UNIQUE ERGODICITY IN STOCHASTIC ELECTROCONVECTION
ELIE ABDO, NATHAN GLATT-HOLTZ, AND MIHAELA IGNATOVA

ABSTRACT. We consider a stochastic electroconvection model describing the nonlinear evolution
of a surface charge density in a two-dimensional fluid with additive stochastic forcing. We prove
the existence and uniqueness of solutions, we define the corresponding Markov semigroup, and we
study its Feller properties. When the noise forces enough modes in phase space, we obtain the
uniqueness of the smooth invariant measure for the Markov transition kernels associated with the

model.
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1. INTRODUCTION

Electroconvection refers to the dynamics of electrically conducting fluids under the influence of
electrical charges. There are many instances of electroconvection in non-Newtonian and Newto-
nian fluids, including the flow of nematic and smectic suspensions subject to applied voltage. The
phenomena are modeled by partial differential equations for the charges and solvent [41] which are
nonlinear and nonlocal. The range of physical, chemical, engineering and biological applications
is extremely wide, ranging from neuroscience [30] to batteries [44] and semiconductors [4]. Par-
ticularly interesting and relevant to this paper are the works [9, 45] which concern the dynamics of
a thin smectic film in an annular region, driven by an imposed voltage at the boundary. In [6] the
behavior of the system was investigated mathematically in the absence of stochastic forcing. The
model was described in terms of a surface charge density ¢, an electric field £ and a fluid veloc-
ity u. The dynamics were confined to a two dimensional domain (T? in the present paper). The
electric field £ was derived from a time independent potential ¢ representing the voltage applied
at the boundary and a dynamic potential A~'q due to the charge density g, via the relation

E=-v®-vAlg, (1.1)
1
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where A~! denotes the inverse of the square root of the two-dimensional periodic Laplacian A = v/-A.
The current density due to the fluid and the electric field F is

J=FE+qu, (1.2)
and the charge density obeys the continuity equation
Oq+vV-J=0. (1.3)

The fluid velocity u obeys the incompresible Navier-Stokes equation forced by the electrical forces
qF and time independent body forces f,

ou+u-Vu-vAu+Vp=qE+f, V-u=0 (1.4)

where p is the fluid pressure and v is the kinematic viscosity.

The well-posedness and global regularity of the deterministic model (1.1)—(1.4) were obtained
in [6] in bounded domains with homogeneous boundary conditions, and the long-time dynamics
were investigated in [1] in the two-dimensional torus T2.

In this paper we consider the stochastic electroconvection model corresponding to the determin-
istic model (1.1)—(1.4),

dg+ V- (qu-VAqg-vd)dt = gdW, (1.5)
du +u - Vudt + Vpdt — vAudt = —q(VA ™ g+ V®)dt + fdt + gdW, (1.6)
V-u=0 (1.7)

forced by time independent noise processes gdW and gdWW on T2. For simplicity, we assume that
v = 1. We address the global well-posedness of (1.5)—(1.7), the Feller properties of the Markov
semigroup associated with (1.5)—(1.7), and the existence, uniqueness and regularity of the invariant
measures for the Markov transition kernels associated with the model (1.5)—(1.7).

A vast literature treats the well-posedness of stochastic partial differntial equations. Martin-
gale type approaches [2, 3, 10, 18, 43] were established to prove the existence and uniqueness of
solutions to the two-dimensional stochastic Navier-Stokes equations (NSE). In [38], the authors
use a different approach, independent of the pathwise solutions, based on a generalization of the
classical Minty-Browder local monotonicity argument [39, 40], to establish the well-posedness
to the stochastic NSE in bounded and unbounded domains. Global existence and uniqueness of
strong pathwise solutions were obtained as well for the two-dimensional [15, 23, 24] and three-
dimensional [11, 25] stochastic primitive equations.

The stochastic electroconvection model (1.5)—(1.7) is nonlocal, nonlinear, with critical dissipa-
tion in one equation, and consequently the proof of its global well-posedness is rather technical.
Under low regularity assumptions imposed on the noises (namely L* for g and H' for g), we prove
that the system (1.5)—(1.7) has unique global solutions when the deterministic initial charge den-
sity is L* regular and the deterministic initial velocity is H' regular. The existence of solutions
is obtained by taking a viscous approximation of (1.5)—(1.7), establishing uniform bounds for the
viscous solutions, and using weak convergence. The identification of the drift is highly challeng-
ing. The reason is that the nonlinearity ¢V A~!¢ is not weakly continuous in the spaces we have
control in. The remedy is a coercive estimate (3.17) and use of ideas from [38]. As a consequence
of the existence result, we define the Markov transition kernels on L* x H' and we show that they
are Feller in the norm of H~2 x L2. If the noises have higher regularity (namely Vg € L8 and
Ag € L?), then the Markov kernels become Feller in the stronger norm of H! x H'.

We also study the ergodicity of the electroconvection model (1.5)—(1.7), which provides a natural
framework to understand the long-term behavior of such physical processes. The existence of an
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invariant measure for the stochastic NSE system was obtained in [10, 17, 19], and the ergodic
theory for the stochastic NSE became the center of interest of many subsequent papers (cf. [5,
12, 14, 16, 35, 39, 37, 12] and references therein). Existence and regularity of invariant measures
were obtained in [20] for the three-dimenional stochastic primitive equations. In [7], existence
and uniqueness of an ergodic invariant measure was established for the 2D fractionally dissipated
periodic stochastic Euler equation.

The dissipative term Agq in (1.5) is critical, and this is a source of technical difficulty. When the
potential ¢ vanishes, and with a low regular noise process, we use the Krylov Bogoliubov averag-
ing procedure to prove that the stochastic model (1.5)—(1.7) has an invariant measure supported on
H?z x H2. If the noise processes are smooth then the invariant measures are smooth. This follows
from bounds of the form

T
2 12
E [ lal?  + lule)at

<Ti(lgolan + luoll e + Ngllar + glar + 1f122) + Palllglan + (gl + 1

r2)T

and

E [ log(1+ al?, .y + ulu)dt
<10g (1 + Jaolues + toluee) + el F s + gl + 13z ) (190l e + [ 9032 + T)

for k& > 0, where I';(+),I'5(+) and I'y(-) are some polynomials. These bounds are obtained by
taking advantage of the smoothing properties of the Stokes operator and the nonlinear coupling,
and employing the logarthmic strategy introduced in [20].

The question of uniqueness of invariant measures requires a deeper structural understanding of
the interplay of the dynamics and stochastic perturbation. A number of approaches have been
used in the recent literature ([5, 13, 28, 29, 32, 33, 34, 39, 37] and references therein). In this
paper we use the asymptotic coupling approach introduced in [27] and [29]. The asymptotic cou-
pling framework was used in [22] to obtain uniqueness of the invariant measures of stochastically
forced Navier-Stokes equations, fractionally dissipative Euler equations and damped nonlinear
wave equations. In order to show that a stochastic differential equation

d
dy = F(y)dt + Z o dW, (1.8)
=1
with initial data 3(0) = y, has only one ergodic measure, the idea is to build a copy
d
dj = F(7)dt + G(y,§)leerdt + Y. 01dW; (1.9)
=1

where the feedback control G is such that y and ¢ are forced to approach each other, y(t)-g(t) = 0
in an appropriate norm, on the event {7 = oo} where 7 is a stopping time such that the coupled
system (1.8)—(1.9) has global solutions with initial data 3(0) = g, and P(7 = c0) > 0 . Moreover,
it is required that

[T1o7 G0, 5(t)Picedt < © (110)

holds (for a.e. w € (1) for some deterministic constant C' > (. If such a construction can be done,
then (1.8) has a unique ergodic invariant measure. Finding an appropriate feedback G is typically
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based on splitting a Hilbert space X into the direct sum of a finite-dimensional space X, and an
infinite-dimensional space Xp,;4n

X:Xlow@Xhigh (1.11)

in such a way that the long time dynamics are controlled by the low frequency part in X;,,,. More
precisely, the property used is that if the low frequency parts of two solutions are asymptotically
the same, then the high frequency parts in X,y are also asymptotically the same. Accordingly,
two realizations of (1.8) are coupled in such a way that that their low frequency parts coincide for
large time ¢ > 7 provided that they meet at time ¢ = 7.

The uniqueness of the invariant measure of the electroconvection model (1.5)—(1.7) is obtained
by constructing an appropriate feedback control and stopping time. The construction requires L*
bounds for ¢ and H? bounds for u, exponential martingale estimates, and the Burkholder-Davis-
Gundy inequality. The main difficulty is due to the weaker dissipation of the charge densities, and
here we use ideas from [21] to estimate the feedback control.

This paper is organized as follows. In section 3, we show that the system (1.5)—(1.7) has a
unique global solution provided that the initial charge density has a zero spatial average and is L*
integrable, the initial velocity is divergence-free and is weakly differentiable, and the noise is suffi-
ciently regular. The proof is based on uniform estimates in Lebesgue spaces which are established
in Appendix A. In section 4, we define the semigroup associated with (1.5)—(1.7) and we prove
that it is weak Feller. In the absence of potential (® = 0), we show in section 5 the existence of an
invariant measure for the Markov transition kernels associated with the electroconvection model
(1.5)—(1.7) based on the Krylov-Bogoliubov averaging procedure under low regularity assumptions
imposed on the noises. In section 6, we prove that any invariant measure of (1.5)—(1.7) is smooth
provided that the model is forced by smooth noises. Using asymptotic coupling techniques, we
prove in section 7 the uniqueness of the invariant measure. In section 8, we address Feller proper-
ties in Sobolev norms when the noise processes are sufficiently regular. This uses uniform bounds
for the pathwise solution, and these are presented in Appendix B.

2. BASIC FUNCTIONAL SPACES AND NOTATIONS

For 1 < p < oo, we denote by LP(T?) the Lebesgue spaces of measurable periodic functions f
from T? to R (or R?) that are p-integrable on T?, that is

1= ( L 171) " <o e

[ flz~ = esssuppa|f] < oo (2.2)

if p = oco. The L?(T?) inner product is denoted by (+,-) 2.
For s > 0, we denote by H*(T?) the Sobolev spaces of measurable periodic functions f from T?
to R (or R?) obeying

ifpe[l,00) and

[0z = 20 (U RSl < oo (2.3)
kez?
For a Banach space (X, | - ||x) and p,q € [1,00], we consider the Lebesgue Banach spaces

Lr(Q; L7 (0, 00; X)) of functions f from X to R (or R?) satisfying

loc

E(fOT ||f||§(dt)z < 00 2.4)
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for any 7" > 0, with the usual convention when p = co or ¢ = co. The spaces L; (0,00;.X) and
LP(§2;C9(0, 00; X)) are defined similarly. Here C°(0, oo; X) is the space of functions f with the
property that the map

e £ 2.5)

is continuous for any f € X.
For s € R, the fractional Laplacian A* applied to a mean zero scalar function f is defined as a
Fourier multiplier with symbol |k|*, that is, for f given by

f= > fue™, (2.6)
keZ2~{0}
we have that A
A f = Z |l<;|5fke”“'l’. 2.7)
keZ2~\{0}

Finally, the periodic Riesz transforms R = (R, Rs) applied to scalar functions f are defined as
Fourier multipliers

k.
(Rif)r=i—>fr, keZ*~{0}, j=1,2 (2.8)

TH
and they are bounded operators on LP(T?), 1 < p < co. We write R = VAL

Throughout the paper, C' denotes a positive universal constant, and C'(a, b, ¢, ...) denotes a posi-
tive constant depending on a, b, c, ...

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Let (€2, F,IP) be a probability space, {F.},,, be a filtration on (2, F,P), and {W,},,, be a
collection of independent, identically distributed, real-valued, standard Brownian motions relative
to the filtered probability space.

We consider the stochastic electroconvection model

dq + u-Vqdt + Aqdt = Addt + gdW
du + u - Vudt — Audt + Vpdt = —qRqdt — qV®dt + fdt + gdW (3.1
V-u=0

on T? with initial data ¢(x,0) = ¢ and u(z,0) = wy. The unknowns ¢(z,t,w), u(z,t,w) =
(ur(z,t,w),us(x,t,w)), and p(x,t,w) depend on three different variables: position = € T?, time
t € [0, 00), and outcome w € 2. The body forces f and the potential  depend only on the position
variable z. The forces f are smooth, divergence-free and have a zero space average. The potential
® is assumed to be smooth. We point out that ¢, p and ® are scalar, whereas u and f are vector
fields. The noise terms gdW and gdWW are given by

GAW = 3 Gi(w) AW (1) (3.2)

i=1

and "
gdW =" gi(z)dW'(t). (3.3)

i=1

We assume that the scalar functions g; are mean-zero and the vector fields g; are divergence-free
for all [ ¢ N. For £ > 0 and p > 0, we denote

lgle = X lgull 7, (3.4)
=1
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13126 = > a2, (3.5)
=1

and

alf. = [ (Sl s 36)

and g € H*, g € H*, or g € L? if the quantities (3.4), (3.5), or (3.6) are finite respectively.
In this section, we prove the existence and uniqueness of solutions of the stochastic model (3.1):

Theorem 1. Fix a stochastic basis (2, F,P,{F;},.q,W). Let qo € L* have mean zero over T?,
and let ug € H' be divergence-free. Suppose § € L* g € H', f € L?, and AP € L*. Then there
exists a unique pair (q,w) such that q is mean-free, u is divergence-free,

ue L2(;C%0,00; L?) N L2.(0,00; HY) n L2 (0, 00; H?)), (3.7)
g€ LA(Q;C°(0, 00, H2) 0 L2,,(0,00; H2)) n (2 L2, (0, 00; L)), (3.8)

Moreover, the elements (q,u) are F; adapted and obey
d(Q7 £)L2 + (U ’ VQJ g)Lth + (AQ7 g)det = (A(I)7 £)L2dt + (§7 £)L2dW (39)

forany £ € H' and a.e. w € 2, and
d(u,v)p2+(u-Vu+qRq,v) p2dt — (Au,v) r2dt = (—qVP,v) p2dt+ (f,v) p2dt + (g,v) p2dW (3.10)
forany v e H' and a.e. w € C).

For each € € (0,1], we let J. be the standard mollifier operator and we consider the viscous

approximation

dgc + uc- Vgedt + Agédt — eAqgedt = Addt + J.gdW

duf + u¢ - Vucsdt — Aucdt + Vpedt = —q¢ Rg¢dt — ¢*VOdt + fdt + J.gdW (3.11)

V-u =0
with smoothed out initial data g§ = J.qo, u§ = Jeuo. For each € € (0, 1], the viscous system (3.11) is
forced by smooth noise processes and has local smooth solutions, a fact that can be shown using
a fixed point iteration technique. These local solutions extend to global smooth solutions as they
remain uniformly bounded in all Sobolev norms, a result that follows from energy-type arguments
(see for instance Appendix B). In Proposition 1 below, we establish bounds, uniform in time and

€, for the solutions of (3.11) in Lebesgue spaces. These estimates are needed to apply the drift
identification argument of [38] and prove Theorem 1.

Proposition 1. Ler gy € L* have mean zero over T?. Let uqg € H' be divergence-free. Suppose
g€ L* and g € H'. Then the solution (q¢,u¢) of (3.11) satisfies

Esup |g1% |+ ZE( [ 112103 g ads
L2 2 0 L2 L2

0<t<T
<2p[qol. + C(p) (1A2[7. + |3l}.) T + C(p)3]7.T> (3.12)
forany p > 2,

T
B{sup 01|« OB [ 101 <2lalt, + c@120lT

+C(p) 915 T+ C )| g)2. T2 (3.13)



forany p >4,

T
E{OSI;% ”ueni;ﬁ} +E{./0 ||u6||p;]_22||vu€||%2dt} < C(p7 ||q0||L47 ||u0||L2> fa q)agag)epT (314)
<t<

for any p > 2, and

T
B sup 1vw @l £{ [ 10 (o))
0<t<T 0
< C(ITuolo lawle) + O@, Lo, )T +COT. G13)

The proof of Proposition 1 is based on several applications of It6’s lemma and is presented in
Appendix A.

Proposition 2. Suppose [ € L? and A € L*. Let
F(v)=(v-VE+AE-AD v-Vo-Av+ERE+EVD - f). (3.16)
Let qy € L*, qo € L?,uy € H? and uy € H'. Then there is a positive universal constant Cy such that
(F(aqr,u1) = F(gz, uz), (A (q1 = q2), u1 = u2)) 12
+ CoR (w1, 1) (1A (01 = @2) |32 + Jur — ol ) 2 0 (3.17)
holds, where
K(®,u1,q1) = [V + [VurZe + [Vur] e + Jar7a + lan]7a + [ Au[ 7. (3.18)
Proof: We have
(F(qu,ur) = F(gz,uz), (A (g1 — q2), w1 —u2)) 12
= [TQ(Ul V- uz - Va2) A (g1 - 2) + /TQ AMar - )N (a1 - a2)
+ fTQ(ul-Vul — Uy - Vug) - (u; —ug) — [TQA(ul —ug) - (uy — ug)
+ fT2(Q1RQ1 - Re) - (w1 —u2) + /Tz((h =)V (u1 —uz). (3.19)

Integrating by parts, we have
fqrz Mg - g2)A (a1 - ¢2) - _/TQ Alur = ug) - (ur = uz) = 1 = ga[ 72 + [V (w1 = ua)[7. (3.20)
By Hoélder and Young inequalities, we have

1
‘fm(fh ~ @)V (U1~ uz)| < C| VO[T s —uz|72 + o= ¢ 72 (3.21)

We note that
G- v =z Vuz) - (1 - )
— [ () vu) - (=) + [ (V= w2)) - (- )
- [ (= uz) - vun) - (w1 - w2) (3.22)
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in view of the divergence-free condition satisfied by u,, and hence

< V|| 2 ur = uz3a

’fT2(u1 -Vup — ug - Vug) - (ug — ug)
<OV |2 Jur = wz] 2 V(us = uz) |22 + |V | 2 ur = ua 72
<C(IvanlZ: + 1Vl e) luy - ua 7. + illv(ul ~uz) |7 (3.23)
where we used Ladyzhenskaya’s interpolation inequality applied to u; — us. Now, we write
L v = Ve @ =a) = [ (=) ¥a)A (01 - )
+ fT2((U2 —u) V(g - @)A (@ - @) + fT2(U1 V(g -e)A (a-e) G249
and
AZ(Q1RQ1 ~@Rq) - (ug —up) = _/T2(Q1 —¢2) Rq1 - (ur —uz)
+ /TQ(Qz -q)R(q1 — q2) - (u1 —uz) + ['JT2 @ R(q1 = q2) - (u1 —ug2). (3.25)
Adding (3.24) and (3.25), four terms cancel out, namely
L) V(@ - )DA - w) = - [ (- a)R(a ) (m-w)  (26)
and

/T2((U1 —u2) - Vg A (¢1 - q2) = - [11'2 nR(q1 — q2) - (w1 —uz), (3.27)

due to the divergence-free condition satisfied by us — u;. We estimate

‘/11‘2((11 —q2)Rqy - (uqg — uo)

<|Railpalar = g2l r2flus —uz| s
1 1
< Clarluslar = a2 ( Fur = el + s = s 19 (o - wa)1 )

1 1
<O (ol +lale) e =l + Fla - @l + {1V - w)e (3.29)

using Holder’s inequality, the boundedness of the Riesz transforms in L*, Ladyzhenskaya’s in-
equality, and Young’s inequality. In view of the commutator estimate (see [1, Proposition 3])

|A™2(v-Vp) = v- VA 2 p| 2 < C Av| 12 p] 2 (3.29)

that holds for any divergence-free v € H? and mean-zero p € L?, we have
‘[T? uy - V(g - @)A (@ - q)
_ UT [A75 (- V(a1 - 92)) ~ w1 - VA (01 - 42) | A3 (01— )
<Ol Au |2 |A72 (g1 - @) |zl an — g2l 2
<ClAu32]A7 (0 - a) |32 + iHQI ~ o[ 7. (3.30)
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Here we also used that u; is divergence-free. Collecting the bounds (3.20)—(3.30) and applying
them to (3.19), we obtain

(F(qu,w1) = F(q2,u2), (Afl(% —G2),u1 — u2)) L2
+ CoK (@1, q1) (= sf2 + [A% (1 - 02) 2 )

> — (|V(ur —u2) |32 + |1 — @2 32) 2 0 (3.31)

where K (®,uq,q) is given by (3.47). This finishes the proof of Proposition 2.
Now, we prove Theorem 1.
Proof of Theorem 1: Let
Fi(¢f u) =u - Vg (3.32)
and
Fao(q,u) =u - Vus + ¢°Rq". (3.33)
We note that
[F0 % < Nl Zallat1 e < O (e + Jul e | vuc]i2) )17
< Clluzs + Clgf I+ Clu [ Vurz. (3.34)
using Ladyzhenskaya’s interpolation inequality, and
[l < ulga + a4 Ra 32 < Cllurlfa + Cllu 32| 9u(7 + ClAZq 32 N7 (3.35)
using the boundedness of the Riesz transforms in L2. In view of the bounds (3.12), (3.13) with
p =4, and (3.14), we deduce that F; and J; are uniformly bounded in

L*(Q; L2 (0, 00; H™Y(T?))). (3.36)

loc

Therefore, up to subsequences Fi(q¢, u¢) and Fy(q, u¢) converge weakly to some functions F
and F, respectively, in

L*(; L7, (0, 00; HT'(T?))). (3.37)

Moreover, up to subsequences, u¢ converges weakly to some function u in
L2(0: Lig, (0, 00, H' (T2))) 0 L2(: L2, (0, 03 H*(T2))), (3.38)

in view of the bound (3.15), and ¢¢ converges weakly to some function ¢ in
LA(; L5, (0, 00; LY(T?))) 1 L, (25 L*(0, 00; HY?(T?))), (3.39)

in view of the bounds (3.12) with p = 2 and (3.13) with p = 4.
Now we write the equations satisfied by (¢¢, u¢) and (¢, u) as

d(q,u) + F(q,u)dt + (0, Vp©)dt = (Jg, Jeg)dW (3.40)
where F is as in (3.16), and

d(q,u) + Fodt = (g,9)dW (3.41)
in L2(Q; L2, (0, 00; H-1(T?))), where
Folq,u) = (Fy+Aqg— AP, Fr — Au+qVd - f). (3.42)
We show that for almost every w € Q and ¢ € [0, 00 ), we have
F(q,u) =Fo (3.43)

in the sense of distributions.
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We note that
(q,u) € L*(; C°(0, oo; H_%(TQ))) x L2(9;C°(0, 00; L*(T?))) (3.44)
and (A~'q, u) obeys the energy equality
d(1A7%q)3 + lul) + 2(Fo, (A", u)) dt

= ([A723172 + lg[32)dt +2((3, 9), (A~ g, w)) p2dW (3.45)
(see Theorem 1 in [26] or (3.31) in [38]). For a pair
(G, ) € L(S2; L. (0, 005 LY(T?))) x L*(Q; Li,,.(0, 00; H*(T?))), (3.46)

such that ¢ has mean zero and u is divergence-free, we define
t
r(t,q, @) = Co fo [IVelZ= +Val7z + [Vale= + 17 + ldl7. + |Aal7.] ds (3.47)

where () is the constant in (3.17).
In order to show the drift identification claim (3.43), it is sufficient to show that

T
E { f 2¢O (F(q,u) - Fo, (N1, 1112))L2dt} >0 (3.48)

0
for all (¥y, ¥y) € L4(Q; L} (0, 00; L4(T?))) x L2(§2; L2, (0, 00; H2(T?))) such that ¥; has mean

zero and Vs, is divergence-free. Indeed, (3.48) implies that

T
E { / 2¢O F(q,u) - Fo ||§leH1dt} =0 (3.49)
0

from which we conclude that F(q,u) = Fy in H-! x H™1 a.e. on 2 x [0,T"]. Accordingly, we
proceed to prove (3.48).
Denoting dr(t) by 7(t), we have

d[e® (1A3gls + [ul )] + O @F + (g, ), (A g ) el
=< O (143313 + 1gl32) + €7 O((@9). (A g, ) oWV (3.50)

in view of (3.45). Consequently, and using the analogous Itd stochastic equation obeyed by
e () (|| Az q|3s + uc H;) and the weak lower semi-continuity, we obtain

E{— /(:T er(t)(2}"0+7*(q,u),(Alq,u))det}
=E{e@ (JA3q(T) 2, + [u(T)[2:) - (1A F a2 + uol22) }
B {- [ e (1Al Lol dr)
<liminf E{e™ (A3 (T) |3 + u (D)3 ) } + im E{ = (JA"2 Jegol32 + [ Jewol 32 )|

T 1
ctigB{- [ e (JA S L1 + 1 gl3:) dtf
0

e—~0

e—0

T
= liminfE{—f e 2F (¢, u) + (g, u), (A‘lqe,uf))det}, (3.51)
0
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which implies that
T
E{ A e‘r(t)(Z}'o+f(q,u),(A‘1q,u))det}
0

T
> limsup E {f e O (2F (¢, u) + (g, uc), (A1, ug))Lth} : (3.52)
0

e—~0

In view of (3.17), we have
T
B{ [ e OQF(@a) +#(@.0),(\13.0) - (A u)) et
0
T
> E{ [ e oer ) v it u). (g0 - (A1q6>u6))L2dt} (3.53)
0

for any (g,a) € L*(Q; L} (0,005 L*)) x L2(; L2 (0, 00; H2)) such that ¢ has mean zero and @ is
divergence-free.
Putting (3.52) and (3.53) together, we obtain

B [ O0F D)+ i60), (\g.0) - (A g, 0)dt)

0

_ limE{ fo L0 (G.8) + (G, 1), (A4, ) - (A-qu,ue))det}

e—~0

T
> liminfE { f e W (2F (¢, u) + (g%, ue), (A™1q,0) - (A'¢, uﬁ))det}
0

e—~0

“B{ [ T O0F +# g0, (05 0)dt)

T
—limsupE {f e‘r(t)(Q}"(qe, u®) +7(q%, uc), (A ¢, us))det}
0

e—0
>E { [0 ! e 2F +7(q,u), (A1q,a) - (Aq, u))det} (3.54)

for any (g,a) € L*(Q; L} (0, 00; L*)) x L2(; L2 (0, 00; H?)) such that ¢ has mean zero and @ is
divergence-free. Letting

(q,u) = (g, u) + \¥ (3.55)
where A > 0 and W = (U, Wy) € L4(Q; L (0,005 L*)) x L2(; L2 (0, 00; H?)), ¥, having mean

loc loc
zero and W5 being divergence-free, we obtain

E {fOT O QF((q,u) + A) +#((g, 1) + A), (A1, %))det}

T
>E {/ e 2Fy +7(q,u), \(AT1, %))det} : (3.56)
0

We divide by )\, and then take the limit as A goes to zero. We obtain (3.48) from which we conclude
that 7o = F(q, u).

Uniqueness of solutions is obtained as for the deterministic system [1, Theorem 2]. Indeed, if
we suppose the existence of two different solutions, and we write the equations obeyed by their
difference, then we obtain deterministic equations which are independent of the noise. We omit
further details.
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Remark 1. The existence of unique pathwise solutions can be obtained by setting

t
Q =q - f eI G(2)dW (3.57)
0
and .
U = e - f (9D g ()W, (3.58)
0

writing the determinitic system obeyed by (Q¢, U¢), establishing pointwise in w bounds for (Q¢, U¢)
in
(L;2.(0,00; L*) n L2 (0, o0; H%)) x (Li2.(0,00; HY N L?

loc loc loc loc

(0, 003 H?)), (3.59)

and passing to the limit using the Aubin-Lions lemma. However, this requires higher regularity
assumptions on the noise processes forcing the system (as shown in Proposition 17 below). Con-
sequently, the identification of drift technique minimizes the regularity conditions imposed on the
noises g and g.

Remark 2. If the ranges of g and g are infinite countable and their components are time-dependent,
then the existence and uniqueness of solutions to the corresponding stochastic electroconvection
model are obtained on the time interval [0, T provided that the following regularity condition

T
[ a1+ Lo ] de < oo (3.60)
holds.

4. ELECTROCONVECTION SEMIGROUP AND WEAK FELLER PROPERTIES

We consider the space
H=H72xL? (4.1

. . _1 . . .
consisting of vectors (£,v) where £ € H™z is a mean-free scalar function and v € L? is a
divergence-free vector field, and we consider the space

V=L*>H (4.2)

consisting of vectors (&, v) where £ € L* is a mean-free scalar function and v € H' is a divergence-
free vector field . We define the norms || - |4, and || - |, by

1€ 0) 3 = 1A72€1 3 + ol 2. 43)
and
15 = 18170 + ol (4.4)
respectively. For a time ¢ > 0 and a Borel set A € B()), we define the Markov transition kernels
associated with (3.1) by

F((g0,u0), A) = P((g,u)(t, (g0, uo)) € A) (4.5)

where (g, u)(t, (o, u0)) denotes the solution of the stochastic model (3.1) with initial data (g, ug)
at time ¢.

Let M, (V) be the collection of bounded real-valued Borel measurable functions on ). For each
t>0and p € M;(V), we define the Markovian semigroup (which will also be denoted by {F},.,)
by

Peo() = Ep((q.0)(t.)) = [ @& 0)Pld(&v)). “6)
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Let Cy(V, || - |3) be the space of continuous bounded real-valued functions on the space (V, | - ||3),
and Cy(V, | - |%) be the space of real continuous functions ¢ on the space (V, | - |#), with growth

(&, 0)] < C(L+ [AZE]2, + [v]2,). 4.7)

We point out that continuity of ¢ on the space (V, | - | ) means that if (&,,v,) € V converges to
(&,v) in the norm || - |4, then p(&,,v,) converges to ¢(&,v). The Markovian semigroup {P;},,,
has the following weak Feller properties:

Theorem 2. The semigroup {P.},., is Markov-Feller on Cy(V, | - |%) and Cy(V, | - |), that is if
e Cy(V. |- [a), then Frp € Co(V, | - ) and if ¢ € Co(V, || - |2), then Prp € Cy(V, | - |10)-

In the proof of Theorem 2 presented below, we use Propositions 3 and 4.

Proposition 3. (Continuity) Let (¢}, u}) and (¢2,u?) be in V. Suppose g € L* and g € H'. Then
the corresponding solutions (q1,u1) and (qa, us) obey

Jus () = 2|72 + |21 (8) = A2 qa(0)] 32
<exp {r(8)} | g —ud2: + |A~5qb - A3 g2 (48)
with probability 1, where
r(t) = Cy fot Ve[ie +[VurlZe + IVurlze + laa| e + lan 1o + [Aw]Fz]ds (4.9)
is well-defined and finite almost surely.

Proof: We write the equations obeyed by the differences ¢; — ¢ and u; — us, and we take their
L? inner product with A~1(q; — ¢2) and u; — us respectively. We add the resulting energy equalities
and we obtain

1d 1
57 [IA75 (- @) 3+ Jur — s ]
+ (F(qu, 1) = F(qz,u2), (A (q1 = q2),u1 = ug)) 2 = 0 (4.10)
where F is given by (3.16). In view of (3.17), we have
1d
5 IATH (@ = @) 3 + Jur - s
—r(t,qu,u1) I:HA_%(QI - (J2)H2Lz + [ug - uQH%Q] <0 “4.11)
where r(t, 1, u1) is given by (3.47). Multiplying by the integrating factor e~ Jor(s)ds and integrating

in time from O to ¢ give (4.8).
Proposition 4. Let (qo,ug) € V. Suppose g € L* and g € H'. Then the unique solution (q,u) of
(3.1) obeys
1 1 .
Eig%ﬂAﬂqﬁrWUMﬁ}éEHA2%@;+Mﬂ%+fX®fygﬁea®f (4.12)

Proof: By It6’s lemma, we have
d| A~z q)2, + 2] q|2.dt = -2(u- Vg, A7 q) r2dt + 2(AD, A7 g) 2t
+|ATE G2 dt + 2(A3 G, A3 g) pad W (4.13)
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and

dlul3s +2|Vu|3.dt = =2(u- Vu,u) 2 - 2(qRq, u) 2dt — 2(qV P, u) p2dt + 2( f,u) 2dt

+ [ gl32dt +2(g, u) L2dW. (4.14)
We add the equations (4.13) and (4.14). Integrating by parts, we have
(u: Vg, A" q)2 = —(u- Rq,q)r2 = —(qRq, u) e, (4.15)

and using the cancellation
(u-Vu,u)rz =0, (4.16)
we obtain the differential equation
a8 2q12 + [ul2) + 2(lal% + [ Vul22)dt = 2(AD, Aq) padt — 2qV®,u) pedt + 2 f. )t
+ A2 g3 adt + | glFadt + 2(A2 G, A2 q) 2dW + 2(g, u) p2d W, (4.17)
From (4.17), we arrive at the differential inequality

A{[A3q2% + [ula} + (lal2s + [ VulZa)dt < COIAB|Z + | £[3)dt + COTP I + 1) fulZads

+ | A3 G20t + | g|2adt + 2(A"3 G, A3 q) 2dW +2(g, w) 2dW. (4.18)
Letting
p=ve|i-+1, (4.19)
we obtain
d{e‘c"t(HA‘%quQ + ||U\|iz)} <C(IAD|2, + [ f122)e™CP dt + |A~2g|2adt + | g]2.dt
+2(A72G, A2q) 2dW + 2(g, u) p2dW. (4.20)

Integrating in time from 0 to ¢, taking the supremum over [0, T'], applying the expectation E in w,
and using suitable martingale estimates, we obtain (4.12). This completes the proof of Proposi-
tion 4.

Now we prove Theorem 2:

Proof of Theorem 2: Fix ¢ € Cy(V, | - ||3). Suppose (&, v,) converges to (&, v) in (V, || - |«),
that is

[A73 (€0 = )72 + on — v]32 > 0. (21)
In view of the continuity property given in Proposition 3, we have
lg(t, &) —a(t, )] ;-4 =0 (4.22)
and
|u(t,vy,) = u(t,v)| 2 = 0. (4.23)
Since ¢ is continuous on (V, | - |3 ), we conclude that
w((q,u)(t, (&n,vn))) = ©((q,u) (2, (€, 0))) (4.24)
and hence
Eo((q,u) (1, (&n,vn))) = Ep((g,u)(, (€, v))) (4.25)

by the Lebesgue Dominated Convergence Theorem, which can be applied due to the growth condi-
tion (4.7), the bound (4.12), and the convergence (4.21) yielding the boundedness of the sequence
of initial datum (&,, v,,) in the H-norm. This shows that { P}, is Feller on Cy(V, |-|3). Similarly,
{P,},5 is Feller on Cy(V, | - | #). This ends the proof of Theorem 2.
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5. EXISTENCE AND REGULARITY OF INVARIANT MEASURES IN THE ABSENCE OF
POTENTIAL

In this section, we consider the electroconvection system

dqg +u - Vqdt + Aqdt = gdW
du + u - Vudt = Audt + Vpdt = —qRqdt + fdt + gdW (5.1)
V-u=0

in T2 x [0, 00) x ) where the potential & = 0. We note that the system (5.1) is in the mean-zero
frame: if the initial charge density and velocity are assumed to have a zero spatial average, then
the solution (¢, «) will have mean zero over T? for all positive times ¢ > 0.

Let L and H* be the spaces of L? and H* functions with zero spatial averages respectively. Let
H and V be the spaces of L2 and H' functions that are divergence-free and mean zero respectively.
Let

H=H:xH (5.2)
and o
Y=itxv (5.3)
with
[(q.u) |2, = [A72q] 2, + ul, (5.4)
and
[(@, W% = lgl7s + [Vul7 (5.5)

respectively. We note that Vis compactly embedded in H. We define the operator A on D(A) =
H2?x (H?n H) by

A(p,v) = (-Ap,—PAv) (5.6)
where P is the Leray-Hodge projector. There is an orthonormal basis of L? x H consisting of
eigenfunctions { (e, by)},., of A, such that

(—Aek, —PAbk) = )\k(ek, bk) (57)

where the sequence of eigenvalues {)\},., of A counted with multiplicity is nondecreasing and
diverges to oco. Asymptotically, A\, > ck for k > 1. Let Py and Q be the orthogonal projections of
H onto the space spanned by the first N eigenfunctions of A, (ex, by, ) corresponding to eigenvalues
Ak, and its orthogonal complement respectively. We have the inequality

1 1
|Qn (A 2p,0)3, < A—H(p? Vo) |7 (5.8)
N+1

which holds for all NV > 1.
The Markov transition kernels { P, },,, associated with the electroconvection model (5.1),

Fi((90,u0), A) = P((g,u) (%, (90, uo)) € A), (5.9)

are defined on V and are H-Feller as shown in Theorem 2. Here we establish the existence of
invariant measures for the Markov transition kernels { P;},.,.

Theorem 3. Suppose that g € V and g ¢ L4, There exists an invariant measure W for the Markov
transition kernels associated with (5.1). Moreover

L [1A3 I + 18ul: Jdu((g,w) < O < o0 (5.10)
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for any invariant measure 1 of (5.1), where C'is positive constant depending only on | f| .z, |g] 1,
and | g||za-

The proof of Theorem 3 uses the following auxiliary propositions and is presented at the end
of this section. All the estimates can be done rigorously by taking a viscous system approximat-
ing (5.1), deriving the bounds for the mollified solution, and then inheriting them to the solution
of (5.1) using the lower semi-continuity of the norms. We present formal proofs, omitting the
approximation.

Proposition 5. Let qq € H2 and ug € H. Suppose g € L? and § € H~2. Then

t 1 1.
[ Ella() s + 19u()I3a] ds < IA 2ol + ol + [IA3g13 + gl + 1£1: ] ¢ .11
holds for all t > 0.
Proof: The sum of the H~2 norm of g and L? norm of u obeys the energy equality
d{IA3q13. + Juls } +2(Jal3 + | Vuls)dt
= 2(f,u) podt + [A2G|2,dt + |g)2adt + 2(A"2G, A"2q) 2dW + 2(g, u) p2dW (5.12)
(cf. (4.13)—(4.17) above) which gives the differential inequality
ad{1A5ql3 + Jul3a} + (gl + [ Vule)de
<\ fI2adt + | A2 G| 20dt + | g]2adt + 2(A72§, A2q) 2dW +2(g, u) 2dW (5.13)

where we used the Poincaré inequality to bound L? norm of the mean-free vector u by the L? norm
of its first order derivative. We integrate in time from 0 to ¢ and we apply E. We obtain the desired
bound (5.11).

Proposition 6. Let gy € L2 Suppose § € L2. Then
t L )
| Bl (o) ads < o3 + 13t (5.14)
holds for all t > 0.
Proof: The L? norm of ¢ evolves according to
dllal?: + 20A%q[32 = |3172dt +2(3, ) p2dW (5.15)

where we used the cancellation (u- V¢, q)r2 = 0. We integrate in time from 0 to ¢ and we apply E.
We obtain (5.14).

Proposition 7. Let p > 4. Let gy € L*. Suppose § € L*. Then

t
| Bla()Iuds < Co) [laol + 131740] (5.16)
holds for all t > 0.

Proof: The p-th power of the L* norm of ¢ obeys the energy inequality
cp - 4~
dlgl}s + - lalfa < Clalgadt + plal 7 (3, 4%) odW. (5.17)

Integrating in time from O to ¢ and applying E, we obtain the desired bound (5.16).
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Proposition 8. Let ug € V and qy € LA. Suppose g € V and § € L*. Then

EIvu(®): +E{ [ 18u(s) s

<C[lgolzs + 1vuolZ + (1172 + [Valz +1907:) ] (5.18)
holds for all t > 0.
Proof: The L? norm of Vu obeys
d|vul3, + 2| Aul3, = 2(qRq, Au) r2dt — 2( f, Au) p2dt + |V g||3.dt — 2(g, Au)2dW.  (5.19)

Here we used the identity

(u-Vu,Au)rz =0 (5.20)
that holds in the two-dimensional periodic setting on T?2. In view of the boundedness of the Riesz
transforms on L%, we have

|(¢Rq, Au)rz| < g ra| Ryl s | Aullz < Cllgl7s ]| Aule. (5.21)
Consequently, an application of Young’s inequality yields
A[Vul3a + | Aul2adt < Claltadt + C| f|2adt + [Vl 2adt - 2(g, Au)zdW.  (5.22)

Integrating in time from O to ¢ and applying E, we obtain

t
E|Tu()l3+ [ Eldu(s)[3ds < |Vuol3s

t
- C (171 + 19g13:) t+ CB{ [ la(o)1Lads) 5.23)
In view of the bound (5.16) applied with p = 4, we obtain (5.18).
Proposition 9. Suppose g €V, j e L%, and f € L2 For A< B(V), let

1 rT
vr(A) = 7 fo P((q(s),u(s)) € A)ds. (5.24)
Then {vr} is tight in H for ug = qo = 0.

Proof: Suppose ug = gy = 0. Let p > 0, and let B, be the ball of radius p in [2xV (which is
compact in /). By Chebyshev’s inequality,

1 T
suprr(B) =sup 7 [ PO, 0)] 2.y > p)dt
T>0 T>0 0

1 1 [T
<—sup— | E 2 )dt—0 5.25
S T fo (g, )72, (5.25)

as p — oo in view of the bound (5.11) that is linear in 7. Therefore, the family {v} is tight in H,
ending the proof of Proposition 9.

Now we prove Theorem 3.

Proof of Theorem 3: We adapt the notation w = (¢, u) and write solutions as w(t, wy ). From the
weak Feller property obtained in Theorem 2, the tightness of the time-averaged measures obtained
in Proposition 9, and the Krylov-Bogoliubov averaging procedure, we conclude that there exists a
probability measure y satisfying

fonn) = [ [ 2 [ P deodp)ddtin) (526
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for any 7" > 0 and any ¢ ¢ C’b(’i{). Now we study the regularity of ;» and we prove (5.10). For
n > 1, we let P, be the projection onto the space spanned by the first n eigenfunctions of —A. For
n>1,M>0,w=(q,u)eH, welet

Ut (w) = [|Pugle + [ VPuul3a ] A M (5.27)

and we note that W,, 5/ € C’b(ﬂ). In view of (5.11), we estimate

T T
‘lf fPt(wo,dw)\Ian(w)dt :‘lf E\I/nM(w(t,wo))dt‘
T Jo Ju ' T Jo ’

1 T 1 _ 1.
S?Efo [lgl7. + [vul?.] S(IIA 27, + ||uo||ig)T L A2, + g)Ze + 2. (5.28)
for any 7" > 0. Let B,,(p) be the ball
By(p) = {weH: w3 <p’}. (5.29)

Then, using invariance, we have

JBaroydn < [

T
+[ l/ fRg(wg,dw)\IJmM(w)dt‘du(wo)
VB, (p) IT Jo  J#
<[P+ IAHG1 + gl + 1F12:] n(By()) + Mu(HN By(p)). (530

We choose p large enough so that

7 [ P b duen)

Mu(H~ By(p)) <1 (5.31)
and then we choose 7' large enough so that
pPPT <1 (5.32)
and we get
[ aar(wn)du(wo) <2+ A3g1 + lglis + 113 (533)
By Fatou’s lemma, we have
1.
ATl 19000207 M) dun) <2 A3l Lol + 11 534
and by the Monotone Convergence Theorem, we obtain
1
Lol + 19 uol3a] dia(eon) <2+ |A53134 + g3+ 12 (5.39)

Therefore, the invariant measure p is supported on X = L2 x V. Next we upgrade the regularity of
the measure u. For w = (¢, u) € X5, we define

U2 (@) = [[A5Paald + [9Paulda | A M. (5.36)
In view of the bounds (5.11) and (5.14), we have
lfTEqﬂM(w(t wo))dt| < 1EfT[||A%qll22+||w||22]dt
T Jo & ’ T Jo L L

< (2aolZe + fuollz2) T4 + 2] g17: + lglZ= + 1 £172 (5.37)
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for any 7' > 0. Letting Bx, (p) be the ball
By, (p) = {w = (a,u) € o+ g7 + | Vul7. < p°}, (5.38)

we use (5.37) and invariance to obtain

'[XQ \I/%,M(wo)d,u(wo) = —/;(2 % v/;TEq;fL’M(w(t,wo))dtdu(wo)

<[20°T7" +2]g[32 + lgl72 + 1 172] (B, () + Mu(Xa N B, (p))- (5.39)
We choose p large enough and 7' large enough so that
W ar(en)dpe) <24 203032 + gl + 113 (540
By Fatou’s lemma and the Monotone Convergence Theorem, we obtain
(1A a0l + [ uol3a] dnun) <2+ 2131 + Lol + 1715 (5.41)

Therefore, the invariant measure y is supported on X3 = HixV. Finally, for w = (q,u) € X3, we
define

U (@) = [1A5Pagls + [ APl | A M. (5.42)
In view of the bounds (5.14) and (5.18), we have

f BV (w(t, wo))dt <—E/ [183q]2 + | Aul?. ] dt

< (lgol7= + Cllaol7s + ClVuolz2) T + 13172 + CIf 172 + Cl Va7 + Clgl 7 (5.43)
for any 7' > 0. We let B, (p) be the ball
B, (p) = {w=(g,u) € X5 : [N 2q|2, + [Vul2. < p?}. (5.44)

Using the bound (5.37), invariance, and the continuous embedding of H 7 in L*, we obtain

[, Wi )du(en) - f = [ Bt ) (o)
<O[(P+ )T + (g7 + 1 f172 + [Vgl72 + 191714 (B, (0)) + Mu(Xs N Bay(p))- (5:45)
We choose p large enough and 7' large enough so that

1 ~ ~
83wl + 18w la] dutwn) < © (14 13l + 1513+ 1913+ 1alE) . 546)

Therefore, the invariant measure 4 is supported on H2 x (H?n'V'). This ends the proof of Theo-
rem 3.

6. HIGHER REGULARITY OF INVARIANT MEASURES
In this section, we prove that any invariant measure of (5.1) is more regular than H3 x (H?2nV).

Theorem 4. Suppose g and g are smooth. If u is an invariant measure of (5.1), then p is smooth
and satisfies

fvlog [1+ [ul2 + g% ] du((q,w)) < C(k, f,9.§) < oo. (6.1)
for any k > 0.
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The proof of Theorem 4 is based on the following auxilliary propositions and is presented at the
end of this section.

Proposition 10. Let ug € V and g € L*. Suppose g € V and § € L*. Let p > 4. Then

E{ [ a1 800 [ds
<C(p) [laol 7 + IVuolfa + (1£172 + 199l + 117) ¢] (6.2)
holds for all t > 0.
Proof: The L? norm of Vu evolves according to the stochastic energy equality
d|Vul2, + 2| Au|2.dt = 2(qRq - f, Au) 2dt + | Vg|2adt + 2(Vg, Vu) 2dW.  (6.3)
Consequently, the p-th power of | Vu| 2 obeys
d[Vul?, +p|Vul 7’ [AulFadt = p|Vul7. (aRq - f, Au)padt + gHW!% [vulf”dt
<p (= 1) VUl (V9. 9wt + pTull(Vg, V) et
< LIvul?|Auldt + S| vul.dt + C@)alfdt+ C@) [I£17 + |Vl ] dt
+ pl|vulh*(Vg, Vu) L2dW. (6.4)
In view of the Poincaré inequality, we obtain
d[aull, + 5|Vl Auf3adt
<Clalfdt+C) [I£17: +1Val7.] dt + plVul}.*(Vg, V) 2 dW. (6.5)
We integrate in time from 0 to ¢ and we apply E. In view of the bound (5.16), we obtain (6.2).

Proposition 11. Let ug € V and qo € L*. Suppose g € V and § € L*. Then

E{ [ 1vu(s) 3 18u(5) B la(o) s
<C(f,9.9) [laol 72 + laolzs + laol 70 + 1V uoll 2 + a0l 24l Vo 72 + ¢] (6.6)
holds for all t > 0.
Proof: The stochastic process | Vu[7,[q¢|7. obeys
d[|vulz.lalis] = [Vuli.alalzs + lglz.d|Vulz. +d]Vul7. - d]qglz.. (6.7)
The 4-th power of the L? norm of Vu evolves according to

d|vu|?. = -4|Vul|7. | Aul|7.dt + 4| Vul3.(qRq - f, Au)2dt
+2||Vu|32]|Va|7adt + 4] (g, Au) 2Pdt — 4| Vul32 (g, Auw) 2dW (6.8)

whereas the 4-th power of the L* norm of ¢ evolves according to

dlgl7s = —4(Aq, ¢°) r2dt + 6(5%, ¢°) rodt + 43, @) r2dW. (6.9)
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Consequently, the product |Vu|7,[q[ 7. satisfies the energy equality
d[flal7:|vuli:] = ~4IVuli2(Aq, ¢°) 2dt + 6] Vul}2 (5%, ¢*) redt
+ 4|Vul72(9, 67 12dW - Al [ Vul | AulFdt + 4 q] 74 [Vul 72 (aRg - f, Au)r2dt
+20al 74 IVulZ1Vgl7-dt + 4lal (g, Au)jzdt - A]ql | Vul2 (g, Au) 2dW
- 16 vul3(3,¢*) 12 (g, Au) r2dt (6.10)
which yields the energy inequality
& [lallL 19 ullta] + del Tl lalbde + 4lqlL [Vl ] Aul2de
< 61 Vulta (3, ) et + Algl L[Vl (g Ry - £, Au) padt
+ 20 gl Va2 Vgt + AlglL (T, Vuadt - 16]Vul2, (3,¢°) 2 (9, Au)pad
—4)q| 1 Ivulia (g, Au) p2dW + 4| Vul2(3, ¢*) 2 dW. (6.11)

Here, we used the nonlinear Poincaré inequality for the fractional Laplacian in L* applied to the
mean zero function ¢ (see [1, 7])

[, a*radz > clal. 6.12)

By the Cauchy-Schwartz inequality, Young’s inequality and the Poincaré inequality applied to the
mean zero function Vu, we estimate

61Vul12(3, 6% 2] < 6] Vul 729174 gl 7
c -
< gIvulielalze + Clg 1L Vulz | Aule. (6.13)
The boundedness of the Riesz transforms on L* yields

[4lglza | vulZ(aRg - f, Au)re| < CllglGa | Vul 2| Aull 2 + Cllal7a | VulFe | Aull e ] £ 2

1 c
< qull“m |Vul? | Aul?, + §||QII4L4 IVulze + Clal i + Clal 2l £172- (6.14)
‘We bound .
2] gl |vul32lvyl7. < §||QI|‘E4 [Vuli: + Clvglizlal i (6.15)
and
c
4ql34(Vg, Vu)iz <4l vuli:1vgl7. < gHQH‘MWHiz +Cvgli-lal s (6.16)

using Young’s inequality. Finally, we estimate

161VulZ2(9. 4% 12 (9, Aw) 2| < 16] Vulf2lal 741 9] el Vol 2

c -
< gIvulilalz: + ClalL. (Ivgle2)". (6.17)
Putting (6.11)—(6.17) together, we obtain the differential inequality
d{alzalvuli=] +clvulilaliidt + a7 Vul 7z | AulF.dt
<C(9)Vulz:|AulFzdt + C(f,9)al7adt + Cg, g)dt + Clq|idt
~Aal 7 VulZa(g, Au)2dW + 4| Vul72(, ¢°) 2dW. (6.18)

We integrate in time from 0 to ¢ and we apply E. The bound (5.16) applied with p =4 and p = 12
together with the bound (6.2) gives the desired estimate (6.6).
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Proposition 12. Let ug € V and gy € H 2. Suppose g €V and § € H 3. Then
t 1
E{ [ los(1+ 1Va()[2)ds) < log(1+ [AbanI32) + [Tl + Claol + laols
. 1.
+C(1f12:+ IVgl3e + a3+ IA2G13. )t (619)
holds for all t > 0.
Proof: The H2 norm of q obeys

d[Azq|2, +2|Aq|?.dt = —2(u- Vg, Aq) p2dt + | A2 G|2,dt + 2(G, Aq) L2dWV. (6.20)
For each ¢ > 0, let

X () = [A2q()]3 (6.21)

and B
X(t) =[Aq(®)] 7. (6.22)

By Itd’s lemma, we have
dl (1+X)+ 2X dt = (u-Vq,Aq)2dt
0g 1X_1XUQ’QL2
2

A Aqg) e 2
T3 X (“X)Q(g, Q)det+ ~ (9 Ag) r2dW. (6.23)

The nonlinear term is estimated using commutator estimates (see [1, Proposition 3])

fTQ(u'VQ)Aq = /TQ(A%(U'VQ)_U'VA%Q)A%Q <ClAulp|Agl 2| Mgl (6.24)

hence

dlog(1+X) + |Au\|L2\/_\/_dt+|Azg\|L2dt+ < (3. Aq)2dW. (6.25)

2
+ X
After applying Young’s 1nequa11ty, we obtain

X
dlog(1+X) + ———dt < C| Auffdt + ||A2g||L2dt+ (3 Aq)2dW. (6.26)

Next, we integrate in time from 0 to ¢, apply E, and obtain

t X t L
E [ o ds <log(1+ X(0)) +C [ EJAu(s)[fuds + |A%g)3at. 627)

t . t 1+X ¢
E[ 10g(1+X)d3:Ef log(—)ds+E[ log(1+ X)ds
0 0

E ‘X ds+E Xd 6.28
< )

= fo X7 f > (6.28)
In view of the bounds (5.14) and (5.18), we obtain (6.19), completing the proof.

Therefore,

Proposition 13. Let ug € V and qo € H'. Suppose g € V and § € H'. Then

B [ 1A%(s) .ds)

<|Vaol7z + C(f.9:9) [laoll 72 + laoll 2e + laol1s + 1ol 72 + laol 24 Vuol 72 +2]  (6.29)
holds for any t > 0.
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Proof: By Itd’s lemma, we have
d Vg2, +2[Azq|2.dt
= 2(u-Vq,Aq) p2dt + V| 72dt ~2(g, Aq) 2dW. (6.30)

In order to estimate the nonlinear term, we integrate by parts, use the divergence-free property
V - u =0, to obtain

(u-Vq,Aq)r2 = Z /2 u;0;qOkrqdx = - Z f’]l‘2 Or;0;q0kqdz. (6.31)

kje(1,2) 7T k,je{1,2}
‘We bound

1.5 3
|(u- Vg, Aq) 2 < |Vul s [ Vel s < ClVullzalqlza A2 ql 7.
1 1 1 3 2 1. 3
<CIvul .l Aulzlal 7 A2l < SIA2ql. + CIVul| Aul: lal s (6.32)

in view of Holder’s inequality with exponents 4,8/3,8/3, the interpolation estimate [1, Proposi-
tion 2]

3 2 8
[A%q[7. 2 Clal 2 val s (6.33)
and Ladyzhenskaya’s interpolation inequality. We obtain
3 N -
d[Vql7. + [A2qlTedt < OVl | Aul7a gl adt + [ValT2dt - 2(3, Aq)r2dW. (6.34)

Hence, an application of Young’s inequality yields
3
d|vql7. + [A2ql72dt < C|Vul7.| Aul72] gl 7.dt
+ CVull | AulZedt + [Vl 2dt - 2(, Ag) 2dW. (6.35)
We integrate in time from 0 to ¢ and we apply E. In view of (6.2) and (6.6), we obtain (6.29).

Proposition 14. Let k > 0. Let gy € H*' and ug € H**2 n H. Suppose § € H*' and g € H*2n H.
If the estimate

E [Mlos(1+1(-2)5 () + 1(-0) Fu(5) .)ds

k kil
< Clog(1+[(-A)2qo72 + [(-A) = uo]72)
+C(f,9.9.0) [IVaol i + | Vuol g2 + 1 +1] (6.36)
holds for all t > 0, then the following estimate

t E,3 B+
E [Tog(1+ 1 (-)F () 3 + [(-8) Fu(s)[3.)ds
< Clog(1+[(-A)F gol2. + [ (-A) F uo|2.)
holds for all t > 0.

Proof: The It6 lemma yields

k+1

d|(-A) 5 gl2, + 2 (-A)=*5g|2dt
= =2(u- Vg, (A)g) adt + | (~A) T G2 2dt +2(G, (~A)F1q) 2dW (6.38)
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and

k+2 k+3

d(-A)= ul?, +2[(-A) = ul?,
=-2(qRq+u-Vu-f, (—A)k+2u)det+ ||(—A)%g|\,;zdt+ 2(yg, (—A)k+2u)L2dW (6.39)

Let
= [(~A)F g2 + [(-A) Ful2, (6.40)
= [(~A)2 5 g2, + | (~A) w3, (6.41)
M =2(g, (=AY q) 2 +2(g, (-A)**2u) 12, (6.42)

and
= [(~A) 5 g)2, + [(-A) 5 g]2. (6.43)

Then the stochastic process X evolves according to
dX +2Xdt = -2(u-Vq, (~-A)*"q) p2dt - 2(qRq+u-Vu~—f, (=A%) padt + Ndt + MdW. (6.44)

An application of Itd’s lemma gives the stochastic energy equality

2X
dlog(1+X)+1 < (u-Vq,(—A)’”lq)det
2
|(qRg+u-Vu-f,(- A)k+2u)det+ N dt - M dt + M dw, (6.45)

1+X 1+X 2(1+ X)? 1+X

from which we obtain the following differential inequality

2X
log(1+X A)k+1
dog(+ )+ U TS X!(u Vq, (-A)"q) 2|dt
M

——|(qRq+u-vVu~- f,(=A)*2u) 2|dt + Ndt + = XdW. (6.46)

1 X

In view of the commutator estimate
|A(FG) = FA°G1p < C|VE| 1o [A*7 G|l o2 + C| A F || 1os | G| Lrs (6.47)

that holds for any s > 0, p € (1,00), pa,p3 € (1,00), 5 = -~ + - = - + —-, and all appropriately

smooth functions F' and GG (see [1, Lemma A.1]), we estlmate

(-9, (=A)F1q) 2] < [ (=A) 5 g 12 (-A) 5" (u- Vg) —u- T(-A) % g 12
k+1 k+1
<CY(=2) gl 2 [ Vul 4] (~2) F gl 1 + [l | (~2) 5 Fu 1 |
< O Au| VX VX + C[A3q| 2 X. (6.48)

Here, we used the continuous Sobolev embedding of H 2 in L*. In view of the fractional product
estimate

A (FG) e < CUF ot [A°Glliwe + [AF | s | G o4 ] (6.49)
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1 1

that holds for any s > 0, p € (1,00), pa,p3 € (1,00), % = 4= p%, + 1%4’ and all appropriately

smooth functions F' and G (see [34, Lemma A.1]), we estimate

(qRq, (-A)F*?u) 2| =

k+1

((-A)5 (qRq), (A) 5 u) 1

ktl ktl kt3
<C[I1Ral= (=) F qllz2 + lal o= 1 (-A) % Ryl 2| [ (-2) Fu] 12
<COIAZq] 2 (=A) % gl 12 (-2) 5 u] 12
< O|A%q)VXVX (6.50)

after integrating by parts, using the continuous Sobolev embedding of H 3 in L, and using the
boundedness of the Riesz transform on H2. As for the nonlinear term in u, we integrate by parts,
apply the commutator estimate (6.47), use the continuous embedding of [ 2 in L*, and estimate

k+2 E+2

(- Vi, (~A)2u) o] = [((-A) 5 (u- Vu), (-A) Fu) el
= [((~A)F (u- V) —u- V(-A) Fu, (-A) Fu) 1o
< Cvul sl (-A) Ful o | (-A) Fuf 2 (6.51)
< C|Au 2 VXVX. 6.52)
Therefore, we obtain the inequality
dlog(1+X) + 12+Xth < Ndt + 1 ﬁ/[XdW
r e [18ul VRV + [(-8) 2 71VE + Mgl TV 659

which boils down to

X 3
—ydt < ClAulFadt + O Az g dt

dlog(1+X) + N

E+1

k1 M
+O(=A) 5" f|adt + Nt + ———dW (6.54)

after application of Young’s inequality. We integrate in time from 0 to ¢ and we apply E. Using the
bounds (5.18) and (6.29), and applying Young’s inequality, we conclude that

t X B
E/O 1+deglog(1+X(0))+C’(f,g,g,k)(|\qu||1L22+||Vu0||8L2+1+t) (6.55)

for all ¢ > 0. Bounding similarly to (6.28), we have
t _
Efo log(1+ X)ds <log(1+X(0))+C(f,9,3,k)(IVqo| 13 + [ Vuo| 7. + 1 +1)

t
+E/ log(1 + X)ds. (6.56)
0

Since
k+2 k+3

Ey3 kgl k+2 k+3
X <[ (=A)2 g (=) 2 5] g2 + [ (=A) % w2 [ (-A) = 2, (6.57)

we have
1

13 ey 1 +2 3
L X < [14 X7 [14(-2)5*3q )2 + | (-2) Ful2,] (6.58)
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and so

k+2

1 _ 1 kL1
log(1+X) < élog(l +X)+ 5 log(1+ H(—A)quﬂig + H(—A)TUH%Z) (6.59)

Therefore,

1 ¢ — 5
JE [ log(1+ X)ds <log(1+ X(0)) + C(£,9,5, k) 1900l 2 + [ Vol +1+1)

k+2

1 t 1
+ 5B [ log(1+ [(-2)5 gl + |(-2) Fulf)ds. (6.60)

In view of (6.36), we obtain (6.37).

We end this section by proving Theorem 4.

Proof of Theorem 4: Suppose 1 is an invariant measure of (5.1). By Theorem 3, 1 is supported
on Hs x (H?n H). In view of the bounds (6.19) and (6.29), and repeating the same argument used
to prove Theorem 3, we conclude that p is supported on H 3 x (H?n H). Now we bootstrap using

Proposition 14 and we deduce that p is supported on H k3 x H*3 for any k > 0. This shows that
4 1s smooth and completes the proof of Theorem 4.

7. UNIQUENESS OF INVARIANT MEASURES

In this section, we prove that (5.1) has a unique ergodic invariant measure provided that the
ranges of g and g are large enough in phase space. Uniqueness is obtained by employing asymptotic
coupling arguments from [22].

Theorem 5. Suppose that g € V and § € L*. There exists N = N(f,g,§) such that if Px'H c
range(g, g), then (5.1) has a unique ergodic invariant measure.

In order to prove Theorem 5, we need the following proposition:

Proposition 15. Let R > 0. Then there exist positive universal constants ¢ and C' such that the
estimates

1 t
P(sup (17u(®)12 + 5 [ 18u() s - Vo]
2 2 K 4 R
- Clt+ 1valin-C [l as)> ) <o (-] @
: STl

and

(13138 + laol25)
R+1

4 t 4 4 ~ 14 O
P(sup (la()1L e [ la(s)lfeds - faolts -2 Claliat) > B) < 72)

hold.
Proof: We integrate in time from 0 to ¢ the differential inequality

d|Vul7. + [Aul7.dt < Clgladt + C| f72dt + C|Vg|72dt - 2(g, Au)p2dW  (7.3)
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(see (5.19)) and take the supremum over ¢ > 0 to obtain

1 t t
sup { VU3 +5 [ 180(s) ads = 190l = O e+ 1991306 ~C [ la()lEads)

t 1 t
gsup{fo 2(g,—Au)deW(s)—§fo HAu!%st}

t>0

t 1 t
“sup| 20020 () - g [ alallAulas) (7.4
Al 39l

Exponential martingale inequalities [22, (3.4)] imply

t 1 ¢
P(su /2 ,—Au dWs——fél 2 Au2ds}>R <ex (——
(tz(%){ 0 (g )L2 ( ) 8”9”%2 0 HgHLQH HL2 ) p 8“9“%2

Therefore (7.1) is established. The derivation of (7.2) is based on ideas from [21]. Indeed, the L*
norm of ¢ evolves according to

) . (7.5)

dlg|7: +4(Aq, ) r2dt = 6(5°, ¢%) p2dt + 4(§, ¢°) p2dW. (7.6)
(see (5.17)). By the Poincaré inequality for the fractional Laplacian in L%, we have
(Aq,q*)r2 > clal 74 (7.7)
Thus, we obtain the differential inequality
dlg|7. +clalzadt < C|gl7adt +4(3, %) p2dW. (7.8)

We integrate from 0 to ¢, and take the supremum over ¢ > 0. We obtain
t
sup{la®1t+e [ o) lds - laolts -2 Claliet)

< Sup{/otél(g,q?’)deW(s) . 2} (7.9)

t>0

which implies

t
P (sup (el + [ 1a(@)liads - Lol -2 Clgliit) > )

SIP’(sup(M(t) _t-2)> R) (7.10)
£20
for any R > 0, where M (t) is the martingale term
t
M@ =4 [ (569 (s). (7.11)
We have
{sup(M(t) S1-2)> R} cU { sup (M(t)—t-2)> R} (7.12)
20 n>0 | te[n,n+1)
and
{ sup (M(t)—t—2)2R}c{M*(n+1)2R+n+2} (7.13)
te[n,n+1)
where
M*(t) = sup |M(s)|. (7.14)

s€[0,¢]
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Using the Burkholder-Davis-Gundy inequality (see Theorem 5.2.4 in [10])
EM*(t)* < CE([M](t)?) (7.15)
where [ M ](t) is the quadratic variation
t
DAY =16 [ (5.4°)3ads (7.16)

we obtain

zwww4sCEquUV>sOE(AQ@q%;dQQ

t 2 t
<ClLalLE( [ lalfads) < Clati e ( [ jaliias)
< Clgltat (Il + 131126 < C (1185 + ol 12) (14 £ .17

Here we used the estimate (5.16) applied for p = 12. Therefore,

P(sug)(M(t)—t—Q)ZR)é Y P(M*(n+1)>R+n+2)

n>0
EM*(n+1) 16 (n+2)?
< . —
= (R+n+2)4 = (Hg” + HqOHL )Z (R+n+2)4
1 ¢ (13125 + I l23)
(”9“ + lqoll 15 )%(R+n+2)2_ R+2 (7.18)

in view of the Chebyshev’s inequality. This gives (7.2) ending the proof of Proposition 15.
Finally, we prove the uniqueness result:
Proof of Theorem 5: Fix (qo,ug) and (Qo,U) in V. Our aim is to establish the conditions
for the asymptotic coupling framework presented in Section 2.4 of [22]. To this end, we consider
(g,u) solving (5.1) with (¢(0),u(0)) = (go, uo), and (@, U) solving

d(Q,U) + (AQ,-AU)dt + (0,VP)dt = (-U -vQ,-U - VU - QRQ + f)dt

+(9,9)dW + 1,5 APx(q - Q,u—U)dt (7.19)
v-U=0
with (Q(0),U(0)) = (Qo, Up), where
t 1
i = inf {fo [Py(A3 (= Q) (u—U))[Zads > K} . (7.20)

and K, N and ) are positive constants to be determined later.

By Girsanov’s theorem [22, Theorem 2.2], the law of (Q,U) is absolutely continuous with
respect to the solution (q,u)(+, (Qo, Up)) of (5.1) corresponding to (Qq, Uy) for any choices of \ >
0 and K > 0. Consequently, the uniqueness of the invariant measure follows from an application
of Corollary 2.1 in [22], provided that we can find some positive constants A and K such that
(¢,u) - (Q,u) - 0 in the norm of # on a set of positive measure.

Let

v=u-Umn=p-P,E=q-Q. (7.21)
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Then (&, v) obeys
815(57 U) + (A€7 _AU) + ]-TK>t>\PN(57U) + (077{)
=(-u-Vqg+U-VQ,-u-Vu+U-VU - qRq + QRQ) (7.22)

Let w = (§,v). Taking the L? inner product of (7.22) with (A~'¢,v), we obtain the differential
inequality
ld 2 2 2 -1 2
5@l * 1ElZe + [Volfe + 1o Py (A72€, )7
=(~u-Vqg+U-VQ,AN )2+ (~u-Vu+U-VU - qRq+ QRQ,v) >
=(~v-VQ-u-VEAE) o+ (—v-Vu-U-Vu,v) 2 + (-ERg — QRE, v) 2
=—(u-VEATE) 2 — (ERq, V)2 — (v Vu,v) 2 (7.23)
where we used the cancellations
(U-Vv,0)2 =0 (7.24)
and
(v-VQ,AE) 2 = ~(v- RE, Q)12 = ~(QRE, ) 2. (7.25)

We estimate

1
(- Vu,0) 2] < ol Vul 2 < Clofz| Vol 2|Vl 2 < [ Vol 7. + ClVulia|ol5.,  (7.26)

1 1
|(6Rq,v) 2] < €l lvl o | Ralza < €Nz + 7190l + Cllal falolz, (7.27)
and
(u-VEATE) 2] = [(A72 (u- VE) —u- VAT2E, A73E) 2]
1 1 1
< ClAuf 2| A3 2] 2 < 71ENT2 + Ol Aulf2 A2 (7.28)

using Holder’s inequality, Ladyzhenskaya’s interpolation inequality, Young’s inequality, the bound-
edness of the Riesz transform on L*, and the commutator estimate (3.29). This yields the differen-
tial inequality

d

Tl 1€z + [volz: + Lo\ Py (A726,0) |3
<(C+ | AulLz + gl ], (7.29)
For a fixed integer NV, we have
€132 + 190132 + Lo A [Py (A726,0) 3
> LotV IOV (A3, 0) 2+ Af [P (A6, 0) )
> 1o el (7.30)
for A > /\]%\,Jr1 in view of the inequality (5.8). Hence
ol + LMl < (C+ Clalty + ClAu) ], (731)

Integrating in time, we obtain

1 t
(1, < ooy ep{ Nt + [ (C+Claltu+ClAu)as) (132
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for any ¢ € [0, 7x]. For R > 0, we consider the sets

1 t
ER={sup(|w(t)|iz+§ f |Au(s)|z2ds
>0 0

- 1Vuols - CUSI: + Vg3t -C [ la@ieds) <k} 739
and
Fr={sup (la@le e [T la@ s - laolk -2- Clglie) <R (.34
By Proposition 15, we have P(Er n Fr) > 0 when R is sufficiently large. Indeed,
P(Ern Fg) =P(Eg) + P(Fr) -P(ER U Fg)

R\ (a1 +lale)
>1-— - — >0 7.35
exp( 8”9@2) R+1 (73

when R is large. Consequently, on Er n Fg and for ¢ € [0, 7 |, we have

o1, < foolexp{ -0k + (-0 + C(.9.9) )£+ C (1ol o R)} . (730
We choose an integer N = N(f, g, g) large enough so that
- M+ CU0.0) <0 (737)
yielding
ot < leolyexp {5+ CIT ol bl B} (1.39)

on Ern Fr and for ¢ € [0, 7k |. Finally, we choose K large enough such that Ern Fp c {75 = co}
and we conclude that on the nontrivial set E'r N F'z

(q(t) = Q(),u(t) -U(t)) = 0 (7.39)

in # as t - oo. This completes the proof of Theorem 5.

8. FELLER PROPERTY IN THE H'! NORM
We consider the space
V=HYT?) xV (8.1)
with norm
1€ )5 = V€] + [ Vo] 7.. (8.2)
In this section, we show that the transition kernels associated with (5.1) are Feller in the norm
of V.
Theorem 6. Suppose that g € "\H?n H and § € H' such that V§ € L8. Then the semigroup {1515}
is Markov-Feller on Cy,(V).

t>0

We need the following propositions.
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Proposition 16. (Continuity in V) Let (¢}, u)) and (¢2,u2) be in V. Suppose § € H' and g € V.
Then the corresponding solutions (q1,u1) and (qa,us) obey

[Vui () = Vua ()7 + [Var () - Vaa (1) 7
<exp {COW)} [IVug - Vagl7z + | Vas - Va3 |72 (8.3)
with probability 1, where
- t
CW) = [ [INauls + [Vl + laols + |Aual? | ds (8.4
is well-defined and finite almost surely.

Proof: Let ¢ = ¢; — g2 and u = u; — up. The norm || V¢| 2 satisfies the energy inequality

1d
s valze + [A2q|3: < /TQ(U'VQI)AQ + [EZ(UZ'V(])AQ‘
< ClVul sVl 2 [Var [ s + ClVue| s Vol [ V] 2. (8.5)

where we integrated by parts and used the divergence-free condition of u, and u. Applying Young’s
inequality and using the continuous embedding of H 7 in L4, we obtain

d 3 1 3
D19tz + 10l < Slaul2 + I3l + LAl Vel 86

On other hand, the norm || Vu| 2 obeys

%%IIVu||%2+|Au|i2s [ vuyaal+| [ we-vosd | [ @rosd | [ (aRe)au
<O Vul V]2 + ClVul Ll Vi 22
+ Ol A3 gl 2] Aul 2 + Claal e[ Ad gl 2| Au e, 8.7)
hence

d
ZIVuli: + 1Aul, < ClIvunl g + Vs [3 ] IVuli. + Cllarli + leali: ] 1vali. 88

Adding (8.6) and (8.8), we get

d 3
- Uvalie + 1vulia] < C[IARaul3e + Vw2 + laala + [ Aus e | [IVale + [Vuli] 8.9)
which gives (8.3).

Proposition 17. Suppose V§j € L8 and Ag € L2. Let (qo,up) € V and T > 0. Then the solution
(q,u) to the system (5.1) is uniformly bounded (almost surely) in

L},.(0, 00; L*(T?)) x L7, (0, 00; H*(T?)) (8.10)

loc

by some constant depending only on g, 3, f,|Vuo |z and ||qo| 1. Consequently, if (£n,vn) € Visa
sequence of initial datum such that {(&,,v,)}.., converges to (§,v) inV, then

T
limsup | [g(t, (&nvn)) 70 + [Au(t, (6, va)) |72 ] dt < 00 (8.11)

n—oo

almost surely.
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The proof of Proposition 17 is presented in Appendix B.
Now we prove Theorem 6: 3 .
Proof of Theorem 6: Fix ¢ € Cy,(V). Suppose (&,, v, ) converges to (£,v) in V, that is

V& = VEN3: + | Vo, - Vo3, = 0. (8.12)
In view of the continuity in Y given by (8.3), we have

[Vu(t, (&, vn)) = Vult, (€, 0) 72 + [Va(t, (€, vn)) = Va(t, (§,0)) 72

< U OO0, - Vol L, + [ V&, - VE|Z] (8.13)

where .
Ka(®) = [ [laCt, (G en)) 2 + 18u(t, (60 0)) 13:] ds 8.14)

and .
K@) = [ [IA%( (&) s + [Vt (& v) I3 ] ds. (8.15)

In view of (5.18) and (6.29), we have the finiteness of K'(¢) for almost every w € ). In view of
(8.11), we have

limsup K, (s)ds < oo (8.16)
for almost every w € 2. This implies that
[Vult, (€n,vn)) = Vu(t, (§,0)) 72 + | Va(t, (§n,vn)) = Va(t, (€,0))[72 = 0. (8.17)
Since ¢ is continuous on f} we conclude that
(g, u)(t, (& vn))) = ©((¢:u)(2, (§,0))) (8.18)
and hence
Eo((g, u)(t, (§nvn))) = Ep((g,u)(2, (€,0))) (8.19)

due to the boundedness of ¢. This completes the proof of Theorem 6.

APPENDIX A. UNIFORM BOUNDS IN LEBESGUE SPACES

In this Appendix, we prove Proposition 1. For simplicity, we ignore the viscous term —eAg¢ in
(3.1) because it does not have any major contribution in estimating the solutions of the mollified
system (3.11) and vanishes as we take the limit ¢ — 0. We also drop the € superscript.

The proof is divided into 7 main steps.

Step 1. We prove that the estimate (3.12) holds when p = 2.

Proof of Step 1. By It6’s lemma, we have

dq?® = —2q(u - Vq)dt — 2qAqdt + 2qADdt + G2dt + 2qGdW. (A.1)

We integrate in the space variable over T?2. In view of the divergence-free condition obeyed by u,
the nonlinear term vanishes, that is

(u ’ Vq7 Q)L2 = 07 (Az)
which yields the energy equality
dlql}: +2[A%q[3: = 2(A, )2 + |]72dt + 2(3,q) 2 dW. (A3)
We estimate . .
3 1 3 1
(A®, q)rz| = [(A2 D, A2q) 2] < S|AZRIT, + S AZg] (A4)
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using the Holder and Young inequalities. We obtain the differential inequality
dlglge + |A2ql7adt < [A2®@|Todt + |g)72dt +2(3, q) L2dW. (A.S)

Integrating in time from O to ¢, we get

t 1
la(t )l + [ 1A%q(s,w)[3ads

t
<laola + (IA2@1: + 19132 ) t+2 [ (5.0)edW, (A6)

We take the supremum over all ¢ € [0, T,
T 1
sup q(w)l3a+ [ [A¥q(s, w)[3ads
0<t<T 0

<2laol: +2 (JAT@1 + [313:) T+ 4 sup

f (9, q)2dW|.

Now we apply the expectation E. In view of the martingale estimate (see Theorem 5.2.4 in [10]),

(A.7)

¢ T 3
E{sup A (g,q)deW}sOE{( A (@q)izdt) } (A8)
0<t<T | J0 0
we have
o T 3
o sup | [ G|} < crl( [ 1at2 1otz
0<t<T 140 0

T 5 1 )
sE{(sup jaliz) (€ f r|g|i2dt)}s—E{sup alfeclalir o)
0<t<T 0 8 0<t<T

This gives (3.12) when p = 2.
Step 2. We prove that the estimate (3.12) holds for any p € [4, ).
Proof of Step 2. Applying Itd’s lemma to the process F'(X;(w)) where X;(w) = [q(t,w)|7.

obeys (A.3) and F(€) = £2, we derive the energy equality
d(lql72)* = -plaly." Az )7 dt
_ p 2| ~
+pllalf. (AR, g) r2dt + —IIQ||’£22H9||izdt

P _
ep (5 1) G P ol GawdW, (A10)
which yields the differential inequality
dfql?. +qu! P|AZq)2dt < plg|7st | AP ot

5 (p Dllal.19172dt + plal72* (3. ) 2dW-. (A.1D)

In view of the bound )
lalz < [A2q] 2, (A.12)

we have
d|q|’; z+—HQH” dt+—|\QH *|Azq|2dt

<C(p) (1A®17. +1907.) dt + plal72* (. @) r2dW (A.13)
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where we used Young’s inequality to estimate
- p
plalz' 1A®] 12 < C(p)[A@|L, + Clal. (A.14)

and o
5= Dlal21315: < )l + glalf (A.15)

Integrating in time (A.13) from 0 to ¢ and taking the supremum over [0, 7T'], we obtain

sup ol + 2 [ lall2 1A Nglads
0<t<T

t
< 2ol + o) (18005, + 1gl) T+ 2 sup | [“plal2Gowaw]. a6
<t<

We estimate

B sup | [ 2l @,q)dew\}sc*(p)E{( NS 4<g,q>izdt)5}
c<p>E{( [z 2|g||;dt)5} <E{(p ||q||i;1) (co [ T||g|%2dt)%}

1
< (1-3)esup lalr.}+ gtz A1)
P 0<t<T

and we obtain (3.12).
Step 3. We show that the velocity u obeys

T
Bfsup ol s [ IR0 ) < CQlulin i 03,00, (a9
<t<

Proof of Step 3. We apply 1t6’s lemma pointwise in x and we obtain the energy equality
d|ul?. = -2(-Au,u) 2dt - 2(u - Vu, u) 2dt - 2(qRq, u) 2dt - 2(qV P, u) r2dt
+2(f,u)r2dt + |g|3.dt + 2(g, w) 2dW, (A.19)
which implies
dfuff. + 2] Vul7.dt
= -2(qRq+qV® - f,u)pdt + | g|7.dt + 2(g,u) 2dW, (A.20)

where we used the cancellation
(u-Vu,u)rz =0 (A.21)

due to the divergence-free condition satisfied by . By Ladyzhenskaya’s interpolation inequality

1 1
Julrs < Cllullzz + Clul 2| Vul 3., (A.22)

and the boundedness of the Riesz transforms in L4, we estimate
1 1
((qRq,u) 2| < |q| 2| Rallpe[w] e < Cllal 2]l gl 2o (||UI|L2 + IIUIEQIIVUIIEQ)

1 1
< Clalzzlalze + Sluliz + 51 vali.. (A23)
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We also estimate
@V 0)sel < 5l + 59012 gl (A24)
and
(Fw)eel < ghulie + 1% (A25)
using Holder’s inequality followed by Young’s inequality. We obtain the differential inequality
dfuls + |Vuldadt < 3Juladt + | f[2adt + Clal2alal2adt
+C|Ve|Zalql7adt + |gl7-dt +2(g,u)r2dW, (A.26)
hence
d{e™[ul7:} (s) = =3¢ u|7.ds + e >d]u(s)]]
< —e | Vulfods + e {| f172ds + Clal7:lal7ads + CIV|Tallg] 7 ads}
+e | g|3.ds +2e7* (g, u) 2dW (A.27)

for all s € [0, ¢]. Integrating in time from 0 to ¢, we obtain

t
e u(t) |72 + /0 | Vu(s)|Fods < JuolFe + (1172 + lglZ2) ¢

t t
O [T Bela()3ads +C [ 190[3la(s) s

t
+2 f 35 (g, 1) p2dW (s). (A.28)
0
We take the supremum in time over [0, 7"] and apply E. Using the continuous Sobolev embedding
Hz(T?) c L*(T?) (A.29)

and (3.12) with p = 4, we have
B{ [ 10 ala(s) uds) < Claolts + C (1801 + 1313) T+ ClaRT?  (A30)
for all ¢ € [0,T]. From (3.12) with p = 2, we have
Bl [ 19000 s < ool (laols + INRILT +[a17)  A3D

for all ¢ € [0,7']. We estimate

t T %
/ Qess<g,u>mw\} SE{sup (e 3 u(t)]12) ( A Cef”tug\%zdt) }
0 0<t<T 0

1
<3pfsum ()| clalt (a32)

0<t<T

E{ sup

0<t<T

and we obtain (A.18).
Step 4. We prove that (3.13) holds for p = 4.
Proof of Step 4. By It6’s lemma, we have

dlg|* = —4¢Pu - Vqdt — AgP Aqdt + 43 Addt
+6¢2g%dt + 4¢3 gdW. (A.33)
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Integrating in the space over T2, we obtain the energy equality

d|q|7: = —4(u-Vq,¢*) r2dt - 4(Aq, ¢*) p2dt + 4(AD, ¢°) 2 dE
+6((9)2,¢%) 2dt +4(g, ¢*) L2 dW. (A.34)

‘We note that
(u-Vq,¢*)2=0 (A.35)

due to the divergence-free condition for u. By the nonlinear Poincaré inequality for the fractional
Laplacian in L* applied to the mean zero function ¢, we have

/TQ ¢*Nqdz > c|q| 4. (A.36)

Using Holder’s inequality with exponents 4, 4/3 and Young’s inequality with exponents 4,4/3, we
get

A(AD, %) 2| < 4| AP 1]l ¢ || pass = 4| AP 4]l g4 < clgl7a + CIAP . (A.37)
‘We also bound
61((9)%,4%) . 1 < 6llal 1303 < clall s + Clgls, (A.38)

using Holder and Young inequalities. Putting (A.34)—(A.38) together, we obtain the differential
inequality

dfql7. + clalz.dt < CIAR|Ludt + Cl gl adt + 43, ¢°) L2dWV. (A.39)

Consequently,

t
@I+ [ alds <2laoli + ClA®[L+ Clalbt +4 [ G)maW (A40)

for all ¢ € [0,7']. We take the supremum over [0,7'] and then we apply E. We estimate

{Oittlg f (9:q )deW‘}<OE{(f (9, q3)L2dt) }
sCE{( 13l )}E{p lat2. (¢ fOTr|g|i4dt)é}

3 .
< ZE{ sup ||q||‘i4} +ClglT (A41)
0<t<T

and we obtain (3.13) for p = 4.
Step 5. We prove (3.13) for any p > 8.
Proof of Step 5. The stochastic energy equality

dfql7. = —pHC]H H(Aq ¢P) radt + plal7 (AR, ¢°) radt
4/~ p -8/~
e Sl @ e+ 2p (2 1) lall .

+pla| (G, ¢*) p2dW (A.42)
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holds for any p > 8. By Holder’s inequality with exponents 4/3,4 and Young’s inequality with
exponents p/(p - 2),p/2, we have

p p j
2p (2= 1)l @ e < 2 (2 - 1) L1l

4
P N cp R »
=2 (1) ol ol 0l < Bhaly - € (1a15.)F A4
We obtain
Ccp ~
dlally, + Llaly.de < CLAB e+ C(1g12.) " dt + plall (3.6 ed W, (A44)

Integrating (A.44) in time from 0 to ¢, taking the supremum over [0, T'], applying E, and estimating

e sun 2| [l oy

0<t<T
1

(1= ) sup falr.}+ colaty e (A45)
p 0<t<T

we obtain (3.13).
Step 6. We show that (3.14) holds.
Proof of Step 6. We derive the stochastic energy equality

d(|ul22)? = —plul|2.?|Vul2.dt + plult’ (-qRg — gV ® + f,u) r2dt
p
—Wﬂ thﬂ%+p(§—1)Wd (g, u) 2[*dt
+plul?5? (g, u) 2 dW. (A.46)

By Young’s inequality with exponents p/(p — 2) and p/2,

p 1
Sl gl < 2 = lullz. + CP)lgl (A.47)

and

P p
p(Z-1) bzt < (B 1) bl bl

1
< elullfz + C@) gl (A48)

Similarly, using Young’s inequality with exponents p/(p — 1) and p,

Il w)oe] < ol ol 2 22 < OIS + 5Ll (A49)
and
Plul?2 (a9, u)ia| < pll el lal o 90] -
< COIVOLnlalf + 2lulfa (A50)
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By Ladyzhenskaya’s interpolation inequality and the boundedness of the Riesz transforms in
L*(T?), we have

pllul721(=aRa, )] < C(p)lul 72 [ull s gl 22 g 2
<C(p)|ul?’ (IluHLz + ||U|22\VuHiz) lglz2llal s
< fulf; z+—HUI *|vulza + C(p)lal = lal7

1
< s lulzs + —IIUH “Ivulza + Cw)lal + Cw)lal: (A51)
This yields the differential inequality
dulf, + —HUII “|vullfadt < Julf.dt + C(p)lglj.dt + C(p) | f|]-dt
+C(D)|VOIr=lal7zdt + C(p)aladt + C(p)alfadt + pllul " (9, w) 2 dW  (A52)
and thus
d{eful.} (s) + e ul 7, | Vul7.ds
<e{C(p)]gl-ds + C(p)|f}ds + C(p) [V lalf-ds + C(p)lal ads + C(p) al fads}
+pe”*Jul}2* (g, ) 2dW. (A.53)

We integrate in time from 0 to ¢, take the supremum over [0,7'], and apply E. We obtain

E{Ossgg(e"f||u(t)|§z)}+E{ fOT Tl |Vu|det}
<C0) (Iolf + 115:) + vl [ alfude) + coE( [ alihar)
CE{ [ It} + sup

0<t<T

t
[ 2pe Hulif(g,u)de‘. (A.54)

We estimate

B sup | [ 20l (9]
<(1-2)E{ s 1)} < ol (A59)

Putting (A.54) and (A.55) together, and using (3.12) and (3.13), we obtain (3.14).

Step 7. We prove that (3.15) holds.

Proof of Step 7. We write the equation satisfied by Vu, apply Itd’s lemma, and integrate in the
space variable. We obtain the energy equality

d|vul?, + 2] Aul?, = 2(u- Vu, Au)2dt + 2(qRq, Au) r2dt
+2(qV P, Au)g2dt - 2(f, Au) p2dt + |Vg|3.dt - 2(g, Au) r2dW. (A.56)
The nonlinear term for the velocity vanishes, that is

(u-Vu, Au)ps =0, (A.57)



39

and using Holder’s inequality, we obtain
d|Vulz + 2] Aul7.dt < Cllglfa | Aul padt + 2 V| = | q] 2| Aul p2dt
+ 2] flz| Aul2dt + [V g|72dt - 2(g, Au) r2dW. (A.58)
An application of Young’s inequality yields the differential inequality
d|VulZ. + [Au|f.dt < Clq|padt + CVO|Lw gl 7.t
+ C| fl72dt + [V gli=dt - 2(g, Au) p2dW. (A.59)
We integrate (A.59) in time from 0 to ¢, take the supremum in time, and then apply E. We obtain

T
£ sup vl v { [ 180301} < 21wl s (9ol 1713 T

0<t<T

T T
+C{ [ lalbudt) + CIvORE{ [ lal2adt]+ sup

0<t<T

fo "4(q, Au)deW‘ . (A60)

We estimate the martingale term
E { sup

t T %
4] (g,Au)deW‘}SE{ZL(/ (g,Au)%zdt) }
0<t<T 0 0
4 2 2 : ’ 2 :
<E 4(f0 IIVgHLQIVuIdet) <E 4Os1tlpTHWHL2(fO HVgHdet)

1
< 5051t1;>T13{y\vuy\§2} +C|vg|2.T. (A.61)

Putting (A.60) and (A.61) together, and using (3.12) with p = 2 and (3.13) with p = 4, we get
(3.15).
APPENDIX B. PATHWISE UNIFORM BOUNDS FOR THE SOLUTIONS

In this section, we prove Proposition 17. We let (¢, ) be the solution to (5.1) corresponding to
the initial data (qo,ug). Let

~ t
O tw) = [ Mg (ayaw (B.1)
and
t
or.tw) = [ e 98g(@)aw, (B2)
We set .
Q=q-0¢ (B.3)
and
U-u-o (B.4)

and we note that (@, U) obeys the deterministic system
0Q+(U+0)-V(Q+9¢) +AQ = -Ad ) )
WU+ (U+¢) V(U+¢)-AU+VP=—(Q+p)R(Q+¢)+ f+A¢ (B.5)
v-U=0

where we used the divergence-free condition imposed on g.
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Step 1. Bounds for the velocity in L?
equation with (), and we obtain

L IQ. + 1M QI = - [(U+0)-9(@+d)Qdr~ [ AdQdr.  (BE
We estimate the nonlinear term
L (W+6)-v(@Q+)Qas| =| [ (W +6)-v3)Qda
< QU U198 22 + 1@ e |8l 0 |9 oo
< CIAR QU2 U |5 VU 2198l 22 + CIA QI 12114 [V 12
< SIALQIZ. + SIVU I + CIVAILIUL, + ClolIvol3, ®.7)

(0,00; H1(T?)). We take the L? inner product of the Q)

loc

using Holder’s inequality, Ladyzhenskaya’s interpolation inequality applied to the mean zero func-

tion U, the continuous Sobolev embedding H > c L4, and Young’s inequality. This yields the
differential inequality

th IIQHLz +7 HA2QHL2 < HVUHLz +CIVol U2 + Clol3alVel}. + ClAZG|3.. (B9

Now we take the L2 inner product of the () equation with A=1() and we get
S TIABQI + Q1% - f AGA1Qdr - f (U+6)-9(Q+3)A'Qdr  (BY)

Integrating by parts and using the divergence-free condition obeyed by U + ¢, we can rewrite the
nonlinear term as

- [(W+6)-v(@Q+ o)A Qds

=f(@+$)R(Q+<5)-(U+¢)dx—f(Q+ez3)R¢3-(U+¢)dw

’]1‘2

- [(@+O)R@Q+6)-Ude+ [(Q+6)[RQ+0):- 0~ Ro- (U +0)]do

_ /(Q+$)R(Q+$)-de+f(c2+¢3) [RQ-¢ - R$-U)dx (B.10)
T2 T2
and we estimate

[@+&)[rQ-6-Ré-Uds

T2

+ + +

< f ORQ - ¢dz f SRG-Ud

T2 T2

<Clo)a|Ql2|A2Q 2 + Clll sl 6] 22 |Ql 2 + ClQ s |Gl 22| U 2 + ClS] 1l D] 4 | U 2
1,1 1 o .
<7182 QI + SIQIL: + ClolLa Iz + CCIdNLa + 101z ] 74 + O+ |7V (B.11)

f ORG - Uda

’]1‘2

[ 3RQ-ods
J
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where we have used the boundedness of the Riesz transforms on LP(T?) for p € (1, 00). We obtain

S CIARQI% + 1QI% < CIgI + f (Q+&)R(Q+0)-Uds

+ ZIIAEQH% +Cll741Q17: + CUl7a + 101701017 + C(L+ [8]7) U7 (B.12)

Finally, we take the L? inner product of the equation obeyed by U with U and we obtain

S AU, + VUL, = - [(U+¢) V(U +0)-Ude - [(Q+G)RQ+9)-Uds

TQ

fA¢-de+ff-de (B.13)
T2 T2

We integrate by parts the nonlinear term. Using the fact that U + ¢ is divergence-free, we have

| [(@+0)-v0)-vds

f(U+¢)-V(U+¢)-de

<|Ul 2| Ul sl Vol s + Ul 2|0 24|V o
<CU3 VU ;:1Vel Lo + [0l L4l VOl L) U 2
1 4
< EHVUHiz +C(IVol i + DU + Cloli Vel 7. (B.14)

This yields the differential inequality

3 ~ ~ 1
5 21U+ 219U, < - [ (Q+R(Q+9)-Udz +1Ql%:

4 ~
+C([Vo[5s + DIU72 + Clol72 + Clfl72 + CIVOIT2 + Clol74 I VOlT (B.15)
We add (B.8), (B.12) and (B.15). Setting
X (t,w) = |QF: + A2 Q|3 + U3, (B.16)
we get
d
EX +|VU|3. < CA(#) X (t) + CB(t) (B.17)
where A(t) and B(t) are some positive constants depending on ¢, ¢ and f. This implies
jt | CIo A X (1) | 4 Lo A GU 2, < CB(1). (B.18)

Integrating in time from O to ¢, we obtain the bound

t t ¢
X+ [ ||vU|§2g[cf B(s)ds+2||q0||§2+|u0||§2]ecfoA<s>ds (B.19)
0 0

forallt > 0.
Step 2. Bounds for the charge density in L;° (0, co; L4(T?)). We take the L? inner product of
the () equation with (Q))3. Using the Poincaré inequality for the fractional Laplacian, we get the



42 ELIE ABDO, NATHAN GLATT-HOLTZ, AND MIHAELA IGNATOVA

deterministic differential inequality

1@l +clQIL < - [ AG(Q) s - [ (U +0)-9(Q+3)(Q)dr. (B.20)

In view of the continuous Sobolev embedding of H'(T?) in L¥(T?), we bound the nonlinear term

[W+0)-9(Q+)(@)ds| -

’]I‘Q

<UL 1QI7: 1Vl s + 1QUFa 16 Vo s

[ (W+6)-vé) @) d

<C|VU|12Q13: 196 s + Q34116 - Vo 14, (B.21)
hence
1d 4 4 7 7 7 3
Z%”QHI} +c| QU7 < [IAG] s + CIVU 12|Vl 1s + ¢ - Vol 14 ] QN2 (B.22)
which yields
d ~ 1 - -
£||Q||L4 +c Qs < [AQ| s + §||VU||iz +C|Vo[Ts + ¢ V| La. (B.23)

Integrating in time from 0 to ¢ and using the boundedness of VU in L2 (0, co; L2(T?)) derived in
Step 1, we obtain uniform in bounds for the L* norm of Q).
Step 3. Bounds for the velocity in L? (0, oc0; H2(T?)). Taking the L? inner product of the

loc

equation obeyed by U with —AU, we get

d ~ -
S VUL + AU, = [(U+0)-9(WU+6)-AUdr+ [(Q+H)RQ+ ) AUds
T2 T2

—ff-AUd:r—ngb-AUd:p. (B.24)
%

’]1‘2

Since the trace of M7 M? vanishes for any two-by-two traceless matrix M, we have

f(U+¢)-v(U+¢).Ade

f(U+¢)~V(U+¢)~A¢dx

f(U~VU)-A¢dx+f(U~ng)-Agbdx+f(¢-vU)~A¢dx

<UL IVU | Al + 1049l 2l Al 2 + 18] 2| VU 14| A 2
<CIVUIZIAUIZ 180112 + [AU] 2| Vol 1a | Al 12 + 18] 12| AU 2] A 12
< 1AV + (19U + 19613 + 16122) 101 (B.25)
‘We obtain
CAVUZ. + 1AL, < (VU I + 9613 + 16212013
+C1Q + BlLu + Clf e + ClAG . (B.26)
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We integrate in time from 0 to ¢t and we use the bounds derived in Step 1 and Step 2 to obtain
uniform bounds for |VU| 12 and fot |AU |2, ds.

Funding. The research of N.E.G.H. was partially supported by NSF-DMS-1816551, NSF-
DMS-2108790. The research of M.I. was partially supported by NSF-DMS-2204614.

Author Contribution. The authors all contributed equally to mathematical formulation and
writing.

Conflict of Interest. The authors declare that they have no conflict of interest.

Data Availability Statement. The research does not have any associated data.

REFERENCES

[1] E. Abdo, M. Ignatova. Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374,
5849-5875 (2021).
[2] A. Bensoussan. Stochastic Navier-Stokes equations, Acta Appl. Mathematicae, 38, 267-304 (1995).
[3] A. Bensoussan, R. Temam. Equations stochastique du type Navier-Stokes, J. Funct. Analysis, 13, 195-222
(1973).
[4] P. Biler, W. Hebisch, T. Naszieja. The Debye system: existence and large time behavior of solutions, Nonlinear
Analysis: Theory, Methods and Applications, 23, 1189-1209 (1994).
[5] J. Bricmont, A. Kupiainen, R. Lefevere. Exponential mixing of the 2D stochastic Navier-Stokes dynamics,
Comm. Math. Phys., 230(1):87-132 (2002).
[6] P.Constantin, T. Elgindi, M. Ignatova, V. Vicol. On some electroconvection models, Journal of Nonlinear Science
27,197-211 (2017).
[7] P. Constantin, N. Glatt-Holtz, V. Vicol. Unique Ergodicity for Fractionally Dissipated, Stochastically Forced 2D
Euler Equations, Commun. Math. Phys. 330, 819—857 (2014).
[8] P. Constantin, A. Tarfulea, V. Vicol. Long time dynamics of forced critical SQG, Communications in Mathemat-
ical Physics 335 (1), 93—-141 (2015).
[9] Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, J.R. de Bruyn. Annular electroconvection with shear, Phys. Rev.
Lett. 80, 964-967 (1998).
[10] G. Da Prato, J. Zabczyk. Ergodicity for infinite dimensional systems, Cambridge University Press, Cambridge
(1996).
[11] A. Debussche, N. Glatt-Holtz, R. Temam, and M. Ziane. Global existence and regularity for the 3d stochastic
primitive equations of the ocean and atmosphere with multiplicative white noise, Nonlinearity 25(7):2093 (2012).
[12] Z. Dong, Y. Xie. Global solutions of stochastic 2D Navier-Stokes equations with Lévy noise, Sci. China Ser.
A-Math. 52, 1497--1524 (2009).
[13] W. E, J.C. Mattingly, Y. Sinai. Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes
equation, Comm. Math. Phys., 224(1):83—106 (2001). Dedicated to Joel L. Lebowitz.
[14] J.-P. Eckmann, M.Hairer. Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise,
Commun. Math. Phys. 219(3), 523-565 (2001).
[15] B. Ewald, M. Petcu, and R. Temam. Stochastic solutions of the two-dimensional primitive equations of the ocean
and atmosphere with an additive noise. Anal. Appl. (Singap.), 5(2):183-198 (2007).
[16] B. Ferrario. Stochastic Navier—Stokes equations: analysis of the noise to have a unique invariant measure. Ann.
Mat. Pura Appl. (4) 177, 331—47 (1999).
[17] F. Flandoli. Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA, 1, 403-423
(1994).
[18] F. Flandoli, D. Gatarek. Martingale and stationary solutions for the stochastic Navier-Stokes equation, Probab.
Th. Rel. Fields, 102, 367-391 (1995).



44 ELIE ABDO, NATHAN GLATT-HOLTZ, AND MIHAELA IGNATOVA

[19] F. Flandoli, B. Maslowski. Ergodicity of the 2-d Navier—Stokes equation under random perturbations, Commun.
Math. Phys. 172(1), 119—141 (1995).

[20] N. Glatt-Holtz, I. Kukavica, V. Vicol, M. Ziane. Existence and regularity of invariant measures for the three
dimensional stochastic primitive equations, Journal of Mathematical Physics, 55(5):051504 (2014).

[21] N. Glatt-Holtz, V. Martinez, G. Richard. On the long-time statistical behavior of smooth solutions of the weakly
damped, stochastically- driven KdV equation, arxiv.org/abs/2103.12942 (2021).

[22] N. Glatt-Holtz, J.C. Mattingly, G. Richards. On Unique Ergodicity in Nonlinear Stochastic Partial Differential
Equations, J Stat Phys 166, 618—-649 (2017).

[23] N. Glatt-Holtz, R. Temam. Pathwise solutions of the 2-d stochastic primitive equations. Applied Mathematics
and Optimization, 63(3):401-433 (2011).

[24] N. Glatt-Holtz, M. Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise,
Discrete Contin. Dyn. Syst. Ser. B, 10(4):801-822 (2008).

[25] B. Guo, D. Huang. 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attrac-
tors, Comm. Math. Phys., 286(2):697-723 (2009).

[26] I. Gyongy I, N.V. Krylov. On stochastic equations with respect to semi-martingales: Itd formula in Banach
spaces, Stochastics, 6, 153-173 (1982).

[27] M. Hairer. Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probability Theory
and Related Fields, 124, 345—380 (2002).

[28] M. Hairer, J.C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic pdes, Elec-
tron. J. Probab., 16(23):658-738 (2011).

[29] M. Hairer, J. C. Mattingly, M. Scheutzow. Asymptotic coupling and a general form of Harris’ theorem with
applications to stochastic delay equations, Probab. Theory Related Fields, 149(1-2):223-259 (2011).

[30] J. J. Jasielec. Electrodiffusion phenomena in neuroscience and the Nernst—Planck—Poisson Equations, Elec-
trochem, 2, 197-215 (2021).

[31] L.P. Kadanoff. Turbulent Heat Flow: Structures and Scaling, Physics Today 54 (8), 34 (2001).

[32] S. Kuksin, A. Shirikyan. A coupling approach to randomly forced nonlinear PDE’s, I. Comm. Math.
Phys.,221(2):351-366 (2001).

[33] S. Kuksin, A. Shirikyan. Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl. (9),
81(6):567-602 (2002).

[34] S. Kuksin, A. Shirikyan. Mathematics of Two-Dimensional Turbulence, Number 194 in Cambridge Tracts in
Mathematics, Cambridge University Press (2012).

[35] J.C. Mattingly, Ergodicity of 2d Navier—Stokes equations with random forcing and large viscosity, Commun.
Math. Phys. 206(2), 273-288 (1999).

[36] J.C. Mattingly. Exponential convergence for the stochastically forced Navier-Stokes equations and other partially
dissipative dynamics, Comm. Math. Phys., 230(3):421-462 (2002).

[37] J.C. Mattingly. On recent progress for the stochastic Navier Stokes equations, In Journées “Equations aux
Dérivées Partielles”, pages Exp. No. XI, 52. Univ. Nantes, Nantes (2003).

[38] J. L. Menaldi, S. S. Sritharan. Stochastic 2-D Navier-Stokes Equation, Applied Mathematics and Optimization,
46, 31-53 (2002).

[39] G. Minty. Monotone (nonlinear) operators in Hilbert spaces, Duke Math. J., 29, 341-346 (1962).

[40] E. Pardoux. Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 6, 127-167
(1979).

[41] I. Rubinstein. Electro-Diffusion of Ions, STAM Studies in Applied Mathematics, SIAM, Philadelphia 1990.

[42] R. Schilling, L. Partzsch. Brownian motion: An introduction to stochastic processes, Berlin: De Gruyter (2012).

[43] S.S. Sritharan. Deterministic and Stochastic control of Navier-Stokes equation with linear, monotone and hyper
viscosities, Appl. Math. Optim., 41, 255-308 (2000).

[44] J. Tan, E.M. Ryan. Computational study of electro-convection effects on dendrite growth in batteries, Journal of
Power Sources, 323, 67-77 (2016).

[45] P. Tsai, Z.A. Daya, V.B. Deyirmenjian, S.W. Morris. Direct numerical simulation of supercritical annular elec-
troconvection, Phys. Rev E 76, 1-11 (2007).



DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122
Email address: abdo@temple.edu

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118
Email address: negh@tulane.edu

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PA 19122
Email address: ignatova@temple.edu

45



	1. Introduction
	2. Basic Functional Spaces and Notations
	3. Existence and Uniqueness of Solutions
	4. Electroconvection Semigroup and Weak Feller Properties
	5. Existence and Regularity of Invariant Measures in the Absence of Potential
	6. Higher Regularity of Invariant Measures
	7. Uniqueness of Invariant Measures
	8. Feller Property in the H1 norm
	Appendix A. Uniform Bounds in Lebesgue Spaces
	Appendix B. Pathwise Uniform Bounds for the Solutions
	References

