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ABSTRACT. We consider a stochastic electroconvection model describing the nonlinear evolution

of a surface charge density in a two-dimensional fluid with additive stochastic forcing. We prove

the existence and uniqueness of solutions, we define the corresponding Markov semigroup, and we

study its Feller properties. When the noise forces enough modes in phase space, we obtain the

uniqueness of the smooth invariant measure for the Markov transition kernels associated with the

model.
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1. INTRODUCTION

Electroconvection refers to the dynamics of electrically conducting fluids under the influence of

electrical charges. There are many instances of electroconvection in non-Newtonian and Newto-

nian fluids, including the flow of nematic and smectic suspensions subject to applied voltage. The

phenomena are modeled by partial differential equations for the charges and solvent [41] which are

nonlinear and nonlocal. The range of physical, chemical, engineering and biological applications

is extremely wide, ranging from neuroscience [30] to batteries [44] and semiconductors [4]. Par-

ticularly interesting and relevant to this paper are the works [9, 45] which concern the dynamics of

a thin smectic film in an annular region, driven by an imposed voltage at the boundary. In [6] the

behavior of the system was investigated mathematically in the absence of stochastic forcing. The

model was described in terms of a surface charge density q, an electric field E and a fluid veloc-

ity u. The dynamics were confined to a two dimensional domain (T2 in the present paper). The

electric field E was derived from a time independent potential Φ representing the voltage applied

at the boundary and a dynamic potential Λ−1q due to the charge density q, via the relation

E = −∇Φ −∇Λ−1q, (1.1)
1
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where Λ−1 denotes the inverse of the square root of the two-dimensional periodic Laplacian Λ =
√
−∆.

The current density due to the fluid and the electric field E is

J = E + qu, (1.2)

and the charge density obeys the continuity equation

∂tq +∇ ⋅ J = 0. (1.3)

The fluid velocity u obeys the incompresible Navier-Stokes equation forced by the electrical forces

qE and time independent body forces f ,

∂tu + u ⋅ ∇u − ν∆u +∇p = qE + f, ∇ ⋅ u = 0 (1.4)

where p is the fluid pressure and ν is the kinematic viscosity.

The well-posedness and global regularity of the deterministic model (1.1)–(1.4) were obtained

in [6] in bounded domains with homogeneous boundary conditions, and the long-time dynamics

were investigated in [1] in the two-dimensional torus T2.

In this paper we consider the stochastic electroconvection model corresponding to the determin-

istic model (1.1)–(1.4),

dq +∇ ⋅ (qu −∇Λ−1q −∇Φ)dt = g̃dW, (1.5)

du + u ⋅ ∇udt +∇pdt − ν∆udt = −q(∇Λ−1q +∇Φ)dt + fdt + gdW, (1.6)

∇ ⋅ u = 0 (1.7)

forced by time independent noise processes g̃dW and gdW on T2. For simplicity, we assume that

ν = 1. We address the global well-posedness of (1.5)–(1.7), the Feller properties of the Markov

semigroup associated with (1.5)–(1.7), and the existence, uniqueness and regularity of the invariant

measures for the Markov transition kernels associated with the model (1.5)–(1.7).

A vast literature treats the well-posedness of stochastic partial differntial equations. Martin-

gale type approaches [2, 3, 10, 18, 43] were established to prove the existence and uniqueness of

solutions to the two-dimensional stochastic Navier-Stokes equations (NSE). In [38], the authors

use a different approach, independent of the pathwise solutions, based on a generalization of the

classical Minty-Browder local monotonicity argument [39, 40], to establish the well-posedness

to the stochastic NSE in bounded and unbounded domains. Global existence and uniqueness of

strong pathwise solutions were obtained as well for the two-dimensional [15, 23, 24] and three-

dimensional [11, 25] stochastic primitive equations.

The stochastic electroconvection model (1.5)–(1.7) is nonlocal, nonlinear, with critical dissipa-

tion in one equation, and consequently the proof of its global well-posedness is rather technical.

Under low regularity assumptions imposed on the noises (namely L4 for g̃ and H1 for g), we prove

that the system (1.5)–(1.7) has unique global solutions when the deterministic initial charge den-

sity is L4 regular and the deterministic initial velocity is H1 regular. The existence of solutions

is obtained by taking a viscous approximation of (1.5)–(1.7), establishing uniform bounds for the

viscous solutions, and using weak convergence. The identification of the drift is highly challeng-

ing. The reason is that the nonlinearity q∇Λ−1q is not weakly continuous in the spaces we have

control in. The remedy is a coercive estimate (3.17) and use of ideas from [38]. As a consequence

of the existence result, we define the Markov transition kernels on L4 ×H1 and we show that they

are Feller in the norm of H−
1

2 × L2. If the noises have higher regularity (namely ∇g̃ ∈ L8 and

∆g ∈ L2), then the Markov kernels become Feller in the stronger norm of H1 ×H1.

We also study the ergodicity of the electroconvection model (1.5)–(1.7), which provides a natural

framework to understand the long-term behavior of such physical processes. The existence of an
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invariant measure for the stochastic NSE system was obtained in [10, 17, 19], and the ergodic

theory for the stochastic NSE became the center of interest of many subsequent papers (cf. [5,

12, 14, 16, 35, 39, 37, 12] and references therein). Existence and regularity of invariant measures

were obtained in [20] for the three-dimenional stochastic primitive equations. In [7], existence

and uniqueness of an ergodic invariant measure was established for the 2D fractionally dissipated

periodic stochastic Euler equation.

The dissipative term Λq in (1.5) is critical, and this is a source of technical difficulty. When the

potential Φ vanishes, and with a low regular noise process, we use the Krylov Bogoliubov averag-

ing procedure to prove that the stochastic model (1.5)–(1.7) has an invariant measure supported on

H
1

2 ×H2. If the noise processes are smooth then the invariant measures are smooth. This follows

from bounds of the form

E∫
T

0

(∥q∥2
H

3
2

+ ∥u∥2H2)dt
≤ Γ1(∥q0∥H1 + ∥u0∥H1 + ∥g∥H1 + ∥g̃∥H1 + ∥f∥L2) + Γ2(∥g∥H1 + ∥g̃∥H1 + ∥f∥L2)T

and

E∫
T

0

log(1 + ∥q∥2
Hk+ 3

2

+ ∥u∥2
Hk+3)dt

≤ log (1 + ∥q0∥2Hk+1 + ∥u0∥2Hk+2) + Γk(∥f∥Hk+1 + ∥g∥Hk+2 + ∥g̃∥Hk+1)(∥∇u0∥8L2 + ∥∇q0∥12L2 + T )
for k ≥ 0, where Γ1(⋅),Γ2(⋅) and Γk(⋅) are some polynomials. These bounds are obtained by

taking advantage of the smoothing properties of the Stokes operator and the nonlinear coupling,

and employing the logarthmic strategy introduced in [20].

The question of uniqueness of invariant measures requires a deeper structural understanding of

the interplay of the dynamics and stochastic perturbation. A number of approaches have been

used in the recent literature ([5, 13, 28, 29, 32, 33, 34, 39, 37] and references therein). In this

paper we use the asymptotic coupling approach introduced in [27] and [29]. The asymptotic cou-

pling framework was used in [22] to obtain uniqueness of the invariant measures of stochastically

forced Navier-Stokes equations, fractionally dissipative Euler equations and damped nonlinear

wave equations. In order to show that a stochastic differential equation

dy = F (y)dt + d

∑
l=1

σldWl (1.8)

with initial data y(0) = y0 has only one ergodic measure, the idea is to build a copy

dỹ = F (ỹ)dt +G(y, ỹ)1t≤τdt +
d

∑
l=1

σldWl (1.9)

where the feedback control G is such that y and ỹ are forced to approach each other, y(t)−ỹ(t)→ 0

in an appropriate norm, on the event {τ =∞} where τ is a stopping time such that the coupled

system (1.8)–(1.9) has global solutions with initial data ỹ(0) = ỹ0, and P(τ =∞) > 0 . Moreover,

it is required that

∫
∞

0

∣σ−1G(y(t), ỹ(t))∣21t≤τdt < C (1.10)

holds (for a.e. w ∈ Ω) for some deterministic constant C > 0. If such a construction can be done,

then (1.8) has a unique ergodic invariant measure. Finding an appropriate feedback G is typically
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based on splitting a Hilbert space X into the direct sum of a finite-dimensional space Xlow and an

infinite-dimensional space Xhigh

X =Xlow ⊕Xhigh (1.11)

in such a way that the long time dynamics are controlled by the low frequency part in Xlow. More

precisely, the property used is that if the low frequency parts of two solutions are asymptotically

the same, then the high frequency parts in Xhigh are also asymptotically the same. Accordingly,

two realizations of (1.8) are coupled in such a way that that their low frequency parts coincide for

large time t > τ provided that they meet at time t = τ .

The uniqueness of the invariant measure of the electroconvection model (1.5)–(1.7) is obtained

by constructing an appropriate feedback control and stopping time. The construction requires L4

bounds for q and H2 bounds for u, exponential martingale estimates, and the Burkholder-Davis-

Gundy inequality. The main difficulty is due to the weaker dissipation of the charge densities, and

here we use ideas from [21] to estimate the feedback control.

This paper is organized as follows. In section 3, we show that the system (1.5)–(1.7) has a

unique global solution provided that the initial charge density has a zero spatial average and is L4

integrable, the initial velocity is divergence-free and is weakly differentiable, and the noise is suffi-

ciently regular. The proof is based on uniform estimates in Lebesgue spaces which are established

in Appendix A. In section 4, we define the semigroup associated with (1.5)–(1.7) and we prove

that it is weak Feller. In the absence of potential (Φ = 0), we show in section 5 the existence of an

invariant measure for the Markov transition kernels associated with the electroconvection model

(1.5)–(1.7) based on the Krylov-Bogoliubov averaging procedure under low regularity assumptions

imposed on the noises. In section 6, we prove that any invariant measure of (1.5)–(1.7) is smooth

provided that the model is forced by smooth noises. Using asymptotic coupling techniques, we

prove in section 7 the uniqueness of the invariant measure. In section 8, we address Feller proper-

ties in Sobolev norms when the noise processes are sufficiently regular. This uses uniform bounds

for the pathwise solution, and these are presented in Appendix B.

2. BASIC FUNCTIONAL SPACES AND NOTATIONS

For 1 ≤ p ≤ ∞, we denote by Lp(T2) the Lebesgue spaces of measurable periodic functions f

from T2 to R (or R2) that are p-integrable on T2, that is

∥f∥Lp = (∫
T2

∥f∥p)1/p <∞ (2.1)

if p ∈ [1,∞) and

∥f∥L∞ = esssupT2 ∣f ∣ <∞ (2.2)

if p =∞. The L2(T2) inner product is denoted by (⋅, ⋅)L2 .

For s > 0, we denote by Hs(T2) the Sobolev spaces of measurable periodic functions f from T2

to R (or R2) obeying

∥f∥2Hs = ∑
k∈Z2

(1 + ∣k∣s)2∣fk∣2 <∞. (2.3)

For a Banach space (X, ∥ ⋅ ∥X) and p, q ∈ [1,∞], we consider the Lebesgue Banach spaces

Lp(Ω;Lq
loc(0,∞;X)) of functions f from X to R (or R2) satisfying

E(∫ T

0

∥f∥qXdt)
p

q

<∞ (2.4)
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for any T > 0, with the usual convention when p = ∞ or q = ∞. The spaces L
q
loc(0,∞;X) and

Lp(Ω;C0(0,∞;X)) are defined similarly. Here C0(0,∞;X) is the space of functions f with the

property that the map

t↦ ∥f(t)∥X (2.5)

is continuous for any f ∈X .

For s ∈ R, the fractional Laplacian Λs applied to a mean zero scalar function f is defined as a

Fourier multiplier with symbol ∣k∣s, that is, for f given by

f = ∑
k∈Z2

∖{0}

fke
ik⋅x, (2.6)

we have that

Λsf = ∑
k∈Z2

∖{0}

∣k∣sfkeik⋅x. (2.7)

Finally, the periodic Riesz transforms R = (R1,R2) applied to scalar functions f are defined as

Fourier multipliers

(Rjf)k = i kj∣k∣fk, k ∈ Z2
∖ {0}, j = 1,2, (2.8)

and they are bounded operators on Lp(T2), 1 < p <∞. We write R = ∇Λ−1.

Throughout the paper, C denotes a positive universal constant, and C(a, b, c, ...) denotes a posi-

tive constant depending on a, b, c, ...

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Let (Ω,F ,P) be a probability space, {Fs}s≥0 be a filtration on (Ω,F ,P), and {Wk}k≥1 be a

collection of independent, identically distributed, real-valued, standard Brownian motions relative

to the filtered probability space.

We consider the stochastic electroconvection model⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dq + u ⋅ ∇qdt +Λqdt =∆Φdt + g̃dW

du + u ⋅ ∇udt −∆udt +∇pdt = −qRqdt − q∇Φdt + fdt + gdW

∇ ⋅ u = 0

(3.1)

on T2 with initial data q(x,0) = q0 and u(x,0) = u0. The unknowns q(x, t,w), u(x, t,w) =(u1(x, t,w), u2(x, t,w)), and p(x, t,w) depend on three different variables: position x ∈ T2, time

t ∈ [0,∞), and outcome w ∈ Ω. The body forces f and the potential Φ depend only on the position

variable x. The forces f are smooth, divergence-free and have a zero space average. The potential

Φ is assumed to be smooth. We point out that q, p and Φ are scalar, whereas u and f are vector

fields. The noise terms g̃dW and gdW are given by

g̃dW =
∞

∑
l=1

g̃l(x)dW l(t) (3.2)

and

gdW =
∞

∑
l=1

gl(x)dW l(t). (3.3)

We assume that the scalar functions g̃l are mean-zero and the vector fields gl are divergence-free

for all l ∈ N. For k ≥ 0 and p > 0, we denote

∥g∥2
Hk =

∞

∑
l=1

∥gl∥2Hk , (3.4)
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∥g̃∥2
Hk =

∞

∑
l=1

∥g̃l∥2Hk , (3.5)

and

∥g̃∥pLp = ∫
T2

(∞∑
l=1

∣g̃l(x)∣2)
p

2

dx, (3.6)

and g ∈Hk, g̃ ∈Hk, or g̃ ∈ Lp if the quantities (3.4), (3.5), or (3.6) are finite respectively.

In this section, we prove the existence and uniqueness of solutions of the stochastic model (3.1):

Theorem 1. Fix a stochastic basis (Ω,F ,P,{Ft}t≥0 ,W ). Let q0 ∈ L4 have mean zero over T2,

and let u0 ∈ H1 be divergence-free. Suppose g̃ ∈ L4, g ∈ H1, f ∈ L2, and ∆Φ ∈ L4. Then there

exists a unique pair (q, u) such that q is mean-free, u is divergence-free,

u ∈ L2(Ω;C0(0,∞;L2) ∩L∞loc(0,∞;H1) ∩L2

loc(0,∞;H2)), (3.7)

q ∈ L2(Ω;C0(0,∞;H−
1

2 ) ∩L2

loc(0,∞;H
1

2 )) ∩L4(Ω;L∞loc(0,∞;L4)). (3.8)

Moreover, the elements (q, u) are Ft adapted and obey

d(q, ξ)L2 + (u ⋅ ∇q, ξ)L2dt + (Λq, ξ)L2dt = (∆Φ, ξ)L2dt + (g̃, ξ)L2dW (3.9)

for any ξ ∈H1 and a.e. w ∈ Ω, and

d(u, v)L2 +(u ⋅∇u+qRq, v)L2dt−(∆u, v)L2dt = (−q∇Φ, v)L2dt+(f, v)L2dt+(g, v)L2dW (3.10)

for any v ∈H1 and a.e. w ∈ Ω.

For each ε ∈ (0,1], we let Jε be the standard mollifier operator and we consider the viscous

approximation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dqε + uε ⋅ ∇qεdt +Λqεdt − ε∆qεdt =∆Φdt + Jεg̃dW

duε + uε ⋅ ∇uεdt −∆uεdt +∇pεdt = −qεRqεdt − qε∇Φdt + fdt + JεgdW

∇ ⋅ uε
= 0

(3.11)

with smoothed out initial data qε
0
= Jεq0, u

ε
0
= Jεu0. For each ε ∈ (0,1], the viscous system (3.11) is

forced by smooth noise processes and has local smooth solutions, a fact that can be shown using

a fixed point iteration technique. These local solutions extend to global smooth solutions as they

remain uniformly bounded in all Sobolev norms, a result that follows from energy-type arguments

(see for instance Appendix B). In Proposition 1 below, we establish bounds, uniform in time and

ε, for the solutions of (3.11) in Lebesgue spaces. These estimates are needed to apply the drift

identification argument of [38] and prove Theorem 1.

Proposition 1. Let q0 ∈ L4 have mean zero over T2. Let u0 ∈ H1 be divergence-free. Suppose

g̃ ∈ L4 and g ∈H1. Then the solution (qε, uε) of (3.11) satisfies

E( sup
0≤t≤T

∥qε∥p
L2) + p2

2
E(∫ T

0

∥qε∥p−2
L2 ∥Λ 1

2 qε∥2L2ds)
≤ 2p∥q0∥pL2 +C(p) (∥∆Φ∥p

L2 + ∥g̃∥pL2
)T +C(p)∥g̃∥p

L2T
p

2 (3.12)

for any p ≥ 2,

E{ sup
0≤t≤T

∥qε∥p
L4} +C(p)E{∫ T

0

∥qε∥p
L4} ≤ 2p∥q0∥pL4 +C(p)∥∆Φ∥p

L4T

+C(p)∥g̃∥p
L4T +C(p)∥g̃∥pL4T

p

2 (3.13)
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for any p ≥ 4,

E{ sup
0≤t≤T

∥uε∥p
L2} +E{∫ T

0

∥uε∥p−2
L2 ∥∇uε∥2L2dt} ≤ C(p, ∥q0∥L4 , ∥u0∥L2 , f,Φ, g, g̃)epT (3.14)

for any p ≥ 2, and

E{ sup
0≤t≤T

∥∇uε(t)∥2L2} +E {∫ T

0

∥∆uε(s)∥2L2ds}
≤ C(∥∇u0∥L2 , ∥q0∥L4) +C(Φ, f, g, g̃)T +C(g̃)T 2. (3.15)

The proof of Proposition 1 is based on several applications of Itô’s lemma and is presented in

Appendix A.

Proposition 2. Suppose f ∈ L2 and ∆Φ ∈ L4. Let

F(ξ, v) = (v ⋅ ∇ξ +Λξ −∆Φ, v ⋅ ∇v −∆v + ξRξ + ξ∇Φ − f). (3.16)

Let q1 ∈ L4, q2 ∈ L2, u1 ∈H2 and u2 ∈H1. Then there is a positive universal constant C0 such that

(F(q1, u1) −F(q2, u2), (Λ−1(q1 − q2), u1 − u2))L2

+C0K(Φ, u1, q1) (∥Λ− 1

2 (q1 − q2)∥2L2 + ∥u1 − u2∥2L2) ≥ 0 (3.17)

holds, where

K(Φ, u1, q1) = ∥∇Φ∥2L∞ + ∥∇u1∥2L2 + ∥∇u1∥L2 + ∥q1∥2L4 + ∥q1∥4L4 + ∥∆u1∥2L2 . (3.18)

Proof: We have

(F(q1, u1) −F(q2, u2), (Λ−1(q1 − q2), u1 − u2))L2

= ∫
T2

(u1 ⋅ ∇q1 − u2 ⋅ ∇q2)Λ−1(q1 − q2) +∫
T2

Λ(q1 − q2)Λ−1(q1 − q2)
+∫

T2

(u1 ⋅ ∇u1 − u2 ⋅ ∇u2) ⋅ (u1 − u2) −∫
T2

∆(u1 − u2) ⋅ (u1 − u2)
+∫

T2

(q1Rq1 − q2Rq2) ⋅ (u1 − u2) +∫
T2

(q1 − q2)∇Φ ⋅ (u1 − u2). (3.19)

Integrating by parts, we have

∫
T2

Λ(q1 − q2)Λ−1(q1 − q2) −∫
T2

∆(u1 − u2) ⋅ (u1 − u2) = ∥q1 − q2∥2L2 + ∥∇(u1 − u2)∥2L2 . (3.20)

By Hölder and Young inequalities, we have

∣∫
T2

(q1 − q2)∇Φ ⋅ (u1 − u2)∣ ≤ C∥∇Φ∥2L∞∥u1 − u2∥2L2 +
1

4
∥q1 − q2∥2L2 . (3.21)

We note that

∫
T2

(u1 ⋅ ∇u1 − u2 ⋅ ∇u2) ⋅ (u1 − u2)
= ∫

T2

((u1 − u2) ⋅ ∇u1) ⋅ (u1 − u2) +∫
T2

(u2 ⋅ ∇(u1 − u2)) ⋅ (u1 − u2)
= ∫

T2

((u1 − u2) ⋅ ∇u1) ⋅ (u1 − u2) (3.22)
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in view of the divergence-free condition satisfied by u2, and hence

∣∫
T2

(u1 ⋅ ∇u1 − u2 ⋅ ∇u2) ⋅ (u1 − u2)∣ ≤ ∥∇u1∥L2∥u1 − u2∥2L4

≤ C∥∇u1∥L2∥u1 − u2∥L2∥∇(u1 − u2)∥L2 +C∥∇u1∥L2∥u1 − u2∥2L2

≤ C (∥∇u1∥2L2 + ∥∇u1∥L2) ∥u1 − u2∥2L2 +
1

4
∥∇(u1 − u2)∥2L2 (3.23)

where we used Ladyzhenskaya’s interpolation inequality applied to u1 − u2. Now, we write

∫
T2

(u1 ⋅ ∇q1 − u2 ⋅ ∇q2)Λ−1(q1 − q2) = ∫
T2

((u1 − u2) ⋅ ∇q1)Λ−1(q1 − q2)
+∫

T2

((u2 − u1) ⋅ ∇(q1 − q2))Λ−1(q1 − q2) +∫
T2

(u1 ⋅ ∇(q1 − q2))Λ−1(q1 − q2) (3.24)

and

∫
T2

(q1Rq1 − q2Rq2) ⋅ (u1 − u2) = ∫
T2

(q1 − q2)Rq1 ⋅ (u1 − u2)
+∫

T2

(q2 − q1)R(q1 − q2) ⋅ (u1 − u2) +∫
T2

q1R(q1 − q2) ⋅ (u1 − u2). (3.25)

Adding (3.24) and (3.25), four terms cancel out, namely

∫
T2

((u2 − u1) ⋅ ∇(q1 − q2))Λ−1(q1 − q2) = −∫
T2

(q2 − q1)R(q1 − q2) ⋅ (u1 − u2) (3.26)

and

∫
T2

((u1 − u2) ⋅ ∇q1)Λ−1(q1 − q2) = −∫
T2

q1R(q1 − q2) ⋅ (u1 − u2), (3.27)

due to the divergence-free condition satisfied by u2 − u1. We estimate

∣∫
T2

(q1 − q2)Rq1 ⋅ (u1 − u2)∣ ≤ ∥Rq1∥L4∥q1 − q2∥L2∥u1 − u2∥L4

≤ C∥q1∥L4∥q1 − q2∥L2 (∥u1 − u2∥L2 + ∥u1 − u2∥ 12L2∥∇(u1 − u2)∥ 12L2)
≤ C (∥q1∥2L4 + ∥q1∥4L4) ∥u1 − u2∥2L2 +

1

4
∥q1 − q2∥2L2 +

1

4
∥∇(u1 − u2)∥2L2 (3.28)

using Hölder’s inequality, the boundedness of the Riesz transforms in L4, Ladyzhenskaya’s in-

equality, and Young’s inequality. In view of the commutator estimate (see [1, Proposition 3])

∥Λ− 1

2 (v ⋅ ∇ρ) − v ⋅ ∇Λ− 1

2ρ∥L2 ≤ C∥∆v∥L2∥ρ∥L2 (3.29)

that holds for any divergence-free v ∈H2 and mean-zero ρ ∈ L2, we have

∣∫
T2

u1 ⋅ ∇(q1 − q2)Λ−1(q1 − q2)∣
= ∣∫

T2

[Λ− 1

2 (u1 ⋅ ∇(q1 − q2)) − u1 ⋅ ∇Λ
−

1

2 (q1 − q2)]Λ− 1

2 (q1 − q2)∣
≤ C∥∆u1∥L2∥Λ− 1

2 (q1 − q2)∥L2∥q1 − q2∥L2

≤ C∥∆u1∥2L2∥Λ− 1

2 (q1 − q2)∥2L2 +
1

4
∥q1 − q2∥2L2 . (3.30)



9

Here we also used that u1 is divergence-free. Collecting the bounds (3.20)–(3.30) and applying

them to (3.19), we obtain

(F(q1, u1) −F(q2, u2), (Λ−1(q1 − q2), u1 − u2))L2

+C0K(Φ, u1, q1) (∥u1 − u2∥2L2 + ∥Λ− 1

2 (q1 − q2)∥2L2)
≥
1

4
(∥∇(u1 − u2)∥2L2 + ∥q1 − q2∥2L2) ≥ 0 (3.31)

where K(Φ, u1, q1) is given by (3.47). This finishes the proof of Proposition 2.

Now, we prove Theorem 1.

Proof of Theorem 1: Let

F1(qε, uε) = uε
⋅ ∇qε (3.32)

and

F2(qε, uε) = uε
⋅ ∇uε

+ qεRqε. (3.33)

We note that

∥F1∥2H−1 ≤ ∥uε∥2L4∥qε∥2L4 ≤ C (∥uε∥2L2 + ∥uε∥L2∥∇uε∥L2) ∥qε∥2L4

≤ C∥uε∥4L2 +C∥qε∥4L4 +C∥uε∥2L2∥∇uε∥2L2 (3.34)

using Ladyzhenskaya’s interpolation inequality, and

∥F2∥2H−1 ≤ ∥uε∥4L4 + ∥qε∥2L4∥Rqε∥2L2 ≤ C∥uε∥4L2 +C∥uε∥2L2∥∇uε∥2L2 +C∥Λ 1

2 qε∥2L2∥qε∥2L2 (3.35)

using the boundedness of the Riesz transforms in L2. In view of the bounds (3.12), (3.13) with

p = 4, and (3.14), we deduce that F1 and F2 are uniformly bounded in

L2(Ω;L2

loc(0,∞;H−1(T2))). (3.36)

Therefore, up to subsequences F1(qε, uε) and F2(qε, uε) converge weakly to some functions F1

and F2, respectively, in

L2(Ω;L2

loc(0,∞;H−1(T2))). (3.37)

Moreover, up to subsequences, uε converges weakly to some function u in

L2(Ω;L∞loc(0,∞;H1(T2))) ∩L2(Ω;L2

loc(0,∞;H2(T2))), (3.38)

in view of the bound (3.15), and qε converges weakly to some function q in

L4(Ω;L∞loc(0,∞;L4(T2))) ∩L2

loc(Ω;L2(0,∞;H1/2(T2))), (3.39)

in view of the bounds (3.12) with p = 2 and (3.13) with p = 4.

Now we write the equations satisfied by (qε, uε) and (q, u) as

d(qε, uε) +F(qε, uε)dt + (0,∇pε)dt = (Jεg̃, Jεg)dW (3.40)

where F is as in (3.16), and

d(q, u) +F0dt = (g̃, g)dW (3.41)

in L2(Ω;L2

loc(0,∞;H−1(T2))), where

F0(q, u) = (F1 +Λq −∆Φ, F2 −∆u + q∇Φ − f). (3.42)

We show that for almost every w ∈ Ω and t ∈ [0,∞), we have

F(q, u) = F0 (3.43)

in the sense of distributions.
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We note that

(q, u) ∈ L2(Ω;C0(0,∞;H−
1

2 (T2))) ×L2(Ω;C0(0,∞;L2(T2))) (3.44)

and (Λ−1q, u) obeys the energy equality

d(∥Λ− 1

2 q∥2L2 + ∥u∥2L2) + 2(F0, (Λ−1q, u))L2dt

= (∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2)dt + 2((g̃, g), (Λ−1q, u))L2dW (3.45)

(see Theorem 1 in [26] or (3.31) in [38]). For a pair

(q̃, ũ) ∈ L4(Ω;L4

loc(0,∞;L4(T2))) ×L2(Ω;L2

loc(0,∞;H2(T2))), (3.46)

such that q̃ has mean zero and ũ is divergence-free, we define

r(t, q̃, ũ) = C0∫
t

0

[∥∇Φ∥2L∞ + ∥∇ũ∥2L2 + ∥∇ũ∥L2 + ∥q̃∥2L4 + ∥q̃∥4L4 + ∥∆ũ∥2L2]ds (3.47)

where C0 is the constant in (3.17).

In order to show the drift identification claim (3.43), it is sufficient to show that

E{∫ T

0

2e−r(t)(F(q, u) −F0, (Λ−1Ψ1,Ψ2))L2dt} ≥ 0 (3.48)

for all (Ψ1,Ψ2) ∈ L4(Ω;L4

loc(0,∞;L4(T2))) ×L2(Ω;L2

loc(0,∞;H2(T2))) such that Ψ1 has mean

zero and Ψ2 is divergence-free. Indeed, (3.48) implies that

E{∫ T

0

2e−r(t)∥F(q, u) −F0∥2H−1×H−1dt} = 0 (3.49)

from which we conclude that F(q, u) = F0 in H−1 × H−1 a.e. on Ω × [0, T ]. Accordingly, we

proceed to prove (3.48).

Denoting dr(t) by ṙ(t), we have

d [e−r(t) (∥Λ− 1

2 q∥2L2 + ∥u∥2L2)] + e−r(t)(2F0 + ṙ(q, u), (Λ−1q, u))L2dt

= e−r(t) (∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2) + e−r(t)((g̃, g), ((Λ−1q, u))L2dW (3.50)

in view of (3.45). Consequently, and using the analogous Itô stochastic equation obeyed by

e−r(t) (∥Λ− 1

2 qε∥2
L2 + ∥uε∥2

L2) and the weak lower semi-continuity, we obtain

E{−∫ T

0

e−r(t)(2F0 + ṙ(q, u), (Λ−1q, u))L2dt}
= E{e−r(T ) (∥Λ− 1

2 q(T )∥2L2 + ∥u(T )∥2L2) − (∥Λ− 1

2 q0∥2L2 + ∥u0∥2L2)}
+E{−∫ T

0

e−r(t) (∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2)dt}
≤ lim inf

ε→0
E{e−r(T ) (∥Λ− 1

2 qε(T )∥2L2 + ∥uε(T )∥2L2)} + lim
ε→0

E{−(∥Λ− 1

2Jεq0∥2L2 + ∥Jεu0∥2L2)}
+ lim

ε→0
E{−∫ T

0

e−r(t) (∥Λ− 1

2Jεg̃∥2L2 + ∥Jεg∥2L2)dt}
= lim inf

ε→0
E{−∫ T

0

e−r(t)(2F(qε, uε) + ṙ(qε, uε), (Λ−1qε, uε))L2dt} , (3.51)
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which implies that

E{∫ T

0

e−r(t)(2F0 + ṙ(q, u), (Λ−1q, u))L2dt}
≥ lim sup

ε→0

E{∫ T

0

e−r(t)(2F(qε, uε) + ṙ(qε, uε), (Λ−1qε, uε))L2dt} . (3.52)

In view of (3.17), we have

E{∫ T

0

e−r(t)(2F(q̃, ũ) + ṙ(q̃, ũ), (Λ−1q̃, ũ) − (Λ−1qε, uε))L2dt}
≥ E{∫ T

0

e−r(t)(2F(qε, uε) + ṙ(qε, uε), (Λ−1q̃, ũ) − (Λ−1qε, uε))L2dt} (3.53)

for any (q̃, ũ) ∈ L4(Ω;L4

loc(0,∞;L4)) ×L2(Ω;L2

loc(0,∞;H2)) such that q̃ has mean zero and ũ is

divergence-free.

Putting (3.52) and (3.53) together, we obtain

E{∫ T

0

e−r(t)(2F(q̃, ũ) + ṙ(q̃, ũ), (Λ−1q̃, ũ) − (Λ−1q, u))L2dt}
= lim

ε→0
E{∫ T

0

e−r(t)(2F(q̃, ũ) + ṙ(q̃, ũ), (Λ−1q̃, ũ) − (Λ−1qε, uε))L2dt}
≥ lim inf

ε→0
E{∫ T

0

e−r(t)(2F(qε, uε) + ṙ(qε, uε), (Λ−1q̃, ũ) − (Λ−1qε, uε))L2dt}
= E{∫ T

0

e−r(t)(2F0 + ṙ(q, u), (Λ−1q̃, ũ))L2dt}
− lim sup

ε→0

E{∫ T

0

e−r(t)(2F(qε, uε) + ṙ(qε, uε), (Λ−1qε, uε))L2dt}
≥ E{∫ T

0

e−r(t)(2F0 + ṙ(q, u), (Λ−1q̃, ũ) − (Λ−1q, u))L2dt} (3.54)

for any (q̃, ũ) ∈ L4(Ω;L4

loc(0,∞;L4)) ×L2(Ω;L2

loc(0,∞;H2)) such that q̃ has mean zero and ũ is

divergence-free. Letting

(q̃, ũ) = (q, u) + λΨ (3.55)

where λ > 0 and Ψ = (Ψ1,Ψ2) ∈ L4(Ω;L4

loc(0,∞;L4)) × L2(Ω;L2

loc(0,∞;H2)), Ψ1 having mean

zero and Ψ2 being divergence-free, we obtain

E{∫ T

0

e−r(t)(2F((q, u) + λΨ) + ṙ((q, u) + λΨ), λ(Λ−1Ψ1,Ψ2))L2dt}
≥ E{∫ T

0

e−r(t)(2F0 + ṙ(q, u), λ(Λ−1Ψ1,Ψ2))L2dt} . (3.56)

We divide by λ, and then take the limit as λ goes to zero. We obtain (3.48) from which we conclude

that F0 = F(q, u).
Uniqueness of solutions is obtained as for the deterministic system [1, Theorem 2]. Indeed, if

we suppose the existence of two different solutions, and we write the equations obeyed by their

difference, then we obtain deterministic equations which are independent of the noise. We omit

further details.
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Remark 1. The existence of unique pathwise solutions can be obtained by setting

Qε
= qε −∫

t

0

e(t−s)Λg̃(x)dW (3.57)

and

U ε
= uε
−∫

t

0

e−(t−s)∆g(x)dW, (3.58)

writing the determinitic system obeyed by (Qε, U ε), establishing pointwise in w bounds for (Qε, U ε)
in (L∞loc(0,∞;L4) ∩L2

loc(0,∞;H
1

2 )) × (L∞loc(0,∞;H1) ∩L2

loc(0,∞;H2)), (3.59)

and passing to the limit using the Aubin-Lions lemma. However, this requires higher regularity

assumptions on the noise processes forcing the system (as shown in Proposition 17 below). Con-

sequently, the identification of drift technique minimizes the regularity conditions imposed on the

noises g and g̃.

Remark 2. If the ranges of g̃ and g are infinite countable and their components are time-dependent,

then the existence and uniqueness of solutions to the corresponding stochastic electroconvection

model are obtained on the time interval [0, T ] provided that the following regularity condition

∫
T

0

[∥g̃(t)∥4L4 + ∥g(t)∥2H1]dt <∞ (3.60)

holds.

4. ELECTROCONVECTION SEMIGROUP AND WEAK FELLER PROPERTIES

We consider the space

H = Ḣ−
1

2 ×L2

σ (4.1)

consisting of vectors (ξ, v) where ξ ∈ H−
1

2 is a mean-free scalar function and v ∈ L2 is a

divergence-free vector field, and we consider the space

V = L̇4
×H1

σ (4.2)

consisting of vectors (ξ, v)where ξ ∈ L4 is a mean-free scalar function and v ∈H1 is a divergence-

free vector field . We define the norms ∥ ⋅ ∥H and ∥ ⋅ ∥V by

∥(ξ, v)∥2
H
= ∥Λ− 1

2 ξ∥2L2 + ∥v∥2L2 . (4.3)

and ∥(ξ, v)∥2
V
= ∥ξ∥2L4 + ∥v∥2H1 (4.4)

respectively. For a time t ≥ 0 and a Borel set A ∈ B(V), we define the Markov transition kernels

associated with (3.1) by

Pt((q0, u0),A) = P((q, u)(t, (q0, u0)) ∈ A) (4.5)

where (q, u)(t, (q0, u0)) denotes the solution of the stochastic model (3.1) with initial data (q0, u0)

at time t.

LetMb(V) be the collection of bounded real-valued Borel measurable functions on V . For each

t ≥ 0 and ϕ ∈Mb(V), we define the Markovian semigroup (which will also be denoted by {Pt}t≥0)
by

Ptϕ(⋅) = Eϕ((q, u)(t, ⋅)) = ∫
V
ϕ(ξ, v)Pt(⋅, d(ξ, v)). (4.6)
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Let Cb(V , ∥ ⋅∥H) be the space of continuous bounded real-valued functions on the space (V , ∥ ⋅∥H),
and Cg(V , ∥ ⋅ ∥H) be the space of real continuous functions ϕ on the space (V , ∥ ⋅ ∥H), with growth

∣ϕ(ξ, v)∣ ≤ C(1 + ∥Λ− 1

2 ξ∥2L2 + ∥v∥2L2). (4.7)

We point out that continuity of ϕ on the space (V , ∥ ⋅ ∥H) means that if (ξn, vn) ∈ V converges to(ξ, v) in the norm ∥ ⋅ ∥H, then ϕ(ξn, vn) converges to ϕ(ξ, v). The Markovian semigroup {Pt}t≥0
has the following weak Feller properties:

Theorem 2. The semigroup {Pt}t≥0 is Markov-Feller on Cb(V , ∥ ⋅ ∥H) and Cg(V , ∥ ⋅ ∥H), that is if

ϕ ∈ Cb(V , ∥ ⋅ ∥H), then Ptϕ ∈ Cb(V , ∥ ⋅ ∥H) and if ϕ ∈ Cg(V , ∥ ⋅ ∥H), then Ptϕ ∈ Cg(V , ∥ ⋅ ∥H).
In the proof of Theorem 2 presented below, we use Propositions 3 and 4.

Proposition 3. (Continuity) Let (q1
0
, u1

0
) and (q2

0
, u2

0
) be in V . Suppose g̃ ∈ L4 and g ∈ H1. Then

the corresponding solutions (q1, u1) and (q2, u2) obey

∥u1(t) − u2(t)∥2L2 + ∥Λ− 1

2 q1(t) −Λ− 1

2 q2(t)∥2L2

≤ exp{r(t)} [∥u1

0 − u
2

0∥2L2 + ∥Λ− 1

2 q10 −Λ
−

1

2 q20∥2L2] (4.8)

with probability 1, where

r(t) = C0∫
t

0

[∥∇Φ∥2L∞ + ∥∇u1∥2L2 + ∥∇u1∥L2 + ∥q1∥2L4 + ∥q1∥4L4 + ∥∆u1∥2L2]ds (4.9)

is well-defined and finite almost surely.

Proof: We write the equations obeyed by the differences q1 − q2 and u1 − u2, and we take their

L2 inner product with Λ−1(q1 − q2) and u1 −u2 respectively. We add the resulting energy equalities

and we obtain

1

2

d

dt
[∥Λ− 1

2 (q1 − q2)∥2L2 + ∥u1 − u2∥2L2]
+ (F(q1, u1) −F(q2, u2), (Λ−1(q1 − q2), u1 − u2))L2 = 0 (4.10)

where F is given by (3.16). In view of (3.17), we have

1

2

d

dt
[∥Λ− 1

2 (q1 − q2)∥2L2 + ∥u1 − u2∥2L2]
− r(t, q1, u1) [∥Λ− 1

2 (q1 − q2)∥2L2 + ∥u1 − u2∥2L2] ≤ 0 (4.11)

where r(t, q1, u1) is given by (3.47). Multiplying by the integrating factor e− ∫
t
0
r(s)ds and integrating

in time from 0 to t give (4.8).

Proposition 4. Let (q0, u0) ∈ V . Suppose g̃ ∈ L4 and g ∈ H1. Then the unique solution (q, u) of

(3.1) obeys

E{ sup
0≤t≤T

(∥Λ− 1

2 q∥2L2 + ∥u∥2L2)} ≤ E{∥Λ− 1

2 q0∥2L2 + ∥u0∥2L2 +C(Φ, f, g, g̃)} eC(Φ)T . (4.12)

Proof: By Itô’s lemma, we have

d∥Λ− 1

2 q∥2L2 + 2∥q∥2L2dt = −2(u ⋅ ∇q,Λ−1q)L2dt + 2(∆Φ,Λ−1q)L2dt

+ ∥Λ− 1

2 g̃∥2L2dt + 2(Λ− 1

2 g̃,Λ−
1

2 q)L2dW (4.13)
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and

d∥u∥2L2 + 2∥∇u∥2L2dt = −2(u ⋅ ∇u, u)L2 − 2(qRq, u)L2dt − 2(q∇Φ, u)L2dt + 2(f, u)L2dt

+ ∥g∥2L2dt + 2(g, u)L2dW. (4.14)

We add the equations (4.13) and (4.14). Integrating by parts, we have

(u ⋅ ∇q,Λ−1q)L2 = −(u ⋅Rq, q)L2 = −(qRq, u)L2 , (4.15)

and using the cancellation (u ⋅ ∇u, u)L2 = 0, (4.16)

we obtain the differential equation

d{∥Λ− 1

2 q∥2L2 + ∥u∥2L2} + 2(∥q∥2L2 + ∥∇u∥2L2)dt = 2(∆Φ,Λ−1q)L2dt − 2(q∇Φ, u)L2dt + 2(f, u)L2dt

+ ∥Λ− 1

2 g̃∥2L2dt + ∥g∥2L2dt + 2(Λ− 1

2 g̃,Λ−
1

2 q)L2dW + 2(g, u)L2dW. (4.17)

From (4.17), we arrive at the differential inequality

d{∥Λ− 1

2 q∥2L2 + ∥u∥2L2} + (∥q∥2L2 + ∥∇u∥2L2)dt ≤ C(∥ΛΦ∥2L2 + ∥f∥2L2)dt +C(∥∇Φ∥2L∞ + 1)∥u∥2L2dt

+ ∥Λ− 1

2 g̃∥2L2dt + ∥g∥2L2dt + 2(Λ− 1

2 g̃,Λ−
1

2 q)L2dW + 2(g, u)L2dW. (4.18)

Letting

ρ = ∥∇Φ∥2L∞ + 1, (4.19)

we obtain

d{e−Cρt(∥Λ− 1

2 q∥2L2 + ∥u∥2L2)} ≤ C(∥ΛΦ∥2L2 + ∥f∥2L2)e−Cρtdt + ∥Λ− 1

2 g̃∥2L2dt + ∥g∥2L2dt

+ 2(Λ− 1

2 g̃,Λ−
1

2 q)L2dW + 2(g, u)L2dW. (4.20)

Integrating in time from 0 to t, taking the supremum over [0, T ], applying the expectation E in w,

and using suitable martingale estimates, we obtain (4.12). This completes the proof of Proposi-

tion 4.

Now we prove Theorem 2:

Proof of Theorem 2: Fix ϕ ∈ Cg(V , ∥ ⋅ ∥H). Suppose (ξn, vn) converges to (ξ, v) in (V , ∥ ⋅ ∥H),
that is ∥Λ− 1

2 (ξn − ξ)∥2L2 + ∥vn − v∥2L2 → 0. (4.21)

In view of the continuity property given in Proposition 3, we have

∥q(t, ξn) − q(t, ξ)∥
H−

1
2
→ 0 (4.22)

and ∥u(t, vn) − u(t, v)∥L2 → 0. (4.23)

Since ϕ is continuous on (V , ∥ ⋅ ∥H), we conclude that

ϕ((q, u)(t, (ξn, vn)))→ ϕ((q, u)(t, (ξ, v))) (4.24)

and hence

Eϕ((q, u)(t, (ξn, vn)))→ Eϕ((q, u)(t, (ξ, v))) (4.25)

by the Lebesgue Dominated Convergence Theorem, which can be applied due to the growth condi-

tion (4.7), the bound (4.12), and the convergence (4.21) yielding the boundedness of the sequence

of initial datum (ξn, vn) in theH-norm. This shows that {Pt}t≥0 is Feller on Cg(V , ∥⋅∥H). Similarly,{Pt}t≥0 is Feller on Cb(V , ∥ ⋅ ∥H). This ends the proof of Theorem 2.
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5. EXISTENCE AND REGULARITY OF INVARIANT MEASURES IN THE ABSENCE OF

POTENTIAL

In this section, we consider the electroconvection system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dq + u ⋅ ∇qdt +Λqdt = g̃dW

du + u ⋅ ∇udt −∆udt +∇pdt = −qRqdt + fdt + gdW

∇ ⋅ u = 0

(5.1)

in T2 × [0,∞) × Ω where the potential Φ = 0. We note that the system (5.1) is in the mean-zero

frame: if the initial charge density and velocity are assumed to have a zero spatial average, then

the solution (q, u) will have mean zero over T2 for all positive times t ≥ 0.

Let L̇p and Ḣs be the spaces of Lp and Hs functions with zero spatial averages respectively. Let

H and V be the spaces of L2 and H1 functions that are divergence-free and mean zero respectively.

Let

Ḣ = Ḣ−
1

2 ×H (5.2)

and

V̇ = L̇4
× V (5.3)

with ∥(q, u)∥2
Ḣ
= ∥Λ− 1

2 q∥2L2 + ∥u∥2L2 (5.4)

and ∥(q, u)∥2
V̇
= ∥q∥2L4 + ∥∇u∥2L2 (5.5)

respectively. We note that V̇ is compactly embedded in Ḣ. We define the operator A on D(A) =
Ḣ2 × (H2 ∩H) by

A(ρ, v) = (−∆ρ,−P∆v) (5.6)

where P is the Leray-Hodge projector. There is an orthonormal basis of L2 × H consisting of

eigenfunctions {(ek, bk)}∞k=1 of A, such that

(−∆ek,−P∆bk) = λk(ek, bk) (5.7)

where the sequence of eigenvalues {λk}∞k=1 of A counted with multiplicity is nondecreasing and

diverges to∞. Asymptotically, λk ≥ ck for k ≥ 1. Let PN and QN be the orthogonal projections of

Ḣ onto the space spanned by the first N eigenfunctions ofA, (ek, bk) corresponding to eigenvalues

λk, and its orthogonal complement respectively. We have the inequality

∥QN(Λ− 1

2ρ, v)∥2L2 ≤
1√
λN+1

∥(ρ,∇v)∥2L2 (5.8)

which holds for all N ≥ 1.

The Markov transition kernels {Pt}t≥0 associated with the electroconvection model (5.1),

Pt((q0, u0),A) = P((q, u)(t, (q0, u0)) ∈ A), (5.9)

are defined on V̇ and are Ḣ-Feller as shown in Theorem 2. Here we establish the existence of

invariant measures for the Markov transition kernels {Pt}t≥0.

Theorem 3. Suppose that g ∈ V and g̃ ∈ L̇4. There exists an invariant measure µ for the Markov

transition kernels associated with (5.1). Moreover

∫
V̇

[∥Λ 1

2 q∥2L2 + ∥∆u∥2L2]dµ((q, u)) ≤ C <∞ (5.10)



16 ELIE ABDO, NATHAN GLATT-HOLTZ, AND MIHAELA IGNATOVA

for any invariant measure µ of (5.1), where C is positive constant depending only on ∥f∥L2 , ∥g∥H1 ,

and ∥g̃∥L4 .

The proof of Theorem 3 uses the following auxiliary propositions and is presented at the end

of this section. All the estimates can be done rigorously by taking a viscous system approximat-

ing (5.1), deriving the bounds for the mollified solution, and then inheriting them to the solution

of (5.1) using the lower semi-continuity of the norms. We present formal proofs, omitting the

approximation.

Proposition 5. Let q0 ∈ Ḣ
−

1

2 and u0 ∈H . Suppose g ∈ L2 and g̃ ∈ Ḣ−
1

2 . Then

∫
t

0

E [∥q(s)∥2L2 + ∥∇u(s)∥2L2]ds ≤ ∥Λ− 1

2 q0∥2L2 + ∥u0∥2L2 + [∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2] t (5.11)

holds for all t ≥ 0.

Proof: The sum of the H−
1

2 norm of q and L2 norm of u obeys the energy equality

d{∥Λ− 1

2 q∥2L2 + ∥u∥2L2} + 2(∥q∥2L2 + ∥∇u∥2L2)dt
= 2(f, u)L2dt + ∥Λ− 1

2 g̃∥2L2dt + ∥g∥2L2dt + 2(Λ− 1

2 g̃,Λ−
1

2 q)L2dW + 2(g, u)L2dW (5.12)

(cf. (4.13)–(4.17) above) which gives the differential inequality

d{∥Λ− 1

2 q∥2L2 + ∥u∥2L2} + (∥q∥2L2 + ∥∇u∥2L2)dt
≤ ∥f∥2L2dt + ∥Λ− 1

2 g̃∥2L2dt + ∥g∥2L2dt + 2(Λ− 1

2 g̃,Λ−
1

2 q)L2dW + 2(g, u)L2dW (5.13)

where we used the Poincaré inequality to bound L2 norm of the mean-free vector u by the L2 norm

of its first order derivative. We integrate in time from 0 to t and we apply E. We obtain the desired

bound (5.11).

Proposition 6. Let q0 ∈ L̇2. Suppose g̃ ∈ L̇2. Then

∫
t

0

E∥Λ 1

2 q(s)∥2L2ds ≤ ∥q0∥2L2 + ∥g̃∥2L2t (5.14)

holds for all t ≥ 0.

Proof: The L2 norm of q evolves according to

d∥q∥2L2 + 2∥Λ 1

2 q∥2L2 = ∥g̃∥2L2dt + 2(g̃, q)L2dW (5.15)

where we used the cancellation (u ⋅ ∇q, q)L2 = 0. We integrate in time from 0 to t and we apply E.

We obtain (5.14).

Proposition 7. Let p ≥ 4. Let q0 ∈ L̇4. Suppose g̃ ∈ L̇4. Then

∫
t

0

E∥q(s)∥p
L4ds ≤ C(p) [∥q0∥pL4 + ∥g̃∥pL4t] (5.16)

holds for all t ≥ 0.

Proof: The p-th power of the L4 norm of q obeys the energy inequality

d∥q∥p
L4 +

cp

2
∥q∥p

L4 ≤ C∥g̃∥pL4dt + p∥q∥p−4L4 (g̃, q3)L2dW. (5.17)

Integrating in time from 0 to t and applying E, we obtain the desired bound (5.16).
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Proposition 8. Let u0 ∈ V and q0 ∈ L̇4. Suppose g ∈ V and g̃ ∈ L̇4. Then

E∥∇u(t)∥2L2 +E{∫ t

0

∥∆u(s)∥2L2ds}
≤ C [∥q0∥4L4 + ∥∇u0∥2L2 + (∥f∥2L2 + ∥∇g∥2L2 + ∥g̃∥4L4) t] (5.18)

holds for all t ≥ 0.

Proof: The L2 norm of ∇u obeys

d∥∇u∥2L2 + 2∥∆u∥2L2 = 2(qRq,∆u)L2dt − 2(f,∆u)L2dt + ∥∇g∥2L2dt − 2(g,∆u)L2dW. (5.19)

Here we used the identity (u ⋅ ∇u,∆u)L2 = 0 (5.20)

that holds in the two-dimensional periodic setting on T2. In view of the boundedness of the Riesz

transforms on L4, we have

∣(qRq,∆u)L2 ∣ ≤ ∥q∥L4∥Rq∥L4∥∆u∥L2 ≤ C∥q∥2L4∥∆u∥L2 . (5.21)

Consequently, an application of Young’s inequality yields

d∥∇u∥2L2 + ∥∆u∥2L2dt ≤ C∥q∥4L4dt +C∥f∥2L2dt + ∥∇g∥2L2dt − 2(g,∆u)L2dW. (5.22)

Integrating in time from 0 to t and applying E, we obtain

E∥∇u(t)∥2L2 +∫
t

0

E∥∆u(s)∥2L2ds ≤ ∥∇u0∥2L2

+C (∥f∥2L2 + ∥∇g∥2L2) t +CE{∫ t

0

∥q(s)∥4L4ds} . (5.23)

In view of the bound (5.16) applied with p = 4, we obtain (5.18).

Proposition 9. Suppose g ∈ V , g̃ ∈ L̇4, and f ∈ L̇2. For A ∈ B(V), let

νT (A) = 1

T
∫

T

0

P((q(s), u(s)) ∈ A)ds. (5.24)

Then {νT} is tight in Ḣ for u0 = q0 = 0.

Proof: Suppose u0 = q0 = 0. Let ρ > 0, and let Bρ be the ball of radius ρ in L̇2 × V (which is

compact in Ḣ). By Chebyshev’s inequality,

sup
T>0

νT (Bc
ρ) = sup

T>0

1

T
∫

T

0

P(∥(q, u)∥L̇2
×V ≥ ρ)dt

≤
1

ρ2
sup
T>0

1

T
∫

T

0

E∥(q, u)∥2
L̇2
×V
)dt→ 0 (5.25)

as ρ →∞ in view of the bound (5.11) that is linear in T . Therefore, the family {νT} is tight in Ḣ,

ending the proof of Proposition 9.

Now we prove Theorem 3.

Proof of Theorem 3: We adapt the notation ω = (q, u) and write solutions as ω(t, ω0). From the

weak Feller property obtained in Theorem 2, the tightness of the time-averaged measures obtained

in Proposition 9, and the Krylov-Bogoliubov averaging procedure, we conclude that there exists a

probability measure µ satisfying

∫
Ḣ

ϕ(ω0)dµ(ω0) = ∫
Ḣ
∫
Ḣ

1

T
∫

T

0

Pt(ω0, dω)ϕ(ω)dtdµ(ω0) (5.26)
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for any T > 0 and any ϕ ∈ Cb(Ḣ). Now we study the regularity of µ and we prove (5.10). For

n ≥ 1, we let Pn be the projection onto the space spanned by the first n eigenfunctions of −∆. For

n ≥ 1,M > 0, ω = (q, u) ∈ Ḣ, we let

Ψn,M(ω) = [∥Pnq∥2L2 + ∥∇Pnu∥2L2] ∧M (5.27)

and we note that Ψn,M ∈ Cb(Ḣ). In view of (5.11), we estimate

∣ 1
T
∫

T

0
∫
Ḣ

Pt(ω0, dω)Ψn,M(ω)dt∣ = ∣ 1
T
∫

T

0

EΨn,M(ω(t, ω0))dt∣
≤
1

T
E∫

T

0

[∥q∥2L2 + ∥∇u∥2L2] ≤ (∥Λ− 1

2 q0∥2L2 + ∥u0∥2L2)T −1 + ∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2 (5.28)

for any T > 0. Let B
Ḣ
(ρ) be the ball

B
Ḣ
(ρ) = {ω ∈ Ḣ ∶ ∥ω∥2

Ḣ
≤ ρ2} . (5.29)

Then, using invariance, we have

∫
Ḣ

Ψn,M(ω0)dµ(ω0) ≤ ∫
B
Ḣ
(ρ)
∣ 1
T
∫

T

0
∫
Ḣ

Pt(ω0, dω)Ψn,M(ω)dt∣dµ(ω0)
+∫

V̇∖B
Ḣ
(ρ)
∣ 1
T
∫

T

0
∫
Ḣ

Pt(ω0, dω)Ψn,M(ω)dt∣dµ(ω0)
≤ [ρ2T −1 + ∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2]µ(BḢ(ρ)) +Mµ(Ḣ ∖B
Ḣ
(ρ)). (5.30)

We choose ρ large enough so that

Mµ(Ḣ ∖B
Ḣ
(ρ)) ≤ 1 (5.31)

and then we choose T large enough so that

ρ2T −1 ≤ 1 (5.32)

and we get

∫
Ḣ

Ψn,M(ω0)dµ(ω0) ≤ 2 + ∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2 . (5.33)

By Fatou’s lemma, we have

∫
Ḣ

{[∥q0∥2L2 + ∥∇u0∥2L2] ∧M}dµ(ω0) ≤ 2 + ∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2 (5.34)

and by the Monotone Convergence Theorem, we obtain

∫
Ḣ

[∥q0∥2L2 + ∥∇u0∥2L2]dµ(ω0) ≤ 2 + ∥Λ− 1

2 g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2 . (5.35)

Therefore, the invariant measure µ is supported on X2 = L̇2 ×V . Next we upgrade the regularity of

the measure µ. For ω = (q, u) ∈ X2, we define

Ψ2

n,M(ω) = [∥Λ 1

2Pnq∥2L2 + ∥∇Pnu∥2L2] ∧M. (5.36)

In view of the bounds (5.11) and (5.14), we have

∣ 1
T
∫

T

0

EΨ2

n,M(ω(t, ω0))dt∣ ≤ 1

T
E∫

T

0

[∥Λ 1

2 q∥2L2 + ∥∇u∥2L2]dt
≤ (2∥q0∥2L2 + ∥u0∥2L2)T −1 + 2∥g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2 (5.37)
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for any T > 0. Letting BX2
(ρ) be the ball

BX2
(ρ) = {ω = (q, u) ∈ X2 ∶ ∥q∥2L2 + ∥∇u∥2L2 ≤ ρ

2} , (5.38)

we use (5.37) and invariance to obtain

∫
X2

Ψ2

n,M(ω0)dµ(ω0) = ∫
X2

1

T
∫

T

0

EΨ2

n,M(ω(t, ω0))dtdµ(ω0)
≤ [2ρ2T −1 + 2∥g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2]µ(BX2

(ρ)) +Mµ(X2 ∖BX2
(ρ)). (5.39)

We choose ρ large enough and T large enough so that

∫
X2

Ψ2

n,M(ω0)dµ(ω0) ≤ 2 + 2∥g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2 . (5.40)

By Fatou’s lemma and the Monotone Convergence Theorem, we obtain

∫
X2

[∥Λ 1

2 q0∥2L2 + ∥∆u0∥2L2]dµ(ω0) ≤ 2 + 2∥g̃∥2L2 + ∥g∥2L2 + ∥f∥2L2 . (5.41)

Therefore, the invariant measure µ is supported on X3 = Ḣ
1

2 × V . Finally, for ω = (q, u) ∈ X3, we

define

Ψ3

n,M(ω) = [∥Λ 1

2Pnq∥2L2 + ∥∆Pnu∥2L2] ∧M. (5.42)

In view of the bounds (5.14) and (5.18), we have

∣ 1
T
∫

T

0

EΨ3

n,M(ω(t, ω0))dt∣ ≤ 1

T
E∫

T

0

[∥Λ 1

2 q∥2L2 + ∥∆u∥2L2]dt
≤ (∥q0∥2L2 +C∥q0∥4L4 +C∥∇u0∥2L2)T −1 + ∥g̃∥2L2 +C∥f∥2L2 +C∥∇g∥2L2 +C∥g̃∥4L4 (5.43)

for any T > 0. We let BX3
(ρ) be the ball

BX3
(ρ) = {ω = (q, u) ∈ X3 ∶ ∥Λ 1

2 q∥2L2 + ∥∇u∥2L2 ≤ ρ
2} . (5.44)

Using the bound (5.37), invariance, and the continuous embedding of H
1

2 in L4, we obtain

∫
X3

Ψ3

n,M(ω0)dµ(ω0) = ∫
X3

1

T
∫

T

0

EΨ3

n,M(ω(t, ω0))dtdµ(ω0)
≤ C [(ρ2 + ρ4)T −1 + ∥g̃∥2L2 + ∥f∥2L2 + ∥∇g∥2L2 + ∥g̃∥4L4]µ(BX3

(ρ)) +Mµ(X3 ∖BX3
(ρ)). (5.45)

We choose ρ large enough and T large enough so that

∫
X3

[∥Λ 1

2 q0∥2L2 + ∥∆u0∥2L2]dµ(ω0) ≤ C (1 + ∥g̃∥2L2 + ∥f∥2L2 + ∥∇g∥2L2 + ∥g̃∥4L4) . (5.46)

Therefore, the invariant measure µ is supported on Ḣ
1

2 × (H2 ∩ V ). This ends the proof of Theo-

rem 3.

6. HIGHER REGULARITY OF INVARIANT MEASURES

In this section, we prove that any invariant measure of (5.1) is more regular than Ḣ
1

2 ×(H2∩V ).
Theorem 4. Suppose g and g̃ are smooth. If µ is an invariant measure of (5.1), then µ is smooth

and satisfies

∫
V̇

log [1 + ∥u∥2
Hk + ∥q∥2Hk]dµ((q, u)) ≤ C(k, f, g, g̃) <∞. (6.1)

for any k ≥ 0.
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The proof of Theorem 4 is based on the following auxilliary propositions and is presented at the

end of this section.

Proposition 10. Let u0 ∈ V and q0 ∈ L̇4. Suppose g ∈ V and g̃ ∈ L̇4. Let p ≥ 4. Then

E{∫ t

0

∥∇u(s)∥p−2
L2 ∥∆u(s)∥2L2ds}

≤ C(p) [∥q0∥2pL4 + ∥∇u0∥pL2 + (∥f∥pL2 + ∥∇g∥pL2 + ∥g̃∥2pL4
) t] (6.2)

holds for all t ≥ 0.

Proof: The L2 norm of ∇u evolves according to the stochastic energy equality

d∥∇u∥2L2 + 2∥∆u∥2L2dt = 2(qRq − f,∆u)L2dt + ∥∇g∥2L2dt + 2(∇g,∇u)L2dW. (6.3)

Consequently, the p-th power of ∥∇u∥L2 obeys

d∥∇u∥p
L2 + p∥∇u∥p−2L2 ∥∆u∥2L2dt = p∥∇u∥p−2L2 (qRq − f,∆u)L2dt +

p

2
∥∇g∥2L2∥∇u∥p−2L2 dt

+ p(p
2
− 1)∥∇u∥p−4

L2 (∇g,∇u)2L2dt + p∥∇u∥p−2L2 (∇g,∇u)L2dW

≤
p

4
∥∇u∥p−2

L2 ∥∆u∥2L2dt +
p

4
∥∇u∥p

L2dt +C(p)∥q∥2pL4dt +C(p) [∥f∥pL2 + ∥∇g∥pL2
]dt

+ p∥∇u∥p−2
L2 (∇g,∇u)L2dW. (6.4)

In view of the Poincaré inequality, we obtain

d∥∇u∥p
L2 +

p

2
∥∇u∥p−2

L2 ∥∆u∥2L2dt

≤ C(p)∥q∥2p
L4dt +C(p) [∥f∥pL2 + ∥∇g∥pL2

]dt + p∥∇u∥p−2
L2 (∇g,∇u)L2dW. (6.5)

We integrate in time from 0 to t and we apply E. In view of the bound (5.16), we obtain (6.2).

Proposition 11. Let u0 ∈ V and q0 ∈ L̇4. Suppose g ∈ V and g̃ ∈ L̇4. Then

E{∫ t

0

∥∇u(s)∥2L2∥∆u(s)∥2L2∥q(s)∥4L4ds}
≤ C(f, g, g̃) [∥q0∥12L4 + ∥q0∥8L4 + ∥q0∥4L4 + ∥∇u0∥4L2 + ∥q0∥4L4∥∇u0∥4L2 + t] (6.6)

holds for all t ≥ 0.

Proof: The stochastic process ∥∇u∥4
L2∥q∥4L4 obeys

d [∥∇u∥4L2∥q∥4L4] = ∥∇u∥4L2d∥q∥4L4 + ∥q∥4L4d∥∇u∥4L2 + d∥∇u∥4L2 ⋅ d∥q∥4L4 . (6.7)

The 4-th power of the L2 norm of ∇u evolves according to

d∥∇u∥4L2 = −4∥∇u∥2L2∥∆u∥2L2dt + 4∥∇u∥2L2(qRq − f,∆u)L2dt

+ 2∥∇u∥2L2∥∇g∥2L2dt + 4∣(g,∆u)L2 ∣2dt − 4∥∇u∥2L2(g,∆u)L2dW (6.8)

whereas the 4-th power of the L4 norm of q evolves according to

d∥q∥4L4 = −4(Λq, q3)L2dt + 6(g̃2, q2)L2dt + 4(g̃, q3)L2dW. (6.9)
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Consequently, the product ∥∇u∥4
L2∥q∥4L4 satisfies the energy equality

d [∥q∥4L4∥∇u∥4L2] = −4∥∇u∥4L2(Λq, q3)L2dt + 6∥∇u∥4L2(g̃2, q2)L2dt

+ 4∥∇u∥4L2(g̃, q3)L2dW − 4∥q∥4L4∥∇u∥2L2∥∆u∥2L2dt + 4∥q∥4L4∥∇u∥2L2(qRq − f,∆u)L2dt

+ 2∥q∥4L4∥∇u∥2L2∥∇g∥2L2dt + 4∥q∥4L4(g,∆u)2L2dt − 4∥q∥4L4∥∇u∥2L2(g,∆u)L2dW

− 16∥∇u∥2L2(g̃, q3)L2(g,∆u)L2dt (6.10)

which yields the energy inequality

d [∥q∥4L4∥∇u∥4L2] + 4c∥∇u∥4L2∥q∥4L4dt + 4∥q∥4L4∥∇u∥2L2∥∆u∥2L2dt

≤ 6∥∇u∥4L2(g̃2, q2)L2dt + 4∥q∥4L4∥∇u∥2L2(qRq − f,∆u)L2dt

+ 2∥q∥4L4∥∇u∥2L2∥∇g∥2L2dt + 4∥q∥4L4(∇g,∇u)2L2dt − 16∥∇u∥2L2(g̃, q3)L2(g,∆u)L2dt

− 4∥q∥4L4∥∇u∥2L2(g,∆u)L2dW + 4∥∇u∥4L2(g̃, q3)L2dW. (6.11)

Here, we used the nonlinear Poincaré inequality for the fractional Laplacian in L4 applied to the

mean zero function q (see [1, 7])

∫
T2

q3Λqdx ≥ c∥q∥4L4 . (6.12)

By the Cauchy-Schwartz inequality, Young’s inequality and the Poincaré inequality applied to the

mean zero function ∇u, we estimate

∣6∥∇u∥4L2(g̃, q2)L2 ∣ ≤ 6∥∇u∥4L2∥g̃∥2L4∥q∥2L4

≤
c

8
∥∇u∥4L2∥q∥4L4 +C∥g̃∥4L4∥∇u∥2L2∥∆u∥2L2 . (6.13)

The boundedness of the Riesz transforms on L4 yields

∣4∥q∥4L4∥∇u∥2L2(qRq − f,∆u)L2 ∣ ≤ C∥q∥6L4∥∇u∥2L2∥∆u∥L2 +C∥q∥4L4∥∇u∥2L2∥∆u∥L2∥f∥L2

≤
1

8
∥q∥4L4∥∇u∥2L2∥∆u∥2L2 +

c

8
∥q∥4L4∥∇u∥4L2 +C∥q∥12L4 +C∥q∥4L4∥f∥4L2 . (6.14)

We bound

2∥q∥4L4∥∇u∥2L2∥∇g∥2L2 ≤
c

8
∥q∥4L4∥∇u∥4L2 +C∥∇g∥4L2∥q∥4L4 (6.15)

and

4∥q∥4L4(∇g,∇u)2L2 ≤ 4∥q∥4L4∥∇u∥2L2∥∇g∥2L2 ≤
c

8
∥q∥4L4∥∇u∥4L2 +C∥∇g∥4L2∥q∥4L4 (6.16)

using Young’s inequality. Finally, we estimate

∣16∥∇u∥2L2(g̃, q3)L2(g,∆u)L2 ∣ ≤ 16∥∇u∥3L2∥q∥3L4∥g̃∥L4∥∇g∥L2

≤
c

8
∥∇u∥4L2∥q∥4L4 +C∥g̃∥4L4 (∥∇g∥L2)4 . (6.17)

Putting (6.11)–(6.17) together, we obtain the differential inequality

d [∥q∥4L4∥∇u∥4L2] + c∥∇u∥4L2∥q∥4L4dt + ∥q∥4L4∥∇u∥2L2∥∆u∥2L2dt

≤ C(g̃)∥∇u∥2L2∥∆u∥2L2dt +C(f, g)∥q∥4L4dt +C(g, g̃)dt +C∥q∥12L4dt

− 4∥q∥4L4∥∇u∥2L2(g,∆u)L2dW + 4∥∇u∥4L2(g̃, q3)L2dW. (6.18)

We integrate in time from 0 to t and we apply E. The bound (5.16) applied with p = 4 and p = 12

together with the bound (6.2) gives the desired estimate (6.6).
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Proposition 12. Let u0 ∈ V and q0 ∈ Ḣ
1

2 . Suppose g ∈ V and g̃ ∈ Ḣ
1

2 . Then

E{∫ t

0

log(1 + ∥∇q(s)∥2L2)ds} ≤ log(1 + ∥Λ 1

2 q0∥2L2) + ∥∇u0∥2L2 +C∥q0∥4L4 + ∥q0∥2L2

+C (∥f∥2L2 + ∥∇g∥2L2 + ∥g̃∥4L4 + ∥Λ 1

2 g̃∥2L2) t (6.19)

holds for all t ≥ 0.

Proof: The Ḣ
1

2 norm of q obeys

d∥Λ 1

2 q∥2L2 + 2∥Λq∥2L2dt = −2(u ⋅ ∇q,Λq)L2dt + ∥Λ 1

2 g̃∥2L2dt + 2(g̃,Λq)L2dW. (6.20)

For each t ≥ 0, let

X(t) = ∥Λ 1

2 q(t)∥2L2 (6.21)

and

X̄(t) = ∥Λq(t)∥2L2 . (6.22)

By Itô’s lemma, we have

d log(1 +X) + 2X̄

1 +X
dt = −

2

1 +X
(u ⋅ ∇q,Λq)L2dt

+
1

1 +X
∥Λ 1

2 g̃∥2L2dt −
2(1 +X)2 (g̃,Λq)2L2dt +

2

1 +X
(g̃,Λq)L2dW. (6.23)

The nonlinear term is estimated using commutator estimates (see [1, Proposition 3])

∣∫
T2

(u ⋅ ∇q)Λq∣ = ∣∫
T2

(Λ 1

2 (u ⋅ ∇q) − u ⋅ ∇Λ 1

2 q)Λ 1

2 q∣ ≤ C∥∆u∥L2∥Λq∥L2∥Λ 1

2 q∥L2 , (6.24)

hence

d log(1 +X) + 2X̄

1 +X
dt ≤

C

1 +X
∥∆u∥L2

√
X
√
X̄dt + ∥Λ 1

2 g̃∥2L2dt +
2

1 +X
(g̃,Λq)L2dW. (6.25)

After applying Young’s inequality, we obtain

d log(1 +X) + X̄

1 +X
dt ≤ C∥∆u∥2L2dt + ∥Λ 1

2 g̃∥2L2dt +
2

1 +X
(g̃,Λq)L2dW. (6.26)

Next, we integrate in time from 0 to t, apply E, and obtain

E∫
t

0

X̄

1 +X
ds ≤ log(1 +X(0)) +C ∫ t

0

E∥∆u(s)∥2L2ds + ∥Λ 1

2 g̃∥2L2t. (6.27)

Therefore,

E∫
t

0

log(1 + X̄)ds = E∫
t

0

log(1 + X̄
1 +X

)ds +E∫
t

0

log(1 +X)ds
≤ E∫

t

0

X̄

1 +X
ds +E∫

t

0

Xds. (6.28)

In view of the bounds (5.14) and (5.18), we obtain (6.19), completing the proof.

Proposition 13. Let u0 ∈ V and q0 ∈ Ḣ1. Suppose g ∈ V and g̃ ∈ Ḣ1. Then

E{∫ t

0

∥Λ 3

2 q(s)∥2L2ds}
≤ ∥∇q0∥2L2 +C(f, g, g̃) [∥q0∥12L4 + ∥q0∥8L4 + ∥q0∥4L4 + ∥∇u0∥4L2 + ∥q0∥4L4∥∇u0∥4L2 + t] (6.29)

holds for any t ≥ 0.
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Proof: By Itô’s lemma, we have

d∥∇q∥2L2 + 2∥Λ 3

2 q∥2L2dt

= 2(u ⋅ ∇q,∆q)L2dt + ∥∇g̃∥2L2dt − 2(g̃,∆q)L2dW. (6.30)

In order to estimate the nonlinear term, we integrate by parts, use the divergence-free property

∇ ⋅ u = 0, to obtain

(u ⋅ ∇q,∆q)L2 = ∑
k,j∈{1,2}

∫
T2

uj∂jq∂kkqdx = − ∑
k,j∈{1,2}

∫
T2

∂kuj∂jq∂kqdx. (6.31)

We bound

∣(u ⋅ ∇q,∆q)L2 ∣ ≤ ∥∇u∥L4∥∇q∥2
L

8
3

≤ C∥∇u∥L4∥q∥ 12
L4∥Λ 3

2 q∥ 32
L2

≤ C∥∇u∥ 12
L2∥∆u∥ 12

L2∥q∥ 12L4∥Λ 3

2 q∥ 32
L2 ≤

1

2
∥Λ 3

2 q∥2L2 +C∥∇u∥2L2∥∆u∥2L2∥q∥2L4 (6.32)

in view of Hölder’s inequality with exponents 4,8/3,8/3, the interpolation estimate [1, Proposi-

tion 2]

∥Λ 3

2 q∥2L2 ≥ C∥q∥− 2

3

L4 ∥∇q∥ 83
L

8
3

, (6.33)

and Ladyzhenskaya’s interpolation inequality. We obtain

d∥∇q∥2L2 + ∥Λ 3

2 q∥2L2dt ≤ C∥∇u∥2L2∥∆u∥2L2∥q∥2L4dt + ∥∇g̃∥2L2dt − 2(g̃,∆q)L2dW. (6.34)

Hence, an application of Young’s inequality yields

d∥∇q∥2L2 + ∥Λ 3

2 q∥2L2dt ≤ C∥∇u∥2L2∥∆u∥2L2∥q∥4L4dt

+C∥∇u∥2L2∥∆u∥2L2dt + ∥∇g̃∥2L2dt − 2(g̃,∆q)L2dW. (6.35)

We integrate in time from 0 to t and we apply E. In view of (6.2) and (6.6), we obtain (6.29).

Proposition 14. Let k ≥ 0. Let q0 ∈ Ḣk+1 and u0 ∈Hk+2 ∩H . Suppose g̃ ∈ Ḣk+1 and g ∈Hk+2 ∩H .

If the estimate

E∫
t

0

log(1 + ∥(−∆)k2+ 1

4 q(s)∥2L2 + ∥(−∆)k+22 u(s)∥2L2)ds
≤ C log(1 + ∥(−∆)k2 q0∥2L2 + ∥(−∆)k+12 u0∥2L2)
+C(f, g, g̃, k) [∥∇q0∥12L2 + ∥∇u0∥8L2 + 1 + t] (6.36)

holds for all t ≥ 0, then the following estimate

E∫
t

0

log(1 + ∥(−∆)k2+ 3

4 q(s)∥2L2 + ∥(−∆)k+32 u(s)∥2L2)ds
≤ C log(1 + ∥(−∆)k+12 q0∥2L2 + ∥(−∆)k+22 u0∥2L2)
+C(f, g, g̃, k) [∥∇q0∥12L2 + ∥∇u0∥8L2 + 1 + t] (6.37)

holds for all t ≥ 0.

Proof: The Itô lemma yields

d∥(−∆)k+12 q∥2L2 + 2∥(−∆)k2+ 3

4 q∥2L2dt

= −2(u ⋅ ∇q, (−∆)k+1q)L2dt + ∥(−∆)k+12 g̃∥2L2dt + 2(g̃, (−∆)k+1q)L2dW (6.38)
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and

d∥(−∆)k+22 u∥2L2 + 2∥(−∆)k+32 u∥2L2

= −2(qRq + u ⋅ ∇u − f, (−∆)k+2u)L2dt + ∥(−∆)k+22 g∥L2dt + 2(g, (−∆)k+2u)L2dW. (6.39)

Let

X = ∥(−∆)k+12 q∥2L2 + ∥(−∆)k+22 u∥2L2 , (6.40)

X̄ = ∥(−∆)k2+ 3

4 q∥2L2 + ∥(−∆)k+32 u∥2L2 , (6.41)

M = 2(g̃, (−∆)k+1q)L2 + 2(g, (−∆)k+2u)L2 , (6.42)

and

N = ∥(−∆)k+12 g̃∥2L2 + ∥(−∆)k+22 g∥2L2 . (6.43)

Then the stochastic process X evolves according to

dX+2X̄dt = −2(u ⋅∇q, (−∆)k+1q)L2dt−2(qRq+u ⋅∇u−f, (−∆)k+2u)L2dt+Ndt+MdW. (6.44)

An application of Itô’s lemma gives the stochastic energy equality

d log(1 +X) + 2X̄

1 +X
dt = −

2

1 +X
(u ⋅ ∇q, (−∆)k+1q)L2dt

−
2

1 +X
∣(qRq + u ⋅ ∇u − f, (−∆)k+2u)L2dt +

N

1 +X
dt −

M2

2(1 +X)2dt + M

1 +X
dW, (6.45)

from which we obtain the following differential inequality

d log(1 +X) + 2X̄

1 +X
dt ≤

2

1 +X
∣(u ⋅ ∇q, (−∆)k+1q)L2 ∣dt

+
2

1 +X
∣(qRq + u ⋅ ∇u − f, (−∆)k+2u)L2 ∣dt +Ndt +

M

1 +X
dW. (6.46)

In view of the commutator estimate

∥Λs(FG) − FΛsG∥Lp ≤ C∥∇F ∥Lp1∥Λs−1G∥Lp2 +C∥ΛsF ∥Lp3∥G∥Lp4 (6.47)

that holds for any s > 0, p ∈ (1,∞), p2, p3 ∈ (1,∞), 1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
, and all appropriately

smooth functions F and G (see [1, Lemma A.1]), we estimate

∣(u ⋅ ∇q, (−∆)k+1q)L2 ∣ ≤ ∥(−∆)k+12 q∥L2∥(−∆)k+12 (u ⋅ ∇q) − u ⋅ ∇(−∆)k+12 q∥L2

≤ C∥(−∆)k+12 q∥L2 [∥∇u∥L4∥(−∆)k+12 q∥L4 + ∥∇q∥L4∥(−∆)k2+ 1

2u∥L4]
≤ C∥∆u∥L2

√
X
√
X̄ +C∥Λ 3

2 q∥L2X. (6.48)

Here, we used the continuous Sobolev embedding of H
1

2 in L4. In view of the fractional product

estimate

∥Λs(FG)∥Lp ≤ C [∥F ∥Lp1∥ΛsG∥Lp2 + ∥ΛsF ∥Lp3∥G∥Lp4 ] (6.49)
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that holds for any s > 0, p ∈ (1,∞), p2, p3 ∈ (1,∞), 1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
, and all appropriately

smooth functions F and G (see [34, Lemma A.1]), we estimate

∣(qRq, (−∆)k+2u)L2 ∣ = ∣((−∆)k+12 (qRq), (−∆)k+32 u)L2 ∣
≤ C [∥Rq∥L∞∥(−∆)k+12 q∥L2 + ∥q∥L∞∥(−∆)k+12 Rq∥L2] ∥(−∆)k+32 u∥L2

≤ C∥Λ 3

2 q∥L2∥(−∆)k+12 q∥L2∥(−∆)k+32 u∥L2

≤ C∥Λ 3

2 q∥L2

√
X
√
X̄ (6.50)

after integrating by parts, using the continuous Sobolev embedding of H
3

2 in L∞, and using the

boundedness of the Riesz transform on H
3

2 . As for the nonlinear term in u, we integrate by parts,

apply the commutator estimate (6.47), use the continuous embedding of H
1

2 in L4, and estimate

∣(u ⋅ ∇u, (−∆)k+2u)L2 ∣ = ∣((−∆)k+22 (u ⋅ ∇u), (−∆)k+22 u)L2 ∣
= ∣((−∆)k+22 (u ⋅ ∇u) − u ⋅ ∇(−∆)k+22 u, (−∆)k+22 u)L2 ∣
≤ C∥∇u∥L4∥(−∆)k+22 u∥L4∥(−∆)k+22 u∥L2 (6.51)

≤ C∥∆u∥L2

√
X̄
√
X. (6.52)

Therefore, we obtain the inequality

d log(1 +X) + 2X̄

1 +X
dt ≤ Ndt +

M

1 +X
dW

+
C

1 +X
[∥∆u∥L2

√
X
√
X̄ + ∥(−∆)k+12 f∥L2

√
X̄ + ∥Λ 3

2 q∥L2

√
X
√
X̄]dt (6.53)

which boils down to

d log(1 +X) + X̄

1 +X
dt ≤ C∥∆u∥2L2dt +C∥Λ 3

2 q∥2L2dt

+C∥(−∆)k+12 f∥2L2dt +Ndt +
M

1 +X
dW (6.54)

after application of Young’s inequality. We integrate in time from 0 to t and we apply E. Using the

bounds (5.18) and (6.29), and applying Young’s inequality, we conclude that

E∫
t

0

X̄

1 +X
ds ≤ log(1 +X(0)) +C(f, g, g̃, k)(∥∇q0∥12L2 + ∥∇u0∥8L2 + 1 + t) (6.55)

for all t ≥ 0. Bounding similarly to (6.28), we have

E∫
t

0

log(1 + X̄)ds ≤ log(1 +X(0)) +C(f, g, g̃, k)(∥∇q0∥12L2 + ∥∇u0∥8L2 + 1 + t)
+E∫

t

0

log(1 +X)ds. (6.56)

Since

X ≤ ∥(−∆)k2+ 3

4 q∥L2∥(−∆)k2+ 1

4 q∥L2 + ∥(−∆)k+22 u∥L2∥(−∆)k+32 u∥L2 , (6.57)

we have

1 +X ≤ [1 + X̄] 12 [1 + ∥(−∆)k2+ 1

4 q∥2L2 + ∥(−∆)k+22 u∥2L2] 12 (6.58)
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and so

log(1 +X) ≤ 1

2
log(1 + X̄) + 1

2
log(1 + ∥(−∆)k2+ 1

4 q∥2L2 + ∥(−∆)k+22 u∥2L2). (6.59)

Therefore,

1

2
E∫

t

0

log(1 + X̄)ds ≤ log(1 +X(0)) +C(f, g, g̃, k)(∥∇q0∥12L2 + ∥∇u0∥8L2 + 1 + t)
+
1

2
E∫

t

0

log(1 + ∥(−∆)k2+ 1

4 q∥2L2 + ∥(−∆)k+22 u∥2L2)ds. (6.60)

In view of (6.36), we obtain (6.37).

We end this section by proving Theorem 4.

Proof of Theorem 4: Suppose µ is an invariant measure of (5.1). By Theorem 3, µ is supported

on H
1

2 ×(H2∩H). In view of the bounds (6.19) and (6.29), and repeating the same argument used

to prove Theorem 3, we conclude that µ is supported on H
3

2 × (H2 ∩H). Now we bootstrap using

Proposition 14 and we deduce that µ is supported on Hk+ 3

2 ×Hk+3 for any k ≥ 0. This shows that

µ is smooth and completes the proof of Theorem 4.

7. UNIQUENESS OF INVARIANT MEASURES

In this section, we prove that (5.1) has a unique ergodic invariant measure provided that the

ranges of g̃ and g are large enough in phase space. Uniqueness is obtained by employing asymptotic

coupling arguments from [22].

Theorem 5. Suppose that g ∈ V and g̃ ∈ L̇4. There exists N = N(f, g, g̃) such that if PNḢ ⊂

range(g̃, g), then (5.1) has a unique ergodic invariant measure.

In order to prove Theorem 5, we need the following proposition:

Proposition 15. Let R > 0. Then there exist positive universal constants c and C such that the

estimates

P(sup
t≥0

(∥∇u(t)∥2L2 +
1

2
∫

t

0

∥∆u(s)∥2L2ds − ∥∇u0∥2L2

−C(∥f∥2L2 + ∥∇g∥2L2)t −C ∫ t

0

∥q(s)∥4L4ds) > R) ≤ exp(− R

8∥g∥2
L2

) (7.1)

and

P(sup
t≥0

(∥q(t)∥4L4 + c∫
t

0

∥q(s)∥4L4ds − ∥q0∥4L4 − 2 −C∥g̃∥4L4t) > R) ≤ C (∥g̃∥16
L4 + ∥q0∥16L4

)
R + 1

(7.2)

hold.

Proof: We integrate in time from 0 to t the differential inequality

d∥∇u∥2L2 + ∥∆u∥2L2dt ≤ C∥q∥4L4dt +C∥f∥2L2dt +C∥∇g∥2L2dt − 2(g,∆u)L2dW (7.3)
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(see (5.19)) and take the supremum over t ≥ 0 to obtain

sup
t≥0

{∥∇u(t)∥2L2 +
1

2
∫

t

0

∥∆u(s)∥2L2ds − ∥∇u0∥2L2 −C(∥f∥2L2 + ∥∇g∥2L2)t −C ∫ t

0

∥q(s)∥4L4ds}
≤ sup

t≥0

{∫ t

0

2(g,−∆u)L2dW (s) − 1

2
∫

t

0

∥∆u∥2L2ds}
= sup

t≥0

{∫ t

0

2(g,−∆u)L2dW (s) − 1

8∥g∥2
L2

∫
t

0

4∥g∥2L2∥∆u∥2L2ds} . (7.4)

Exponential martingale inequalities [22, (3.4)] imply

P(sup
t≥0

{∫ t

0

2(g,−∆u)L2dW (s) − 1

8∥g∥2
L2

∫
t

0

4∥g∥2L2∥∆u∥2L2ds} > R) ≤ exp(− R

8∥g∥2
L2

) . (7.5)

Therefore (7.1) is established. The derivation of (7.2) is based on ideas from [21]. Indeed, the L4

norm of q evolves according to

d∥q∥4L4 + 4(Λq, q3)L2dt = 6(g̃2, q2)L2dt + 4(g̃, q3)L2dW. (7.6)

(see (5.17)). By the Poincaré inequality for the fractional Laplacian in L4, we have

(Λq, q3)L2 ≥ c∥q∥4L4 (7.7)

Thus, we obtain the differential inequality

d∥q∥4L4 + c∥q∥4L4dt ≤ C∥g̃∥4L4dt + 4(g̃, q3)L2dW. (7.8)

We integrate from 0 to t, and take the supremum over t ≥ 0. We obtain

sup
t≥0

{∥q(t)∥4L4 + c∫
t

0

∥q(s)∥4L4ds − ∥q0∥4L4 − 2 −C∥g̃∥4L4t}
≤ sup

t≥0

{∫ t

0

4(g̃, q3)L2dW (s) − t − 2} (7.9)

which implies

P(sup
t≥0

(∥q(t)∥4L4 + c∫
t

0

∥q(s)∥4L4ds − ∥q0∥4L4 − 2 −C∥g̃∥4L4t) ≥ R)
≤ P(sup

t≥0

(M(t) − t − 2) ≥ R) (7.10)

for any R > 0, where M(t) is the martingale term

M(t) = 4∫ t

0

(g̃, q3)L2dW (s). (7.11)

We have

{sup
t≥0

(M(t) − t − 2) ≥ R} ⊂ ⋃
n≥0

{ sup
t∈[n,n+1)

(M(t) − t − 2) ≥ R} (7.12)

and

{ sup
t∈[n,n+1)

(M(t) − t − 2) ≥ R} ⊂ {M∗(n + 1) ≥ R + n + 2} (7.13)

where

M∗(t) = sup
s∈[0,t]

∣M(s)∣. (7.14)
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Using the Burkholder-Davis-Gundy inequality (see Theorem 5.2.4 in [10])

EM∗(t)4 ≤ CE([M](t)2) (7.15)

where [M](t) is the quadratic variation

[M](t) = 16∫ t

0

(g̃, q3)2L2ds, (7.16)

we obtain

EM∗(t)4 ≤ CE([M](t)2) ≤ CE(∫ t

0

(g̃, q3)2L2ds)2

≤ C∥g̃∥4L4E(∫ t

0

∥q∥6L4ds)2 ≤ C∥g̃∥4L4tE(∫ t

0

∥q∥12L4ds)
≤ C∥g̃∥4L4t (∥q0∥12L4 + ∥g̃∥12L4t) ≤ C (∥g̃∥16L4 + ∥q0∥16L4) (1 + t)2. (7.17)

Here we used the estimate (5.16) applied for p = 12. Therefore,

P(sup
t≥0

(M(t) − t − 2) ≥ R) ≤∑
n≥0

P(M∗(n + 1) ≥ R + n + 2)
≤∑

n≥0

EM∗(n + 1)4(R + n + 2)4 ≤ C (∥g̃∥16L4 + ∥q0∥16L4)∑
n≥0

(n + 2)2(R + n + 2)4
≤ C (∥g̃∥16L4 + ∥q0∥16L4)∑

n≥0

1(R + n + 2)2 ≤
C (∥g̃∥16

L4 + ∥q0∥16L4
)

R + 2
(7.18)

in view of the Chebyshev’s inequality. This gives (7.2) ending the proof of Proposition 15.

Finally, we prove the uniqueness result:

Proof of Theorem 5: Fix (q0, u0) and (Q0, U0) in V̇ . Our aim is to establish the conditions

for the asymptotic coupling framework presented in Section 2.4 of [22]. To this end, we consider(q, u) solving (5.1) with (q(0), u(0)) = (q0, u0), and (Q,U) solving

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d(Q,U) + (ΛQ,−∆U)dt + (0,∇P )dt = (−U ⋅ ∇Q,−U ⋅ ∇U −QRQ + f)dt

+(g̃, g)dW + 1τK>tλPN(q −Q,u −U)dt
∇ ⋅U = 0

(7.19)

with (Q(0), U(0)) = (Q0, U0), where

τK = inf
t≥0
{∫ t

0

∥PN(Λ− 1

2 (q −Q), (u −U))∥2L2ds ≥K} . (7.20)

and K, N and λ are positive constants to be determined later.

By Girsanov’s theorem [22, Theorem 2.2], the law of (Q,U) is absolutely continuous with

respect to the solution (q, u)(⋅, (Q0, U0)) of (5.1) corresponding to (Q0, U0) for any choices of λ >

0 and K > 0. Consequently, the uniqueness of the invariant measure follows from an application

of Corollary 2.1 in [22], provided that we can find some positive constants λ and K such that(q, u) − (Q,u)→ 0 in the norm of Ḣ on a set of positive measure.

Let

v = u −U,π = p − P, ξ = q −Q. (7.21)
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Then (ξ, v) obeys

∂t(ξ, v) + (Λξ,−∆v) + 1τK>tλPN(ξ, v) + (0, π)
= (−u ⋅ ∇q +U ⋅ ∇Q,−u ⋅ ∇u +U ⋅ ∇U − qRq +QRQ) (7.22)

Let ω = (ξ, v). Taking the L2 inner product of (7.22) with (Λ−1ξ, v), we obtain the differential

inequality

1

2

d

dt
∥ω∥2

Ḣ
+ ∥ξ∥2L2 + ∥∇v∥2L2 + 1τK>tλ∥PN(Λ− 1

2 ξ, v)∥2L2

= (−u ⋅ ∇q +U ⋅ ∇Q,Λ−1ξ)L2 + (−u ⋅ ∇u +U ⋅ ∇U − qRq +QRQ,v)L2

= (−v ⋅ ∇Q − u ⋅ ∇ξ,Λ−1ξ)L2 + (−v ⋅ ∇u −U ⋅ ∇v, v)L2 + (−ξRq −QRξ, v)L2

= −(u ⋅ ∇ξ,Λ−1ξ)L2 − (ξRq, v)L2 − (v ⋅ ∇u, v)L2 (7.23)

where we used the cancellations (U ⋅ ∇v, v)L2 = 0 (7.24)

and (v ⋅ ∇Q,Λ−1ξ)L2 = −(v ⋅Rξ,Q)L2 = −(QRξ, v)L2 . (7.25)

We estimate

∣(v ⋅ ∇u, v)L2 ∣ ≤ ∥v∥2L4∥∇u∥L2 ≤ C∥v∥L2∥∇v∥L2∥∇u∥L2 ≤
1

4
∥∇v∥2L2 +C∥∇u∥2L2∥v∥2L2 , (7.26)

∣(ξRq, v)L2 ∣ ≤ ∥ξ∥L2∥v∥L4∥Rq∥L4 ≤
1

4
∥ξ∥2L2 +

1

4
∥∇v∥2L2 +C∥q∥4L4∥v∥2L2 , (7.27)

and

∣(u ⋅ ∇ξ,Λ−1ξ)L2 ∣ = ∣(Λ− 1

2 (u ⋅ ∇ξ) − u ⋅ ∇Λ− 1

2 ξ,Λ−
1

2 ξ)L2 ∣
≤ C∥∆u∥L2∥Λ− 1

2 ξ∥L2∥ξ∥L2 ≤
1

4
∥ξ∥2L2 +C∥∆u∥2L2∥Λ− 1

2 ξ∥2L2 (7.28)

using Hölder’s inequality, Ladyzhenskaya’s interpolation inequality, Young’s inequality, the bound-

edness of the Riesz transform on L4, and the commutator estimate (3.29). This yields the differen-

tial inequality

d

dt
∥ω∥2

Ḣ
+ ∥ξ∥2L2 + ∥∇v∥2L2 + 1τK>tλ∥PN(Λ− 1

2 ξ, v)∥2L2

≤ (C + ∥∆u∥2L2 + ∥q∥4L4)∥ω∥2
Ḣ
. (7.29)

For a fixed integer N , we have

∥ξ∥2L2 + ∥∇v∥2L2 + 1τK>tλ∥PN(Λ− 1

2 ξ, v)∥2L2

≥ 1τK>t(λ 1

2

N+1∥QN(Λ− 1

2 ξ, v)∥2L2 + λ
1

2

N+1∥PN(Λ− 1

2 ξ, v)∥2L2)
≥ 1τK>tλ

1

2

N+1∥ω∥2Ḣ (7.30)

for λ ≥ λ
1

2

N+1 in view of the inequality (5.8). Hence

d

dt
∥ω∥2

Ḣ
+ 1τK>tλ

1

2

N+1∥ω∥2Ḣ ≤ (C +C∥q∥4L4 +C∥∆u∥2L2)∥ω∥2
Ḣ
. (7.31)

Integrating in time, we obtain

∥ω(t)∥2
Ḣ
≤ ∥ω0∥2

Ḣ
exp{−λ 1

2

N+1t +∫
t

0

(C +C∥q∥4L4 +C∥∆u∥2L2)ds} (7.32)
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for any t ∈ [0, τK]. For R ≥ 0, we consider the sets

ER = {sup
t≥0

(∥∇u(t)∥2L2 +
1

2
∫

t

0

∥∆u(s)∥2L2ds

− ∥∇u0∥2L2 −C(∥f∥2L2 + ∥∇g∥2L2)t −C ∫ t

0

∥q(s)∥4L4ds) ≤ R} (7.33)

and

FR = {sup
t≥0

(∥q(t)∥4L4 + c∫
t

0

∥q(s)∥4L4ds − ∥q0∥4L4 − 2 −C∥g̃∥4L4t) ≤ R} . (7.34)

By Proposition 15, we have P(ER ∩ FR) > 0 when R is sufficiently large. Indeed,

P(ER ∩ FR) = P(ER) + P(FR) − P(ER ∪ FR)
> 1 − exp(− R

8∥g∥2
L2

) − C (∥g̃∥16
L4 + ∥q0∥16L4

)
R + 1

> 0 (7.35)

when R is large. Consequently, on ER ∩ FR and for t ∈ [0, τK], we have

∥ω(t)∥2
Ḣ
≤ ∥ω0∥2

Ḣ
exp{− t

2
λ

1

2

N+1 + (−12λ
1

2

N+1 +C(f, g, g̃)) t +C (∥∇u0∥L2 , ∥q0∥L4 ,R)} . (7.36)

We choose an integer N = N(f, g, g̃) large enough so that

−
1

2
λ

1

2

N+1 +C(f, g, g̃) ≤ 0 (7.37)

yielding

∥ω(t)∥2
Ḣ
≤ ∥ω0∥2

Ḣ
exp{− t

2
λ

1

2

N+1 +C(∥∇u0∥L2 , ∥q0∥L4 ,R)} (7.38)

on ER ∩FR and for t ∈ [0, τK]. Finally, we choose K large enough such that ER ∩FR ⊂ {τK =∞}
and we conclude that on the nontrivial set ER ∩ FR

(q(t) −Q(t), u(t) −U(t))→ 0 (7.39)

in Ḣ as t→∞. This completes the proof of Theorem 5.

8. FELLER PROPERTY IN THE H1 NORM

We consider the space

Ṽ = Ḣ1(T2) × V (8.1)

with norm

∥(ξ, v)∥
Ṽ
= ∥∇ξ∥L2 + ∥∇v∥2L2 . (8.2)

In this section, we show that the transition kernels associated with (5.1) are Feller in the norm

of Ṽ .

Theorem 6. Suppose that g ∈ ∩H2∩H and g̃ ∈ Ḣ1 such that ∇g̃ ∈ L8. Then the semigroup {P̃t}t≥0
is Markov-Feller on Cb(Ṽ).

We need the following propositions.
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Proposition 16. (Continuity in Ṽ ) Let (q1
0
, u1

0
) and (q2

0
, u2

0
) be in Ṽ . Suppose g̃ ∈ Ḣ1 and g ∈ V .

Then the corresponding solutions (q1, u1) and (q2, u2) obey

∥∇u1(t) −∇u2(t)∥2L2 + ∥∇q1(t) −∇q2(t)∥2L2

≤ exp{CC̃(t)} [∥∇u1

0 −∇u
2

0∥2L2 + ∥∇q10 −∇q20∥2L2] (8.3)

with probability 1, where

C̃(t) = ∫ t

0

[∥Λ 3

2 q1∥2L2 + ∥∇u1∥2L2 + ∥q2∥2L4 + ∥∆u2∥2L2]ds (8.4)

is well-defined and finite almost surely.

Proof: Let q = q1 − q2 and u = u1 − u2. The norm ∥∇q∥L2 satisfies the energy inequality

1

2

d

dt
∥∇q∥2L2 + ∥Λ 3

2 q∥2L2 ≤ ∣∫
T2

(u ⋅ ∇q1)∆q∣ + ∣∫
T2

(u2 ⋅ ∇q)∆q∣
≤ C∥∇u∥L4∥∇q∥L2∥∇q1∥L4 +C∥∇u2∥L4∥∇q∥L4∥∇q∥L2 . (8.5)

where we integrated by parts and used the divergence-free condition of u2 and u. Applying Young’s

inequality and using the continuous embedding of H
1

2 in L4, we obtain

d

dt
∥∇q∥2L2 + ∥Λ 3

2 q∥2L2 ≤
1

8
∥∆u∥2L2 +C [∥Λ 3

2 q1∥2L2 + ∥∆u2∥2L2] ∥∇q∥2L2 . (8.6)

On other hand, the norm ∥∇u∥L2 obeys

1

2

d

dt
∥∇u∥2L2 + ∥∆u∥2L2 ≤ ∣∫

T2

(u ⋅ ∇u1)∆u∣ + ∣∫
T2

(u2 ⋅ ∇u)∆u∣ + ∣∫
T2

(q1Rq)∆u∣ + ∣∫
T2

(qRq2)∆u∣
≤ C∥∇u∥2L4∥∇u1∥L2 +C∥∇u∥2L4∥∇u2∥L2

+C∥q1∥L4∥Λ 1

2 q∥L2∥∆u∥L2 +C∥q2∥L4∥Λ 1

2 q∥L2∥∆u∥L2 , (8.7)

hence

d

dt
∥∇u∥2L2 + ∥∆u∥2L2 ≤ C [∥∇u1∥2L2 + ∥∇u2∥2L2] ∥∇u∥2L2 +C [∥q1∥2L4 + ∥q2∥2L4] ∥∇q∥2L2 . (8.8)

Adding (8.6) and (8.8), we get

d

dt
[∥∇q∥2L2 + ∥∇u∥2L2] ≤ C [∥Λ 3

2 q1∥2L2 + ∥∇u1∥2L2 + ∥q2∥2L4 + ∥∆u2∥2L2] [∥∇q∥2L2 + ∥∇u∥2L2] (8.9)

which gives (8.3).

Proposition 17. Suppose ∇g̃ ∈ L8 and ∆g ∈ L2. Let (q0, u0) ∈ V̇ and T > 0. Then the solution(q, u) to the system (5.1) is uniformly bounded (almost surely) in

L2

loc(0,∞;L4(T2)) ×L2

loc(0,∞;H2(T2)) (8.10)

by some constant depending only on g, g̃, f, ∥∇u0∥L2 and ∥q0∥L4 . Consequently, if (ξn, vn) ∈ Ṽ is a

sequence of initial datum such that {(ξn, vn)}∞n=1 converges to (ξ, v) in Ṽ , then

lim sup
n→∞

∫
T

0

[∥q(t, (ξn, vn))∥2L4 + ∥∆u(t, (ξn, vn))∥2L2]dt <∞ (8.11)

almost surely.
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The proof of Proposition 17 is presented in Appendix B.

Now we prove Theorem 6:

Proof of Theorem 6: Fix ϕ ∈ Cb(Ṽ). Suppose (ξn, vn) converges to (ξ, v) in Ṽ , that is

∥∇ξn −∇ξ∥2L2 + ∥∇vn −∇v∥2L2 → 0. (8.12)

In view of the continuity in Ṽ given by (8.3), we have

∥∇u(t, (ξn, vn)) −∇u(t, (ξ, v))∥2L2 + ∥∇q(t, (ξn, vn)) −∇q(t, (ξ, v))∥2L2

≤ eC(Kn(t)+K(t) [∥∇vn −∇v∥2L2 + ∥∇ξn −∇ξ∥2L2] (8.13)

where

Kn(t) = ∫ t

0

[∥q(t, (ξn, vn))∥2L4 + ∥∆u(t, (ξn, vn))∥2L2]ds (8.14)

and

K(t) = ∫ t

0

[∥Λ 3

2 q(t, (ξ, v))∥2L2 + ∥∇u(t, (ξ, v))∥2L2]ds. (8.15)

In view of (5.18) and (6.29), we have the finiteness of K(t) for almost every w ∈ Ω. In view of

(8.11), we have

lim sup
n→∞

Kn(s)ds <∞ (8.16)

for almost every w ∈ Ω. This implies that

∥∇u(t, (ξn, vn)) −∇u(t, (ξ, v))∥2L2 + ∥∇q(t, (ξn, vn)) −∇q(t, (ξ, v))∥2L2 → 0. (8.17)

Since ϕ is continuous on Ṽ , we conclude that

ϕ((q, u)(t, (ξn, vn)))→ ϕ((q, u)(t, (ξ, v))) (8.18)

and hence

Eϕ((q, u)(t, (ξn, vn)))→ Eϕ((q, u)(t, (ξ, v))) (8.19)

due to the boundedness of ϕ. This completes the proof of Theorem 6.

APPENDIX A. UNIFORM BOUNDS IN LEBESGUE SPACES

In this Appendix, we prove Proposition 1. For simplicity, we ignore the viscous term −ε∆qε in

(3.1) because it does not have any major contribution in estimating the solutions of the mollified

system (3.11) and vanishes as we take the limit ε→ 0. We also drop the ε superscript.

The proof is divided into 7 main steps.

Step 1. We prove that the estimate (3.12) holds when p = 2.

Proof of Step 1. By Itô’s lemma, we have

dq2 = −2q(u ⋅ ∇q)dt − 2qΛqdt + 2q∆Φdt + g̃2dt + 2qg̃dW. (A.1)

We integrate in the space variable over T2. In view of the divergence-free condition obeyed by u,

the nonlinear term vanishes, that is (u ⋅ ∇q, q)L2 = 0, (A.2)

which yields the energy equality

d∥q∥2L2 + 2∥Λ 1

2 q∥2L2 = 2(∆Φ, q)L2 + ∥g̃∥2L2dt + 2(g̃, q)L2dW. (A.3)

We estimate

∣(∆Φ, q)L2 ∣ = ∣(Λ 3

2Φ,Λ
1

2 q)L2 ∣ ≤ 1

2
∥Λ 3

2Φ∥2L2 +
1

2
∥Λ 1

2 q∥2L2 (A.4)
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using the Hölder and Young inequalities. We obtain the differential inequality

d∥q∥2L2 + ∥Λ 1

2 q∥2L2dt ≤ ∥Λ 3

2Φ∥2L2dt + ∥g̃∥2L2dt + 2(g̃, q)L2dW. (A.5)

Integrating in time from 0 to t, we get

∥q(t,w)∥2L2 +∫
t

0

∥Λ 1

2 q(s,w)∥2L2ds

≤ ∥q0∥2L2 + (∥Λ 3

2Φ∥2L2 + ∥g̃∥2L2) t + 2∫ t

0

(g̃, q)L2dW. (A.6)

We take the supremum over all t ∈ [0, T ],
sup
0≤t≤T

∥q(w)∥2L2 +∫
T

0

∥Λ 1

2 q(s,w)∥2L2ds

≤ 2∥q0∥2L2 + 2 (∥Λ 3

2Φ∥2L2 + ∥g̃∥2L2)T + 4 sup
0≤t≤T

∣∫ t

0

(g̃, q)L2dW ∣ . (A.7)

Now we apply the expectation E. In view of the martingale estimate (see Theorem 5.2.4 in [10]),

E{ sup
0≤t≤T

∣∫ t

0

(g̃, q)L2dW ∣} ≤ CE

⎧⎪⎪⎨⎪⎪⎩(∫
T

0

(g̃, q)2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭ , (A.8)

we have

E{ sup
0≤t≤T

∣∫ t

0

(g̃, q)L2dW ∣} ≤ CE

⎧⎪⎪⎨⎪⎪⎩(∫
T

0

∥q∥2L2∥g̃∥2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭

≤ E

⎧⎪⎪⎨⎪⎪⎩( sup0≤t≤T

∥q∥L2)(C ∫ T

0

∥g̃∥2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭ ≤

1

8
E{ sup

0≤t≤T

∥q∥2L2} +C∥g̃∥2L2T (A.9)

This gives (3.12) when p = 2.

Step 2. We prove that the estimate (3.12) holds for any p ∈ [4,∞).
Proof of Step 2. Applying Itô’s lemma to the process F (Xt(w)) where Xt(w) = ∥q(t,w)∥2L2

obeys (A.3) and F (ξ) = ξ p

2 , we derive the energy equality

d(∥q∥2L2) p2 = −p∥q∥p−2L2 ∥Λ 1

2 q∥2L2dt

+ p∥q∥p−2
L2 (∆Φ, q)L2dt +

p

2
∥q∥p−2

L2 ∥g̃∥2L2dt

+ p(p
2
− 1)∥q∥p−4

L2 ∣(g̃, q)L2 ∣2dt + p∥q∥p−2
L2 (g̃, q)L2dW, (A.10)

which yields the differential inequality

d∥q∥p
L2 + p∥q∥p−2L2 ∥Λ 1

2 q∥2L2dt ≤ p∥q∥p−1L2 ∥∆Φ∥L2dt

+
p

2
(p − 1)∥q∥p−2

L2 ∥g̃∥2L2dt + p∥q∥p−2L2 (g̃, q)L2dW. (A.11)

In view of the bound ∥q∥L2 ≤ ∥Λ 1

2 q∥L2 , (A.12)

we have

d∥q∥p
L2 +

p

4
∥q∥p

L2dt +
p

2
∥q∥p−2

L2 ∥Λ 1

2 q∥2L2dt

≤ C(p) (∥∆Φ∥p
L2 + ∥g̃∥pL2

)dt + p∥q∥p−2
L2 (g̃, q)L2dW (A.13)
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where we used Young’s inequality to estimate

p∥q∥p−1
L2 ∥∆Φ∥L2 ≤ C(p)∥∆Φ∥p

L2 +
p

8
∥q∥p

L2 (A.14)

and
p

2
(p − 1)∥q∥p−2

L2 ∥g̃∥2L2 ≤ C(p)∥g̃∥pL2 +
p

8
∥q∥p

L2 . (A.15)

Integrating in time (A.13) from 0 to t and taking the supremum over [0, T ], we obtain

sup
0≤t≤T

∥q∥p
L2 +

p

2
∫

T

0

∥q∥p−2
L2 ∥Λ 1

2 q∥2L2ds

≤ 2∥q0∥pL2 +C(p) (∥∆Φ∥p
L2 + ∥g̃∥pL2

)T + 2 sup
0≤t≤T

∣∫ t

0

p∥q∥p−2
L2 (g̃, q)L2dW ∣ . (A.16)

We estimate

E{ sup
0≤t≤T

∣∫ t

0

2p∥q∥p−2
L2 (g̃, q)L2dW ∣} ≤ C(p)E⎧⎪⎪⎨⎪⎪⎩(∫

T

0

∥q∥2p−4
L2 (g̃, q)2L2dt)

1

2
⎫⎪⎪⎬⎪⎪⎭

≤ C(p)E⎧⎪⎪⎨⎪⎪⎩(∫
T

0

∥q∥2p−2
L2 ∥g̃∥2L2dt)

1

2
⎫⎪⎪⎬⎪⎪⎭ ≤ E

⎧⎪⎪⎨⎪⎪⎩( sup0≤t≤T

∥q∥p−1
L2 )(C(p)∫ T

0

∥g̃∥2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭

≤ (1 − 1

p
)E{ sup

0≤t≤T

∥q∥p
L2} +C(p)∥g̃∥pL2T

p

2 (A.17)

and we obtain (3.12).

Step 3. We show that the velocity u obeys

E{ sup
0≤t≤T

∥uε∥2L2 +∫
T

0

∥∇uε∥2L2dt} ≤ C(∥u0∥L2 , ∥q0∥L2 , f,Φ, g̃, g)e4T . (A.18)

Proof of Step 3. We apply Itô’s lemma pointwise in x and we obtain the energy equality

d∥u∥2L2 = −2(−∆u, u)L2dt − 2(u ⋅ ∇u, u)L2dt − 2(qRq, u)L2dt − 2(q∇Φ, u)L2dt

+ 2(f, u)L2dt + ∥g∥2L2dt + 2(g, u)L2dW, (A.19)

which implies

d∥u∥2L2 + 2∥∇u∥2L2dt

= −2(qRq + q∇Φ − f, u)L2dt + ∥g∥2L2dt + 2(g, u)L2dW, (A.20)

where we used the cancellation (u ⋅ ∇u, u)L2 = 0 (A.21)

due to the divergence-free condition satisfied by u. By Ladyzhenskaya’s interpolation inequality

∥u∥L4 ≤ C∥u∥L2 +C∥u∥ 12
L2∥∇u∥ 12L2 , (A.22)

and the boundedness of the Riesz transforms in L4, we estimate

∣(qRq, u)L2 ∣ ≤ ∥q∥L2∥Rq∥L4∥u∥L4 ≤ C∥q∥L2∥q∥L4 (∥u∥L2 + ∥u∥ 12
L2∥∇u∥ 12L2)

≤ C∥q∥2L2∥q∥2L4 +
1

2
∥u∥2L2 +

1

2
∥∇u∥2L2 . (A.23)
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We also estimate

∣(q∇Φ, u)L2 ∣ ≤ 1

2
∥u∥2L2 +

1

2
∥∇Φ∥2L4∥q∥2L4 (A.24)

and

∣(f, u)L2 ∣ ≤ 1

2
∥u∥2L2 +

1

2
∥f∥2L2 (A.25)

using Hölder’s inequality followed by Young’s inequality. We obtain the differential inequality

d∥u∥2L2 + ∥∇u∥2L2dt ≤ 3∥u∥2L2dt + ∥f∥2L2dt +C∥q∥2L2∥q∥2L4dt

+C∥∇Φ∥2L4∥q∥2L4dt + ∥g∥2L2dt + 2(g, u)L2dW, (A.26)

hence

d{e−3t∥u∥2L2} (s) = −3e−3s∥u∥2L2ds + e
−3sd∥u(s)∥2L2

≤ −e−3s∥∇u∥2L2ds + e
−3s {∥f∥2L2ds +C∥q∥2L2∥q∥2L4ds +C∥∇Φ∥2L4∥q∥2L4ds}

+ e−3s∥g∥2L2ds + 2e
−3s(g, u)L2dW (A.27)

for all s ∈ [0, t]. Integrating in time from 0 to t, we obtain

e−3t∥u(t)∥2L2 +∫
t

0

e−3s∥∇u(s)∥2L2ds ≤ ∥u0∥2L2 + (∥f∥2L2 + ∥g∥2L2) t
+C ∫

t

0

∥q(s)∥2L2∥q(s)∥2L4ds +C ∫
t

0

∥∇Φ∥2L4∥q(s)∥2L4ds

+ 2∫
t

0

e−3s(g, u)L2dW (s). (A.28)

We take the supremum in time over [0, T ] and apply E. Using the continuous Sobolev embedding

H
1

2 (T2) ⊂ L4(T2) (A.29)

and (3.12) with p = 4, we have

E{∫ T

0

∥q(s)∥2L2∥q(s)∥2L4ds} ≤ C∥q0∥4L2 +C (∥∆Φ∥4L2 + ∥g̃∥2L2)T +C∥g̃∥2L2T
2 (A.30)

for all t ∈ [0, T ]. From (3.12) with p = 2, we have

E{∫ T

0

∥∇Φ∥2L4∥q(s)∥2L4ds} ≤ C∥∇Φ∥2L4 (∥q0∥2L2 + ∥Λ 3

2Φ∥2L2T + ∥g̃∥2L2T) (A.31)

for all t ∈ [0, T ]. We estimate

E{ sup
0≤t≤T

∣∫ t

0

2e−3s(g, u)L2dW ∣} ≤ E

⎧⎪⎪⎨⎪⎪⎩ sup0≤t≤T

(e− 3

2
t∥u(t)∥L2)(∫ T

0

Ce−3t∥g∥2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭

≤
1

2
E{ sup

0≤t≤T

(e−3t∥u(t)∥2L2)} +C∥g∥2L2 (A.32)

and we obtain (A.18).

Step 4. We prove that (3.13) holds for p = 4.

Proof of Step 4. By Itô’s lemma, we have

d∣q∣4 = −4q3u ⋅ ∇qdt − 4q3Λqdt + 4q3∆Φdt

+ 6q2g̃2dt + 4q3g̃dW. (A.33)
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Integrating in the space over T2, we obtain the energy equality

d∥q∥4L4 = −4(u ⋅ ∇q, q3)L2dt − 4(Λq, q3)L2dt + 4(∆Φ, q3)L2dt

+ 6((g̃)2, q2)L2dt + 4(g̃, q3)L2dW. (A.34)

We note that

(u ⋅ ∇q, q3)L2 = 0 (A.35)

due to the divergence-free condition for u. By the nonlinear Poincaré inequality for the fractional

Laplacian in L4 applied to the mean zero function q, we have

∫
T2

q3Λqdx ≥ c∥q∥4L4 . (A.36)

Using Hölder’s inequality with exponents 4,4/3 and Young’s inequality with exponents 4,4/3, we

get

4∣(∆Φ, q3)L2 ∣ ≤ 4∥∆Φ∥L4∥q3∥L4/3 = 4∥∆Φ∥L4∥q∥3L4 ≤ c∥q∥4L4 +C∥∆Φ∥4L4 . (A.37)

We also bound

6∣((g̃)2, q2)
L2
∣ ≤ 6∥q∥2L4∥g̃∥2L4 ≤ c∥q∥4L4 +C∥g̃∥4L4 , (A.38)

using Hölder and Young inequalities. Putting (A.34)–(A.38) together, we obtain the differential

inequality

d∥q∥4L4 + c∥q∥4L4dt ≤ C∥∆Φ∥4L4dt +C∥g̃∥4L4dt + 4(g̃, q3)L2dW. (A.39)

Consequently,

∥q(t)∥4L4 + c∫
t

0

∥q∥4L4ds ≤ 2∥q0∥4L4 +C∥∆Φ∥4L4t +C∥g̃∥4L4t + 4∫
t

0

(g̃, q3)L2dW (A.40)

for all t ∈ [0, T ]. We take the supremum over [0, T ] and then we apply E. We estimate

E{ sup
0≤t≤T

∣8∫ t

0

(g̃, q3)L2dW ∣} ≤ CE

⎧⎪⎪⎨⎪⎪⎩(∫
T

0

(g̃, q3)2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭

≤ CE

⎧⎪⎪⎨⎪⎪⎩(∫
T

0

∥g̃∥2L4∥q3∥2L4/3dt)
1

2
⎫⎪⎪⎬⎪⎪⎭ ≤ E

⎧⎪⎪⎨⎪⎪⎩ sup0≤t≤T

∥q∥3L4 (C ∫ T

0

∥g̃∥2L4dt)
1

2
⎫⎪⎪⎬⎪⎪⎭

≤
3

4
E{ sup

0≤t≤T

∥q∥4L4} +C∥g̃∥4L4T
2 (A.41)

and we obtain (3.13) for p = 4.

Step 5. We prove (3.13) for any p ≥ 8.

Proof of Step 5. The stochastic energy equality

d∥q∥p
L4 = −p∥q∥p−4L4 (Λq, q3)L2dt + p∥q∥p−4

L4 (∆Φ, q3)L2dt

+
3

2
p∥q∥p−4

L4 (g̃2, q2)L2dt + 2p(p
4
− 1)∥q∥p−8

L4 (g̃, q3)2L2dt

+ p∥q∥p−4
L4 (g̃, q3)L2dW (A.42)
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holds for any p ≥ 8. By Hölder’s inequality with exponents 4/3,4 and Young’s inequality with

exponents p/(p − 2), p/2, we have

2p(p
4
− 1)∥q∥p−8

L4 (g̃, q3)2L2 ≤ 2p(p
4
− 1)∥q∥p−8

L4 ∥q3∥2L4/3∥g̃∥2L4

= 2p(p
4
− 1)∥q∥p−8

L4 ∥q∥6L4∥g̃∥2L4 ≤
cp

8
∥q∥p

L4 +C (∥g̃∥2L4) p2 . (A.43)

We obtain

d∥q∥p
L4 +

cp

2
∥q∥p

L4dt ≤ C∥∆Φ∥p
L4dt +C (∥g̃∥2L4) p2 dt + p∥q∥p−4L4 (g̃, q3)L2dW. (A.44)

Integrating (A.44) in time from 0 to t, taking the supremum over [0, T ], applying E, and estimating

E{ sup
0≤t≤T

2p ∣∫ t

0

∥q∥p−4
L4 (g̃, q3)L2dW ∣}

≤ (1 − 1

p
)E{ sup

0≤t≤T

∥q∥p
L4} +C(p)∥g̃∥pL4T

p

2 (A.45)

we obtain (3.13).

Step 6. We show that (3.14) holds.

Proof of Step 6. We derive the stochastic energy equality

d(∥u∥2L2) p2 = −p∥u∥p−2L2 ∥∇u∥2L2dt + p∥u∥p−2L2 (−qRq − q∇Φ + f, u)L2dt

+
p

2
∥u∥p−2

L2 ∥g∥2L2dt + p(p
2
− 1)∥u∥p−4

L2 ∣(g, u)L2 ∣2dt
+ p∥u∥p−2

L2 (g, u)L2dW. (A.46)

By Young’s inequality with exponents p/(p − 2) and p/2,

p

2
∥u∥p−2

L2 ∥g∥2L2 ≤
1

5
∥u∥p

L2 +C(p)∥g∥pL2 (A.47)

and

p(p
2
− 1)∥u∥p−4

L2 ∣(g, u)L2 ∣2 ≤ p(p
2
− 1)∥u∥p−4

L2 ∥u∥2L2∥g∥2L2

≤
1

5
∥u∥p

L2 +C(p)∥g∥pL2 . (A.48)

Similarly, using Young’s inequality with exponents p/(p − 1) and p,

p∥u∥p−2
L2 ∣(f, u)L2 ∣ ≤ p∥u∥p−2

L2 ∥u∥L2∥f∥L2 ≤ C(p)∥f∥p
L2 +

1

5
∥u∥p

L2 (A.49)

and

p∥u∥p−2
L2 ∣(q∇Φ, u)L2 ∣ ≤ p∥u∥p−2

L2 ∥u∥L2∥q∥L2∥∇Φ∥L∞
≤ C(p)∥∇Φ∥pL∞∥q∥pL2 +

1

5
∥u∥p

L2 . (A.50)
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By Ladyzhenskaya’s interpolation inequality and the boundedness of the Riesz transforms in

L4(T2), we have

p∥u∥p−2
L2 ∣(−qRq, u)L2 ∣ ≤ C(p)∥u∥p−2

L2 ∥u∥L4∥q∥L2∥q∥L4

≤ C(p)∥u∥p−2
L2 (∥u∥L2 + ∥u∥ 12

L2∥∇u∥ 12L2)∥q∥L2∥q∥L4

≤ ∥u∥p
L2 +

p

2
∥u∥p−2

L2 ∥∇u∥2L2 +C(p)∥q∥pL2∥q∥pL4

≤
1

5
∥u∥p

L2 +
p

2
∥u∥p−2

L2 ∥∇u∥2L2 +C(p)∥q∥2pL2 +C(p)∥q∥2pL4 . (A.51)

This yields the differential inequality

d∥u∥p
L2 +

p

2
∥u∥p−2

L2 ∥∇u∥2L2dt ≤ ∥u∥pL2dt +C(p)∥g∥pL2dt +C(p)∥f∥pL2dt

+C(p)∥∇Φ∥pL∞∥q∥pL2dt +C(p)∥q∥2pL2dt +C(p)∥q∥2pL4dt + p∥u∥p−2L2 (g, u)L2dW (A.52)

and thus

d{e−t∥u∥p
L2
} (s) + e−s∥u∥p−2

L2 ∥∇u∥2L2ds

≤ e−s {C(p)∥g∥p
L2ds +C(p)∥f∥pL2ds +C(p)∥∇Φ∥pL∞∥q∥pL2ds +C(p)∥q∥2pL2ds +C(p)∥q∥2pL4ds}

+ pe−s∥u∥p−2
L2 (g, u)L2dW. (A.53)

We integrate in time from 0 to t, take the supremum over [0, T ], and apply E. We obtain

E{ sup
0≤t≤T

(e−t∥u(t)∥p
L2
)} +E{∫ T

0

e−t∥u∥p−2
L2 ∥∇u∥2L2dt}

≤ C(p) (∥g∥p
L2 + ∥f∥pL2

) +C(p)∥∇Φ∥pL∞E{∫ T

0

∥q∥p
L2dt} +C(p)E{∫ T

0

∥q∥2p
L2dt}

+C(p)E{∫ T

0

∥q∥2p
L4dt} + sup

0≤t≤T

∣∫ t

0

2pe−s∥u∥p−2
L2 (g, u)L2dW ∣ . (A.54)

We estimate

E{ sup
0≤t≤T

∣∫ t

0

2pe−s∥u∥p−2
L2 (ql, u)L2dW (s)∣}

≤ (1 − 1

p
)E{ sup

0≤t≤T

(e−t∥u(t)∥p
L2
)} +C(p)∥g∥p

L2T
p

2 . (A.55)

Putting (A.54) and (A.55) together, and using (3.12) and (3.13), we obtain (3.14).

Step 7. We prove that (3.15) holds.

Proof of Step 7. We write the equation satisfied by ∇u, apply Itô’s lemma, and integrate in the

space variable. We obtain the energy equality

d∥∇u∥2L2 + 2∥∆u∥2L2 = 2(u ⋅ ∇u,∆u)L2dt + 2(qRq,∆u)L2dt

+ 2(q∇Φ,∆u)L2dt − 2(f,∆u)L2dt + ∥∇g∥2L2dt − 2(g,∆u)L2dW. (A.56)

The nonlinear term for the velocity vanishes, that is

(u ⋅ ∇u,∆u)L2 = 0, (A.57)
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and using Hölder’s inequality, we obtain

d∥∇u∥2L2 + 2∥∆u∥2L2dt ≤ C∥q∥2L4∥∆u∥L2dt + 2∥∇Φ∥L∞∥q∥L2∥∆u∥L2dt

+ 2∥f∥L2∥∆u∥L2dt + ∥∇g∥2L2dt − 2(g,∆u)L2dW. (A.58)

An application of Young’s inequality yields the differential inequality

d∥∇u∥2L2 + ∥∆u∥2L2dt ≤ C∥q∥4L4dt +C∥∇Φ∥2L∞∥q∥2L2dt

+C∥f∥2L2dt + ∥∇g∥2L2dt − 2(g,∆u)L2dW. (A.59)

We integrate (A.59) in time from 0 to t, take the supremum in time, and then apply E. We obtain

E{ sup
0≤t≤T

∥∇u∥2L2} +E{∫ T

0

∥∆u∥2L2dt} ≤ 2∥∇u0∥2L2 +C (∥∇g∥2L2 + ∥f∥2L2)T
+CE{∫ T

0

∥q∥4L4dt} +C∥∇Φ∥2L∞E{∫ T

0

∥q∥2L2dt} + sup
0≤t≤T

∣∫ t

0

4(g,∆u)L2dW ∣ . (A.60)

We estimate the martingale term

E{ sup
0≤t≤T

∣4∫ t

0

(g,∆u)L2dW ∣} ≤ E

⎧⎪⎪⎨⎪⎪⎩4(∫
T

0

(g,∆u)2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭

≤ E

⎧⎪⎪⎨⎪⎪⎩4(∫
T

0

∥∇g∥2L2∥∇u∥2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭ ≤ E

⎧⎪⎪⎨⎪⎪⎩4 sup
0≤t≤T

∥∇u∥L2 (∫ T

0

∥∇g∥2L2dt)
1

2
⎫⎪⎪⎬⎪⎪⎭

≤
1

2
sup
0≤t≤T

E{∥∇u∥2L2} +C∥∇g∥2L2T. (A.61)

Putting (A.60) and (A.61) together, and using (3.12) with p = 2 and (3.13) with p = 4, we get

(3.15).

APPENDIX B. PATHWISE UNIFORM BOUNDS FOR THE SOLUTIONS

In this section, we prove Proposition 17. We let (q, u) be the solution to (5.1) corresponding to

the initial data (q0, u0). Let

φ̃(x, t,w) = ∫ t

0

e(t−s)Λg̃(x)dW (B.1)

and

φ(x, t,w) = ∫ t

0

e−(t−s)∆g(x)dW. (B.2)

We set

Q = q − φ̃ (B.3)

and

U = u − φ (B.4)

and we note that (Q,U) obeys the deterministic system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tQ + (U + φ) ⋅ ∇(Q + φ̃) +ΛQ = −Λφ̃
∂tU + (U + φ) ⋅ ∇(U + φ) −∆U +∇P = −(Q + φ̃)R(Q + φ̃) + f +∆φ

∇ ⋅U = 0

(B.5)

where we used the divergence-free condition imposed on g.
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Step 1. Bounds for the velocity in L2

loc(0,∞;H1(T2)). We take the L2 inner product of the Q

equation with Q, and we obtain

1

2

d

dt
∥Q∥2L2 + ∥Λ 1

2Q∥2L2 = −∫
T2

((U + φ) ⋅ ∇(Q + φ̃))Qdx −∫
T2

Λφ̃Qdx. (B.6)

We estimate the nonlinear term

∣∫
T2

((U + φ) ⋅ ∇(Q + φ̃))Qdx∣ = ∣∫
T2

((U + φ) ⋅ ∇φ̃))Qdx∣
≤ ∥Q∥L4∥U∥L4∥∇φ̃∥L2 + ∥Q∥L4∥φ∥L4∥∇φ̃∥L2

≤ C∥Λ 1

2Q∥L2∥U∥ 12
L2∥∇U∥ 12L2∥∇φ̃∥L2 +C∥Λ 1

2Q∥L2∥φ∥L4∥∇φ̃∥L2

≤
1

8
∥Λ 1

2Q∥2L2 +
1

8
∥∇U∥2L2 +C∥∇φ̃∥4L2∥U∥2L2 +C∥φ∥2L4∥∇φ̃∥2L2 (B.7)

using Hölder’s inequality, Ladyzhenskaya’s interpolation inequality applied to the mean zero func-

tion U , the continuous Sobolev embedding H
1

2 ⊂ L4, and Young’s inequality. This yields the

differential inequality

1

2

d

dt
∥Q∥2L2 +

3

4
∥Λ 1

2Q∥2L2 ≤
1

8
∥∇U∥2L2 +C∥∇φ̃∥4L2∥U∥2L2 +C∥φ∥2L4∥∇φ̃∥2L2 +C∥Λ 1

2 φ̃∥2L2 . (B.8)

Now we take the L2 inner product of the Q equation with Λ−1Q and we get

1

2

d

dt
∥Λ− 1

2Q∥2L2 + ∥Q∥2L2 = −∫
T2

Λφ̃Λ−1Qdx −∫
T2

((U + φ) ⋅ ∇(Q + φ̃))Λ−1Qdx (B.9)

Integrating by parts and using the divergence-free condition obeyed by U + φ, we can rewrite the

nonlinear term as

−∫
T2

((U + φ) ⋅ ∇(Q + φ̃))Λ−1Qdx

= ∫
T2

(Q + φ̃)R(Q + φ̃) ⋅ (U + φ)dx −∫
T2

(Q + φ̃)Rφ̃ ⋅ (U + φ)dx
= ∫

T2

(Q + φ̃)R(Q + φ̃) ⋅Udx +∫
T2

(Q + φ̃) [R(Q + φ̃) ⋅ φ −Rφ̃ ⋅ (U + φ)]dx
= ∫

T2

(Q + φ̃)R(Q + φ̃) ⋅Udx +∫
T2

(Q + φ̃) [RQ ⋅ φ −Rφ̃ ⋅U]dx (B.10)

and we estimateRRRRRRRRRRRRR∫T2

(Q + φ̃) [RQ ⋅ φ −Rφ̃ ⋅U]dx
RRRRRRRRRRRRR

≤

RRRRRRRRRRRRR∫T2

QRQ ⋅ φdx

RRRRRRRRRRRRR
+

RRRRRRRRRRRRR∫T2

φ̃RQ ⋅ φdx

RRRRRRRRRRRRR
+

RRRRRRRRRRRRR∫T2

QRφ̃ ⋅Udx

RRRRRRRRRRRRR
+

RRRRRRRRRRRRR∫T2

φ̃Rφ̃ ⋅Udx

RRRRRRRRRRRRR
≤ C∥φ∥L4∥Q∥L2∥Λ 1

2Q∥L2 +C∥φ∥L4∥φ̃∥L4∥Q∥L2 +C∥Q∥L4∥φ̃∥L4∥U∥L2 +C∥φ̃∥L4∥φ̃∥L4∥U∥L2

≤
1

4
∥Λ 1

2Q∥2L2 +
1

8
∥Q∥2L2 +C∥φ∥2L4∥Q∥2L2 +C(∥φ∥2L4 + ∥φ̃∥2L4)∥φ̃∥2L4 +C(1 + ∥φ̃∥2L4)∥U∥2L2 (B.11)



41

where we have used the boundedness of the Riesz transforms on Lp(T2) for p ∈ (1,∞). We obtain

1

2

d

dt
∥Λ− 1

2Q∥2L2 +
3

4
∥Q∥2L2 ≤ C∥φ̃∥2L2 +∫

T2

(Q + φ̃)R(Q + φ̃) ⋅Udx

+
1

4
∥Λ 1

2Q∥2L2 +C∥φ∥2L4∥Q∥2L2 +C(∥φ∥2L4 + ∥φ̃∥2L4)∥φ̃∥2L4 +C(1 + ∥φ̃∥2L4)∥U∥2L2 (B.12)

Finally, we take the L2 inner product of the equation obeyed by U with U and we obtain

1

2

d

dt
∥U∥2L2 + ∥∇U∥2L2 = −∫

T2

(U + φ) ⋅ ∇(U + φ) ⋅Udx −∫
T2

(Q + φ̃)R(Q + φ̃) ⋅Udx

∫
T2

∆φ ⋅Udx +∫
T2

f ⋅Udx (B.13)

We integrate by parts the nonlinear term. Using the fact that U + φ is divergence-free, we haveRRRRRRRRRRRRR∫T2

(U + φ) ⋅ ∇(U + φ) ⋅Udx

RRRRRRRRRRRRR
= ∣∫

T2

((U + φ) ⋅ ∇φ) ⋅Udx∣
≤ ∥U∥L2∥U∥L4∥∇φ∥L4 + ∥U∥L2∥φ∥L4∥∇φ∥L4

≤ C(∥U∥ 12
L2∥∇U∥ 12L2∥∇φ∥L4 + ∥φ∥L4∥∇φ∥L4)∥U∥L2

≤
1

16
∥∇U∥2L2 +C(∥∇φ∥ 43L4 + 1)∥U∥2L2 +C∥φ∥2L4∥∇φ∥2L4 . (B.14)

This yields the differential inequality

1

2

d

dt
∥U∥2L2 +

3

4
∥∇U∥2L2 ≤ −∫

T2

(Q + φ̃)R(Q + φ̃) ⋅Udx +
1

4
∥Q∥2L2

+C(∥∇φ∥ 43
L4 + 1)∥U∥2L2 +C∥φ̃∥2L2 +C∥f∥2L2 +C∥∇φ∥2L2 +C∥φ∥2L4∥∇φ∥2L4 (B.15)

We add (B.8), (B.12) and (B.15). Setting

X(t,w) = ∥Q∥2L2 + ∥Λ− 1

2Q∥2L2 + ∥U∥2L2 , (B.16)

we get

d

dt
X + ∥∇U∥2L2 ≤ CA(t)X(t) +CB(t) (B.17)

where A(t) and B(t) are some positive constants depending on φ, φ̃ and f . This implies

d

dt
[e−C ∫ t

0
A(s)dsX(t)] + e−C ∫ t

0
A(s)ds∥∇U∥2L2 ≤ CB(t). (B.18)

Integrating in time from 0 to t, we obtain the bound

X(t) +∫ t

0

∥∇U∥2L2 ≤ [C ∫ t

0

B(s)ds + 2∥q0∥2L2 + ∥u0∥2L2] eC ∫ t
0
A(s)ds (B.19)

for all t ≥ 0.

Step 2. Bounds for the charge density in L∞loc(0,∞;L4(T2)). We take the L2 inner product of

the Q equation with (Q)3. Using the Poincaré inequality for the fractional Laplacian, we get the
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deterministic differential inequality

1

4

d

dt
∥Q∥4L4 + c∥Q∥4L4 ≤ −∫

T2

Λφ̃(Q)3dx −∫
T2

(U + φ) ⋅ ∇(Q + φ̃)(Q)3dx. (B.20)

In view of the continuous Sobolev embedding of H1(T2) in L8(T2), we bound the nonlinear termRRRRRRRRRRRRR∫T2

(U + φ) ⋅ ∇(Q + φ̃)(Q)3dx
RRRRRRRRRRRRR
=

RRRRRRRRRRRRR∫T2

((U + φ) ⋅ ∇φ̃)(Q)3dx
RRRRRRRRRRRRR

≤ ∥U∥L8∥Q∥3L4∥∇φ̃∥L8 + ∥Q∥3L4∥φ ⋅ ∇φ̃∥L4

≤ C∥∇U∥L2∥Q∥3L4∥∇φ̃∥L8 + ∥Q∥3L4∥φ ⋅ ∇φ̃∥L4 , (B.21)

hence

1

4

d

dt
∥Q∥4L4 + c∥Q∥4L4 ≤ [∥Λφ̃∥L4 +C∥∇U∥L2∥∇φ̃∥L8 + ∥φ ⋅ ∇φ̃∥L4] ∥Q∥3L4 (B.22)

which yields

d

dt
∥Q∥L4 + c∥Q∥L4 ≤ ∥Λφ̃∥L4 +

1

2
∥∇U∥2L2 +C∥∇φ̃∥2L8 + ∥φ ⋅ ∇φ̃∥L4 . (B.23)

Integrating in time from 0 to t and using the boundedness of ∇U in L2

loc(0,∞;L2(T2)) derived in

Step 1, we obtain uniform in bounds for the L4 norm of Q.

Step 3. Bounds for the velocity in L2

loc(0,∞;H2(T2)). Taking the L2 inner product of the

equation obeyed by U with −∆U , we get

1

2

d

dt
∥∇U∥2L2 + ∥∆U∥2L2 = ∫

T2

(U + φ) ⋅ ∇(U + φ) ⋅∆Udx +∫
T2

(Q + φ̃)R(Q + φ̃) ⋅∆Udx

−∫
T2

f ⋅∆Udx −∫
T2

∆φ ⋅∆Udx. (B.24)

Since the trace of MTM2 vanishes for any two-by-two traceless matrix M , we haveRRRRRRRRRRRRR∫T2

(U + φ) ⋅ ∇(U + φ) ⋅∆Udx

RRRRRRRRRRRRR
=

RRRRRRRRRRRRR∫T2

(U + φ) ⋅ ∇(U + φ) ⋅∆φdx

RRRRRRRRRRRRR
=

RRRRRRRRRRRRR∫T2

(U ⋅ ∇U) ⋅∆φdx +∫
T2

(U ⋅ ∇φ) ⋅∆φdx +∫
T2

(φ ⋅ ∇U) ⋅∆φdx

RRRRRRRRRRRRR
≤ ∥U∥L4∥∇U∥L4∥∆φ∥L2 + ∥U∥L4∥∇φ∥L4∥∆φ∥L2 + ∥φ∥L2∥∇U∥L4∥∆φ∥L2

≤ C∥∇U∥ 32
L2∥∆U∥ 12

L2∥∆φ∥L2 + ∥∆U∥L2∥∇φ∥L4∥∆φ∥L2 + ∥φ∥L2∥∆U∥L2∥∆φ∥L2

≤
1

4
∥∆U∥2L2 + (∥∇U∥2L2 + ∥∇φ∥2L4 + ∥φ∥2L2)∥∆φ∥2L2 . (B.25)

We obtain

d

dt
∥∇U∥2L2 + ∥∆U∥2L2 ≤ (∥∇U∥2L2 + ∥∇φ∥2L4 + ∥φ∥2L2)∥∆φ∥2L2

+C∥Q + φ̃∥4L4 +C∥f∥2L2 +C∥∆φ∥2L2 . (B.26)
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We integrate in time from 0 to t and we use the bounds derived in Step 1 and Step 2 to obtain

uniform bounds for ∥∇U∥L2 and ∫ t

0
∥∆U∥2

L2ds.
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A-Math. 52, 1497-–1524 (2009).

[13] W. E, J.C. Mattingly, Y. Sinai. Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes

equation, Comm. Math. Phys., 224(1):83—106 (2001). Dedicated to Joel L. Lebowitz.

[14] J.-P. Eckmann, M.Hairer. Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise,

Commun. Math. Phys. 219(3), 523–565 (2001).

[15] B. Ewald, M. Petcu, and R. Temam. Stochastic solutions of the two-dimensional primitive equations of the ocean

and atmosphere with an additive noise. Anal. Appl. (Singap.), 5(2):183–198 (2007).

[16] B. Ferrario. Stochastic Navier–Stokes equations: analysis of the noise to have a unique invariant measure. Ann.

Mat. Pura Appl. (4) 177, 331—47 (1999).

[17] F. Flandoli. Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA, 1, 403–423

(1994).

[18] F. Flandoli, D. Gatarek. Martingale and stationary solutions for the stochastic Navier-Stokes equation, Probab.

Th. Rel. Fields, 102, 367–391 (1995).



44 ELIE ABDO, NATHAN GLATT-HOLTZ, AND MIHAELA IGNATOVA

[19] F. Flandoli, B. Maslowski. Ergodicity of the 2-d Navier–Stokes equation under random perturbations, Commun.

Math. Phys. 172(1), 119—141 (1995).

[20] N. Glatt-Holtz, I. Kukavica, V. Vicol, M. Ziane. Existence and regularity of invariant measures for the three

dimensional stochastic primitive equations, Journal of Mathematical Physics, 55(5):051504 (2014).

[21] N. Glatt-Holtz, V. Martinez, G. Richard. On the long-time statistical behavior of smooth solutions of the weakly

damped, stochastically- driven KdV equation, arxiv.org/abs/2103.12942 (2021).

[22] N. Glatt-Holtz, J.C. Mattingly, G. Richards. On Unique Ergodicity in Nonlinear Stochastic Partial Differential

Equations, J Stat Phys 166, 618–649 (2017).

[23] N. Glatt-Holtz, R. Temam. Pathwise solutions of the 2-d stochastic primitive equations. Applied Mathematics

and Optimization, 63(3):401–433 (2011).

[24] N. Glatt-Holtz, M. Ziane. The stochastic primitive equations in two space dimensions with multiplicative noise,

Discrete Contin. Dyn. Syst. Ser. B, 10(4):801–822 (2008).

[25] B. Guo, D. Huang. 3D stochastic primitive equations of the large-scale ocean: global well-posedness and attrac-

tors, Comm. Math. Phys., 286(2):697–723 (2009).

[26] I. Gyongy I, N.V. Krylov. On stochastic equations with respect to semi-martingales: Itô formula in Banach
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