https://doi.org/10.1017/jfm.2023.375 Published online by Cambridge University Press

J. Fluid Mech. (2023), vol. 964, A39, doi:10.1017/jfm.2023.375

Lagrangian model for passive scalar gradients in
turbulence

Xiaolong Zhang', Maurizio Carbone?>? and Andrew D. Bragg!+

1Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
ZMax Planck Institute for Dynamics and Self-Organization, Am FaBberg 17, 37077 Gottingen, Germany
3Theoretical Physics I, University of Bayreuth, Universitiitsstr. 30, 95447 Bayreuth, Germany

(Received 31 October 2022; revised 21 March 2023; accepted 1 May 2023)

The equation for the fluid velocity gradient along a Lagrangian trajectory immediately
follows from the Navier—Stokes equation. However, such an equation involves two terms
that cannot be determined from the velocity gradient along the chosen Lagrangian path:
the pressure Hessian and the viscous Laplacian. A recent model handles these unclosed
terms using a multi-level version of the recent deformation of Gaussian fields (RDGF)
closure (Johnson & Meneveau, Phys. Rev. Fluids, vol. 2 (7), 2017, 072601). This model
is in remarkable agreement with direct numerical simulations (DNS) data and works
for arbitrary Taylor Reynolds numbers Re,. Inspired by this, we develop a Lagrangian
model for passive scalar gradients in isotropic turbulence. The equation for passive
scalar gradients also involves an unclosed term in the Lagrangian frame, namely the
scalar gradient diffusion term, which we model using the RDGF approach. However,
comparisons of the statistics obtained from this model with DNS data reveal substantial
errors due to erroneously large fluctuations generated by the model. We address this
defect by incorporating into the closure approximation information regarding the scalar
gradient production along the local trajectory history of the particle. This modified model
makes predictions for the scalar gradients, their production rates, and alignments with the
strain-rate eigenvectors that are in very good agreement with DNS data. However, while
the model yields valid predictions up to Re; ~ 500, beyond this, the model breaks down.
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1. Introduction

Scalar transport in turbulence plays significant roles in various practical applications,
ranging across geophysical and environmental problems such as the advection and
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dispersion of pollutants in the atmosphere (Mazzitelli & Lanotte 2012; Nironi et al. 2015),
mixing of nutrients in the ocean (Bhamidipati, Souza & Flierl 2020; Chor 2020), and
chemical reactions in industrial flows (Hill 1976; Dimotakis 2005). Scalar transport is also
important from the perspective of fundamental turbulence research, with previous studies
showing that the scalar field is a sensitive detector of the structures in turbulent flows,
such that their study has yielded insights into the physics of turbulent flows themselves
(Tong & Warhaft 1994). The scalar field may feedback on the velocity field under certain
conditions, such as for stratified turbulence or thermally driven turbulence (Lohse & Xia
2010; Zhang et al. 2022). The focus of this paper is, however, on the case of passive scalars.

The transport of scalars in turbulent flows is challenging to understand both because
of the complexity of the underlying turbulent flow that advects, stretches and compresses
the scalar field, and also because of the molecular diffusion to which it is subject that
leads to non-trivial differences compared to the transport of fluid particles (Ottino 1989;
Warhaft 2000). Indeed, while it has often been assumed that the statistical properties of
passive scalars in turbulent flows should reflect the analogous properties of the underlying
velocity field, e.g. a similarity in the statistical distribution of the turbulent kinetic energy
and scalar dissipation rates, this is not in general the case. For example, it has been
found that Kolmogorov’s hypothesis of local isotropy of the small scales of a turbulent
flow is strongly violated when applied to passive scalars, with both experiments and
direct numerical simulations (DNS) finding that the skewness of the scalar derivative
remains of the order of unity when a large-scale mean scalar gradient is imposed, while
it would be zero for a locally isotropic flow (Mestayer et al. 1976; Sreenivasan & Antonia
1977; Sreenivasan 1991; Pumir 1994). This strong violation of small-scale isotropy of the
scalar field is often attributed to the presence of ramp—cliff structures in the scalar field
through which large and small scales of the scalar field are directly connected (Shraiman
& Siggia 2000; Buaria et al. 2021a). It has also been found that intermittency in the
scalar field is even stronger than that for the velocity field (Watanabe & Gotoh 2004).
Indeed, even for a stochastic model where the velocity field has Gaussian statistics, the
scalar field has non-Gaussian statistics (Kraichnan 1994; Tong & Warhaft 1994; Antonia,
Zhou & Zhu 1998; Mi et al. 1998; Falkovich, Gawedzki & Vergassola 2001). Another
profound difference is that while the velocity field exhibits a dissipation anomaly (i.e. the
averaged turbulent kinetic energy dissipation rate is independent of viscosity for high
Reynolds numbers), the scalar field does not, with the scalar dissipation rate decreasing
as ~1/1og(Sc) as the Schmidt number Sc is increased (Buaria et al. 2021b). Interestingly,
however, recent DNS results have shown that while the expected correspondence between
the analogous velocity and scalar statistics is not observed for Sc < 1, it is recovered for
sufficiently large Sc (even for Sc = 7) where a viscous-convective sub-range emerges in
the scalar field (Shete et al. 2022).

In general, the properties of a passive scalar field depend upon both the Reynolds
number Re and Schmidt number Sc, and in many practical problems, both Re and Sc are
large. For Sc > 1, the smallest scale (in a mean field sense) in the scalar field is thought to
be the Batchelor scale (Batchelor 1959) g = Sc~!/? 1, where 7 is the Kolmogorov length
scale, therefore resolving flows with high Re and Sc is very challenging using DNS (as
well as experiments) due to the spatial and temporal resolution constraints. For problems
where the small-scale properties of the scalar field are important, large eddy simulations
are not helpful. It is therefore highly desirable to develop models for the small scales of
the scalar field that are capable of handling large ranges of Re and Sc, as well as being
computationally efficient. One possibility is to develop Lagrangian models for the scalar
gradients in turbulent flows, inspired by the corresponding models for the velocity gradient
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that have been highly successful both in terms of making predictions and leading to new
insights into the small-scale dynamics of turbulent flows (Meneveau 2011). Analogous
models for scalars could be used to explore and understand the small-scale dynamics
of scalar fields at Re and Sc that are currently far out of reach using either DNS or
experiments.

Lagrangian models for the velocity gradients are derived from the Navier—Stokes
equations, but they require modelling/approximations for the pressure Hessian and viscous
terms that are unclosed in the reference frame of a single fluid particle trajectory. Various
models have been proposed, including the restricted Euler model (Vieillefosse 1982), the
stochastic diffusion model (Girimaji & Pope 1990), the tetrad model (Chertkov, Pumir
& Shraiman 1999), the recent fluid deformation model (Chevillard & Meneveau 2006)
and multifractal models (Borgas 1993; Pereira, Moriconi & Chevillard 2018), as well
as closures based on random Gaussian fields (Wilczek & Meneveau 2014; Johnson &
Meneveau 2016) and, more generally, on tensor function representation of the unclosed
terms (Leppin & Wilczek 2020). With the exception of the restricted Euler model, these
models predict the steady-state, non-trivial properties of the velocity gradients in turbulent
flows, including the preferential alignment of the vorticity with the intermediate strain-rate
eigenvector, intermittency, and the multifractal scaling of the moments of the velocity
gradients. Unfortunately, most of the models are capable of predicting flows only with
low to moderate Re. Recently, the multi-level recent deformation of Gaussian fields
(ML-RDGF) model has been developed, which was shown to predict DNS data accurately
for arbitrary Reynolds numbers (Johnson & Meneveau 2017).

In the equation for a passive scalar gradient along a fluid particle trajectory, the scalar
gradient diffusion term is unclosed. A closed model for scalar gradients in turbulent flows
was derived previously based on a simple linear relaxation model for the scalar gradient
diffusion (Martin, Dopazo & Valifio 2005), with the velocity gradient in the equation
specified using a restricted Euler model that was modified to include a linear damping
term to model viscous effects (Martin, Dopazo & Valifio 1998). Although the model
showed general qualitative agreement with DNS data, there were significant quantitative
inaccuracies for a number of key quantities, including significant errors in the predictions
for the alignments of the scalar gradients with the strain-rate eigenvectors, and significant
underprediction of large fluctuations of the scalar gradients. More advanced models have
also been proposed that use the recent fluid deformation approximation (Chevillard &
Meneveau 2006) to model the scalar gradient diffusion term (Gonzalez 2009; Hater,
Homann & Grauer 2011). These models also yielded qualitatively reasonable predictions,
but suffered from quantitative inaccuracies and can make predictions for only relatively
low Reynolds numbers due to their use of the recent fluid deformation approximation
(Chevillard & Meneveau 2006). Our work significantly advances these models in two
ways. First, the velocity gradients will be specified using the much more sophisticated
ML-RDGF model that also allows for predictions to be made at arbitrarily large Re.
Second, the recent deformation of Gaussian fields closure (Johnson & Meneveau 2016)
will be used to provide a more sophisticated closure for the scalar gradient diffusion term.
This closure leads to nonlinear terms that can regulate the growth of the scalar gradients
in regions of intense stretching, which can be vital to preventing blow-ups from occurring
in the model. The closure also accounts for a dependence on Sc by incorporating Sc into
the model formulation.

Our model for the scalar gradients uses a forcing that generates a statistically stationary,
isotropic flow. Depending on Re and Sc, the small scales of the scalar field that are
associated with scalar gradients may or may not be sensitive to the details of the forcing of
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the scalar field (Sreenivasan 2019; Shete et al. 2022). For regimes where the properties
of the forcing are important, our model is easily adapted by replacing the random
forcing term with the production term associated with the mean scalar gradient (which
would be an input to our model, and our model would then describe the fluctuating
component of the scalar gradients). Our model could then be applied quite generally to
investigate fundamental questions regarding the intermittency of the small scales of a
scalar (Watanabe & Gotoh 2004), scalar dissipation anomalies (Buaria et al. 2021b), and
potential violations of small-scale isotropy (Mestayer et al. 1976; Sreenivasan & Antonia
1977; Sreenivasan 1991; Pumir 1994). It could also be employed for practical calculations
of passive scalar mixing in numerous applications, including contaminants and gases in
industrial, oceanic and atmospheric flows.

2. Model for scalar gradients
2.1. Governing equations for instantaneous and characteristic variables

For an incompressible, Newtonian fluid, the equations governing the evolution of the fluid
velocity gradient A = Vu and scalar gradient B = V¢ are

DA=—-A-A—H+vV?A+Fg, (2.1)
D:B=—-A"-B+«kV’B+ Fp, (2.2)

where D, = 9, + u - V is the Lagrangian derivative, H = VVp is the pressure Hessian,
p is the fluid pressure (divided by the fluid density), v is the fluid kinematic viscosity, k
is the scalar diffusivity, and F 4, Fp are forcing terms that permit statistically stationary
states to be obtained. In the Lagrangian frame, the spatial derivative terms in (2.1) and
(2.2) are unknown, therefore these terms must be modelled in terms of functionals of the
associated quantity, e.g. v V>A must be modelled as some functional of A.

Concerning (2.1), various closure approaches have been developed, including the recent
fluid deformation approximation (RFDA) (Chevillard & Meneveau 2006), the random
Gaussian fields closure (RGFC) model (Wilczek & Meneveau 2014), and the recent
deformation of Gaussian fields (RDGF) closure model (Johnson & Meneveau 2016).
More recently, a multi-level version of the RDGF model has emerged (referred to as
ML-RDGF) that provides a model for D;A that is valid for arbitrary Reynolds numbers.
These closures for (2.1) all lead to a model for A that can generate steady-state statistics.
This is in contrast to the restricted Euler (RE) model (Vieillefosse 1982; Meneveau 2011)
that ignores the anisotropic contribution to H and sets v = 0, leading to a model for A that
exhibits a finite-time singularity. Subsequent studies found that the addition of viscous
effects to the RE model is not sufficient to prevent a finite-time singularity; the anisotropic
pressure Hessian must also be accounted for. This could point to a potential challenge in
closing (2.2); if the closure approximation for V2B is not sufficiently accurate, then the
predictions from the resulting model could also generate finite-time singular solutions for
B since the equation for B contains no pressure Hessian to regulate the amplification term
B - Athat causes the scalar gradient magnitude ||B|| to grow when B - (B - A) < 0. In this
sense, developing a suitable closure for (2.2) may be more challenging than that for (2.1).

The RGFC model (and also the RDGF and ML-RDGF models, since they are extensions
of the RGFC model) does not approximate directly the unclosed terms in (2.1) (unlike the
RFDA model) but instead closes the equation for d;.A, which is defined as D,A averaged
over the subset of fluid particles that experience the same value of A. The probability
density function (p.d.f.) of A corresponds to the p.d.f. of A; however, the advantage is that
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the terms requiring closure in the equation for d;.A are conditionally averaged quantities,
therefore statistical approaches based on the properties of random Gaussian fields may
be employed to close the terms in the equation. Such a procedure cannot be done when
directly closing the terms in (2.1) since these involve instantaneous quantities.

Mathematically, this procedure may be formalized as follows. Suppose that A evolves
in a phase-space with time-independent coordinates a € R**3, and consider an infinite
ensemble of realizations of A, each of which is governed by (2.1) but corresponds to a
different initial condition Ag. By averaging over the ensemble, we can construct the p.d.f.
of Aas P(a, t) = (5§(A — a)), which solves the Liouville equation

%P = —=Va- (P (DA a=a), (2.3)

where (-) a—5 denotes an ensemble average conditioned on A = a. We now introduce the
time-dependent characteristic variable A defined via

in which G is defined by
G(a,t) = (DiA) p—a; (2.5)

whereas A evolves according to the instantaneous Navier—Stokes equation, A evolves
according to the conditionally averaged Navier—Stokes equation. Nevertheless, since
(D;A) a=a involves only a partial average over the ensemble, the field G will in general
exhibit nonlinear dependence on a and ¢, hence the trajectories A generated by (2.4) will
still vary chaotically in time for a turbulent flow.

We may then define the p.d.f. o(a, 1) = (§(A — a)) that solves

do=—-Va- (o (th>.A:a)- (2.6)
From the definition of the characteristic variable, we have
(drA) po—a = (G(A, 1)) g4—g = G(a, 1) = (D/A) p—a » (2.7

where the second equality follows since G(a, t) is not random. In view of this, the
operators of (2.3) and (2.6) are the same, such that if o(a, 0) = P(a, 0), then it follows
that o(a, r) = P(a, t) for all ¢, hence the p.d.f. of A may be generated via solutions to
either (2.1) or (2.4).

Based on the definitions above, we have

dA=-A-A— (Ha+v (VA 4+ (Fa)a, (2.8)
where we have used the short-hand notation

(a=()a=A. (2.9)

While closing the equation for D;A requires approximating instantaneous quantities,
closing d;A requires approximating conditionally averaged quantities. This is a major
advantage since it means that powerful statistical approaches can be used to develop
systematic closures for d;.A. This then is the approach adopted in the RGFC and RDGF
models, where (H) 4 and (V2A) 4 are closed under the approximation that the velocity
field u has Gaussian statistics.

A point worth emphasizing is that constructing the p.d.f. of A using d,.A instead of
D;A does not require the assumption that the contribution from the fluctuations D,;A’ =
D;A — (D;A) p—5 are negligible. As proven above, the p.d.f. of A may be constructed
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exactly using either d;.A or D,A This subtle point is discussed in detail in Appendix A.
Another important point is that while this proof relates to the p.d.f. of A, since the p.d.f.
of any well-behaved function of A may be transformed into the p.d.f. of A using a change
of variables, it also follows that d;.A can be used to construct exactly not only the p.d.f.
of A, but also the p.d.f. of any well-behaved function of A. The argument does not extend,
however, to p.d.f.s involving multi-time information, e.g. the joint p.d.f. of A(¢) and A(?')
with " # 1 does depend on the contribution from the fluctuations D;A" = D;A — (D;A) po—a.

An approach similar to this may be adopted for (2.2), but now the averaging must be

conditional on both A = aand B = b, where (a, b) € (R¥*3, R3) are the time-independent
coordinates of the phase-space in which A and B evolve. We define

diA=J(A, B, (2.10)
diB=K(A, B.1), (2.11)
J(@,b,1) = (D;A) p=a,B=b - 2.12)
K(a, b, 1) = (DiB) p=a,=p » (2.13)

and then based on (2.2), this leads to

dB=—A" - B+« (V’B) o+ (FB) B (2.14)
(YAB = (-)aA=AB=B- (2.15)

An approach based on the RGFC or RDGF model may then be used to close the term
(V2B) A 5 under the assumption that the scalar field ¢ has Gaussian statistics. Just as the
solutions to (2.4) can be used to construct the p.d.f. of A, so also can the solutions to (2.11)
be used to construct the p.d.f. of B.

A subtle point concerns the difference between (2.4) and (2.10), with the former defined
in terms of (D;A)a—a, While the latter is defined in terms of (D;A)a=a B=p. It might be
thought that since for constant density flows D;A does not explicitly depend on B (see
(2.1)), we should have (D;A) ao—a B=p = (D;A) a=a. However, this is not the case because B
is a functional of A. In particular, by definition we can write

1
(DtA) p—a,B—p = B —b) (§(B—Db)D:A) p—4 - (2.16)

If B were uncorrelated with A, then we could write
(3(B — B)DiA) gy = (5(B — b)) (D,A) p—s, 2.17)

leading to (D;A)a=a B=b = (D:A)a=a. However, B is not uncorrelated with A in view of
the fact that the equation governing D;B involves A through the amplification term AT . B.

Notwithstanding this point of rigour, in our model we will use the existing ML-RDGF
model to specify d;.A, which in the present context means that we are implicitly invoking
the approximation (D;A)a—a B=p ~ (D;A)a=a. While this is not justified formally, it is
adopted for simplicity because while ML-RDGF could in principle be used to construct a
model for (D;A) o=a B=b. its derivation would be extremely complicated, far more so than
the derivation of the ML-RDGF model for (D;A) s—a, which is already very involved.
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2.2. Model for the velocity gradients

In our model for B, the ML-RDGF model will be used to prescribe A, and since our
model for B will be based on the RDGF approach, we summarize the key ideas in this
modelling approach before applying them to deriving a closed equation for d;BB.

2.2.1. The RDGF closure
The deformation tensor D(t, s) for a fluid particle with position x/ (t|X, s) that satisfies
x/(s|X, s) = X is defined as

D(,s) = aiXxf (11X, s), se€l0,1], (2.18)

and evolves according to
oD=A-D, D(,0) =1, (2.19a,b)

where [ is the identity matrix. While the solution to this is given by a time-ordered
exponential, the RFDA approximates the solution by assuming that A is constant over
arecent deformation time scale 7, with the deformation at times s < ¢t — 7 ignored. In this
case, the approximate solution is

D(t,s) ~ exp ((t — s)A), t—se€]0,r] (2.20)

The idea then is as follows. The quantities H= VVp and VA are evaluated along the
fluid particle trajectory x/ (¢ X, s), and they may be related to their corresponding values
at the reference configuration x/ (s|X, s) = X using D. Using the approximate solution for
D in (2.20) and setting s = ¢t — 7 leads to

92 92
Ha~(DT. .0y =D T. D! 2.21
il < (aXaX”> >A <8X8X”>A o e

a2 92
(V2Aa~ (D T. Al.D7Y) =D T. A) -D (222
X 0X A XX [ 4

where D = exp(t.A), and ()T denotes the transpose of the inverse of a tensor. The
RDGF model then uses the RGFC approach (Wilczek & Meneveau 2014) to approximate
the conditional averages in (2.21) and (2.22).

The basic motivation for the RDGF model is that the closure approximations for (H) 4
and (V2A) 4 can be improved by applying the RGFC at X, r — t rather than x, . This
is because when the RGFC is applied at X, ¢ — 7, it is then transformed under the
flow map into something more realistic. For example, while the conditional averages in
(2.21) and (2.22) are approximated assuming that # has Gaussian statistics, due to the
Lagrangian transformation described by D, the resulting approximations for (H) 4 and
(V2A) 4 obtained through (2.21) and (2.22) will, in general, correspond to those for a
non-Gaussian field u.

The final closed equation obtained using the RDGF closure has the form (Johnson &
Meneveau 2016)

dA =N A, 1,1} dt + X - dW, (2.23)

where the forcing term has been chosen to be (Fa) 4df = ¥ - dVW, with dVV denoting
a tensor-valued Wiener process, and X denoting a diffusion tensor (see Appendix B
for details) that depends on the coefficients Dy and D, that determine the growth
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rate of the mean square values of the strain rate S = (A + AT) /2 and rotation rate

R=(A- .AT) /2 tensors. The term N 4{-} denotes the nonlinear operator whose exact
form is given in Appendix B.

The three unknown parameters t, D,, D are obtained by an optimization procedure
that seeks those values for which the model satisfies known constraints for isotropic
turbulence, namely the relation between strain rate and energy dissipation for isotropic
turbulence 2(||S||?) = 1 / r,? (where 7, is the Kolmogorov time scale, and || - || denotes
the Frobenius norm), and the only two homogeneity relations involving solely the velocity
gradient (Betchov 1956; Carbone & Wilczek 2022), (A : A) = 0and ((A-A) : A) = 0.
The values obtained by this procedure are v = 0.130271,, Dy = 0.1014/r3 and D, =
0.0505/7;.

In Johnson & Meneveau (2016), the authors interpret the random term X - dW as
capturing not merely the effect of forcing on the velocity gradients (needed for the model to
generate stationary statistics) but also the fluctuating pressure Hessian and viscous terms,
since these terms are approximated in the model as Gaussian, white-noise processes.
Approximating these fluctuating terms in this way would be highly questionable, and
would suggest a significant point of weakness in the model. However, in Appendix A, we
provide an alternative interpretation according to which the RDGF model (and therefore
also the ML-RDGF model) does not involve approximating the fluctuating pressure
Hessian and viscous terms as Gaussian, white-noise processes, and the term X - dVV only
describes the effect of forcing on the flow.

2.2.2. The ML-RDGF closure

The RDGF model described by (2.23) does not contain any dependence on Re,. To
address this, a multi-level version of the RDGF closure (called ML-RDGF) was developed
(Johnson & Meneveau 2017). The key idea behind this model is that in a turbulent flow,
there exist velocity gradients at different scales in the flow, and the velocity gradient
dynamics at different scales are coupled because of the energy cascade. Moreover, this
coupling will be influenced by the fact that the energy flux through the cascade is not
constant, but fluctuates in time and space. The ML-RDGF model extends the RDGF model
to take this into account by replacing (2.23) with

dA"M = M (A ¢ 1) df — di(InT) A + W cawl - =1,2,... N,
(2.24)

in which the 7, appearing in (2.23) has been replaced by the time-dependent time scale
7,(f), so that now T = 0.13027,, Dy = 0.1014/7. and D, = 0.0505/7,}.

Equation (2.24) is actually a system of N coupled equations, and A" represents the
velocity gradient at the nth level, corresponding to the velocity gradient filtered on some
scale. For the first level, n = 1, the time scale is fixed at 7; = ,BN _17:,7, where g = 10 is
chosen in the model. For n > 2, 7,(f) = ,3_1 IIS["_” I~! (where 811 is the strain rate
associated with A", such that the time evolution of A" is coupled to the evolution
at the larger scale where the velocity gradient is LA"~!. The solution at level n = N
then corresponds to the full (unfiltered) velocity gradient, i.e. A™ = A. This multi-level
model is capable of predicting .A for the discrete Reynolds numbers Re) = ReE{Z:l] g1,

where Reanzl] is the Taylor Reynolds number corresponding to the first level n = 1, which
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was chosen in previous studies (Johnson & Meneveau 2017) to be ReE{lzl] = 60. Then a
modified time scale for the second level, 2, enables the model to predict flows at arbitrary
Re 1.

The predictions for AW = A were shown to be in excellent agreement with DNS and
experimental data (Johnson & Meneveau 2017), and revealed that the model makes robust
predictions gor the intermittency of A up to the highest Reynolds number considered,
Re, = 0(10°).

2.3. Closure for scalar gradient equation based on RDGF

Based on its excellent performance, the ML-RDGF model will be used to specify A in
the equation for the scalar gradient . The RDGF closure scheme will be used to close
the scalar gradient diffusion term (V2B) A.5B- A multi-level version is not required since
the effect of Re, on the model for B will already be accounted for through the use of
ML-RDGEF to specify A in the equation for BB.

Analogous to (2.21) and (2.22), under the RFDA, the scalar gradient diffusion term may
be expressed as

82

B .
0X0X [an
The RGFC can be used to derive a closed expression for the conditional average appearing

in this expression, leading through (2.25) to an RDGF closure for (V2B) 4 5.
In the present context of the scalar field, the RGFC begins with the assumption that ¢
has Gaussian statistics defined in terms of the characteristic functional

Z2[A(x)] = exp [—% / 3 / Ax) R? (x, x') A(x') dx dx/:| (2.26)
R3 JR3

DL (2.25)

(V’B)as~D " - <

(the time label is suppressed here and in what follows for simplicity), where A(x) is

the Fourier variable conjugate to ¢ (x), and R?(x, x') = (¢(x) $(x')), which for isotropic
turbulence has the form

R, x) =R (1) = (9*) fp(r), r=x—X, r=|rl, (2.27)

where fy () is the scalar spatial correlation function. Following the work of Wilczek &
Meneveau (2014), the characteristic function for the scalar gradient B = V¢ is obtained
from (2.26) as

2Bp(x)] = exp [—% / / u(x)-RB(x,x/)-u(x/)dxdx/}, (2.28)
R3 JR3

where p is the Fourier variable conjugate to B, and R8(x, x') = (B(x) B'(x')), which is
related to R? (x, x) through

RE(x,x') = (Vo (x) Vo (x)) = VV'R? (x, X). (2.29)
For an isotropic scalar field where (2.27) applies, we then have
T5() T5()
RE(x,x') = R(r) = (¢?) [("’T —f(,’,’(r)) e l} , (2.30)

where prime superscripts denote differentiation with respect to r.
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According to (2.28), the statistics of B are described by a Gaussian characteristic
functional when ¢ is assumed to be Gaussian. Just as in previous works (Wilczek &
Meneveau 2014; Johnson & Meneveau 2016), when deriving a closure model for D;.A,
it is acknowledged that the statistics of B are not Gaussian in a real turbulent flow (nor
are they Gaussian even when u is Gaussian; Falkovich et al. 2001). The motivation for this
choice is simply that it is the only option when deriving a statistical field closure. It must be
appreciated, however, that only with respect to the closure of (V2B) 4 g, are the statistics
of B approximated as being Gaussian; the model that follows from this choice nevertheless
generates statistics for 13 that are highly non-Gaussian (as will be shown later).

The specific term to be closed using RGFC is

92 92

< B> = < B! (11X, s), z)> . (23D
0X 0X ab 0X 0X AT (t|X,s5),0)=a, B(x/ (11X ,s),1)=b

which is evaluated at a=.A, b=B in (2.25). Just as the RFDA assumes

A (11X, 5), 1) ~ AX, s) for t — s € [0, 7], we also assume B(x/(1|X, s), ) ~ B(X, s)

for t — s € [0, t], and inserting this yields

92 2
< > ~ < B(X, s)> , (2.32)
XX [,p \0X0X AX.5)=a, B(X.5)=b

which puts the conditional average into a form to which the RGFC procedure (Wilczek &
Meneveau 2014) can be applied.
Before proceeding, we note that although the argument of the conditional average

82
< B(X, s)> (2.33)
0X 0X A(X,s)=a, B(X,s)=b

does not contain A but only B, the conditionality on A(X, s) = a cannot be removed
formally. This is because since the evolution of B depends upon A (see (2.2)), the value of
82
B
0X 0X

(2.34)

will not be uncorrelated from A, in general. While a closure for the full conditional average
can be obtained using the RDGF approach, the analysis is very involved, so in order to
simplify the closure, the following approximation is made:

92 92
< B(X, s)> A < B(X, s)> . (2.35)
aX aX A(X,s):a, B(X,S):b aX 8X B(X,S):b

It is crucial to note, however, that the overall closure for (VZB) A 1 does partially include
the effect of the conditioning upon .4, since the right-hand side of (2.25) contains D and
not D precisely because of the conditionality in the averaging operator on the left-hand
side of (2.25). Therefore, the closure for (V?B) A1 captures some of the dependency of
the scalar diffusion on the local velocity gradients in the flow.

With the statistics of B prescribed using (2.28), and the covariance tensor for B

prescribed using (2.30), a closure for (2.35), and hence (V?B) A B, may be obtained
following the same steps as in Wilczek & Meneveau (2014). The basic steps are as follows.
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First, using the approach described in Appendix A of Wilczek & Meneveau (2014), the
unclosed quantity is rewritten in terms of a two-point quantity:

32 92
— B(X, =1 B(X , —p- 2.36
<8X e ( S)>B(X,s):b lim - (B(XX +r,5)Bx.5)=b (2.36)

Applying the steps outlined in Appendix B of Wilczek & Meneveau (2014) to the scalar
field, we obtain

(BX +1,9)px.=p = R2(1) - [RZ(0)] " - b, (2.37)
where
[REB0)]~! = _r (2.38)
(®2) £ (0)
The resulting expression
82 : 82 B B -1
<WB(X, S)>B(X,s):b = lim <8r8r R (r)) -[RBO)]"!-b (2.39)

may then be computed using (2.30), and when the result is evaluated at b = B and
substituted into (2.25), the closed expression obtained is

K(VPB)ap~85(Cr' - B+Cr' - B+u(CxHB), (2.40)
« 13(0)

=_ 2.41

B=3 0 (2.41)

where C;l =D~ . DT s the inverse of the right Cauchy—Green tensor.

In the work of Johnson & Meneveau (2016), the coefficient analogous to &z
in the closure for (VZA)4, namely &4, was estimated based on the enstrophy
production—dissipation balance at steady state. The same procedure can be applied to
approximate ép based on the steady-state production—dissipation balance (S : BB) =

—k {||[VBJ?) (ignoring the contribution from the forcing since it is small), leading to

1
85 ~ — t(Cy) 5. (2.42)
9t,7
(S : BB)
=1, —————, 2.43
YE =T BIR) (249

where C; = D - D' is the left Cauchy—Green tensor.

Whereas the RDGF model for (V2A) 4 is nonlinear in A due to the contributions from
Cr and Cg, the closure for (V2B) 4 in (2.40) is linear in B. This could potentially
suggest an issue with (2.40) since it is known that models for (V2A) 4 that are linear
in A can suffer from finite-time singularities, depending on the initial conditions (Martin
et al. 1998). However, given that the production term in the equation for B is —AT - B,
the dependence of the closure in (2.40) on C; and Cg may indirectly prevent singular
growth of ||B]|, at least in regions where this growth is associated with large values of
[IA|l, because in those regions, the growth of B could be modulated through C; and Ckg.

Moreover, we performed tests where in the closure for ( VzB) AB, weset D = I,i.e.so that
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the recent deformation mapping was removed. Simulations of the model using this blew
up, showing that the contributions in (2.40) involving D do indeed play a key indirect role
in preventing singular growth of 1B.

In view of (2.42), any dependence of the closed expression for « (V2B) AB 0N Kk is
contained within y, and this term must be specified using data. However, in order for the
model to depend upon « and hence Sc, the data must specify y5 as a function of Sc, which
is not desirable. An alternative approach is as follows. The closure approximation in (2.40)
is linear in 18, and 1/8; may be regarded as a linear relaxation time scale for 1B, describing
how the diffusion term « (V2B) A B causes B to relax to its equilibrium value. In view of
this, 1/ should scale with the small-scale scalar time scale 74, and for Sc > 1, this time
scale can be estimated using the Batchelor scale (Batchelor 1959; Donzis, Sreenivasan &
Yeung 2005) as 7 ~ 15 Sc=1/3, while for Sc < 1, the Corrsin scale (Corrsin 1951) may
be used to obtain 74 ~ T, Sc~1/2 In view of this, the Sc dependence may be accounted for
explicitly in 3 by using

Scé
55 ~ 2 t(Cy) g, (2.44)
91,
S:BB
aB = T, % , (2.45)
(IBII<) |se=1

where £ = 1/2 for Sc < 1, and & = 1/3 for Sc > 1. From our DNS (see § 3) we obtain the
value o & —0.32. However, in anticipation of results to be shown later, we note that using
this fixed value for ap yields a model whose predictions are not accurate (see figure 4).
Therefore, a modification will be introduced wherein o is specified based on the local
scalar gradient production along the trajectory history of the particle, as in (4.1), which
dramatically improves the predictions from the model (cf. figure 6).

Analogous to the equation for A, the forcing term in the scalar gradient equation is
chosen to be (Fp) 4 ndt =0 dW, where now dWV is a vector-valued Wiener process
with increments defined by

(dW) =0, (2.46)
AW dAW) = Idr. (2.47)

Since the equation for B is linear, the statistics scale with the forcing amplitude o,
therefore ¢ may be chosen arbitrarily if the results generated by the model are suitably
normalized. Using this forcing term, the final form of the model equation is written as a
stochastic differential equation

dB~ - A" . Bdt+65(Cx' - B+Cx" - B+tw(Cy") B)dt + o dW. (2.48)

For applications where there is a mean scalar gradient, the forcing term could be replaced
by the term describing the production of fluctuating scalar gradients due to the imposed
mean scalar gradient.

Finally, just as the ML-RDGF model replaces the constant time scale for LAY with the
fluctuating time scale tn(7), the Kolmogorov time scale 7, that appears in (2.44) should
also, for consistency, be replaced by 7y(¢) (since the ML-RDGF model is being used to
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specify A in (2.48)). In other words, (2.44) is to be replaced by

5 Sct tr(Cp) (2.49)
I aAR. .
BN g M€ as

This ensures that for Sc = 1, the local time scale on which both B and A fluctuate is
O(tn(1)).

3. Numerical simulations

We test the model predictions against data from DNS of a passive scalar field advected by
an incompressible, three-dimensional, statistically steady and isotropic turbulent velocity
field. The DNS code uses a standard Fourier pseudo-spectral method (Canuto et al.
1988) to solve the discretized Navier—Stokes and passive scalar equations on a triply
periodic cubic domain, resolving N Fourier modes in each direction. The required Fourier
transforms are executed in parallel using the P3DFFT library (Pekurovsky 2012), and the
aliasing error is removed via the 3/2 rule (Canuto et al. 1988). The code is described in
further detail in Carbone, Bragg & Iovieno (2019).
The non-dimensional governing equation for the passive scalar in Fourier space reads

¢ + ik - up = —«||k|*p + F, (3.1)

where the hat indicates a Fourier transform, ‘i’ is the imaginary unit, u(x, 7) is the turbulent
velocity field, ¢ (x, r) is the passive scalar field, and ¢A)(k, t) denotes its spatial Fourier
transform. For consistency with the stochastic model, the passive scalar field is driven by
a stochastic forcing, such that the complex forcing F is Gaussian and white in time, with
correlation

<ﬁ(k, 0 E®E, /)> =200 |KI?8(k+K)8(t—1), O<|kll <k.  (3.2)

The forcing is confined to the wave vectors k within a sphere of radius k7, and we choose
kr = V7 since it yields large-scale statistics that are close to being isotropic. Finally, the
spectrum of the forcing |IA7 |2(k) scales as | k||, compatible with energy equipartition
among the smallest Fourier modes. The constant parameter og in (3.2) regulates the
magnitude of the scalar fluctuations, and it can be arbitrarily chosen due to the linearity
with respect to q3 of (3.1). We simulate flows at Sc = 1. The simulated Reynolds numbers
are Re,y = 100, 250, using N = 512, 1024 Fourier modes in each direction, with the
results referred to as DNS1 and DNS2, respectively. The spatial resolution is k;;qxn ~ 3,
with k. = N/2 being the maximum resolved wavenumber, for both simulations. The
time integration of (3.1) is performed by means of a second-order Runge—Kutta scheme
designed for stochastic differential equations (Honeycutt 1992), and the CFL number stays
below 0.3.

Regarding the numerical simulations of the model, we solve the scalar gradient equation
(2.48) using a second-order predictor—corrector method (Kloeden & Platen 2018) with
time step df = 0.057,. Each level of the ML-RDGF model equation was solved using its
own appropriate time step, namely, level n was solved using dt = 0.05(7,()). Tests were
performed using smaller time steps, and these tests indicated that the aforementioned time
steps were small enough to achieve convergence of the results.

We solve numerically the model equation (2.48) for Re, = 100, 250, 500. The results
from these runs will be referred to as M1, M2 and M3 in the results section, with M1 and
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Figure 1. The p.d.f.s of (a) longitudinal ay; /a1, ms and (b) transverse aj2/ai2, qms velocity gradients.

M2 designed to match DNS1 and DNS2, respectively. Although we do not have DNS data
for quantitative comparison with M3, these model results are also considered in order to
explore more fully how the model predicts that Re, impacts the scalar gradient statistics.

4. Results and discussion
4.1. Velocity gradients

In our scalar gradient model, the velocity gradients are specified using the ML-RDGF
model (Johnson & Meneveau 2017). We therefore begin by comparing the predictions of
this model against the DNS data in order to assess its accuracy in predicting the statistics
A, since any inaccuracies in this model will in turn lead to inaccuracies in our model for
the scalar gradients.

In figure 1, we compare the p.d.f.s of the longitudinal and transverse components of
the velocity gradient predicted by the ML-RDGF model with the DNS results. (Recall
that a and b are the phase-space variables conjugate to A and B, respectively, and we
use the subscripts ‘rms’ and ‘av’ to denote the root-mean-square and averaged values
of the variable under consideration). One can see that the p.d.f.s for the longitudinal
gradients (figure 1a) are negatively skewed, while the p.d.f.s for the transverse gradients
are symmetric (figure 10). The former is associated with the self-amplification of the
velocity gradients (Tsinober 2001), while the latter is a constraint due to isotropy. The
predictions from M1 and M2 are in excellent agreement with the DNS data, capturing the
increased intermittency as Re, is increased, and the model also makes realistic predictions
at the higher Rey to which M3 corresponds. The ability of the ML-RDGF model to
predict accurately the components of the velocity gradient, and realistic intermittency
trends with increasing Re, (and over a much larger range of Re, than considered here),
were demonstrated previously in detail in the original ML-RDGF paper of Johnson &
Meneveau (2017).

Further insight into the ability of the ML-RDGF model to predict the velocity gradient
dynamics can be obtained by considering its predictions for the velocity gradient invariants
Q= —a:a/2and R= —(a- a) : a/3. The invariant Q measures the relative strength of
the local strain rate and vorticity in the flow, with Q > 0 denoting vorticity-dominated
regions of the flow, while R measures the relative importance of the local strain
self-amplification and enstrophy production, with R < 0 denoting regions dominated by
enstrophy production (Tsinober 2001). The joint p.d.f.s of Q and R from the ML-RDGF
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Figure 2. Logarithms of joint p.d.f.s of Q/Qu and R/Q2* (where O = (|lA||?)) from (a) DNSI,
(b) DNS2, (¢) M1, and (d) M2. Colours indicate the values of the decimal logarithm of the p.d.f.

model for M1, M2 are presented in figure 2, along with the corresponding DNS results
of the same Reynolds numbers for comparisons. As observed previously (Johnson &
Meneveau 2017), the ML-RDGF model captures the main features of the Q, R joint p.d.f.
well, including the signature sheared-drop shape of the joint p.d.f., which is preserved by
the model as Re, is increased. The joint p.d.f. contours extend along the right Viellefosse
tail, and the p.d.f. is concentrated in the quadrants Q@ > 0,R <0 and Q < O,R > 0,
consistent with previous studies (Johnson & Meneveau 2016, 2017). For the model results
M1 and M2, the joint p.d.f.s are more compact compared to the DNS, indicating that the
model underpredicts the probability of large values of Q, R. The agreement between the
ML-RDGF model and DNS data was shown to be better in Johnson & Meneveau (2017);
however, their DNS data were for Re; = 430, indicating that the quantitative accuracy
of the model is better at higher Re,. Considering the results for M2 shows that as Re,
increases, the contours of the joint p.d.f. spread out in the (Q, R) phase-space, showing
that the model captures the effect of Re, on the intermittency in the flow.

A more careful and quantitative comparison between the model predictions and DNS
data for Q, R can be made by comparing the p.d.f.s of Q and R separately. In figure 3(a),
one can see that for DNS1 and DNS2, the p.d.f.s of Q are strongly positively skewed,
which is associated with the fact that the vorticity is more intermittent than the strain
rate in turbulent flows (Yeung, Sreenivasan & Pope 2018). By contrast, the ML-RDGF
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Figure 3. The p.d.fs of (@) Q/Quy and (b) R/Q2%, where Quy = (|IA|%).

model predicts p.d.f.s for Q that are much more symmetric, with the model significantly
underpredicting regions of intense vorticity, and slightly underpredicting regions of
intense straining. These discrepancies are, however, mainly in the tails of the p.d.f., with
the model predictions in good agreement with the DNS for values of the p.d.f. that are
>0(1072).

In figure 3(b), it is seen that the model also predicts p.d.f.s of R that are relatively
symmetric compared with the DNS data for which the p.d.f.s are negatively skewed.
For both M1 and M2, the model significantly underpredicts regions of intense vorticity,
and slightly underpredicts regions of intense straining, with the model showing good
agreement with the DNS results at values of the p.d.f.s that are >0(10~2). For both Q
and R in figure 3, the model also captures well the trend of increased intermittency at
higher Re, shown from DNS1 and DNS2.

In view of these results, it is seen that while the ML-RDGF model predicts the
components of the velocity gradients very accurately (as well as the alignments between
the vorticity and strain-rate eigenvectors; see Johnson & Meneveau 2017), it does not
predict the invariants of the velocity gradients accurately when compared with the DNS
results, at least not for the Re, considered here. This could in turn lead to inaccuracies in
the scalar gradient model, above and beyond any arising from the closure approximations
for the scalar gradient diffusion term. These results point to the need for further
refinements in the ML-RDGF model.

4.2. Scalar gradients

We now turn to consider the predictions from our new model for the scalar gradients.
In figure 4, we plot the p.d.f.s of Qp/Qp.av (Where Qp = ||b]|?), which is proportional
to the scalar dissipation rate €, = «||b|%, as well as the p.d.f. of by, the scalar gradient
component in one of the (arbitrary, due to isotropy) directions. Concerning the p.d.f. of
Qb/Ob.av. the results show that while the model is in good qualitative agreement with the
DNS data, capturing the slowly decaying tail of the p.d.f., it significantly underpredicts the
values of the p.d.f. The model predictions for the p.d.f. of b are also in significant error,
underpredicting small to intermediate values of b1 /b1 s, and significantly overpredicting
large values of b1 /b1 yms, such that the overall shape of the p.d.f. is not captured well by
the model.
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Figure 4. The p.d.f:s of (a) Qp/Qp.av and (b) b1 /by yms. The results from the model are obtained with the
(uncorrected) model coefficient a3 specified by (2.45).
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Figure 5. Time series of (a) ||B(t) ||2 and (b) |S () ||2, normalized by their mean values, generated from the
model with Re; = 100 and the (uncorrected) coefficient az specified by (2.45).

An investigation into the cause of these significant underpredictions revealed that the
problem is due to the model generating extremely large values of ||B(f)||>. An example
of the time series of || B(7)||? /{I1B(1) 1%) generated by the model at Re; = 100 is shown in
figure 5, together with the time series of |S OIE /IS (1)]|?) for comparison. Although
the signal ||S ()]1> exhibits significant fluctuations about the mean, IB(0)||*> exhibits
infrequent but enormous fluctuations about the mean, which only get stronger as Re, is
increased. Although I1B(7)||> would be expected to be more intermittent than ||S @0,
one would not anticipate intermittent fluctuations in IB()|| as large as these, nor are
they manifested in the DNS data, therefore they seem to indicate an issue with the model.
The integral of the p.d.f. of Q) over its sample space is 1, so because the model vastly

overpredicts the probability of extremely large values of ||B()|?, it underpredicts the
probability of values in the sample space range shown in figure 4.

That the model vastly overpredicts the probability of extremely large values of
IB®OI2/{(I1B®)[?) must be due to deficiencies in the closure for «(V?B)4 5. In
particular, the values of k(V2B) A B predicted by the closure approximation when || B]|
is large are too small to sufficiently counteract the scalar production term (although
apparently, they are large enough to prevent singularities in the model, since simulations
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Figure 6. The p.d.f.s of (@) Qp/Qp.av and (b) b1 /by, yms, based on using (4.1) instead of (2.45) to specity ap
in the model.

of the model do not blow up). A relatively simple modification to the model to address this
deficiency is to modify its specification of the coefficient a3 in (2.45) so that it includes
information on the locally averaged scalar production, rather than simply the global mean
value. This is achieved by replacing (2.45) with

t t
ap(t) = rnf S : B({)B() dt’// 1B dr, 4.1)
t—11 =1

which can be computed when solving the model since it depends on only & and B at
previous times, which are known. With this, the global average involved in (2.45) is
replaced with a local time average over the trajectory history of the particle. The time
integral is chosen to span [t — 1, f] in view of the fact that S : BB and || B||? have time
scales of the order of the integral time scale, which in the ML-RDGF model is specified
by 71.

The advantage of using (4.1) is that the coefficient §5 in (2.48) will then depend upon
the local scalar gradient dynamics, and in regions where the production of |1B|? is large,
op will also be large relative to its value in regions where the production of I1B]1? is
small. In other words, using (4.1) introduces nonlinearity into the closure for x(V2B) AB
with respect to its dependence on B, and this may help to oppose the extremely large
fluctuations predicted by the original form of the model. In practice, since (4.1) requires
time history information, the model is solved for ¢ < 7 using (2.45), and then for ¢ > 11,
(4.1) is used.

Figure 6 shows once again the p.d.f.s of Qp and by, but this time using (4.1) instead of
(2.45) to specify ap in the model. Comparing the results to those in figure 4, it can be seen
that the new specification of o dramatically improves the predictions from the model,
being now in excellent agreement with the DNS data. The results also show the impact
of Rey on Qp as predicted by the model, with the probability of intermediate values of
Qb/Ob.av and by /by s predicted to decrease as Re, increases, while the probability of
large Op/Qp.av and by /by ,ms increases as Re, increases. The dependence on Re, of the
p.d.f.s predicted by the model is consistent with the trend in DNS results in figure 6 (or
refer to figure 4 for a clearer comparison of DNS1 and DNS2 curves). However, further
tests of the model revealed that when Re, is increased much beyond Re, = 500, the
predictions of the model become unrealistic, with extremely large values of the scalar
gradient occurring in the model, and the model can even blow up. Therefore, although the
use of (4.1) dramatically improves the performance of the model over the range of Re,
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Figure 7. The p.d.f.s of (a) Rp/ QL%ZQ;,M and (b) the inner product between the unit vector e, = b/||b|| and
the eigenvectors e; of S.

considered, it is not sufficient to guarantee that the model makes reasonable predictions
for arbitrarily large Re,. An investigation into the causes of the failure of the model at high
Re, and possible remedies for this are left to future work.

In figure 7(a), we show the p.d.f. of the scalar gradient production R, = a : bb. The
results show that the model predictions are in good agreement with the DNS data,
with some underpredictions for the largest fluctuations. The model captures the strong
negative skewness of the p.d.f. (shown in DNS1 and DNS2) that is associated with the
predominance of scalar gradient production over destruction. The model also predicts
that the largest fluctuations in R, become more probable as Re, is increased due to
intermittency in the flow. In figure 7(b), we show the p.d.f. of the inner product between the
unit vector e, = b/||b|| and the eigenvectors e; (corresponding to the ordered eigenvalues)
of &. The model predicts these non-trivial alignments very well, capturing the strong
preferential alignment with the compressional eigendirection e3, and misalignment with
the intermediate eigendirection e> and extensional eigendirection e;. However, the model
predicts a misalignment with e; that is a little too strong, and a misalignment with e; that
is a little too weak. Only the results for Re; = 100 are shown, as the results from both
the DNS and model exhibit negligible Re, dependence. The current model predictions for
these alignment p.d.f.s are in much better agreement with the DNS data than those of the
model of Martin et al. (2005), which uses a much more simplistic closure approximation
for the scalar diffusion term.

4.3. Joint p.d.f.s of velocity and scalar gradients

We now turn to consider the relationship between the velocity and scalar gradients
predicted by the model. In figure 8, we show the joint p.d.f.s of the velocity gradient

invariant Q/ Qav and scalar invariant Qp/Qp 4, from the DNS and model. For both M1
and M2 from our model predictions, there is an excellent qualitative agreement with the
DNS data, with the model capturing the elongation of the p.d.f. (note, however, that the
appearance of the elongation is somewhat exaggerated due to the different horizontal
and vertical axis ranges) along the horizontal axis toward regions of large Qp/Op.av,
indicating that large fluctuations in the scalar gradients are much more probable than they
are for the velocity gradients. The model also captures the exponential-like behaviour of
the isocontours of the p.d.f., whose shape indicates that large values of Qp/Qp 4 tend
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Figure 8. Logarithms of joint p.d.f.s of Q/Qa,, and Qp/0p av from (a) DNS1, (b) DNS2, (¢) M1, and (d) M2.
Colours indicate the values of the decimal logarithm of the p.d.f.

to occur in regions where Q/ Qau is small, and vice versa. The quantitative errors are
mainly associated with the variation of the joint p.d.f. along the Q/Qg, axis, which can
be understood in terms of the ML-RDGF model’s underprediction of large fluctuations of
Q/ Qav at Rey = 100 and 250, as already observed when considering the p.d.f. of Q/ Q,w
in figure 3. Comparing the results from M1 and M2 shows that the model predicts that as
Re, is increased, the shape of the joint p.d.f. is preserved, which is consistent with DNS
results. However, the model predicts a more stretched shape of the joint p.d.f.s along the
two axes, corresponding to lower predicted probability of regions with comparable values
of Q/Qav and Qp/Op.av-

In figure 9, we show the joint p.d.f.s of the velocity gradient invariant Q/Qq, and
scalar production invariant R/ Q%ZQ;MU from the DNS and model. These joint p.d.f.s
provide insights into how straining and vortical regions of the flow might contribute
differently to the scalar gradient production. The model reproduces accurately the
qualitative behaviour of the p.d.f. seen in the DNS data, including the elongation of the
p.d.f. along the R/ Q}u/,ZQb,aU < 0 direction, associated with the predominance of scalar
gradient production over destruction. The results also show that events with strong scalar
gradient production are more probable in regions where Q/Q,, < 0, despite the fact

that Q/Qqy itself has a positively skewed p.d.f. This is because the antisymmetric part
of the velocity gradient, and therefore the vorticity, does not contribute directly to the
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Figure 9. Logarithms of joint p.d.f.s of O/Qqy and Ry,/QL? Op.av from (a) DNSI, (b) DNS2, () M1, and
(d) M2. Colours indicate the values of the decimal logarithm of the p.d.f.

invariant R, but only contributes indirectly through its impact on the local alignment of
B(t) with S§(r), whereas the strain rate affects R, directly. The model underpredicts the
probability of the largest fluctuations, which again is principally due to the ML-RDGF
model underpredicting the intermittency of Q/Q,,. Comparing the results from M1 and
M2 shows that the model predicts that as Re, is increased, the shape of the joint p.d.f. is
largely preserved, except for being more stretched along the axes due to the increased
intermittency predicted by the model. The model does tend to predict, however, that
the overall probability of the system being in the quadrant Q < 0, R, > 0 reduces as
Re, increases. Future comparisons with DNS at higher Re; will be needed to assess the
accuracy of this prediction. It is possible that this is a defect in the model that is in some
way related to the failure of the model at higher Re,.

Finally, in figure 10, we show the joint p.d.f.s of the scalar gradient invariant Qp/QOp.av

and scalar production invariant R,/ Q%z QOp.av- The predictions from the model for M1 and
M2 are in very good agreement with the DNS, both qualitatively and quantitatively, with
only small deviations. By comparing the results for M1 and M2, the model is shown to

predict that as Re, is increased, the shape of the joint p.d.f.s of Q;,/Op, 4v and Rp/ Q%z Ob.av
is preserved, except for being more stretched along the Q,/Qp 4, axis due to the increased
intermittency in Qp/Op.av-
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Figure 10. Logarithms of joint p.d.f.s of Qp/Qp.qv and R,/ Qs Op av from (a) DNS1, (b) DNS2, () M1, and
(d) M2. Colours indicate the values of the decimal logarithm of the p.d.f.

5. Conclusions

A Lagrangian model for passive scalar gradients in isotropic turbulence has been
developed, with the scalar gradient diffusion term closed using the RDGF approach, which
has recently been applied very successfully to close the equation for the fluid velocity
gradients along fluid particle trajectories. This closure yields a diffusion term that is
nonlinear in the velocity gradients, but linear in the scalar gradients, and comparisons
of the statistics generated by the closed model with DNS data revealed large errors.
An investigation revealed that these large errors were due to the scalar gradient model
generating erroneously large fluctuations, possibly due to the diffusion term being linear
in the scalar gradient under the RDGF closure. This defect was addressed by incorporating
into the closure approximation information regarding the scalar gradient production along
the local trajectory history of the particle. With this modification, the closed form of the
diffusion term is now a nonlinear functional of the scalar gradients, and the resulting model
is in very good agreement with the DNS data.

Since the ML-RDGF model of Johnson & Meneveau (2017) is used to specify the
velocity gradients in the scalar gradient equation, we begin by comparing its predictions
with DNS data. In agreement with the results of Johnson & Meneveau (2017), the
model predicts very accurately the longitudinal and transverse components of the velocity
gradients, and reproduces the key features of the joint p.d.f. of Q and R, the second and
third invariants of the velocity gradient tensor. However, a more quantitative test of the
model predictions for the p.d.f.s of Q and R individually against DNS data revealed that at
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least for Rey = 100 and 250, the ML-RDGEF significantly underpredicts the probability of
large positive values of Q and large negative values of R, which are associated primarily
with regions of intense enstrophy and its production, respectively. These inaccuracies
could then impact the accuracy of the scalar gradient model, and highlight the need
for further improvements in the ML-RDGF model (although the model may predict the
statistics of Q and R more accurately at higher Re,).

Comparisons between the scalar gradient model and DNS data for Re; = 100 and 250
showed very good agreement. In particular, the model predicts accurately the squared
magnitudes of the scalar gradients (which are proportional to the scalar dissipation rates),
as well as the individual components of the scalar gradients. The model also captures well
the p.d.f. of the scalar production, including its strong negative skewness that is associated
with the predominance of scalar gradient destruction, but slightly underpredicts the most
extreme fluctuations of the scalar gradient production and destruction. Next, the p.d.f.s of
the inner product between the scalar gradient direction and the strain-rate eigendirections
were considered, which provide insights into the non-trivial statistical geometry of the
passive scalar and velocity gradient dynamics. The model is in excellent agreement with
the DNS data regarding the strong preferential alignment between the scalar gradient
and the compressional eigendirection. However, the model predicts a misalignment with
the extensional eigendirection that is a little too strong, and a misalignment with the
intermediate eigendirection that is a little too weak.

The ability of the model to capture the statistical relationship between the velocity and
scalar dynamics was considered next, by considering various joint p.d.f.s of the velocity
and scalar gradient tensors. The results showed excellent qualitative agreement with the
DNS data, with some quantitative errors that seem to be rooted in the ML-RDGF model
underpredicting the probability of extreme fluctuations in the Q and R invariants. The joint
p.d.f. of the squared magnitude of the scalar gradient with the scalar gradient production
term predicted by the model was in excellent qualitative as well as quantitative agreement
with the DNS.

The predictions of the model at Re, greater than that of the DNS were also considered,
and the predictions are reasonable up to Rej ~ 500. However, beyond this, the model
breaks down and leads to extremely large scalar gradients that can even cause the
numerical simulations of the model to blow up. Therefore, while the modification to the
scalar gradient diffusion term that incorporates the scalar gradient production along the
local trajectory history of the particle leads to excellent predictions from the model at lower
Re,, it is not sufficient to prevent the model from generating extremely large fluctuations
at high Re, where intermittency in the velocity gradients can lead to very large local scalar
gradient production events. Therefore, as anticipated earlier, developing an accurate model
for scalar gradients in turbulence is in some ways more complicated than that for velocity
gradients, because scalar gradient dynamics lacks a mechanism similar to the pressure
Hessian that controls the growth of the velocity gradients. For scalar gradients, the closure
for the diffusion term is a delicate matter since this term alone is dynamically responsible
for preventing finite-time singularities of the scalar gradients. A crucial point for future
work is therefore to understand in more detail how the diffusion term regulates the growth
of the scalar gradients, and developing a closure model that is sufficiently sophisticated to
capture this.

A simplifying approximation was introduced into the derivation of the model, namely
(2.35). While the RDGF approach could in principle be used to derive the scalar gradient
model without invoking this approximation, the derivation of the model and its resulting
form will be considerably more complicated. It is important for future work, however, to
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assess the impact of this approximation on the model performance by testing it against the
form of the model that is constructed without the use of this simplifying approximation.

Another aspect to be explored is the influence of the Schmidt number Sc on the scalar
gradients. While the model does include a Sc dependence in the scalar gradient diffusion
term, given that the model breaks down for Sc = 1 when Re, > 500, it is likely that the
model will also break down for Rey < 500 when Sc becomes sufficiently large, since both
regimes promote the intensification of the scalar gradients.
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Appendix A. Role of fluctuations on the p.d.f. of A

Johnson & Meneveau (2016) discuss models for A that are based on evolving equations for
conditional averages, such as the RGFC model of Wilczek & Meneveau (2014), and state
that the modelling approach involves splitting D, A into the conditional average (D;A)a=a
and the fluctuation D;A’, defined such that

DtA e (DtA>A:a + DtA/. (Al)

They then say that while (D;A)a—5 is modelled using either the RGFC or RDGF closure,
D, A’ (associated with the fluctuating pressure Hessian and viscous terms) is approximated
as Gaussian white-noise. The Gaussian white-noise forcing term in the velocity gradient
model of Johnson & Meneveau (2016) is therefore interpreted as capturing not only the
effect of random forcing imposed on the flow (analogous to forcing terms used in DNS
of isotropic turbulence), but also the contribution from D;A’. Such an approximation for
D:;A’” would be very crude and would suggest a significant weakness in the modelling
approach based on conditional averages. In the following, it will be argued, however, that
such interpretation of how D;A’ is handled in these models need not be adopted, placing
the models on a better foundation.
Introducing the decomposition (A1) into the right-hand side of (2.3), we obtain

WP =—Va- (P (DA ps) = —Va- (PUDA) p—a + DiA) a—2)

= —Va - (P(DA)a=a + P(D:A") a=a)
= —Va - (P(DiA)a=a), (A2)

where we have used (D;A’) ao—a = 0, which follows from (A1). Hence the fluctuations make
no contribution to the p.d.f. of A when the fluctuations are defined using the decomposition
in (Al). This then suggests that the p.d.f. of A could be constructed exactly using only
(D;A) p=a instead of having to use the full quantity D;A, thereby bypassing the need to
model D,A’. This conclusion agrees with the proof in § 2.1 that the p.d.f. of A can be
constructed exactly based on either D;A or the characteristic variable d;.A that is defined
by (D:A) a=a.
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In view of this, we see that the approach to modelling the p.d.f. of A in terms of
conditional averages does not require approximating D;A’ as being Gaussian white-noise.
Instead, this modelling approach states that the p.d.f. of A can be constructed exactly using
an equation for (D;A) a—a instead of D, A, circumventing the need to model D;A’ at all.

That the fluctuations do not need to be modelled in order to predict the p.d.f. of A
may seem surprising. However, it is really just a consequence of the particular choice of
decomposition in (A1), and it does not hold for arbitrary decompositions. For example, if
instead a Reynolds averaging (i.e. unconditioned) decomposition is used, i.e.

DA = (D,A) + DA, (A3)
then we would have
P =—Va- (P(DiA) p—a) = —Va+ (P(DA) + DA") a=a)
= —Va - (P(DA) + P(D;A) a=a). (A4)

In this case, the contribution from the fluctuations does not vanish, precisely because
the fluctuations have been defined relative to the Reynolds average (-), rather than
the conditional average (-)a—z. While (D,A") = 0 due to (A3), it does not follow that
(D;A') p—a = 0 when D, A’ is defined via (A3).

In summary, if we wish to model the p.d.f. of A, then all we need is a model for
(D;A) po—a and not the full quantity D;A, because the fluctuations D;A" = D;A — (D;A) p—2
make no contribution to the evolution of the p.d.f. of A. Therefore, in contrast to the
interpretation given in Johnson & Meneveau (2016), we see that modelling the p.d.f.
of A in terms of conditional averages does not require approximating the fluctuating
contribution D;A" (associated with the fluctuating pressure Hessian and viscous terms)
as a Gaussian white-noise process (or using any other approximation). Instead, we see
that the approach states that the p.d.f. of A can be constructed exactly using an equation
for (D;A)a—a instead of D, A, circumventing the need to model D,A" at all. Viewed this
way, the Gaussian white-noise term in the equation for (D;A)a=5 used in both Wilczek &
Meneveau (2014) and Johnson & Meneveau (2016) can be understood to simply capture
the effect of a Gaussian, white-in-time forcing on the flow, such as is often used to force
the Navier—Stokes equation in DNS of stationary, isotropic turbulence.

Similar arguments can also be applied in the context of the current model for the p.d.f. of
B. Namely, the p.d.f. of B can be constructed exactly using an equation for (D;B) o—a B=bp
instead of D,B, circumventing the need to model D,B’ at all. Similarly, in our model for
(D/B) A—a, B=b, the Gaussian white-noise term is simply a term representing the forcing of
the scalar field.

Appendix B. Details of the nonlinear term N 4
The Cartesian components of the nonlinear term N 4{.A, T, Ty} appearing in (2.23) are

G oa G
N a{A, ~, )i = — | AicAr — F tr(A%) | — | Gy — Ftr(g) -V, (B

kk kk

where G;; is the deviatoric part of the pressure Hessian,
Gij = D;;l-l [_% (SmkSkn — %Slelkamn> - % (RmkRkn — %Rkl'lecgmn)
+ %(SmkRkn - Rmkskn)] D;jl, (B2)
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and Vj; is the contribution from the viscous Laplacian,

7 Cu K _ _ 4 2
Vij = o/is 3 o (chkkl +2T4 Ty - 51 T 'Sy — 51 T 13k15ij> . (B3
where I = —0.6 is the velocity gradient skewness, and
Sj= A+ A, Ry=rAj— A, Tj=2A;+ 2= A (B4a—c)

The full form of (2.23) is therefore
c-! —1
i 2 i
dA; = — | | AicAkj — — tr(A°) | — Gij — p— tr(G) | =V | dt + Xy dWyy,
Cor on
(B5)
where the components of the diffusion tensor X are given by

S = 1,/DS5~5 +1 ,/Ds+,/D“ 5~5~+1 ,/Ds ,/D“ Sudix.  (B6)
ijkl = 3 5 1ijOkl ) 5 3 ikOjl ) 5 3 ilOjk-
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