slp2</i>	1.615	10.594	0.1357	8.090	17.711	2.343*10 ⁻⁷	3.560	14.005	0.003137
<i>Sox102F</i>	3.698	13.784	0.002444	1.862	17.901	0.07910	1.035	15.809	0.3161
<i>Ssrp</i>	2.112	13.311	0.05409	0.038	17.955	0.9702	2.213	16.283	0.04151
<i>Su(var)3-7</i>	8.767	17.783	7.158*10 ⁻⁸	0.652	15.095	0.5240	0.925	15.742	0.3689
<i>Su(z)12</i>	1.230	12.628	0.2237	0.757	16.738	0.4597	1.563	15.983	0.1376
<i>tap</i>	4.159	15.565	0.0007804	0.362	17.963	0.7215	2.563	14.207	0.02236
<i>Tip60</i>	1.234	16.801	0.2340	1.368	17.557	0.1886	0.671	15.555	0.5120
<i>tx</i>	2.787	13.508	0.01495	0.378	17.859	0.7102	1.428	16.827	0.1715


ush 7.382 14.569 2.719*10⁻⁶ 0.802 16.731 0.4340 -2.051 15.363 0.05777

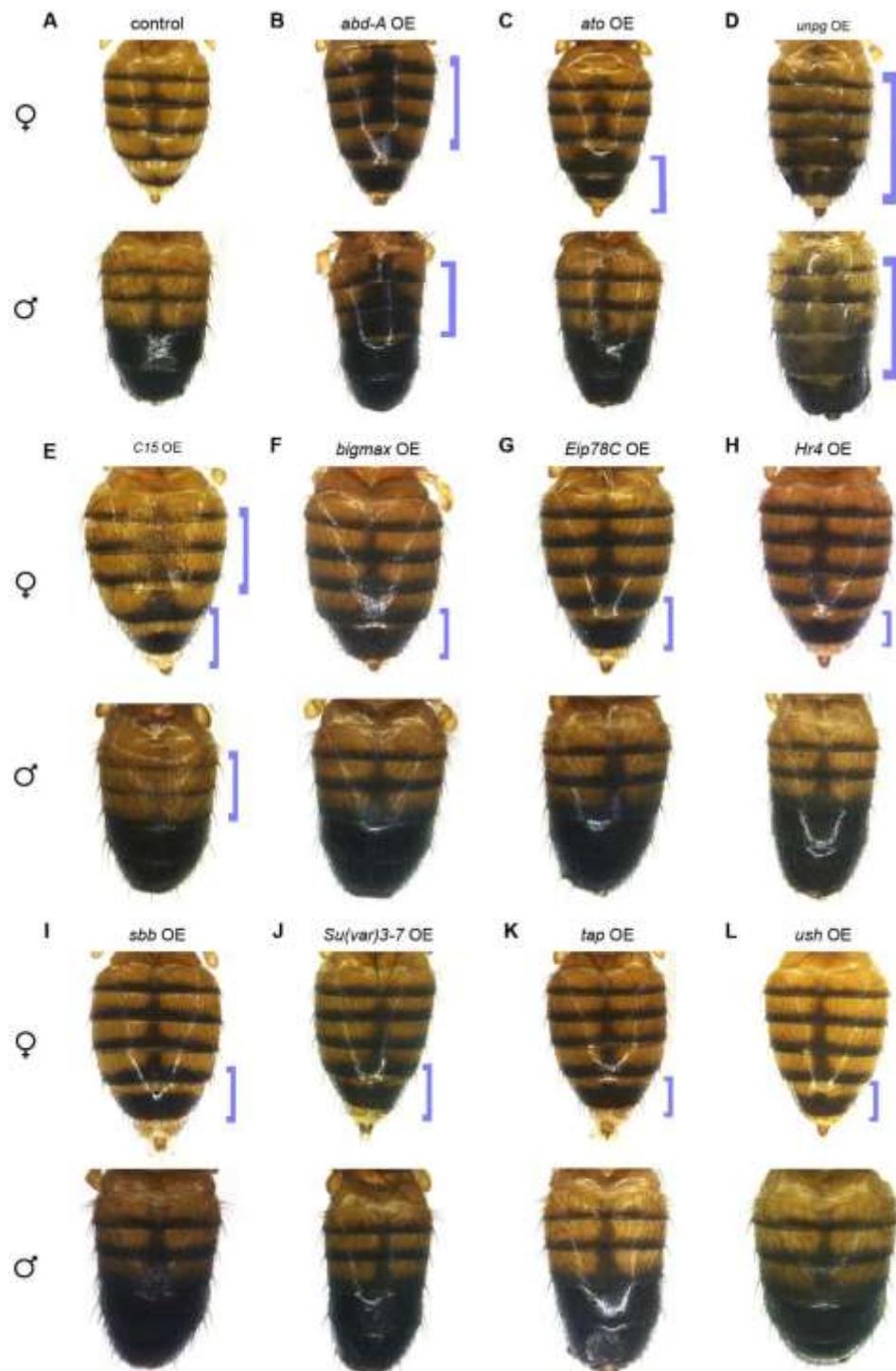
449

450


451 **Figure 1. The TRIP transgenic gene editing system can be used for both overexpressing**
452 **and knocking out genes of interest.** (A). Virgin females expressing either Cas9 or deactivated
453 Cas9 fused to the VPR activation domain (dCas9 VPR) expressed in the abdominal midline
454 driven by *pannier* (*pnr*) were crossed to males with ubiquitous single guide RNAs. Progeny who
455 received the Cas9 or dCas9-VPR-Gal4 driver and sgRNA were selected on the absence of
456 dominant markers. (B). Genotypes of the parents and progeny in the knockout cross. (C).
457 Genotypes of the parents and progeny in the overexpression cross. (D). In the knockout
458 crosses, Cas9 can induce a frameshift mutation in the gene targeted by guide RNAs. These
459 mutant gene alleles would produce a nonfunctional protein in the *pnr* expression domain. (E). In
460 the overexpression crosses, dCas9-VPR binds the promoter for a gene targeted by guide
461 RNAs, recruiting transcription machinery to the gene of interest and ectopically expressing the
462 gene in the *pnr* expression domain.

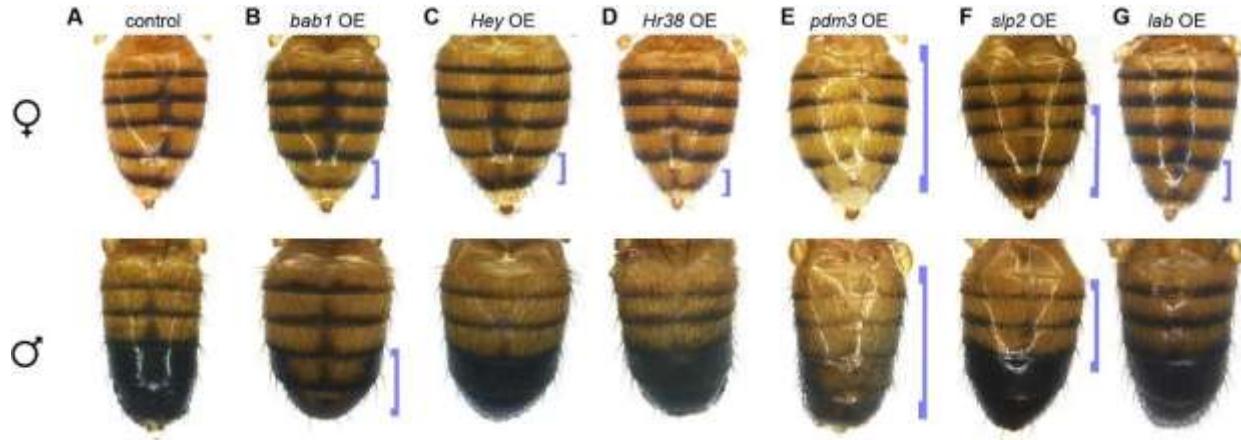
463

464 **Figure 2. Changes among females to the A6 stripe, midline stripe, and background**
 465 **pigmentation were observed in overexpression and knockout cross progeny.** Two-tailed
 466 Student's t tests were used to compare targeted to control crosses, $p < .001$. (A). Boxplot
 467 showing measurements of the A6 stripe in female flies compared to controls. Cartoon illustrates
 468 region of the fly measured (pink) and region affected by gene editing (green). (B). Boxplot
 469 showing measurements of the midline stripe, assessed in the A4 segment of female flies,
 470 compared to controls. Cartoon illustrates region of the fly measured (pink) and region affected
 471 by gene editing (green). (C). Boxplot showing calculated percent darkness of the A4 segment in
 472 female flies with a targeted transcription factor gene compared to controls. Cartoon illustrates
 473 region of the fly measured (pink) and region experiencing gene editing activity (green).


474

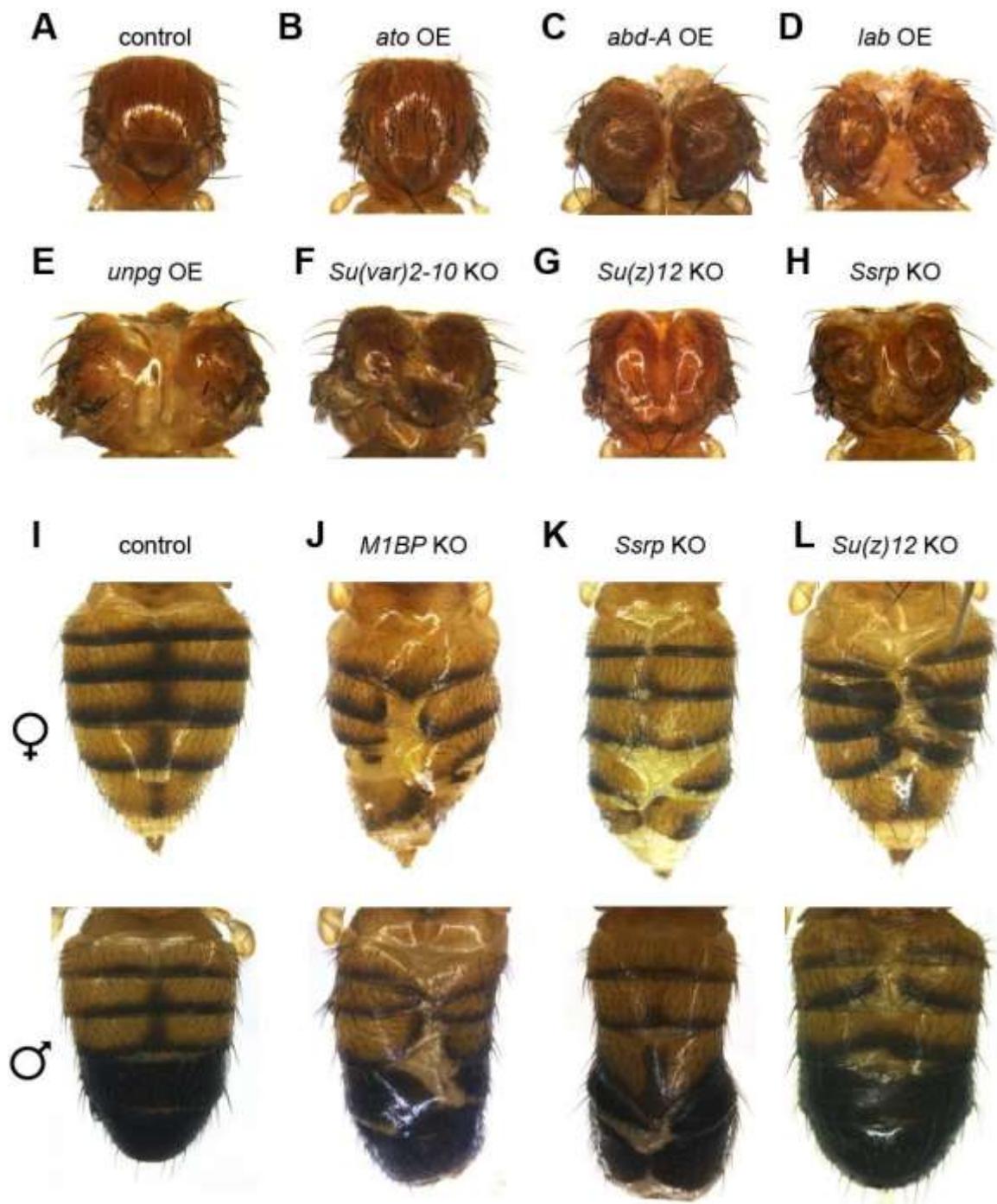
475

476 **Figure 3. Noteworthy knockout tergite pigmentation phenotypes.** Progeny of knockout
 477 crosses. Blue brackets highlight some notable phenotypes that were seen after imaging multiple
 478 samples, but are not representative of quantitative data. (A). Knockout (KO) control abdomens.
 479 (B-G). Gene knockouts featured here are (B) CG10348, (C) doublesex (dsx), (D) Suppressor of
 480 variegation 2-10 (*Su(var)2-10*), (E) CG17806, (F) scalloped (*sd*), and (G) space blanket (*spab*).

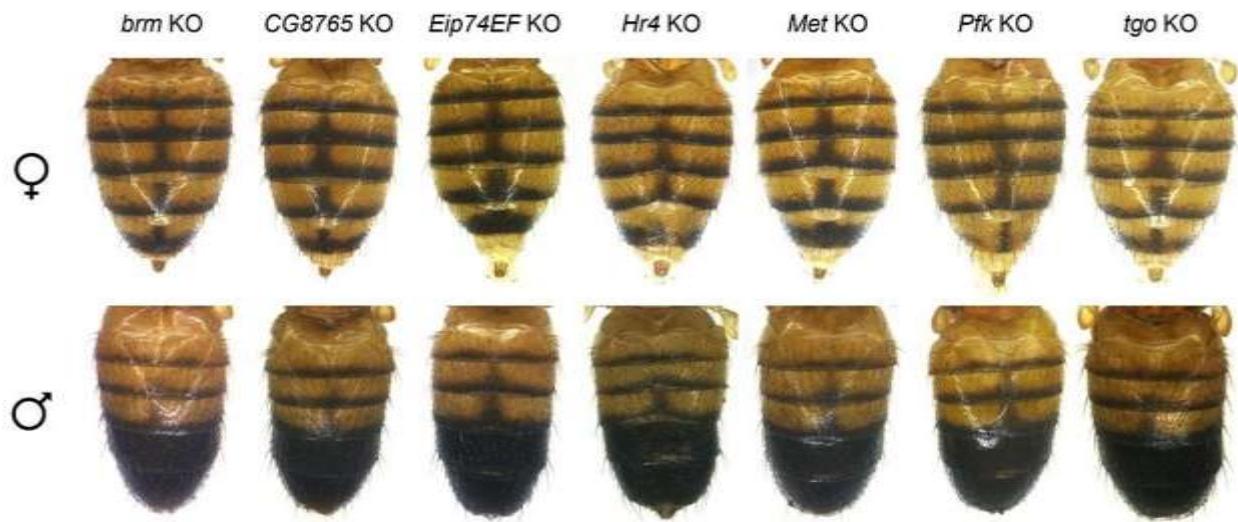

481 Knockouts for *CG10348* and *dsx* demonstrate decreased pigmentation in the midline and
482 increased pigmentation in the female A5/A6 regions, respectively. *CG17806*, *sd*, and *spab*
483 knockouts resulted in shifts in background coloration. All other knockout crosses did not have
484 significant phenotypes in the areas measured.

485

486 **Figure 4. Overexpression phenotypes with an increase of melanic pigmentation.** Progeny
487 of overexpression crosses. Blue brackets highlight some notable increases in dark pigmentation


488 that were observed after imaging multiple samples, but are not representative of quantitative
489 data. (A). Overexpression control abdomens. (B-L). Overexpressed genes featured here are (B)
490 *abdominal-A* (*abd-A*), (C) *atonal* (*ato*), (D) *unplugged* (*unpg*), (E) *C15*, (F) *bigmax*, (G)
491 *Ecdysone-induced protein 78C* (*Eip78C*), (H) *Hormone receptor 4* (*Hr4*), (I) *scribbler* (*sbb*), (J)
492 *Suppressor of variegation 3-7* (*Su(var)3-7*), (K) *target of Poxn* (*tap*), and (L) *u-shaped* (*ush*).

493


494 **Figure 5. Overexpression phenotypes with a decrease in melanic pigmentation.** Progeny
495 of overexpression crosses. Blue brackets highlight some notable decreases in dark
496 pigmentation that were observed across multiple samples, but are not representative of
497 quantitative data. (A). Overexpression control abdomens. (B-G). Overexpressed genes featured
498 here are (B) *bric-a-brac 1* (*bab1*), (C) *Hairy/E(spl)-related with YRPW motif* (*Hey*), (D) *Hormone*
499 *receptor-like in 38* (*Hr38*), (E) *pou domain motif 3* (*pdm3*), (F) *sloppy paired 2* (*slp2*), and (G)
500 *labial* (*lab*).

501

502

503 **Figure 6. Defects in the development of the thorax and abdomen.** (A). Control thorax. (B).
 504 The gene *atausal* (*ato*) produces additional bristles on the thorax when overexpressed. (C-E).
 505 When overexpressed, the genes (C) *abdominal A* (*abd-A*), (D) *labial* (*lab*), and (E) *unplugged*
 506 (*unpg*) produce a defect in the thorax. (F-H). When knocked out, the genes (F) *Suppressor of*
 507 *variegation 2-7* (*Su(var)2-10*), (G) *Su(z)12*, and (H) *Structure specific recognition protein* (*Ssrp*)
 508 produce a defect in the thorax. (I). Control abdomens. (J-L). When knocked out, the genes (J)
 509 *Motif-1 Binding Protein* (*M1BP*), (K) *Ssrp*, and (L) *Su(z)12* produce a defect in the midline of the
 510 abdomen.

511

512 **Figure S1. Knockout crosses without a detectable phenotype.** Genes shown are *brahma*
513 (*brm*), *CG8765*, *Ecdysone-induced protein 74EF* (*Eip74EF*), *Hormone receptor 4* (*Hr4*),
514 *Methoprene-tolerant* (*Met*), *Phosphofructokinase* (*Pfk*), *Su(var)2-10*, and *tango* (*tgo*).

515

517 **Figure S2. Overexpression crosses without a detectable phenotype.** Genes shown are
518 *abrupt (ab)*, *bric-a-brac 2 (bab2)*, *Bromodomain-containing protein 140kD (Br140)*, *brahma*
519 (*brm*), *caupolican (caup)*, *CG1233*, *CG9650*, *CG10348*, *CG30020*, *CG33695*, *chronologically*
520 *inappropriate morphogenesis (chinmo)*, *crooked legs (crol)*, *doublesex (dsx)*, *fruitless (fru)*,
521 *Goosecoid (Gsc)*, *hunchback (hb)*, *Hormone-receptor-like in 78 (Hr78)*, *homothorax (hth)*,
522 *intermediate neuroblasts defective (ind)*, *jing*, *lameduck (lmd)*, *Motif-1 Binding Protein (M1BP)*,
523 *Mothers against dpp (Mad)*, *Methyl-CpG binding protein domain-like (MBD-like)*, *Methoprene-
524 tolerant (Met)*, *Mi-2*, *nejire (nej)*, *osa*, *orthopedia (otp)*, *p53*, *pita*, *pointed (pnt)*, *scratch (scrt)*,
525 *Sox102F*, *Structure specific recognition protein (Ssrp)*, *Su(z)12*, *Tat interactive protein 60kDa*
526 (*Tip60*), and *taxi (tx)*.

527
528

529 **Figure S3. *doublesex (dsx)* knockouts exhibit a variety of phenotypes in female**
530 **abdomens.** Although all these individuals exhibit phenotypes consistent with our current
531 knowledge of *dsx*, the effectiveness of the knockout appears quite variable from individual to
532 individual.

533 **Data Availability Statement**

534 All data analyses and representative images are contained in this manuscript. All raw image
535 files not featured in this manuscript are available via FigShare:
536 <https://figshare.com/s/8125ce60a2c3aa2381a9>

537 **Acknowledgements**

538 We would like to acknowledge the students of BIOSCI 0351 Genetics Laboratory from Spring
539 2021 and 2022 semesters. This study was made possible due to their enthusiasm for the study
540 and active engagement in class. We would also like to thank the members of the Rebeiz lab for
541 feedback on figures.

542 **Conflict of Interest**

543 All authors have no conflicts of interest to disclose.

544 **Funder Information**

545 This project was generously supported by the NIH Grant R35GM14196 to M.R.

546 **Literature Cited**

547 Adame V, Chapapas H, Cisneros M, Deaton C, Diechmann S, Gadek C, Lovato TAL,
548 Chechenova MB, Guerin P, Cripps RM. 2016. An undergraduate laboratory class using
549 CRISPR/Cas9 technology to mutate *Drosophila* genes. *Biochem Mol Biol Educ* 44: 263-275.

550 Adryan B, Teichmann SA. 2006. FlyTF: a systematic review of site-specific transcription factors
551 in the fruit fly *Drosophila melanogaster*. *Bioinformatics* (Oxford, England) 22: 1532–1533.

552 Akbari OS, Bousum A, Bae E, Drewell RA. 2006. Unraveling *cis*-regulatory mechanisms at the
553 *abdominal-A* and *Abdominal-B* genes in the *Drosophila* bithorax complex. *Dev Biol* 293(2): 294-
554 304.

555 Arnone MI, Davidson EH. 1997. The hardwiring of development: organization and function of
556 genomic regulatory systems. *Development* 124: 1851–1864.

557 Auchincloss LC, Laursen SL, Branchaw JL, Eagan K, Graham M, Hanauer DI, Lawrie G,
558 McLinn CM, Pelaez N, Rowland S. 2014. Assessment of course-based undergraduate research
559 experiences: a meeting report. *CBE – Life Sci Educ* 13: 29-40.

560 Basset Ar, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of
561 *Drosophila* with the CRISPR/Cas9 system. *Cell Rep* 4: 220–228.

562 Bastide H, Lange JD, Lack JB, Yassin A, Pool JE. 2016. A variable genetic architecture of
563 melanic evolution in *Drosophila melanogaster*. *Genetics* 204: 1307-1319.

564 Bastide H, Yassin A, Johanning EJ, Pool JE. 2014. Pigmentation in *Drosophila melanogaster*
565 reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-
566 Saharan Africa. *BMC Evol Biol* 14(179).

567 Bastide H, Betancourt A, Nolte V, Tobler R, Stobe P, Futschik A, Schotterer C. 2013. A genome
568 wide, fine-scale map of natural pigmentation variation in *Drosophila melanogaster*. *PLOS*
569 *Genetics* 9(6): e1003534.

570 Brand AH, Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and
571 generating dominant phenotypes. *Development* 118: 401–415.

572 Breen TR, Harte PJ. 1993. Trithorax regulates multiple homeotic genes in the bithorax and
573 Antennapedia complexes and exerts different tissue-specific, parasegment-specific and
574 promoter-specific effects on each. *Development* 117(1): 119-134.

575 Bonn S, Furlong EEM. 2008. *cis*-Regulatory networks during development: a view of
576 *Drosophila*. *Curr Opin Genet Dev* 18, 513–520.

577 Calleja M, Herranz H, Estella C, Casal J, Lawrence P, Simpson P, Morata G. 2000. Generation
578 of medial and lateral dorsal body domains by the *pannier* gene of *Drosophila*. *Development*
579 127(18): 3971-3980.

580 Camino EM, Butts JC, Ordway A, Vellky JE, Rebeiz M, Williams TM. 2015. The evolutionary
581 origination and diversification of a dimorphic gene regulatory network through parallel
582 innovations in *cis* and trans. *PLOS Genetics*. <https://doi.org/10.1371/journal.pgen.1005136>

583 Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow T, Kaufman T, Kellis M, Evans
584 J. 2007. Evolution of genes and genomes on the *Drosophila* phylogeny. *Nature* 450, 203–218.

585 Couderc JL, Godt D, Zollman S, Chen J, Li M, Tiong S, Crampton SE, Sahut-Barnola I, Laski
586 FA. 2002. The *bric à brac* locus consists of two paralogous genes encoding BTB/POZ domain
587 proteins and acts as a homeotic and morphogenetic regulator of imaginal development in
588 *Drosophila*. *Development* 129: 2419–2433.

589 Davidson, EH. 2006. The Regulatory Genome: Gene Regulatory Networks in Development and
590 Evolution. Elsevier Inc., Burlington, MA.

591 Diederich RJ, Merrill VK, Pultz MA, Kaufman TC. 1989. Isolation, structure, and expression of
592 *labial*, a homeotic gene of the Antennapedia Complex involved in *Drosophila* head
593 development. *Genes Dev* 3(3): 399-414.

594 Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S,
595 Schleiblauer S, et al. 2007. A genome-wide transgenic RNAi library for conditional gene
596 inactivation in *Drosophila*. *Nature* 448: 151–156.

597 Drapeau MD. 2003. A novel hypothesis on the biochemical role of the *Drosophila* Yellow
598 protein. *Biochem Bioph Res Co* 311:1-3.

599 Ewen-Campen B, Mohr SE, Hu Y, Perrimon N. 2017. Accessing the phenotype gap: enabling
600 systemic investigation of paralog functional complexity with CRISPR. *Dev Cell* 43: 6-9.

601 Gibert P, Moreteau B, David, JR. 2000. Developmental constraints on an adaptive plasticity:
602 reaction norms of pigmentation in adult segments of *Drosophila melanogaster*. *Evol Dev* 2: 249–
603 60.

604 Gompel N, Carroll SB. 2003. Genetic mechanisms and constraints governing the evolution of
605 correlated traits in drosophilid flies. *Nature* 424: 931-935.

606 Heigwer F, Port F, Boutros M. 2018. RNA interference (RNAi) screening in *Drosophila*. *Genetics*
607 208: 853–874.

608 Hens K, Feuz JD, Isakova A, lagovitina A, Massouras A et al. 2011. Automated protein-DNA
609 interaction screening of *Drosophila* regulatory elements. *Nat Methods* 8: 815-833

610 Hinaux H, Battistara M, Rossi M, Xin Y, Jaenichen R, Poul YL, Arnoult L, Kobler JM, Grunwald
611 Kadow IC, Rodermund L, et al. 2018. Revisiting the developmental and cellular role of the
612 pigmentation gene *yellow* in *Drosophila* using a tagged allele. *Dev Biol* 438(2):111-123.

613 Hinman VF, Nguyen A, Davidson EH. 2007. Caught in the evolutionary act: precise cis-
614 regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
615 *Dev Biol* 312: 584–595.

616 Hughes JT, Williams ME, Johnson R, Grover S, Rebeiz M, Williams TM. 2020. Gene regulatory
617 network homoplasy underlies recurrent sexually dimorphic fruit fly pigmentation. *Front Ecol Evol*
618 8.

619 Imai KS, Stolfi A, Levine M, Satou Y. 2009. Gene regulatory networks underlying the
620 compartmentalization of the *Ciona* central nervous system. *Development* 136: 285–293.

621 Jeong S, Rebeiz M, Andolfatto P, Werner T, True J, Carroll SB. 2008. The evolution of gene
622 regulation underlies a morphological difference between two *Drosophila* sister species. *Cell* 132:
623 783–793.

624 Jeong S, Rokas A, Carroll SB. 2006. Regulation of body pigmentation by the Abdominal-B Hox
625 protein and its gain and loss in *Drosophila* evolution. *Cell* 125: 1387–1399.

626 Kalay G, Lusk R, Dome M, Hens K, Deplancke B, Wittkopp PJ. 2016. Potential direct regulators
627 of the *Drosophila* *yellow* gene identified by yeast one-hybrid and RNAi screens. *G3* 6: 3419–
628 3430.

629 Kondo S, Ueda R. 2013. Highly improved gene targeting by germline-specific Cas9 expression
630 in *Drosophila*. *Genetics* 195: 715–721.

631 Kopp A, Duncan I, Carroll SB. 2000. Genetic control and evolution of sexually dimorphic
632 characters in *Drosophila*. *Nature* 408: 553-559.

633 Kopp A, Blackman RK, Duncan I. 1999. Wingless, Decapentaplegic and EGF Receptor
634 signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of *Drosophila*.
635 *Development* 126: 3495-3507.

636 Kopp A, Muskavitch MAT, Duncan I. 1997. The roles of *hedgehog* and *engrailed* in patterning
637 adult abdominal segments of *Drosophila*. *Development* 124: 3703-3714.

638 Lee KA, Cho KC, Kim B, Jang IH, Nam K, Kwon YE, Kim M, Hyon DY, Hwang D, Seol JH, et al.
639 2018. Inflammation-modulated metabolic reprogramming is required for DUOX-dependent gut
640 immunity in *Drosophila*. *Cell Host Microbe* 23: 338-352.e5.

641 Levine M, Davidson EH., 2005. Gene regulatory networks for development. *Proc Natl Acad Sci
642 USA* 102: 4936–4942.

643 Liu Y, Ramos-Womack M, Han C, Reilly P, Brackett KL, Rogers W, Williams TM, Andolfatto P,
644 Stern DL, Rebeiz M. 2019. Changes throughout a genetic network mask the contribution of Hox
645 gene evolution. *Curr Biol* 29(13): 2517-2166.

646 Martin A, Wolcott NS, O'Connell LA. 2020. Bringing immersive science to undergraduate
647 laboratory courses using CRISPR gene knockouts in frogs and butterflies. *J Exp Biol* 223:
648 jeb208793.

649 Meltzer H, Maron E, Alyagor I, Mayseless O, Berkun V, Segal-Gilboa N, Unger T, Luginbuhl D,
650 Schuldiner O. 2019. Tissue specific (ts)CRISPR as an efficient strategy for in vivo screening in
651 *Drosophila*. *Nat Commun* 10: 2113.

652 Nash WG. 1976. Patterns of pigmentation color states regulated by the *y* locus in *Drosophila*
653 *melanogaster*. *Dev Biol* 48(2): 336-343.

654 Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, Oberstein A, Papatsenko D, Small S.
655 2005. The role of binding site cluster strength in Bicoid-dependent patterning in *Drosophila*.
656 *Proc Natl Acad Sci USA* 102: 4960–4965.

657 Oliveri P, Tu Q, Davidson EH. 2008. Global regulatory logic for specification of an embryonic
658 cell lineage. *Proc Natl Acad Sci USA* 105: 5955–5962.

659 Pan D, Rubin GM. 1995. cAMP-dependent protein kinase and hedgehog act antagonistically in
660 regulating decapentaplegic transcription in *Drosophila* imaginal discs. *Cell* 80: 543-552.

661 Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari
662 R, Shim HS. 2015. The transgenic RNAi project at Harvard Medical School: resources and
663 validation. *Genetics* 201: 843-852.

664 Perrimon N, Ni JQ, Perkins L. 2010. In vivo RNAi: today and tomorrow. *Cold Spring Harb.*
665 *Perspect Biol* 2: a003640.

666 Peter IS, Davidson EH. 2011. A gene regulatory network controlling the embryonic specification
667 of endoderm. *Nature* 474: 635–639.

668 Pfreundt U, James DP, Tweedie S, Wilson D, Teichmann SA, Adryan B. 2010. FlyTF: improved
669 annotation and enhanced functionality of the *Drosophila* transcription factor database. *Nucleic*
670 *Acids Res* 38: D443–D447.

671 Pieczynski JN, Deets A, McDuffee A, Lynn Kee H. 2019. An undergraduate laboratory
672 experience using CRISPR/Cas9 technology to deactivate green fluorescent protein expression
673 in *Escherichia coli*. *Biochem Mol Biol Educ* 47: 145-155

674 Pool JE, Aquadro CF. 2007. The genetic basis of adaptive pigmentation in *D. melanogaster*.
675 *Mol Ecol* 16(14): 2844-2851.

676 Port F, Strein C, Stricker M, Rauscher B, Heigwer F, Zhou J, Beyersdörffer C, Frei J, Hess A,
677 Kern K, et al. 2020. A large-scale resource for tissue-specific CRISPR mutagenesis in
678 *Drosophila*. *eLife* 9: e53865.

679 Port F, Bullock SL. 2016. Augmenting CRISPR applications in *Drosophila* with tRNA-flanked
680 sgRNAs. *Nat Methods* 13: 852–854.

681 Port F, Chen HM, Lee T, Bullock SL. 2014. Optimized CRISPR/Cas tools for efficient germline
682 and somatic genome engineering in *Drosophila*. *Proc Natl Acad Sci USA* 111: E2967–E2976.

683 Rebeiz M, Williams TM. 2017. Using *Drosophila* pigmentation traits to study the mechanisms of
684 cis-regulatory evolution. *Curr Opin Insect Sci* 19: 1-7.

685 Rebeiz M, Pool JE, Kassner VA, Aquadro CF, Carroll SB. 2009. Stepwise modification of a
686 modular enhancer underlies adaptation in a *Drosophila* population. *Science* 326: 1663-1667.

687 Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ,
688 Chen R, Meisel RP, et al. 2005. Comparative genome sequencing of *Drosophila pseudoobscura*:
689 chromosomal, gene, and cis-element evolution. *Genome Res* 15: 1-18.

690 Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel MA, Hovemann BT. 2003. Ebony, a
691 novel nonribosomal peptide synthase for beta-alanine conjugation with biogenic amines in
692 *Drosophila*. *J Biol Chem* 278: 41160-41166.

693 Roeske MJ, Camino EM, Grover S, Rebeiz M, Williams TM. 2018. Cis-regulatory evolution
694 integrated the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network.
695 *eLife* 7: e32273.

696 Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM. 2014. A survey of the
697 trans-regulatory landscape for *Drosophila melanogaster* abdominal pigmentation. *Dev Biol* 385:
698 417-432.

699 Rørth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milán M, Benes V,
700 Ansorge W, et al. 1998. Systematic gain of function genetics in *Drosophila*. *Development* 125:
701 1049-1057.

702 Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, Furlong EEM. 2007. A core
703 transcriptional network for early mesoderm development in *Drosophila melanogaster*. *Genes*
704 *Dev* 21, 436-449.

705 Salomone JR, Rogers WA, Rebeiz M, Williams TM. 2013. The evolution of Bab paralog
706 expression and abdominal pigmentation among *Sophophora* fruit fly species. *Evol Dev* 15(6):
707 442-357.

708 Sebo ZL, Lee HB, Peng Y, Guo Y. 2014. A simplified and efficient germline-specific
709 CRISPR/Cas9 system for *Drosophila* genomic engineering. *Fly* 8: 52-57.

710 Sehgal N, Sylves ME, Sahoo A, Chow J, Walker SE, Cullen PJ, Berry JO. 2018. CRISPR gene
711 editing in yeast: an experimental protocol for an upper-division undergraduate laboratory
712 course. *Biochem Mol Biol Educ* 46: 592-601.

713 St Johnston D. 2002. The art and design of genetic screens: *Drosophila melanogaster*. *Nat Rev*
714 *Genet* 3: 176-188.

715 Struhl G, Barbash DA, Lawrence PA. 1997. Hedgehog acts by distinct gradient and signal relay
716 mechanisms to organize cell type and cell polarity in the *Drosophila* abdomen. *Development*
717 124(11): 2143-2154.

718 True JR, Yeh SD, Hovemann BT, Kemme T, Meinertzhagen IA, Edwards TN, Liou SR, Han Q,
719 Li J. 2005. *Drosophila tan* encodes a novel hydrolase required in pigmentation and vision. *PLOS*
720 *Genet* 1(5): e63.

721 Walter MF, Black BC, Afshar G, Kermabon AY, Wright TRF, Beissman H. 1991. Temporal and
722 spatial expression of the *yellow* gene in correlation with cuticle formation and DOPA
723 decarboxylase activity in *Drosophila* development. *Dev Biol* 147(1): 32-45.

724 Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, Selegue J, Carroll S. 1999.
725 Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. *Curr. Biol* 9:
726 109–115.

727 Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB. 2008. The regulation and
728 evolution of a genetic switch controlling sexually dimorphic traits in *Drosophila*. *Cell* 134: 610-
729 623.

730 Wittkopp PJ, Carroll SB, Kopp A. 2003. Evolution in black and white: genetic control of pigment
731 patterns in *Drosophila*. *Trends Genet* 19(9): 495-504.

732 Wittkopp PJ, True JR, Carroll SB. 2002. Reciprocal functions of the *Drosophila* Yellow and
733 Ebony proteins in the development and evolution of pigment patterns. *Development* 129(8):
734 1849-1858.

735 Wolyniak MJ, Austin S, Bloodworth LF, Carter D, Harrison SH, Hoage T, Hollis-Brown L,
736 Jefferson F, Krufka A, & Safadi-Chamberlin F. 2019. Integrating CRISPR/Cas9 technology into
737 undergraduate courses: perspectives from a national science foundation (NSF) workshop for
738 undergraduate faculty, June 2018. *J Microbiol Biol Educ* 20.

739 Wright TRF. 1987. The genetics of biogenic amine metabolism, sclerotization, and melanization
740 in *Drosophila melanogaster*. *Adv Genet* 24: 127-222.

741 Xie K, Minkenberg B, Yang Y. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the
742 endogenous tRNA-processing system. *PNAS* 11: 3570-3575.

743 Yassin A, Delaney EK, Reddiex AJ, Seher TD, Bastide H, Appleton NC, Lack JB, David JR,
744 Chenoweth SF, Pool JE, Kopp A. 2016. The *pdm3* locus is a hotspot for recurrent evolution of
745 female-limited color dimorphism in *Drosophila*. *Curr Biol* 26(18): 2412--2422.

746 Yin L, Maddison LA, Li M, LaFave MC, Varshney GK, Burgess SM, Patton JG, Chen W. 2015.
747 Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. *Genetics*
748 200: 431-441.

749 Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G. 2013. Highly efficient genome
750 modifications mediated by CRISPR/Cas9 in *Drosophila*. *Genetics* 195: 289–291.

751 Zecca M, Basler K, Struhl G. 1995. Sequential organizing activities of *engrailed*, *hedgehog*, and
752 *decapentaplegic* in the *Drosophila* wing. *Development* 121(8): 2265-2278.

753 Zeitlinger J, Zinzen RP, Stark A, Kellis M, Zhang H, Young RA, Levine M. 2007. Whole-genome
754 ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning
755 processes in the *Drosophila* embryo. *Genes Dev* 21, 385–390.

756 Zinzen RP, Cande J, Ronshaugen M, Papatsenko D, Levine M. 2006. Evolution of the ventral
757 midline in insect embryos. *Dev Cell* 11 ,895–902.

758 Zirin J, Hu Y, Lu L, Yang-Zhou D, Colbeth R, Yan D, Ewen-Campen B, Tao R, Vogt E, VanNest
759 S, et al. 2020. Large-scale transgenic *Drosophila* resource collections for loss- and gain-of-
760 function studies. *Genetics* 214: 755-767

1 A genetic screen of transcription factors in the *Drosophila*
2 *melanogaster* abdomen performed in an undergraduate
3 laboratory course

4 Sarah J. Petrosky¹, Thomas M. Williams², and Mark Rebeiz^{1‡}.

5

6 ¹ Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
7 15260

8 ² Department of Biology, University of Dayton, Dayton, Ohio, USA 45469

9 [‡] corresponding author (rebeiz@pitt.edu)

10

11 Key words: gene regulation, development, pigmentation, *Drosophila*, abdomen, CRISPR/Cas9

12 Data available through FigShare: <https://figshare.com/s/8125ce60a2c3aa2381a9>

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32 **Abstract**

33 Gene regulatory networks specify the gene expression patterns needed for traits to develop.
34 Differences in these networks can result in phenotypic differences between organisms. Although
35 loss-of-function genetic screens can identify genes necessary for trait formation, gain-of-function
36 screens can overcome genetic redundancy and identify loci whose expression is sufficient to
37 alter trait formation. Here, we leveraged transgenic lines from the Transgenic RNAi Project at
38 Harvard Medical school to perform both gain- and loss-of-function CRISPR/Cas9 screens for
39 abdominal pigmentation phenotypes. We identified measurable effects on pigmentation patterns
40 in the *Drosophila melanogaster* abdomen for 21 of 55 transcription factors in gain-of-function
41 experiments and 7 of 16 tested by loss-of-function experiments. These included well-
42 characterized pigmentation genes, such as *bab1* and *dsx*, and transcription factors that had no
43 known role in pigmentation, such as *slp2*. Finally, this screen was partially conducted by
44 undergraduate students in a Genetics Laboratory course during the Spring semesters of 2021
45 and 2022. We found this screen to be a successful model for student engagement in research in
46 an undergraduate laboratory course, that can be readily adapted to evaluate the effect of
47 hundreds of genes on many different *Drosophila* traits, with minimal resources.

48 **Introduction**

49 The evolution of gene regulatory networks (GRNs) is thought to be a frequent mechanism for
50 morphological diversity. These genetic programs underlie developmental processes for cells,
51 tissues, and organs (Davidson 2006). In GRNs, transcription factors regulate their downstream
52 target genes by binding to non-coding DNAs (cis-regulatory elements or CREs) that control the
53 transcriptional activity (enhancers) or repression (silencers) of those targets (Arnone &
54 Davidson 1997). To identify changes within GRNs, a system is needed in which the essential
55 transcription factors involved in a trait's development can be found and, subsequently
56 connected to CREs that control the expression of downstream genes.

57 The production of transgenic tools for genetic screens provides an avenue through which these
58 essential transcription factors can be investigated. Genetic screens often utilize a loss-of-
59 function (LOF) strategy. Modern techniques, such as RNA interference (RNAi) (Dietzl et al.
60 2007) and CRISPR/Cas9 (Port et al. 2014), can quickly generate LOF via gene knockdown and
61 gene knockout, respectively. Transgenic RNAi coupled with the Gal4/UAS system (Brand &
62 Perrimon 1993) allows for precise temporal and spatial control of gene knockdown and
63 knockout, and can bypass potential lethality of global knockdown or knockout (Perrimon et al.
64 2010; Heigwer et al. 2018). These LOF studies have been instrumental in finding components of
65 GRNs, though these screens do not always capture the full impact of a gene's role in a
66 phenotype. Some phenotypes are imperceptible when a gene is knocked down or knocked out
67 (Rorth et al. 1998). In the *Drosophila* (*D.*) *melanogaster* genome, roughly 35% of genes with no
68 known gene function have paralogs (Ewen-Campen et al. 2017), and thus redundancy may
69 render some phenotypes indiscernible. To overcome these complications and complement LOF
70 studies, genes can be tested in gain-of-function (GOF) experiments. In GOF experiments, a
71 gene of interest is ectopically expressed, resulting in over- or mis-expression of that gene. GOF
72 experiments can reveal additional nuance to a gene's function when combined with LOF results,
73 and new relationships between genes and phenotypes can be identified that were not detected
74 solely in LOF experiments. Finally, GOF experiments may reveal the potential paths that may
75 exist to evolutionary change in other lineages, that may not be detected in LOF assays.

76 One model trait that has considerable potential to advance the understanding of GRNs in
77 development and evolution is abdominal pigmentation in *D. melanogaster*. *Drosophila* species
78 have evolved incredibly diverse pigmentation patterns that decorate the tergite plates covering
79 the dorsal surface of the six large abdominal segments (Wittkopp et al. 2003), including
80 phenotypes that are sexually dimorphic and which evolved from a monomorphic ancestor
81 (Jeong et al. 2006, Hughes et al. 2020). Despite the remarkable diversity in abdominal
82 pigmentation among *Drosophila* species, most transcription factors and pigmentation enzymes
83 are highly conserved between *Drosophila* (Clark et al. 2007; Richards et al. 2005). Indeed,
84 many cases of pigment evolution have been connected to mutations in gene regulatory
85 sequences of the pigment network (Rebeiz & Williams 2017), although the binding transcription
86 factors that mediate these mutational effects largely await discovery.

87 Previously, a LOF genetic screen with transgenic RNAi lines that targeted over 500 unique *D.*
88 *melanogaster* transcription factors was performed (Rogers et al. 2014), which revealed 20 novel
89 transcription factors whose reduced expression altered the pattern of abdominal pigmentation.
90 For some of the factors, their effects were shown to influence the activity of multiple enhancers
91 in this pigmentation GRN. Relatedly, another study employed a yeast-1-hybrid approach to
92 identify 125 factors that had the ability to bind to the CRE for the pigmentation enzyme gene
93 *yellow* (Kalay et al. 2016). Of these 125 transcription factor genes, RNAi knockdown of 32
94 resulted in altered tergite pigmentation to some detectable degree.

95 The Transgenic RNAi Project (TRIP) at Harvard Medical School previously generated
96 transgenic RNAi lines for LOF experiments (Perkins et al. 2015). This project has recently
97 developed a transgenic CRISPR/Cas9 approach that can be used to knockout or overexpress
98 genes in a spatially and temporally controlled manner (Zirin et al. 2020). In this study, we
99 present results from use of the TRIP CRISPR/Cas9 toolkit to knockout and overexpress
100 candidate transcription factors in the abdominal midline, driven by the endogenous regulation of
101 the *pannier* (*pnr*) gene (Calleja et al. 2000). Our screen included candidates identified in the
102 prior RNAi screen (Rogers et al. 2014) and factors that may directly bind the *yellow* body CRE
103 (Kalay et al. 2016). Gene knockouts in the transgenic CRISPR/Cas9 system largely
104 recapitulated prior observations from RNAi knockdowns. By overexpressing these transcription
105 factors in the abdominal midline, we demonstrated the utility of GOF experiments in elucidating
106 gene functions and identified a candidate that, prior to this study, did not have a known role in
107 tergite pigmentation patterning. We utilized these techniques in an undergraduate laboratory
108 course, providing an authentic research experience to undergraduate students, and the positive
109 outcomes demonstrate its utility as an educational tool.

110 Methods

111 Overexpression/knockout screen

112 Fly lines were generated as a part of the Harvard Medical School Transgenic RNAi Project (Zirin
113 et al. 2019). All lines were acquired from the Bloomington Stock Center (see Table S1 for stock
114 numbers and lines). For the knockout crosses, 6-8 virgin females with *UAS-Cas9* and *pnr-Gal4*
115 were crossed to 1-2 males with ubiquitously expressed guide RNA transgenes (Fig. 1**CB**). In the
116 conditional knockout progeny, Cas9 cleaves the target site as directed by the guide RNAs from
117 the male parent that can induce a frameshift mutation upon repair in the protein coding
118 sequence of the first or second exon (Fig. 1**CD**). This results in a functional knockout of the
119 targeted transcription factor in the midline of the abdomen, where *pnr* is expressed. For the

120 overexpression crosses, 6-8 virgin females from a *pnr*-Gal4 driver line that additionally
121 possesses a UAS-regulated deactivated Cas9 fused to the activator domain VP64-p65-Rta
122 (dCas9 VPR) were crossed to 1-2 males possessing a pair of guide RNA transgenes (Fig 1D**G**).
123 In the overexpression progeny, midline-expressed dCas9 VPR recruits transcriptional activation
124 machinery to the promoter region near the transcription start site of the target gene as directed
125 by the guide RNAs (Fig 1D**E**). This results in the ectopic expression of the targeted transcription
126 factor in the midline. Both knockout and overexpression crosses used the same *pnr*-Gal4
127 construct. All crosses were raised at 25°C.

Formatted: Font: *Italic*

128 *Imaging and analysis*

129 The progeny from the crosses were transferred to new vials after eclosion. After culturing at
130 25°C for 7-9 days, flies were dissected by removing the wings and the legs, mounted on a slide
131 covered with double-sided sticky tape, and imaged using a Leica M205C Stereo Microscope
132 with a DFC425 camera. For each cross, around 10 male and 10 female abdomens per cross
133 were mounted and imaged. Each abdomen was imaged under the same lighting conditions with
134 an LED ring light. Extended focus brightfield images were generated using the Leica Montage
135 package. The images taken all had a white glare as the result of the ring light used in the
136 imaging process. To avoid the impact of the glare on our calculations, the pixels comprising the
137 glare were not included in our analysis.

138 We conducted statistical analysis on three traits in female flies only ([Figure 1B](#)). For
139 pigmentation intensity measurements, images were converted to greyscale and analyzed using
140 FIJI. The segment of interest was outlined with the freehand tool, and a mean light value (L) in
141 the range of 0-255 was recorded. The segment intensity was calculated in units of percent (%)
142 darkness using the following equation (Pool & Aquadro 2007):

$$143 \quad (255-L)/255 \times 100\%$$

144 In addition, the FIJI straight-line tool was used to measure the length of the female A6 stripe and
145 the width of the A4 midline stripe. We did not quantify these two traits for the knockout crosses,
146 as these resultseffects have already been published (Rogers et al. 2014; Kalay et al. 2016).

147 Two sets of quantitative data were compared using a two-tailed Student's t test. Boxplots were
148 generated in R, and are presented as jittered plots, with the center lines representing the
149 medians, and the borders of the box representing the 25th and 75th percentiles. The P-values
150 were adjusted by a Bonferroni correction to account for multiple testing. This increased the
151 significance threshold from less than 0.05 to less than 0.001. All image analysis was performed
152 on blinded samples to eliminate bias.

153 *TRiP in an undergraduate laboratory course*

154 We had the students in BIOSCI 0351 Genetics Lab, an upper-level university laboratory course,
155 in Spring 2021 and Spring 2022 participate in these experiments at the University of Pittsburgh.
156 35 students were enrolled in the Spring 2021 course, and 34 were enrolled in the Spring 2022
157 course. Students were broken up into groups of 4 or 5, with each group having one transcription
158 factor gene and one positive control gene (*bric-a-brac 1* for overexpression crosses and
159 *doublesex* for knockout crosses). The students established two test gene crosses and two
160 control crosses, phenotyped progeny, and analyzed images using ImageJ as described above.

161 The students were asked to organize and maintain a laboratory notebook for this experiment. At
162 the end of the laboratory course, the students presented their findings to the rest of the class.

163 See Table 1 for the course timeline and materials needed for the course. Student learning
164 objectives and methods of assessments are outlined in Table 2.

165

166 Table 1. Requirements and timeline for the Genetics Laboratory course.

Personnel & Materials		Timeline	
Professors	1-2	Week 1	Introduction to fly husbandry
Teaching Assistants	1	Week 2	Visualizing CRISPR targets
Students	34	Week 3	Journal club on CRISPR/Cas9
Fly food	4-8 vials per cross per group, plus vials to maintain stocks	Week 4	Primary literature search on gene
Fly stocks	1 sgRNA and 1 driver per group of 4	Week 5	Journal club on CRISPR/Cas9 in <i>Drosophila</i>
Brightfield microscope	Ideal: 1 per student Minimal: 1 per student group	Week 6	Setting up CRISPR cross
Microscope camera	1 per microscope	Week 7	Lab notebook check
Computers with FIJI	Ideal: 1 per student Minimal: 1 per student group	Week 8	Journal club on CRISPR in non-model organisms
		Week 9	Score progeny from CRISPR/Cas9 cross, TA mounts and images flies
		Week 10	Ethics of CRISPR discussion
		Week 11	Analyzing image data, beginning poster presentation
		Week 12	Designing poster, wrapping up image analysis
		Week 13	Poster session, final lab notebook grading

167

168 Table 2. Learning objectives for the Genetics Laboratory course.

Learning Outcomes		Assessments
Knowledge	Articulate the molecular mechanisms of CRISPR/Cas9 actions	Journal discussions on CRISPR/Cas9 technology, weekly reflection paragraphs
	Frame student results in context of the current literature	Generate a discussion for poster presentation
	Examine ethical concerns regarding genome editing	Journal discussions on genome editing ethical concerns, weekly reflection paragraphs
Technical Skills	Fly husbandry, including identifying virgin females, scoring based on sex and phenotype, and recognizing balancer chromosome phenotypes	Record their findings in a laboratory notebook
	Document lab activities reliably and consistently	Organize and maintain a laboratory notebook
Analytical Skills	Develop hypotheses based on research into primary literature	
	Use ImageJ to measure properties of fly pigmentation, such as darkness and stripe width	Generate a results section for poster presentation
	Conduct statistical tests to determine significance of results	Generate a results section for poster presentation
Communication Skills	Design graphics to convey experimental results	Final poster design
	Relay their experiments orally to their peers and colleagues	Final poster presentation

169

170 **Results and Discussion**

171 A total of 71 gene manipulations were performed, overexpressing 55 target and knocking out 16
 172 transcription factor genes known to or suspected to function in the GRN for abdomen tergite
 173 pigmentation patterning and development. All transcription factor genes tested in this assay had
 174 previously been identified in RNAi screens (Rogers et al. 2014; Kalay et al. 2016). In Rogers et
 175 al. 2014, the transcription factor genes were chosen from the Drosophila Transcription Factor
 176 Database (Pfreundt et al. 2010, Adryan & Teichmann 2006), while Kalay et al. 2016 pulled
 177 from surveyed a collection of transcription factors fused to the Gal4 protein (Hens et al. 2011).

178 21 of the overexpression crosses and 7 of the knockout crosses resulted in a phenotype that
 179 differed significantly from the control crosses. Some of the factors tested had detectable effects
 180 in more than one trait. For instance, *pdm3* resulted in reduced pigmentation in the A6 segment,
 181 the midline stripe, and background coloration (Fig. 2). Of the 8 genes for which we conducted
 182 both a GOF and LOF cross, none had detectable effects in both treatments. Representative
 183 images of progeny from the 9 knockout crosses and 34 overexpression crosses with no
 184 detectable phenotypic difference from the wild-type pigmentation patterns can be found in
 185 Figures S1 and S2, respectively.

186 The patterns in the *Drosophila* abdomen are largely determined by the presence or absence of
 187 three key enzymes, Yellow, Tan, and Ebony. Yellow is required to produce black melanin from

Formatted: Font: *Italic*

188 dopamine that is present in the dark cuticle of the abdomen (Drapeau 2003; Hinaux et al. 2018;
189 Jeong et al. 2008; Nash 1976; Water et al. 1991; Wittkopp et al. 2002; Wright 1987). Tan and
190 Ebony are both involved in catecholamine synthesis, with Ebony converting dopamine to beta-
191 alanyl dopamine (Richardt et al. 2003; Wittkopp et al. 2002; Wittkopp et al. 2003) and Tan
192 reversing this reaction (True et al. 2005). These enzymes are expressed in patterns, with the
193 dark producing enzymes Yellow (Wittkopp et al. 2003) and Tan (Jeong et al. 2008) localized in
194 the stripes, midline, and male A5/A6 tergites, while Ebony is restricted to lighter cuticle patches
195 (Rebeiz et al. 2009). The factors we identified may be involved in patterning the midline, either
196 by repressing Tan and Yellow or promoting the dark pigment producing enzymes.

197 **Transcription factors that affect segment A5/A6 pigmentation**

198 In some *Drosophila* species, the pigmentation in the A5 and A6 segments is sexually dimorphic.
199 This trait is recently evolved (Gompel & Carroll 2003), and is thought to evolve from a
200 monomorphic ancestor (Hughes et al. 2020, Jeong et al. 2006, Kopp et al. 2000). A number of
201 transcription factors have been implicated in shaping the male-specific melanic A5-A6
202 pigmentation. The Hox genes *abdominal-A (abd-A)* and *Abdominal-B (Abd-B)* are expressed in
203 the abdominal segments A2-A74 and A5-A78, respectively, and their expression is controlled by
204 the *jab2-8* cis-regulatory elements (Akbari et al. 2006). *Abd-B* promotes the activity of the
205 pigmentation enzymes *yellow* directly via binding sites in its cis-regulatory element, and
206 promotes *tan* indirectly (Liu et al. 2019; Camino et al. 2015; Jeong et al. 2008; Jeong et al.
207 2006). The transcription factor genes *bric-a-brac 1 (bab1)* and *bric-a-brac 2 (bab2)* play a large
208 role in the sexual dimorphism of this trait by regulating *yellow*, a gene that encodes a
209 pigmentation enzyme that produces black melanin (Roeske et al. 2018; Salomone et al. 2013;
210 Couderc et al. 2002; Kopp et al. 2000,). In turn, *bab1/2* expression is activated by *Abd-B*, and
211 the sex-specific isoforms (DsxF and DsxM) of the transcription factor gene *doublesex (dsx)*
212 regulates *bab1/2* in a sexually dimorphic pattern: DsxF activates *bab1/2* in females, and DsxM
213 represses *bab1/2* in males (Williams et al. 2008). To capture additional genes that affect this
214 sexually dimorphic pattern, we measured the width of the A6 stripe in the female progeny from
215 our crosses.

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

216 We identified 189 factors whose altered expression results in a significant effect on
217 pigmentation in the A5 and A6 abdominal segment tergites in either males or females (Fig. 2A).
218 It is important to note that pigmentation in the female A6 segment exhibits temperature-
219 dependent plasticity (Gibert et al. 2000). To minimize the effect of environmental factors on the
220 development of female pigmentation, all crosses were raised at 25°C. All 19 of these factors
221 were significantly different from control flies post Bonferroni correction (Table S1).

222 Of these 189 transcription factor genes, 123 were identified as melanic pigment promoters, with
223 LOF phenotypes from 2 crosses including reduced melanic pigmentation and GOF phenotypes
224 from 11 crosses including increased melanic pigmentation. 7 of these transcription factor genes
225 were previously identified in an RNAi screen (Rogers et al. 2014): *abdominal A (abd-A)*,
226 *CG10348*, *Hormone receptor 4 (Hr4)*, *scribbler (sbb)*, Suppressor of variegation 2-10 (Su(var)2-10), target of Poxn (tap), and *unplugged (unpg)*. *CG10348* (Fig. 3B) and *Suppressor of variegation 2-10 (Su(var)2-10)* (Fig. 3D),
227 when knocked out, *w_{asere}* consistent with the RNAi knockdowns reported in Rogers et al.
228 When overexpressed, *abd-A* (Fig. 4B), *Hr4* (Fig. 4H), *sbb* (Fig. 4I), and *tap* (Fig. 4K) all resulted
229 in increased melanic pigmentation in the female A6 segment, while *unpg* overexpression
230 resulted in melanic pigment that appeared more diffuse yet expanded in area (Fig. 4D). In
231 Rogers et al., when knocked down, the transcription factor genes *abd-A*, *Hr4*, *sbb*, and *unpg*

233 were found to reduce pigmentation in the A5 and A6 segments, and *tap* affected the thorax. The
234 novel results are therefore consistent with the prior observations, and thereby strengthens the
235 inferred roles for these transcription factors acting as promoters of the melanic pigment
236 patterning and development.

237 The other 6 transcription factor genes that were shown here to cause increased pigmentation in
238 the female abdomen were previously identified in Kalay et al. (2016) as potential direct
239 regulators of *yellow*: *atonal* (*ato*) (Fig. 4C), *C15* (Fig. 4E), *Ecdysone-induced protein 78C*
240 (*Eip78C*) (Fig. 4G), and *u-shaped* (*ush*) (Fig. 4L). When overexpressed, increased melanic
241 pigmentation formed in the female A5 and A6 segments. This is consistent with the prior study
242 (Kalay et al. 2016), as these factors resulted in reduced pigmentation when knocked down. The
243 transcription factor genes *bigmax* (Fig. 4F) and *Suppressor of variegation 3-7* (*Su(var)3-7*) (Fig.
244 4J), when overexpressed, increased pigmentation in the female A5 and A6 segments. In the
245 prior study (Kalay et al. 2016), when knocked down, these factors had no effect on
246 pigmentation, despite being identified as potential direct regulators of the pigmentation enzyme
247 *yellow*. This suggests that, although knockdown of these factors has no effect on pigmentation
248 in *D. melanogaster* lab strains, these factors may promote dark pigmentation when expressed in
249 the abdomen, possibly by activating the expression of *yellow*.

250 The remaining 6 transcription factor genes were implicated as repressors of the melanic
251 pigmentation, including well-characterized transcription factor genes like *bric-à-brac 1* (*bab1*)
252 (Fig. 5B) and *doublesex* (*dsx*) (Fig. 3C). Additional factors with compelling phenotypes were
253 *Hairy/E(spl)-related with YRPW motif* (*Hey*) (Fig. 5C), *Hormone receptor-like in 38* (*Hr38*) (Fig.
254 5D), *labial* (*lab*) (Fig. 5G), and *pou domain motif 3* (*pdm3*) (Fig. 5E), which, when
255 overexpressed, resulted in reduced melanic pigmentation. The transcription factor genes *bab1*,
256 *dsx*, and *pdm3* have verified roles in the patterning of the A5 and A6 segments. The
257 transcription factors Bab1 and Bab2 repress *yellow* in a dimorphic pattern, due to the notable
258 absence of *bab1/2* expression in the male A5 and A6 abdominal segment epidermis (Couderc
259 et al. 2002; Kopp et al. 2000; Roeske et al. 2018; Salomone et al. 2013). This dimorphic pattern
260 is controlled by Abd-B and Dsx, in which the DsxF splice variant activates Bab in females and
261 the DsxM splice variant represses Bab in males (Williams et al. 2008). The factor *pdm3* has
262 been implicated as a potential indirect repressor of *yellow* (Liu et al. 2019, Yassin et al. 2016).
263 Our results are consistent with prior studies that investigated these three genes as repressors of
264 the endogenous melanic pigment formation.

265 **Transcription factors that affect midline patterning**

266 In *D. melanogaster*, both male and female flies exhibit a darkly pigmented vertical stripe in the
267 dorsal-ventral midline of the abdomen. This pattern is at least partially controlled by
268 Decapentaplegic (Dpp) signaling. Ectopic Dpp activity promotes increased pigmentation in the
269 dorsal-ventral midline of the abdomen (Kopp et al. 1999). To assess the effects of additional
270 factors on the width of the midline stripe, we measured the width of the stripe in the A4
271 segment.

272 We identified 6 transcription factor genes that impacted the width of the midline stripe in the A4
273 segment. When overexpressed, the transcription factor genes *lab* (Fig. 5G), *pdm3* (Fig. 5E), and
274 *sloppy paired 2* (*slp2*) (Fig. 5F) produced a thinner or nonexistent midline stripe. Two of the
275 tested transcription factor genes, *C15* (Fig. 4E) and *unpg* (Fig. 4D), when overexpressed,
276 resulted in faded pigmentation in the midline region, but the boundaries of the midline appear to

277 be wider than wild-type. Notably, *C15* also promotes dark pigment in the female A5 and A6
278 tergites, indicating that it acts as both a promoter and repressor of melanic pigmentation.
279 Although *unpg* is involved in both A5/A6 pigmentation and midline pigmentation, the pigment in
280 flies overexpressing *unpg* in the dorsal midline appears diffuse compared to the wild-type
281 pattern. Another factor, *CG10348*, resulted in a reduced midline stripe when knocked out.

282 The *s/p2* result is notable because *s/p2* previously had no known role in pigmentation. It had
283 been identified in a yeast 1-hybrid screen as capable of binding to the *yellow wing+body cis*-
284 regulatory element, but *s/p2* LOF experiments did not produce detectable effects on abdominal
285 pigmentation (Kalay et al. 2016). In this GOF assay, we observed that *s/p2* could reduce
286 pigmentation in the midline when overexpressed (Fig. 5F). These results indicate that *s/p2*
287 either has a redundant function in abdominal pigmentation, which would make detecting its
288 effects difficult in LOF screens, or that *s/p2* is not endogenously expressed in the *pnr* domain of
289 the abdominal cuticle in *D. melanogaster*, but can nevertheless repress it. Much of our
290 knowledge on the pigmentation network comes from experiments with *D. melanogaster*, so the
291 identification of new factors like *s/p2* may lead to insights in the pigmentation networks of other
292 *Drosophila* species.

Formatted: Font: Italic

293 Transcription factors that affect background coloration

294 In addition to the sexual dimorphism in the A5 and A6 segment tergites and the patterning of the
295 midline stripes, we were interested in evaluating the changes to the lighter (yellow-brown)
296 colored cuticle, or background coloration, of the progeny. Background pigmentation has been
297 implicated in adaptation of *D. melanogaster* populations. In African *D. melanogaster*
298 populations, background pigmentation is correlated with altitude, with populations at higher
299 altitudes exhibiting darker background pigmentation (Pool & Aquadro 2007; Bastide et al. 2014).
300 Previously, the gene *ebony* was found to underlie the increased dark background pigment in a
301 Ugandan population (Rebeiz et al. 2009), and single-nucleotide polymorphisms (SNPs) in
302 regulatory regions for *tan* and *bab1* have been associated with pigmentation variation in
303 European populations (Bastide et al. 2013). To capture factors that may affect background
304 coloration, we measured the difference in background coloration intensity in our crosses.

305 We identified 9 transcription factor genes that had subtle effects on the background coloration
306 (Fig. 2C). In many cases, these shifts in coloration are subtle, shifting the background coloration
307 as little as 3-5%. When knocked out, the factors *CG17806* (Fig. 3D), *scalloped* (*sd*) (Fig. 3E),
308 and *space blanket* (*spab*) (Fig. 3F) shifted the background pigmentation slightly lighter,
309 indicating these genes may have normally function as promoters of darker background
310 coloration. When overexpressed, the transcription factor genes *bab1/2*, *CG10348*, *CG30020*,
311 and *crol* shifted the background pigmentation slightly darker, while *pdm3* shifted the background
312 pigmentation lighter. Some of these alterations are counterintuitive. For example, *bab1/2* is
313 characterized as a pigment repressor, while overexpression of *bab1/2* in this cross resulted in
314 darker background pigmentation, rather than lighter. These results might suggest a more
315 complex role for Bab1 and Bab2 in the operation of the pigmentation GRN. However, this
316 counterintuitive outcome might be due to variation in the genetic backgrounds of the guide RNA
317 lines, as the shifts in background pigmentation are subtle, with less than 5% difference in
318 pigment intensity compared to the control.

Formatted: Font: Not Italic

Formatted: Font: Not Italic

319 These screens are useful for generating candidate genes underlying adaptive phenotypes. In
320 other African populations, notably one from Fiche, Ethiopia, genome sequencing data has

321 implicated multiple genomic regions as contributing to differing phenotypes in background
322 coloration (Bastide et al. 2016). Indeed, many of the genes tested, including *bab1/2*, *CG10348*,
323 *dsx*, *Eip74EF*, *pdm3*, *Su(var)2-10*, and *unpg* among others, fall under QTL peaks associated
324 with pigmentation variation described by Bastide et al. 2016. This screen and future screens
325 may reveal causative genes underlying these adaptive phenotypes. In addition, GOF screens
326 can illuminate additional paths that adaptation can take, as the candidates identified in GOF
327 screens that were not identified in LOF screens of one species may have been important in the
328 evolutionary diversification of related species.

329 **Transcription factors that alter development in the abdomen and thorax**

330 Several factors affected the morphology of the thorax and the abdomen. The transcription factor
331 genes *abd-A* (Fig. 6B), *lab* (Fig. 6D), and *unpg* (Fig. 6E), when overexpressed, produce flies
332 with indented thoraxes. Two of these transcription factor genes, *abd-A* and *lab*, are homeotic
333 genes that are responsible for proper segmentation and development of the abdomen and
334 anterior thorax, respectively. *abd-A*, along with *Abd-B*, is part of the bithorax complex, and are
335 regulated by trithorax in proper development of the abdominal segments (Breen & Harte 1993).
336 *lab* is part of the Antennapedia Complex, which is responsible for the development of the head
337 and anterior thoracic segments (Diedrich et al. 1989).

338 The factor *ato*, when overexpressed, produces flies with additional bristles on the thorax (Fig.
339 6C), though it did not produce additional bristles in the abdomen. This may be due to
340 differences in the developmental patterning of the thorax compared to the abdomen. The factor
341 *Su(var)2-10*, when knocked out, results in a slight indentation in the thorax (Fig. 6F). The factor
342 *Motif 1 Binding Protein (M1BP)* (Fig. 6J), when knocked out, produce flies with improperly
343 developed tergites. The factors *Structure specific recognition protein (Ssfp)* and *Su(z)12* impact
344 both the thorax and the abdomen when knocked out: the thoraces develop indentations (Fig.
345 6G, Fig. 6H), while the abdomens exhibit defects in tergite development (Fig. 6K, Fig. 6L). In
346 addition to the developmental defects, *abd-A*, *ato*, *lab*, and *unpg* have effects on pigmentation
347 when overexpressed, and *Su(var)2-10* affects pigmentation when knocked out.

348 **Efficacy of CRISPR/Cas9 in genetic screens**

349 Prior LOF studies relied on RNAi technology, and we expected the results of our CRISPR/Cas9-
350 mediated knockouts to be consistent with the outcomes of prior RNAi screens (Rogers et al.
351 2014, Kalay et al. 2016). The progeny from the knockout crosses in this study are largely
352 congruent with the results from prior RNAi studies; however, some genes showed no detectable
353 phenotypic difference from wild-type abdominal pigmentation, despite a measurable phenotypic
354 effect in RNAi studies. Examples of this deviation include *Ecdysone-induced protein 74EF*
355 (*Eip74EF*), *Hormone receptor 4 (Hr4)*, and *tango (tgo)* (Rogers et al. 2014).

356 These discrepancies may be due to the design of the transgenic lines. Transgenic
357 CRISPR/Cas9 mediates gene knockout quite effectively: in the transgenic CRISPR/Cas9 library
358 generated by Port et al. (2020), less than 10% of the generated transgenic lines produce
359 insufficient target mutations, a marked improvement over current *Drosophila* RNAi libraries
360 (Perkins et al. 2015). However, there are also some caveats in experimental design. For
361 example, some transgenic knockout lines will encode one guide RNA sequence, while others
362 encode two guide RNAs. Those encoding two guide RNA sequences may produce more
363 conspicuous phenotypes compared to a line with only one guide RNA sequence (Port & Bullock
364 2016, Xie et al. 2015, Yin et al. 2015). We imaged 10 males and 10 females for as many

365 crosses as possible to capture subtle phenotypes; however, it is possible that some
366 transcription factor genes may nevertheless have subtle phenotypes below the threshold of
367 detection in this assay. Finally, it is worth noting that the Kalay et al. study (2016) used flattened
368 cuticle preparations to measure phenotypes, which is likely more sensitive to subtle effects.

369 **Educational value of transgene-based genetic screens**

370 In addition to the scientific value of the TRiP CRISPR/Cas9 system, this technique has much
371 promise as an educational tool. Course-based undergraduate research experiences allow
372 undergraduate students to engage in authentic research projects in a laboratory course setting
373 (Auchincloss et al. 2014). These courses provide an accessible research experience to many
374 students and promote engagement with hypothesis-driven research at all stages of the scientific
375 process. CRISPR/Cas9 has been used for laboratory courses in *Drosophila* (Adame et al.
376 2016), bacteria (Pieczeniak et al. 2019), yeast (Sehgal et al. 2018), frogs (Martin et al. 2020),
377 and butterflies (Martin et al. 2020). Students have responded positively to research-based
378 laboratory courses, compared to traditional laboratory courses (Martin et al. 2020). Incorporating
379 CRISPR/Cas9 into laboratory courses provides scientific and educational value (Wolyniak et al.
380 2019), and projects designed using the TRiP toolkit can allow students to engage with this
381 technology in most laboratory settings and pursue a wide variety of research questions with
382 relative ease.

383 This screen was conducted as part of the Genetics Lab course, comprised of primarily
384 sophomore and junior undergraduate students. In groups of 4 to 5, each student group was
385 assigned an experimental transcription factor to either overexpress or knockout, as well as a
386 positive control cross. For groups conducting a knockout assay, the positive control was *dsx*,
387 while the positive control for the overexpression groups was *bab1*. These two controls had been
388 tested prior to the start of the class to ensure that they would be effective positive controls. In
389 Spring 2021, the course had seven student groups of 5. Five of those groups conducted
390 overexpression assays for *CG10348*, *crol*, *Hr4*, *Imd*, and *unpg*, while the other two groups
391 conducted knockout assays for *CG10348* and *Hr4*. In Spring 2022, the course had seven
392 student groups of 4 and one group of 5. Six of those groups conducted overexpression assays
393 for *ato*, *bab2*, *CG10348*, *Hr4*, *osa*, and *slp2*, while the other two groups conducted knockout
394 assays for *CG10348* and *Hr4*.

395 In this approach, students are highly involved in the discovery process. The students began by
396 searching for articles on their transcription factor, and learned techniques for finding good
397 sources and reading research articles effectively with the guidance of the instructors. The
398 students were able to contribute to most portions of the experiment, even those who attended
399 remotely or asynchronously for some meetings, and all students received data that they could
400 analyze using FIJI.

401 We found that the results of this genetic screen were more productive than prior attempts to
402 incorporate CRISPR/Cas9 into an educational experience with more laborious approaches
403 involving germline editing. Although we focused on A6 pigmentation, midline patterning, and
404 background coloration [in this manuscript](#), the students were encouraged to measure additional
405 traits, and were not directed by the instructors to measure particular traits. More than half of the
406 student groups identified significant changes from the control in at least one trait, and those that
407 did not nevertheless produced useful negative data. We attribute the relative success of the

408 educational TRiP screen to the ease with which these resources allow students to generate
409 phenotypes and explore gene functions.

410 Similar projects can be implemented in undergraduate labs to provide an authentic research
411 experience to undergraduate students. The materials needed for the project workflow are
412 minimal, requiring only the fly stocks, fly food, and a way to anesthetize the flies and image
413 body parts. This strategy can be applied to many structures using hundreds of genes.

414 In addition, this project has been implemented in both virtual and in-person formats. We
415 designed these experiments to provide activities that students could participate in when class
416 could not be fully conducted in person during 2021. Our set-up allowed for 6 students to be in
417 the room safely with the instructor and the teaching assistant. Two students from each of the
418 seven groups were able to attend lab in person for each class period. The virtual students
419 focused on literature searches while the in-person students set up the crosses. Both sets of
420 students could fully participate in image and statistical analysis. When the class was fully in
421 person in 2022, all students had the opportunity to participate in both the in lab and virtual
422 components. In both semesters, the mounting and imaging was carried out by the teaching
423 assistant. Although this screen works better for the students when they are all in person, we
424 found that it was simpler to adapt to a hybrid format than previous iterations of the class.

425 **Conclusions**

426 The purpose of this study was to confirm previous knockdown experiments and survey the
427 effects of pigmentation transcription factors when overexpressed in the abdominal midline. We
428 used a transgenic CRISPR/Cas9 system to overexpress 55 transcription factor genes identified
429 in prior RNAi screens as potential regulators of pigmentation enzymes. We identified 19 factors
430 that affected A5 and A6 tergite pigmentation, 6 that affected midline stripe patterning, 9 that
431 affected background pigmentation, and 8 factors that affected thorax and abdominal
432 morphology (Table 3). While a number of these factors, including *abd-A*, *bab1/2*, and *dsx*, have
433 been well-characterized in prior studies, we were able to observe phenotypes in the abdomen
434 caused by transcription factors that are not as well characterized in this developmental context,
435 such as *C15*, *CG10348*, and *unpg*. We determined a role for new factors that previously had not
436 been implicated in tergite pigmentation, such as *s/p2*, and provided new candidates for
437 pigmentation studies. GOF experiments, such as those conducted in this screen, can elucidate
438 potential paths to evolutionary change, as the phenotypes observed in GOF experiments but not
439 LOF experiments in one species may be important in other species. In addition, we used this
440 technique to provide an authentic research experience to undergraduate students in a Genetics
441 Laboratory course, and found that this project workflow could be easily adapted for other
442 university courses.

443

444 Table 3. Summary of observed phenotypes. Increases in pigmentation are represented by “+”.
445 Decreases in pigmentation are represented by “-”.

Treatment	Midline Pigment	A6 Pigment	Background Pigment	Defects	Thorax	Abdomen	
<i>abd-A</i> OE	♂ none	♀ none	♂ none	♀ +	none	✓	none
<i>ato</i> OE	none	none	none	+	none	✓	none

<i>bab1</i> <i>OE</i>	none	none	-	-	+	none	none
<i>bab2</i> <i>OE</i>	none	none	none	none	+	none	none
<i>bigmax</i> <i>OE</i>	none	none	none	+	none	none	none
<i>C15</i> <i>OE</i>	-	-	none	+	none	none	none
<i>CG10348</i> <i>OE</i>	none	none	none	none	+	none	none
<i>CG10348</i> <i>KO</i>	-	-	-	-	none	none	none
<i>CG30020</i> <i>OE</i>	none	none	none	none	+	none	none
<i>crol</i> <i>OE</i>	none	none	none	none	+	none	none
<i>dsx</i> <i>KO</i>	none	none	none	+	none	none	none
<i>Hey</i> <i>OE</i>	none	none	none	-	none	none	none
<i>Hr38</i> <i>OE</i>	none	none	none	-	none	none	none
<i>Hr4</i> <i>OE</i>	none	none	none	+	none	none	none
<i>lab</i> <i>OE</i>	-	-	none	-	none	none	none
<i>M1BP</i> <i>KO</i>	none	none	none	none	none	none	✓
<i>pdm3</i> <i>OE</i>	-	-	none	-	-	none	none
<i>sbb</i> <i>OE</i>	none	none	none	+	none	none	none
<i>slp2</i> <i>OE</i>	-	-	none	none	none	none	none
<i>Ssrp</i> <i>KO</i>	none	none	none	none	none	✓	✓
<i>Su(var)2-10</i> <i>KO</i>	none	none	none	none	none	✓	none
<i>Su(var)3-7</i> <i>OE</i>	none	none	none	+	none	none	none
<i>Su(z)12</i> <i>KO</i>	none	none	none	none	none	✓	✓
<i>unpg</i> <i>OE</i>	+	+	-	+	none	+	none
<i>ush</i> <i>OE</i>	none	none	none	+	none	none	none

446 Table S1. Bloomington stock numbers of fly lines used in this study.

Stock Number	Effect	Target Locus/Genotype
67040	overexpression Gal4 driver	<i>pnr</i> -Gal4
67077	knockout Gal4 driver	<i>pnr</i> -Gal4
83608	overexpression sgRNA	<i>ab</i>
79520	overexpression sgRNA	<i>abd-A</i>
79861	overexpression sgRNA	<i>ato</i>
80770	overexpression sgRNA	<i>ato</i>
79801	overexpression sgRNA	<i>bab1</i>
80749	overexpression sgRNA	<i>bab2</i>
80209	overexpression sgRNA	<i>bigmax</i>
80016	overexpression sgRNA	<i>Br140</i>
78645	overexpression sgRNA	<i>brm</i>
79800	overexpression sgRNA	<i>C15</i>
78704	overexpression sgRNA	<i>caup</i>
80012	overexpression sgRNA	<i>CG10348</i>
80782	overexpression sgRNA	<i>CG1233</i>
79996	overexpression sgRNA	<i>CG30020</i>
80264	overexpression sgRNA	<i>CG33695</i>
78744	overexpression sgRNA	<i>CG9650</i>
80002	overexpression sgRNA	<i>chinmo</i>
79921	overexpression sgRNA	<i>crol</i>
79805	overexpression sgRNA	<i>dsx</i>
79883	overexpression sgRNA	<i>Eip78C</i>
80225	overexpression sgRNA	<i>fru</i>

78695	overexpression sgRNA	<i>Gsc</i>
80763	overexpression sgRNA	<i>hb</i>
79948	overexpression sgRNA	<i>Hey</i>
80027	overexpression sgRNA	<i>hng1</i>
81670	overexpression sgRNA	<i>Hr38</i>
82761	overexpression sgRNA	<i>Hr4</i>
79869	overexpression sgRNA	<i>Hr78</i>
79814	overexpression sgRNA	<i>hth</i>
80750	overexpression sgRNA	<i>ind</i>
80271	overexpression sgRNA	<i>jing</i>
80767	overexpression sgRNA	<i>lab</i>
80206	overexpression sgRNA	<i>lmd</i>
80246	overexpression sgRNA	<i>M1BP</i>
78697	overexpression sgRNA	<i>Mad</i>
80175	overexpression sgRNA	<i>MBD-like</i>
78279	overexpression sgRNA	<i>Met</i>
83602	overexpression sgRNA	<i>Mi-2</i>
77302	overexpression sgRNA	<i>nej</i>
83601	overexpression sgRNA	<i>osa</i>
78702	overexpression sgRNA	<i>otp</i>
80207	overexpression sgRNA	<i>p53</i>
83598	overexpression sgRNA	<i>pdm3</i>
80296	overexpression sgRNA	<i>pita</i>
82744	overexpression sgRNA	<i>pnt</i>
79903	overexpression sgRNA	<i>sbb</i>
78710	overexpression sgRNA	<i>scrt</i>
78689	overexpression sgRNA	<i>slp2</i>
79992	overexpression sgRNA	<i>Sox102F</i>
80753	overexpression sgRNA	<i>Ssrp</i>
79823	overexpression sgRNA	<i>Su(var)3-7</i>
78663	overexpression sgRNA	<i>Su(z)12</i>
79915	overexpression sgRNA	<i>tap</i>
79937	overexpression sgRNA	<i>Tip60</i>
85888	overexpression sgRNA	<i>tx</i>
78703	overexpression sgRNA	<i>unpg</i>
78270	overexpression sgRNA	<i>ush</i>
76963	knockout sgRNA	<i>brm</i>
82814	knockout sgRNA	<i>CG10348</i>
84047	knockout sgRNA	<i>CG17806</i>
85841	knockout sgRNA	<i>CG8765</i>
79009	knockout sgRNA	<i>dsx</i>
82781	knockout sgRNA	<i>Eip74EF</i>
82503	knockout sgRNA	<i>Hr4</i>
84062	knockout sgRNA	<i>M1BP</i>
80322	knockout sgRNA	<i>Met</i>
77331	knockout sgRNA	<i>Pfk</i>
77055	knockout sgRNA	<i>sd</i>
91969	knockout sgRNA	<i>sd</i>
80807	knockout sgRNA	<i>spab</i>
80873	knockout sgRNA	<i>Ssrp</i>

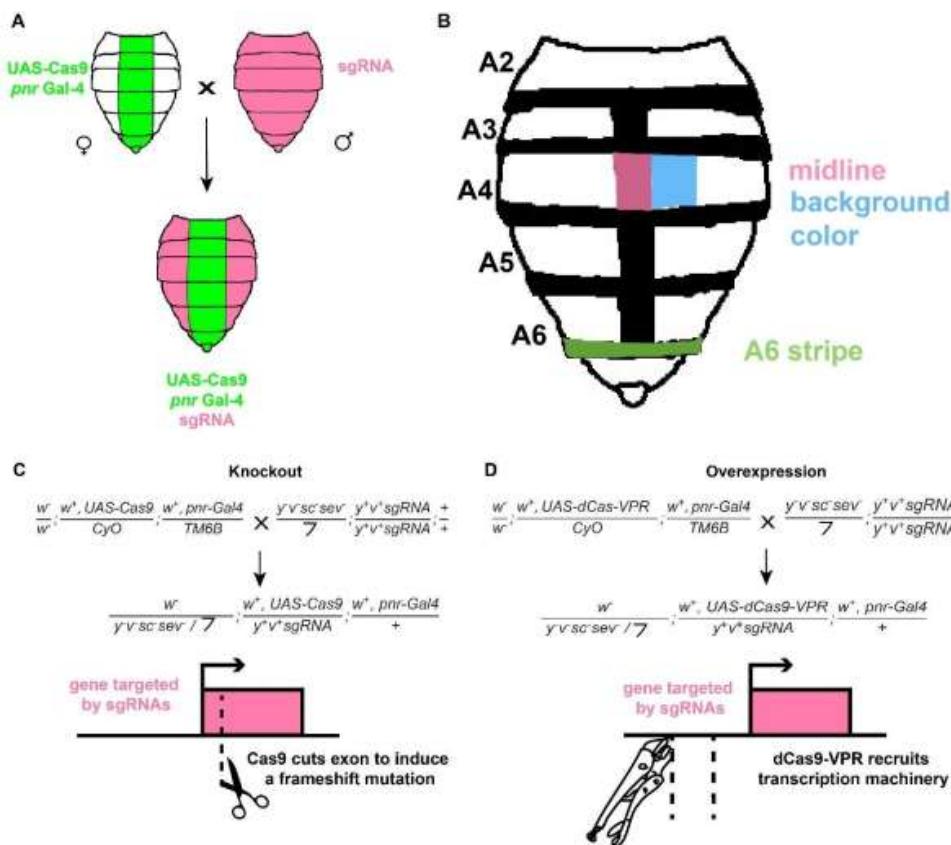
83890	knockout sgRNA	<i>Su(var)2-10</i>
77007	knockout sgRNA	<i>Su(z)12</i>
77068	knockout sgRNA	<i>tgo</i>

447

448

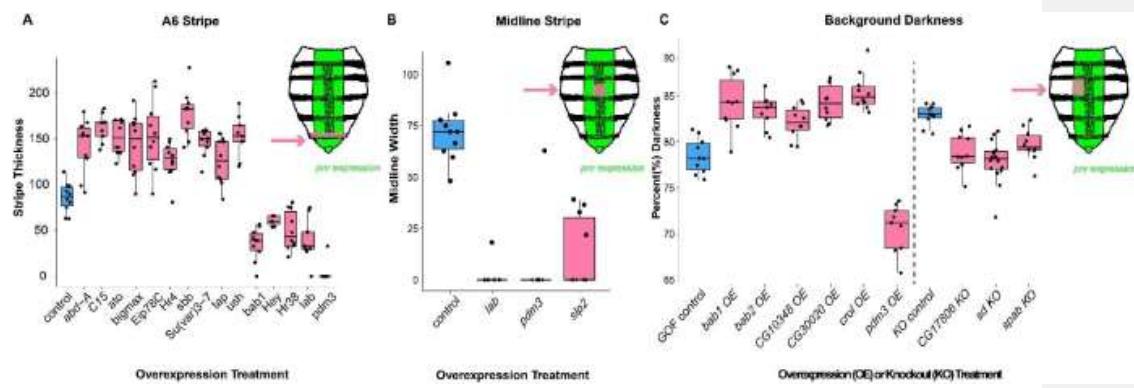
449 Table S2. Summary of T-test results for overexpression crosses, n = 10, p<0.001.

Gene	A6 Stripe Width			Midline Stripe Width			A4 Background Darkness		
	t-value	Degress of Freedom	p-value	t-value	Degrees of Freedom	p-value	t-value	Degrees of Freedom	p-value
<i>ab</i>	1.854	13.548	0.08570	0.536	16.837	0.5992	3.166	15.325	0.006255
<i>abd-A</i>	5.330	14.090	0.0001040	4.299	9.755	0.001655	2.240	14.915	0.04073
<i>ato</i>	8.387	17.868	1.417*10 ⁻⁷	1.523	16.383	0.1469	0.433	13.457	0.6721
<i>bab1</i>	6.671	17.878	3.042*10 ⁻⁶	0.971	17.661	0.3445	4.7128	13.454	0.0003701
<i>bab2</i>	1.868	16.686	0.07948	0.044	16.972	0.9656	5.378	15.975	6.186*10 ⁻⁵
<i>bigmax</i>	4.899	13.148	0.0002815	1.092	16.975	0.2902	1.201	17.419	0.2457
<i>Br140</i>	2.077	16.144	0.05419	0.498	17.068	0.6249	0.273	15.493	0.7884
<i>bm</i>	0.884	17.777	0.3885	3.430	17.987	0.002987	0.672	15.972	0.5115
<i>C15</i>	10.552	16.975	7.112*10 ⁻⁹	0.265	8.363	0.7974	2.013	15.220	0.06215
<i>caup</i>	2.689	10.784	0.02140	1.040	17.028	0.3128	0.616	0.5456	0.5456
<i>CG10348</i>	1.910	11.594	0.08120	1.742	17.813	0.9875	3.957	17.644	0.0009550
<i>CG1233</i>	2.044	14.811	0.05917	0.090	16.933	0.9292	2.044	14.811	0.0592
<i>CG30020</i>	2.892	11.963	0.01357	0.365	17.975	0.7192	6.415	16.991	6.419*10 ⁻⁶
<i>CG33695</i>	3.364	15.234	0.004188	0.558	17.305	0.5841	0.674	16.392	0.5098
<i>CG9650</i>	1.287	8.091	0.2336	1.839	17.973	0.0825	0.341	16.764	0.7371
<i>chinmo</i>	3.442	14.849	0.003675	1.778	13.372	0.09817	0.395	17.486	0.6973
<i>crol</i>	2.992	14.919	0.009168	2.401	17.504	0.02769	7.718	16.690	6.684*10 ⁻⁷
<i>dsx</i>	1.991	13.110	0.06770	2.569	17.738	0.01946	2.357	13.225	0.03445
<i>Eip78C</i>	5.061	12.057	0.0002754	2.673	17.449	0.01579	2.919	13.941	0.01125
<i>fru</i>	1.718	11.877	0.1118	2.198	17.705	0.04148	3.018	12.949	0.009930
<i>Gsc</i>	3.270	11.566	0.007011	3.701	16.152	0.001911	0.656	11.449	0.5248
<i>hb</i>	2.515	12.319	0.02674	1.050	14.361	0.3112	1.806	12.335	0.09542
<i>Hey</i>	4.581	11.612	0.0006867	2.224	14.993	0.04190	0.472	13.142	0.6447
<i>Hr38</i>	4.244	16.793	0.0005610	0.282	16.374	0.7817	0.234	15.615	0.8182
<i>Hr4</i>	4.899	17.233	0.0001304	0.398	17.051	0.6953	3.379	16.863	0.003598
<i>Hr78</i>	1.015	11.902	0.3303	1.749	16.643	0.09872	2.372	13.715	0.03290
<i>hth</i>	2.972	12.493	0.01122	1.341	12.942	0.2030	4.031	15.236	0.001058
<i>ind</i>	2.469	13.579	0.02752	0.217	16.498	0.8312	3.697	17.948	0.001655
<i>jing</i>	3.938	12.538	0.001817	1.810	17.585	0.08718	0.332	11.712	0.7456
<i>lab</i>	5.338	16.491	6.022*10 ⁻⁵	13.654	11.458	1.930*10 ⁻⁸	0.153	13.550	0.8803
<i>lmd</i>	2.510	12.006	0.02739	0.391	16.754	0.7010	0.051	17.212	0.9602
<i>M1BP</i>	1.635	14.131	0.1242	0.717	17.588	0.4827	0.621	12.961	0.5456
<i>Mad</i>	1.709	12.277	0.1127	2.014	17.432	0.05969	0.580	14.608	0.5706
<i>MBD-like</i>	1.667	11.681	0.1221	0.341	17.974	0.7370	1.806	16.747	0.08896
<i>Met</i>	2.407	13.618	0.03088	0.341	17.625	0.7374	0.595	16.232	0.5599
<i>Mi-2</i>	0.853	14.042	0.4079	1.461	14.527	0.1653	0.478	15.748	0.6391
<i>nej</i>	1.178	14.839	0.2576	1.058	17.769	0.3041	1.191	17.708	0.2493
<i>osa</i>	2.693	11.430	0.02031	1.018	7.759	0.3396	4.080	12.502	0.001407
<i>otp</i>	2.410	13.680	0.03066	1.957	18.000	0.06609	0.215	15.490	0.8325
<i>pdm3</i>	16.752	9.000	4.308*10 ⁻⁸	7.652	14.488	1.846*10 ⁻⁶	8.595	12.549	1.303*10 ⁻⁶
<i>pita</i>	1.250	16.872	0.2283	1.850	17.963	0.08090	1.730	17.497	0.1013
<i>sbb</i>	9.589	15.340	7.120*10 ⁻⁸	3.768	15.166	0.001831	0.986	16.579	0.3383
<i>scrt</i>	1.029	13.442	0.3215	0.337	17.644	0.7400	0.208	16.731	0.8374
<i>slp2</i>	1.615	10.594	0.1357	8.090	17.711	2.343*10 ⁻⁷	3.560	14.005	0.003137
<i>Sox102F</i>	3.698	13.784	0.002444	1.862	17.901	0.07910	1.035	15.809	0.3161
<i>Ssrp</i>	2.112	13.311	0.05409	0.038	17.955	0.9702	2.213	16.283	0.04151


Formatted: Right

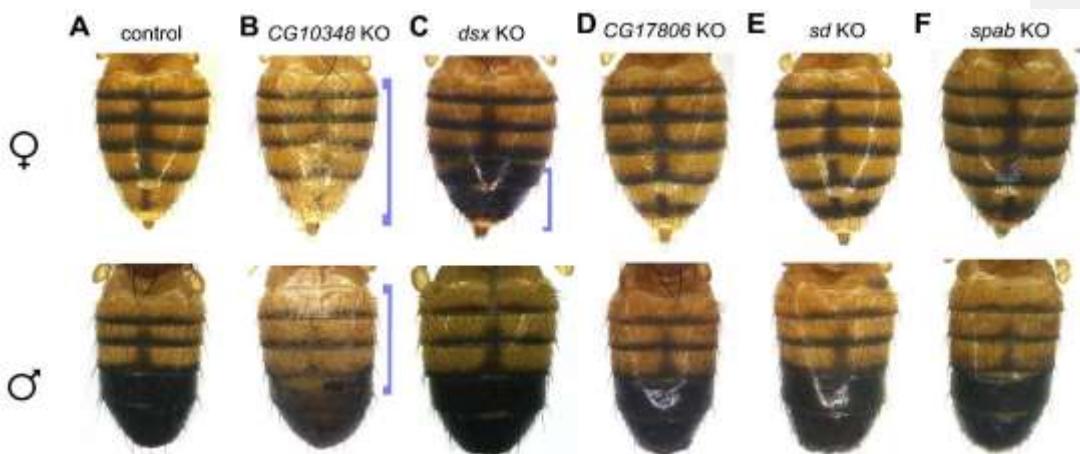
Formatted: Justified

<i>Su(var)3-7</i>	8.767	17.783	7.158*10 ⁻⁸	0.652	15.095	0.5240	0.925	15.742	0.3689
<i>Su(z)12</i>	1.230	12.628	0.2237	0.757	16.738	0.4597	1.563	15.983	0.1376
<i>tap</i>	4.159	15.565	0.0007804	0.362	17.963	0.7215	2.563	14.207	0.02236
<i>Tip60</i>	1.234	16.801	0.2340	1.368	17.557	0.1886	0.671	15.555	0.5120
<i>tx</i>	2.787	13.508	0.01495	0.378	17.859	0.7102	1.428	16.827	0.1715
<i>ush</i>	7.382	14.569	2.719*10 ⁻⁶	0.802	16.731	0.4340	-2.051	15.363	0.05777


450

451

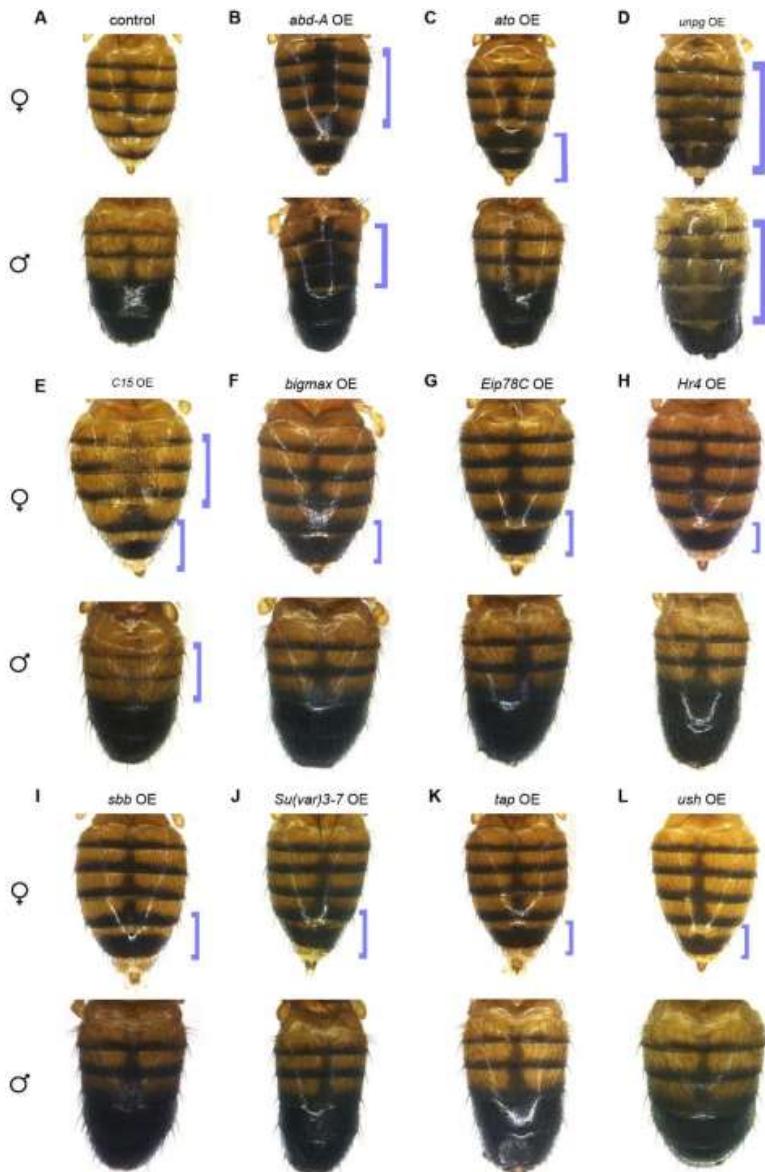
452 **Figure 1. The TRiP transgenic gene editing system can be used for both overexpressing**
 453 **and knocking out genes of interest.** (A). Virgin females expressing either Cas9 or deactivated
 454 Cas9 fused to the VPR activation domain (dCas9 VPR) expressed in the abdominal midline
 455 driven by *pannier* (*pnr*) were crossed to males with ubiquitous single guide RNAs. Progeny who
 456 received the Cas9 or dCas9-VPR-Gal4 driver and sgRNA were selected on the absence of
 457 dominant markers. (B). Genotypes of the parents and progeny in the knockout cross. (C).
 458 Genotypes of the parents and progeny in the overexpression cross. (D). In the knockout
 459 crosses, Cas9 can induce a frameshift mutation in the gene targeted by guide RNAs. These
 460 mutant gene alleles would produce a nonfunctional protein in the *pnr* expression domain. (E). In
 461 the overexpression crosses, dCas9-VPR binds the promoter for a gene targeted by guide


462 RNAs, recruiting transcription machinery to the gene of interest and ectopically expressing the
463 gene in the *pnr* expression domain.

464

465 **Figure 2. Changes among females to the A6 stripe, midline stripe, and background**
466 **pigmentation were observed in overexpression and knockout cross progeny.** Two-tailed
467 Student's t tests were used to compare targeted to control crosses, $p < .001$. (A). Boxplot
468 showing measurements of the A6 stripe in female flies compared to controls. Cartoon illustrates
469 region of the fly measured (pink) and region affected by gene editing (green). (B). Boxplot
470 showing measurements of the midline stripe, assessed in the A4 segment of female flies,
471 compared to controls. Cartoon illustrates region of the fly measured (pink) and region affected
472 by gene editing (green). (C). Boxplot showing calculated percent darkness of the A4 segment in
473 female flies with a targeted transcription factor gene compared to controls. Cartoon illustrates
474 region of the fly measured (pink) and region experiencing gene editing activity (green).

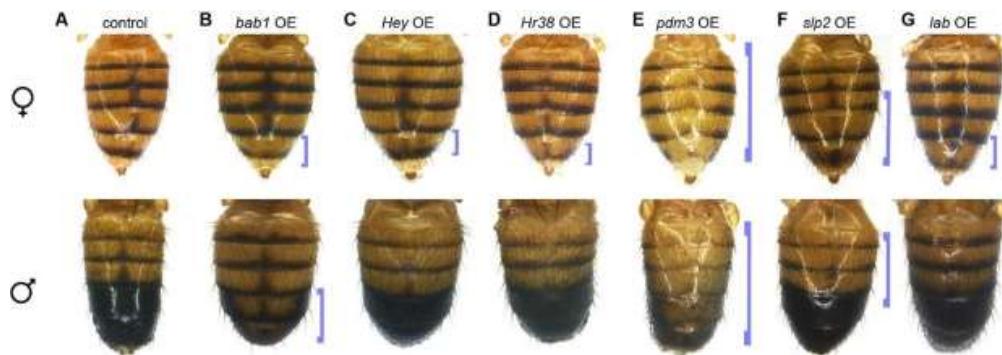
475


476

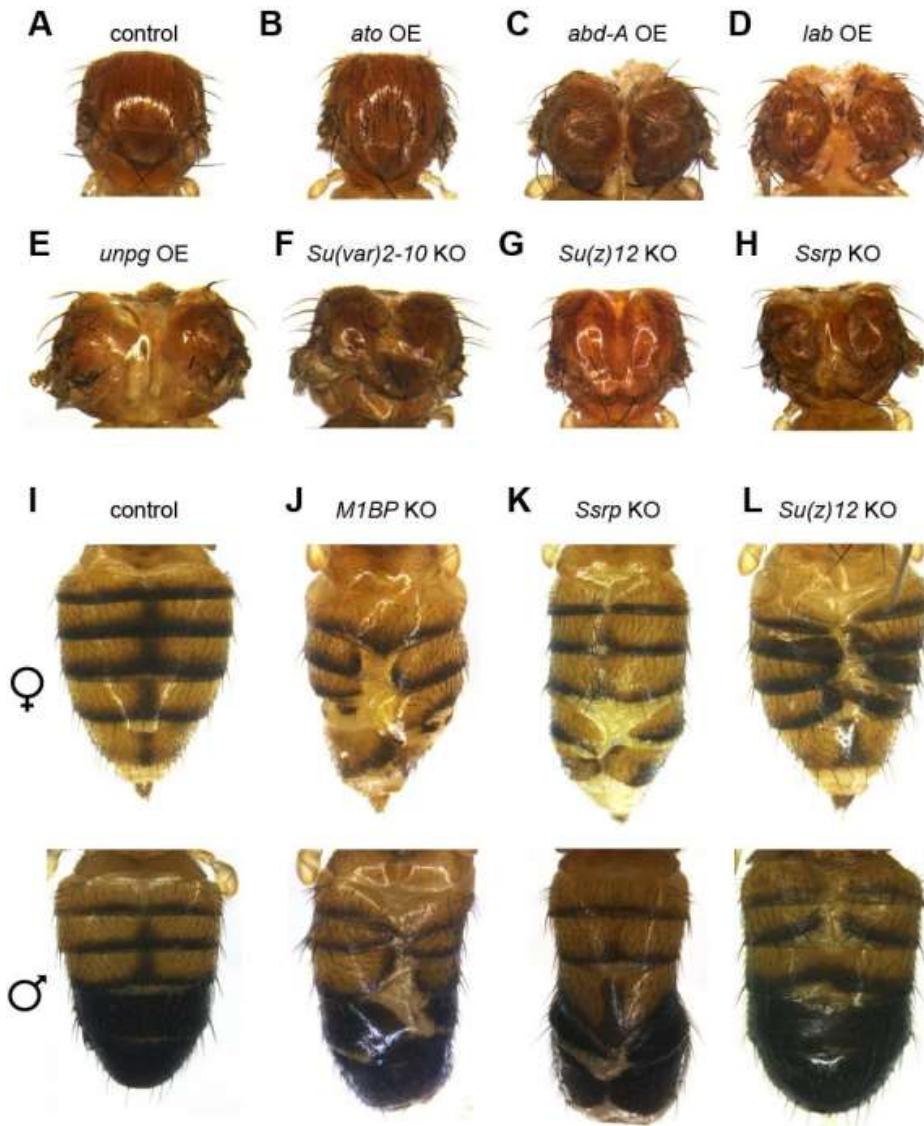
477 **Figure 3. Noteworthy knockout tergite pigmentation phenotypes.** Progeny of knockout
478 crosses. Blue brackets highlight some notable phenotypes that were seen after imaging multiple
479 samples, but are not representative of quantitative data. (A). Knockout (KO) control abdomens.

480 (B-G). Gene knockouts featured here are (B) CG10348, (C) *doublesex* (*dsx*), (D) *Suppressor of*
481 *variegation 2-10* (*Su(var)2-10*), (E) CG17806, (F) *scalloped* (*sd*), and (G) *space blanket* (*spab*).
482 Knockouts for CG10348 and *dsx* demonstrate decreased pigmentation in the midline and
483 increased pigmentation in the female A5/A6 regions, respectively. CG17806, *sd*, and *spab*
484 knockouts resulted in shifts in background coloration. All other knockout crosses did not have
485 significant phenotypes in the areas measured.

486


Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: Italic

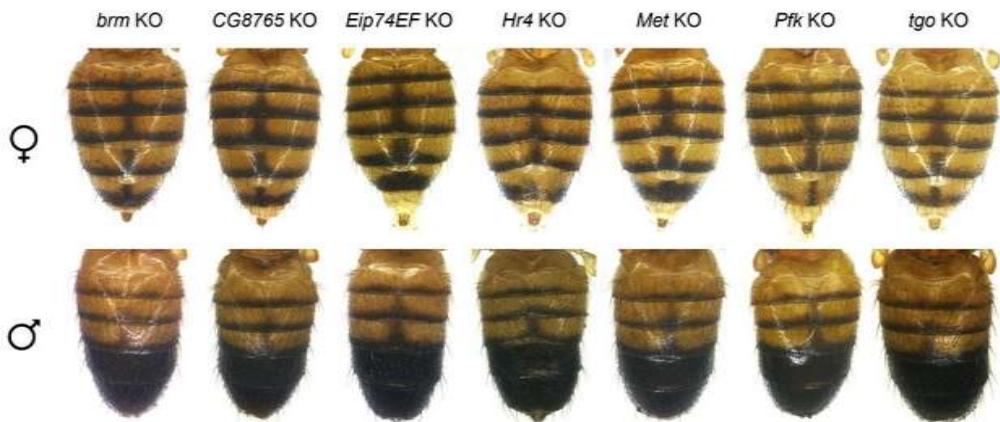
487

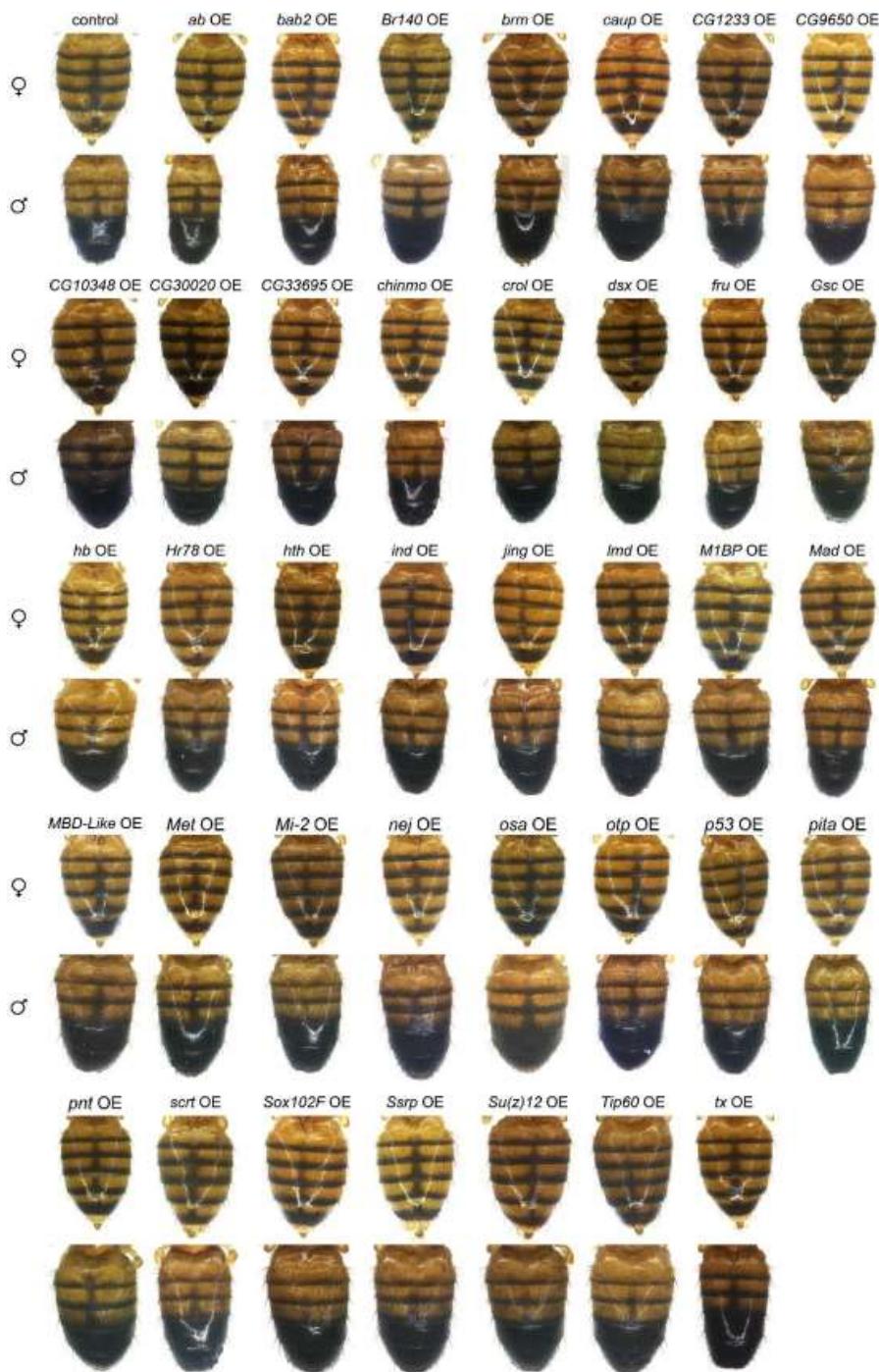

488 **Figure 4. Overexpression phenotypes with an increase of melanic pigmentation.** Progeny
 489 of overexpression crosses. Blue brackets highlight some notable increases in dark pigmentation
 490 [that were observed after imaging multiple samples, but are not representative of quantitative](#)
 491 [data.](#) (A). Overexpression control abdomens. (B-L). Overexpressed genes featured here are (B)
 492 *abdominal-A* (*abd-A*), (C) *atonal* (*ato*), (D) *unplugged* (*unpg*), (E) *C15*, (F) *bigmax*, (G)

493 *Ecdysone-induced protein 78C (Eip78C)*, (H) *Hormone receptor 4 (Hr4)*, (I) *scribbler (sbb)*, (J)
494 *Suppressor of variegation 3-7 (Su(var)3-7)*, (K) *target of Poxn (tap)*, and (L) *u-shaped (ush)*.

495
496 **Figure 5. Overexpression phenotypes with a decrease in melanic pigmentation.** Progeny
497 of overexpression crosses. Blue brackets highlight some notable decreases in dark
498 pigmentation that were observed after imaging across multiple samples, but are not
499 representative of quantitative data. (A). Overexpression control abdomens. (B-G).
500 Overexpressed genes featured here are (B) *bric-a-brac 1 (bab1)*, (C) *Hairy/E(spl)-related with*
501 *YRPW motif (Hey)*, (D) *Hormone receptor-like in 38 (Hr38)*, (E) *pou domain motif 3 (pdm3)*, (F)
502 *sloppy paired 2 (slp2)*, and (G) *labial (lab)*.

503


504


505 **Figure 6. Defects in the development of the thorax and abdomen.** (A). Control thorax. (B).
 506 The gene *atausal* (*ato*) produces additional bristles on the thorax when overexpressed. (C-E).
 507 When overexpressed, the genes (C) *abdominal A* (*abd-A*), (D) *labial* (*lab*), and (E) *unplugged*
 508 (*unpg*) produce a defect in the thorax. (F-H). When knocked out, the genes (F) *Suppressor of*
 509 *variegation 2-7* (*Su(var)2-10*), (G) *Su(z)12*, and (H) *Structure specific recognition protein* (*Ssrp*)
 510 produce a defect in the thorax. (I). Control abdomens. (J-L). When knocked out, the genes (J)
 511 *Motif-1 Binding Protein* (*M1BP*), (K) *Ssrp*, and (L) *Su(z)12* produce a defect in the midline of the
 512 abdomen.

513

514 **Figure S1. Knockout crosses without a detectable phenotype.** Genes shown are *brahma*
515 (*brm*), *CG8765*, *Ecdysone-induced protein 74EF* (*Eip74EF*), *Hormone receptor 4* (*Hr4*),
516 *Methoprene-tolerant* (*Met*), *Phosphofructokinase* (*Pfk*), *Su(var)2-10*, and *tango* (*tgo*).

517

519 **Figure S2. Overexpression crosses without a detectable phenotype.** Genes shown are
520 *abrupt (ab)*, *bric-a-brac 2 (bab2)*, *Bromodomain-containing protein 140kD (Br140)*, *brahma*
521 (*brm*), *caupolican (caup)*, *CG1233*, *CG9650*, *CG10348*, *CG30020*, *CG33695*, *chronologically*
522 *inappropriate morphogenesis (chinmo)*, *crooked legs (crol)*, *doublesex (dsx)*, *fruitless (fru)*,
523 *Goosecoid (Gsc)*, *hunchback (hb)*, *Hormone-receptor-like in 78 (Hr78)*, *homothorax (hth)*,
524 *intermediate neuroblasts defective (ind)*, *jing*, *lameduck (lmd)*, *Motif-1 Binding Protein (M1BP)*,
525 *Mothers against dpp (Mad)*, *Methyl-CpG binding protein domain-like (MBD-like)*, *Methoprene-*
526 *tolerant (Met)*, *Mi-2*, *nejire (nej)*, *osa*, *orthopedia (otp)*, *p53*, *pita*, *pointed (pnt)*, *scratch (scrt)*,
527 *Sox102F*, *Structure specific recognition protein (Ssrrp)*, *Su(z)12*, *Tat interactive protein 60kDa*
528 (*Tip60*), and *taxi (tx)*.

529

530

531 **Figure S3. *doublesex (dsx)* knockouts exhibit a variety of phenotypes in female**
532 **abdomens.** Although all these individuals exhibit phenotypes consistent with our current
533 knowledge of *dsx*, the effectiveness of the knockout appears quite variable from individual to
534 individual.

535 **Data Availability Statement**

536 All data analyses and representative images are contained in this manuscript. All raw image
537 files not featured in this manuscript [will be](#) available via FigShare:
538 <https://figshare.com/s/8125ce60a2c3aa2381a9> -

Formatted: Font: Not Italic

539 **Acknowledgements**

540 We would like to acknowledge the students of BIOSCI 0351 Genetics Laboratory from Spring
541 2021 and 2022 semesters. This study was made possible due to their enthusiasm for the study
542 and active engagement in class. We would also like to thank the members of the Rebeiz lab for
543 feedback on figures.

544 **Conflict of Interest**

545 All authors have no conflicts of interest to disclose.

546 **Funder Information**

547 This project was generously supported by the NIH Grant R35GM14196 to M.R.

548 **Literature Cited**

549 Adame V, Chapapas H, Cisneros M, Deaton C, Diechmann S, Gadek C, Lovato TAL,
550 Chechenova MB, Guerin P, Cripps RM. 2016. An undergraduate laboratory class using
551 CRISPR/Cas9 technology to mutate *Drosophila* genes. *Biochem Mol Biol Educ* 44: 263-275.

552 Adryan B, Teichmann SA. 2006. FlyTF: a systematic review of site-specific transcription factors
553 in the fruit fly *Drosophila melanogaster*. *Bioinformatics* (Oxford, England) 22: 1532-1533.

554 [Akbari OS, Bousum A, Bae E, Drell RA. 2006. Unraveling *cis*-regulatory mechanisms at the](#)
555 [abdominal-A and Abdominal-B genes in the *Drosophila* bithorax complex. Dev Biol](#) 293(2): 294-
556 [304.](#)

Formatted: Font: Italic

557 Arnone MI, Davidson EH. 1997. The hardwiring of development: organization and function of
558 genomic regulatory systems. *Development* 124: 1851-1864.

559 Auchincloss LC, Laursen SL, Branchaw JL, Eagan K, Graham M, Hanauer DI, Lawrie G,
560 McLinn CM, Pelaez N, Rowland S. 2014. Assessment of course-based undergraduate research
561 experiences: a meeting report. *CBE – Life Sci Educ* 13: 29-40.

562 Basset Ar, Tibbit C, Ponting CP, Liu JL. 2013. Highly efficient targeted mutagenesis of
563 *Drosophila* with the CRISPR/Cas9 system. *Cell Rep* 4: 220-228.

564 Bastide H, Lange JD, Lack JB, Yassin A, Pool JE. 2016. A variable genetic architecture of
565 melanic evolution in *Drosophila melanogaster*. *Genetics* 204: 1307-1319.

566 Bastide H, Yassin A, Johanning EJ, Pool JE. 2014. Pigmentation in *Drosophila melanogaster*
567 reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-
568 Saharan Africa. *BMC Evol Biol* 14(179).

569 Bastide H, Betancourt A, Nolte V, Tobler R, Stobe P, Futschik A, Schotterer C. 2013. A genome
570 wide, fine-scale map of natural pigmentation variation in *Drosophila melanogaster*. *PLOS*
571 *Genetics* 9(6): e1003534.

572 Brand AH, Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and
573 generating dominant phenotypes. *Development* 118: 401–415.

574 Breen TR, Harte PJ. 1993. Trithorax regulates multiple homeotic genes in the bithorax and
575 Antennapedia complexes and exerts different tissue-specific, parasegment-specific and
576 promoter-specific effects on each. *Development* 117(1): 119-134.

577 Bonn S, Furlong EEM. 2008. *cis*-Regulatory networks during development: a view of
578 *Drosophila*. *Curr Opin Genet Dev* 18, 513–520.

579 Calleja M, Herranz H, Estella C, Casal J, Lawrence P, Simpson P, Morata G. 2000. Generation
580 of medial and lateral dorsal body domains by the *pannier* gene of *Drosophila*. *Development*
581 127(18): 3971-3980.

582 Camino EM, Butts JC, Ordway A, Vellky JE, Rebeiz M, Williams TM. 2015. The evolutionary
583 origination and diversification of a dimorphic gene regulatory network through parallel
584 innovations in *cis* and trans. *PLOS Genetics*. <https://doi.org/10.1371/journal.pgen.1005136>

585 Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow T, Kaufman T, Kellis M, Evans
586 J. 2007. Evolution of genes and genomes on the *Drosophila* phylogeny. *Nature* 450, 203–218.

587 Couderc JL, Godt D, Zollman S, Chen J, Li M, Tiong S, Crampton SE, Sahut-Barnola I, Laski
588 FA. 2002. The *bric à brac* locus consists of two paralogous genes encoding BTB/POZ domain
589 proteins and acts as a homeotic and morphogenetic regulator of imaginal development in
590 *Drosophila*. *Development* 129: 2419–2433.

591 Davidson, EH. 2006. The Regulatory Genome: Gene Regulatory Networks in Development and
592 Evolution. Elsevier Inc., Burlington, MA.

593 Diederich RJ, Merrill VK, Pultz MA, Kaufman TC. 1989. Isolation, structure, and expression of
594 *labial*, a homeotic gene of the Antennapedia Complex involved in *Drosophila* head
595 development. *Genes Dev* 3(3): 399-414.

596 Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S,
597 Schleiblauer S, et al. 2007. A genome-wide transgenic RNAi library for conditional gene
598 inactivation in *Drosophila*. *Nature* 448: 151–156.

599 Drapeau MD. 2003. A novel hypothesis on the biochemical role of the *Drosophila* Yellow
600 protein. *Biochem Bioph Res Co* 311:1-3.

601 Ewen-Campen B, Mohr SE, Hu Y, Perrimon N. 2017. Accessing the phenotype gap: enabling
602 systemic investigation of paralog functional complexity with CRISPR. *Dev Cell* 43: 6-9.

603 Gibert P, Moreteau B, David, JR. 2000. Developmental constraints on an adaptive plasticity:
604 reaction norms of pigmentation in adult segments of *Drosophila melanogaster*. *Evol Dev* 2: 249–
605 60.

606 Gompel N, Carroll SB. 2003. Genetic mechanisms and constraints governing the evolution of
607 correlated traits in drosophilid flies. *Nature* 424: 931-935.

608 Heigwer F, Port F, Boutros M. 2018. RNA interference (RNAi) screening in *Drosophila*. *Genetics*
609 208: 853–874.

610 Hens K, Feuz JD, Isakova A, Iagovitina A, Massouras A et al. 2011. Automated protein-DNA
611 interaction screening of *Drosophila* regulatory elements. *Nat Methods* 8: 815-833

612 Hinaux H, Battistara M, Rossi M, Xin Y, Jaenichen R, Poul YL, Arnoult L, Kobler JM, Grunwald
613 Kadow IC, Rodermund L, et al. 2018. Revisiting the developmental and cellular role of the
614 pigmentation gene *yellow* in *Drosophila* using a tagged allele. *Dev Biol* 438(2):111-123.

615 Hinman VF, Nguyen A, Davidson EH. 2007. Caught in the evolutionary act: precise cis-
616 regulatory basis of difference in the organization of gene networks of sea stars and sea urchins.
617 *Dev Biol* 312: 584–595.

618 Hughes JT, Williams ME, Johnson R, Grover S, Rebeiz M, Williams TM. 2020. Gene regulatory
619 network homoplasy underlies recurrent sexually dimorphic fruit fly pigmentation. *Front Ecol Evol*
620 8.

621 Imai KS, Stolfi A, Levine M, Satou Y. 2009. Gene regulatory networks underlying the
622 compartmentalization of the *Ciona* central nervous system. *Development* 136: 285–293.

623 Jeong S, Rebeiz M, Andolfatto P, Werner T, True J, Carroll SB. 2008. The evolution of gene
624 regulation underlies a morphological difference between two *Drosophila* sister species. *Cell* 132:
625 783–793.

626 Jeong S, Rokas A, Carroll SB. 2006. Regulation of body pigmentation by the Abdominal-B Hox
627 protein and its gain and loss in *Drosophila* evolution. *Cell* 125: 1387–1399.

628 Kalay G, Lusk R, Dome M, Hens K, Deplancke B, Wittkopp PJ. 2016. Potential direct regulators
629 of the *Drosophila* *yellow* gene identified by yeast one-hybrid and RNAi screens. *G3* 6: 3419-
630 3430.

631 Kondo S, Ueda R. 2013. Highly improved gene targeting by germline-specific Cas9 expression
632 in *Drosophila*. *Genetics* 195: 715–721.

633 Kopp A, Duncan I, Carroll SB. 2000. Genetic control and evolution of sexually dimorphic
634 characters in *Drosophila*. *Nature* 408: 553-559.

635 Kopp A, Blackman RK, Duncan I. 1999. Wingless, Decapentaplegic and EGF Receptor
636 signaling pathways interact to specify dorso-ventral pattern in the adult abdomen of *Drosophila*.
637 *Development* 126: 3495-3507.

638 Kopp A, Muskavitch MAT, Duncan I. 1997. The roles of *hedgehog* and *engrailed* in patterning
639 adult abdominal segments of *Drosophila*. *Development* 124: 3703-3714.

640 Lee KA, Cho KC, Kim B, Jang IH, Nam K, Kwon YE, Kim M, Hyon DY, Hwang D, Seol JH, et al.
641 2018. Inflammation-modulated metabolic reprogramming is required for DUOX-dependent gut
642 immunity in *Drosophila*. *Cell Host Microbe* 23: 338-352.e5.

643 Levine M, Davidson EH., 2005. Gene regulatory networks for development. *Proc Natl Acad Sci
644 USA* 102: 4936–4942.

645 Liu Y, Ramos-Womack M, Han C, Reilly P, Brackett KL, Rogers W, Williams TM, Andolfatto P,
646 Stern DL, Rebeiz M. 2019. Changes throughout a genetic network mask the contribution of Hox
647 gene evolution. *Curr Biol* 29(13): 2517-2166.

648 Martin A, Wolcott NS, O'Connell LA. 2020. Bringing immersive science to undergraduate
649 laboratory courses using CRISPR gene knockouts in frogs and butterflies. *J Exp Biol* 223:
650 jeb208793.

651 Meltzer H, Maron E, Alyagor I, Mayseless O, Berkun V, Segal-Gilboa N, Unger T, Luginbuhl D,
652 Schuldiner O. 2019. Tissue specific (ts)CRISPR as an efficient strategy for in vivo screening in
653 *Drosophila*. *Nat Commun* 10: 2113.

654 Nash WG. 1976. Patterns of pigmentation color states regulated by the *y* locus in *Drosophila*
655 *melanogaster*. *Dev Biol* 48(2): 336-343.

656 Ochoa-Espinosa A, Yucel G, Kaplan L, Pare A, Pura N, Oberstein A, Papatsenko D, Small S.
657 2005. The role of binding site cluster strength in Bicoid-dependent patterning in *Drosophila*.
658 *Proc Natl Acad Sci USA* 102: 4960-4965.

659 Oliveri P, Tu Q, Davidson EH. 2008. Global regulatory logic for specification of an embryonic
660 cell lineage. *Proc Natl Acad Sci USA* 105: 5955-5962.

661 Pan D, Rubin GM. 1995. cAMP-dependent protein kinase and hedgehog act antagonistically in
662 regulating decapentaplegic transcription in *Drosophila* imaginal discs. *Cell* 80: 543-552.

663 Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari
664 R, Shim HS. 2015. The transgenic RNAi project at Harvard Medical School: resources and
665 validation. *Genetics* 201: 843-852.

666 Perrimon N, Ni JQ, Perkins L. 2010. In vivo RNAi: today and tomorrow. *Cold Spring Harb.*
667 *Perspect Biol* 2: a003640.

668 Peter IS, Davidson EH. 2011. A gene regulatory network controlling the embryonic specification
669 of endoderm. *Nature* 474: 635-639.

670 Pfreundt U, James DP, Tweedie S, Wilson D, Teichmann SA, Adryan B. 2010. FlyTF: improved
671 annotation and enhanced functionality of the *Drosophila* transcription factor database. *Nucleic*
672 *Acids Res* 38: D443-D447.

673 Pieczynski JN, Deets A, McDuffee A, Lynn Kee H. 2019. An undergraduate laboratory
674 experience using CRISPR/Cas9 technology to deactivate green fluorescent protein expression
675 in *Escherichia coli*. *Biochem Mol Biol Educ* 47: 145-155

676 Pool JE, Aquadro CF. 2007. The genetic basis of adaptive pigmentation in *D. melanogaster*.
677 *Mol Ecol* 16(14): 2844-2851.

678 Port F, Strein C, Stricker M, Rauscher B, Heigwer F, Zhou J, Beyersdörffer C, Frei J, Hess A,
679 Kern K, et al. 2020. A large-scale resource for tissue-specific CRISPR mutagenesis in
680 *Drosophila*. *eLife* 9: e53865.

681 Port F, Bullock SL. 2016. Augmenting CRISPR applications in *Drosophila* with tRNA-flanked
682 sgRNAs. *Nat Methods* 13: 852-854.

683 Port F, Chen HM, Lee T, Bullock SL. 2014. Optimized CRISPR/Cas tools for efficient germline
684 and somatic genome engineering in *Drosophila*. *Proc Natl Acad Sci USA* 111: E2967-E2976.

685 Rebeiz M, Williams TM. 2017. Using *Drosophila* pigmentation traits to study the mechanisms of
686 cis-regulatory evolution. *Curr Opin Insect Sci* 19: 1-7.

687 Rebeiz M, Pool JE, Kassner VA, Aquadro CF, Carroll SB. 2009. Stepwise modification of a
688 modular enhancer underlies adaptation in a *Drosophila* population. *Science* 326: 1663-1667.

689 Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, Thornton K, Hubisz MJ,
690 Chen R, Meisel RP, et al. 2005. Comparative genome sequencing of *Drosophila pseudoobscura*:
691 chromosomal, gene, and cis-element evolution. *Genome Res* 15: 1-18.

692 Richardt A, Kemme T, Wagner S, Schwarzer D, Marahiel MA, Hovemann BT. 2003. Ebony, a
693 novel nonribosomal peptide synthase for beta-alanine conjugation with biogenic amines in
694 *Drosophila*. *J Biol Chem* 278: 41160-41166.

695 Roeske MJ, Camino EM, Grover S, Rebeiz M, Williams TM. 2018. Cis-regulatory evolution
696 integrated the Bric-à-brac transcription factors into a novel fruit fly gene regulatory network.
697 *eLife* 7: e32273.

698 Rogers WA, Grover S, Stringer SJ, Parks J, Rebeiz M, Williams TM. 2014. A survey of the
699 trans-regulatory landscape for *Drosophila melanogaster* abdominal pigmentation. *Dev Biol* 385:
700 417-432.

701 Rørth P, Szabo K, Bailey A, Laverty T, Rehm J, Rubin GM, Weigmann K, Milán M, Benes V,
702 Ansorge W, et al. 1998. Systematic gain of function genetics in *Drosophila*. *Development* 125:
703 1049-1057.

704 Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, Furlong EEM. 2007. A core
705 transcriptional network for early mesoderm development in *Drosophila melanogaster*. *Genes*
706 *Dev* 21, 436-449.

707 Salomone JR, Rogers WA, Rebeiz M, Williams TM. 2013. The evolution of Bab paralog
708 expression and abdominal pigmentation among *Sophophora* fruit fly species. *Evol Dev* 15(6):
709 442-357.

710 Sebo ZL, Lee HB, Peng Y, Guo Y. 2014. A simplified and efficient germline-specific
711 CRISPR/Cas9 system for *Drosophila* genomic engineering. *Fly* 8: 52-57.

712 Sehgal N, Sylves ME, Sahoo A, Chow J, Walker SE, Cullen PJ, Berry JO. 2018. CRISPR gene
713 editing in yeast: an experimental protocol for an upper-division undergraduate laboratory
714 course. *Biochem Mol Biol Educ* 46: 592-601.

715 St Johnston D. 2002. The art and design of genetic screens: *Drosophila melanogaster*. *Nat Rev*
716 *Genet* 3: 176-188.

717 Struhl G, Barbash DA, Lawrence PA. 1997. Hedgehog acts by distinct gradient and signal relay
718 mechanisms to organize cell type and cell polarity in the *Drosophila* abdomen. *Development*
719 124(11): 2143-2154.

720 True JR, Yeh SD, Hovemann BT, Kemme T, Meinertzhagen IA, Edwards TN, Liou SR, Han Q,
721 Li J. 2005. *Drosophila tan* encodes a novel hydrolase required in pigmentation and vision. *PLOS*
722 *Genet* 1(5): e63.

723 Walter MF, Black BC, Afshar G, Kermabon AY, Wright TRF, Beissman H. 1991. Temporal and
724 spatial expression of the *yellow* gene in correlation with cuticle formation and DOPA
725 decarboxylase activity in *Drosophila* development. *Dev Biol* 147(1): 32-45.

726 Weatherbee SD, Nijhout HF, Grunert LW, Halder G, Galant R, Selegue J, Carroll S. 1999.
727 Ultrabithorax function in butterfly wings and the evolution of insect wing patterns. *Curr. Biol* 9:
728 109–115.

729 Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB. 2008. The regulation and
730 evolution of a genetic switch controlling sexually dimorphic traits in *Drosophila*. *Cell* 134: 610-
731 623.

732 Wittkopp PJ, Carroll SB, Kopp A. 2003. Evolution in black and white: genetic control of pigment
733 patterns in *Drosophila*. *Trends Genet* 19(9): 495-504.

734 Wittkopp PJ, True JR, Carroll SB. 2002. Reciprocal functions of the *Drosophila* Yellow and
735 Ebony proteins in the development and evolution of pigment patterns. *Development* 129(8):
736 1849-1858.

737 Wolyniak MJ, Austin S, Bloodworth LF, Carter D, Harrison SH, Hoage T, Hollis-Brown L,
738 Jefferson F, Krufka A, & Safadi-Chamberlin F. 2019. Integrating CRISPR/Cas9 technology into
739 undergraduate courses: perspectives from a national science foundation (NSF) workshop for
740 undergraduate faculty, June 2018. *J Microbiol Biol Educ* 20.

741 Wright TRF. 1987. The genetics of biogenic amine metabolism, sclerotization, and melanization
742 in *Drosophila melanogaster*. *Adv Genet* 24: 127-222.

743 Xie K, Minkenberg B, Yang Y. 2015. Boosting CRISPR/Cas9 multiplex editing capability with the
744 endogenous tRNA-processing system. *PNAS* 11: 3570-3575.

745 Yassin A, Delaney EK, Reddiex AJ, Seher TD, Bastide H, Appleton NC, Lack JB, David JR,
746 Chenoweth SF, Pool JE, Kopp A. 2016. The *pdm3* locus is a hotspot for recurrent evolution of
747 female-limited color dimorphism in *Drosophila*. *Curr Biol* 26(18): 2412--2422.

748 Yin L, Maddison LA, Li M, LaFave MC, Varshney GK, Burgess SM, Patton JG, Chen W. 2015.
749 Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs. *Genetics*
750 200: 431-441.

751 Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G. 2013. Highly efficient genome
752 modifications mediated by CRISPR/Cas9 in *Drosophila*. *Genetics* 195: 289–291.

753 Zecca M, Basler K, Struhl G. 1995. Sequential organizing activities of *engrailed*, *hedgehog*, and
754 *decapentaplegic* in the *Drosophila* wing. *Development* 121(8): 2265-2278.

755 Zeitlinger J, Zinzen RP, Stark A, Kellis M, Zhang H, Young RA, Levine M. 2007. Whole-genome
756 ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning
757 processes in the *Drosophila* embryo. *Genes Dev* 21, 385–390.

758 Zinzen RP, Cande J, Ronshaugen M, Papatsenko D, Levine M. 2006. Evolution of the ventral
759 midline in insect embryos. *Dev Cell* 11 ,895–902.

760 Zirin J, Hu Y, Lu L, Yang-Zhou D, Colbeth R, Yan D, Ewen-Campen B, Tao R, Vogt E, VanNest
761 S, et al. 2020. Large-scale transgenic *Drosophila* resource collections for loss- and gain-of-
762 function studies. *Genetics* 214: 755-767