On Electroconvection in Porous Media

ELIE ABDO ¢ MIHAELA IGNATOVA

ABSTRACT. We consider the evolution of a surface charge density
interacting with a two-dimensional fluid in a porous medium. In the
momentum equation, Stokes’s law is replaced by Darcy’s law balanced
by the electrical forces. This results in an active scalar equation, in
which the transport velocity is computed from the scalar charge den-
sity via a nonlinear and nonlocal relation. We address the model in
the whole space R? and in the periodic setting on T2. We prove the
global existence and uniqueness of solutions in Besov spaces Bf,{ Y for

small initial data. We also obtain the analyticity, regularity, and long-
time behavior of solutions.

1. INTRODUCTION

Electroconvection, the evolution of charge distributions in fluids, was investigated
experimentally and numerically in situations in which the fluid and charges are
confined to thin films [13,19,20]. The charge distribution is carried by the fluid
and diffuses because of the parallel component of the electrical field. This results
in a nonlocal transport equation for the charge density p:

(1.1) dp+u-Vp+Ap =0

where A = (=A)V2 is the square root of the two-dimensional Laplacian and u
is the fluid velocity. The fluid is incompressible and is forced by electrical forces
F = pE, where E is the parallel component of the electrical field E = —V®, with
V the gradient in R?. The relationship between the electrical potential ® and the
charge distribution confined to a two-dimensional region is

®=A""p,

2593
Indiana University Mathematics Journal (©), Vol. 72, No. 6 (2023)



2594 ELIE ABDO ¢» MIHAELA IGNATOVA

and we thus have
(1.2) F = —pRp,

with R = VA™! the Riesz transforms. In general, the fluid obeys Navier-Stokes
or related equations driven by the forces F. The derivation of this system for the
physical setup in bounded domains was obtained in [7], where global regularity
and uniqueness of solutions were obtained for the coupling with Navier-Stokes
equations.

In this paper we consider flow through a porous medium, in which the dom-
inant dissipation mechanism is due not to the viscosity of the fluid, but rather to
an effective damping caused by flow through pores. The Stokes operator is then
replaced by u + Vp. We consider a system in which the fluid equilibrates rapidly
and the Reynolds number is low, so that forces are balanced by damping,

u+Vp =Fr.
This balance, together with (1.2) and the requirement of incompressibility,

V-u=0,
leads to
(1.3) u =—-P(pRp)

where P is the Leray-Hodge projector on divergence-free vector fields. The elec-
troconvection situation described above leads to the active scalar equation (1.1)
with constitutive law (1.3), which is the equation we study in this work. In com-
parison to the work [7], the nonlinear advection is missing, but also there is no
viscosity, and because of the nonlinearity in the electrical force, the velocity’s de-
pendence of the charge density is more singular. The equation is L*-critical, and
resembles critical SQG [8-10, 15] except for the constitutive law (1.3) which in
this case is nonlinear and doubly nonlocal. Global regularity of critical SQG was
originally proved by different methods in [4, 18] and was subsequently extensively
studied. In [16], the balance law (1.3) was used to describe the solvent in a Nernst-
Planck-Darcy system of ionic diffusion in 2D and 3D. An active scalar equation
describing flow through porous media with fractional dissipation and linear non-
local constitutive law was studied in [5], and global regularity was obtained.

In this paper we show that the equation (1.1), (1.3) has global weak solutions.
We describe local existence and uniqueness results for strong solutions. We also
show that solutions with small initial data in Besov spaces slightly smaller than L%
exist globally and are Gevrey regular.

This paper is organized as follows. In Section 2, we recall results about Besov
spaces and Littlewood-Paley decomposition. In Section 3, we prove existence of
global-in-time weak solutions of (1.1), (1.3) for initial data in L>*%(R?) for some
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& > 0. If the initial data is in LP (R?) for p € (2, ], then the L? norm of any
solution of (1.1), (1.3) remains bounded in time. If the initial data is H2(R?)
regular, then we obtain a unique local strong solution. In Section 4, we show that
a global-in-time solution exists provided that the initial data is sufhiciently small in
Besov spaces that are slightly smaller than L* (R?). In Section 5 we prove that so-
lutions are Gevrey regular under a smallness condition imposed on the initial data.
In Section 6, we study the regularity and long-time behavior of solutions for small
initial data, whereas in Section 7, we show that Holder continuity of the charge
distribution is a sufficient condition for the smoothness of solutions for arbitrary
initial data, a result that is similar to the situation for SQG [11]. In Section 8,
we treat the periodic case, and we prove that the solution of the problem (1.1),
(1.3) posed on the two-dimensional torus converges exponentially in time to zero.
Finally, we consider in Section 9 the subcritical Darcy’s law electroconvection, and
show existence of global smooth solutions for arbitrary initial data.

2. PRELIMINARIES

For f € §'(R?), we denote the Fourier transform of f by

FEE = F©) = 5 | e Erax,

and its inverse by F~!.
Let ® be a nonnegative, nonincreasing, infinitely differentiable, radial func-

tion such that ®(¥) = 1 forv € [0,2] and ®(r) = 0 for ¥ € [2, o0]. Let

v
Yr)=2 (E) —®(r).
For each j € Z, let
Yi(r) =Y (2 7r).
We have
P(EN + D> Y;(IE) =1 forall & € R?
j=0
and

> Y(l&l) =1 forall € € R*\ {0}.

j=—oo

We define the homogeneous dyadic blocks

A6 = 3= | WIEDF @ g = F 1901 F (1)
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and the lower frequency cutoff functions
Sif= > Af.
k<j-1

We note that the Fourier transform of each dyadic block is compactly supported.
More precisely, we have

(2.1 supp F(Ajf) c 2/ [%, %] forall j € Z.
Let S}, (R?) be the set of all tempered distributions u € S’ (R?) such that

lim Sju=0 inS'(R?).

Jjo—o0

For f € SL([RZ), we denote the homogeneous Littlewood-Paley decomposition of
f by
f=2 Aif.

jez

Fors e R,1 < p,q < o, we denote the homogeneous Besov space
By, ;(R?) = {f € S, (R?) : || fll g, ge) < o0}

where

. 1/q
1 gy = (S 2798 F |1 o))
jez

and the inhomogeneous Besov space
By 4(R?) = {f € S"(R?) : || fllgs ,we) < 0}
where
I Nl 4 (r2) = <2fsq||5—1f||gv(ua2) + g 2jsq||Ajf||gv(R2)>l/q
j=0
with the usual modification when g = . Here,

Af= % jW@ua)f(z)eiE'X dg = F@ (- D))

We note that the definition of the space B}, ; is independent of the function ®

which defines the dyadic blocks. Indeed, any other dyadic partition yields an
equivalent norm.
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Ifs>0,1<p,q < o, then
2y _ 7§ 2 2
(2.2) B 4(R?) = B ,(R?) N LP (R?).

Moreover, the norms ||f||B§,,q([R<Z) and ||f||B,§,,q([R<Z) + [ fllLr (r2) are equivalent.
We also consider the following time-dependent homogeneous Besov spaces:
L7 (0, T;B,f,,q([Rz)) = {f(t) € 5, (R?) : W e o,7585 4 (R2))

= [FC Olgs @) lliro,m) < °°}
and
L7(0,T; B, 4(R*) = {f(t) € S,(R*) : [z (0,854 m2)) < ©},

where

. 1/q
||f||ir(o,T;B;,,q(n§2)) = ( Z 2jsq||Ajf||gV(O,T;LP([R2))> :
jez

We recall inequalities that are used in the paper (see, e.g., [3, 14, 21]).

Proposition 2.1. Let f € S} (R?).

(1) (Bernsteins inequality). Let 1 < p < oo. Let k be a nonnegative integer.
Then,

(2.3) sup [10%A; fllrwey < Ck2M1A; fllr g2
ll=k

holds for all j € 7.
(2) Letl <p <q < 0. Then,

(2.4) 1A fllza@ey < C22TVP=HDNA; £l 1p g2y
holds for all j € Z. Moreover, the continuous Besov embedding
(25) B;l’ql ([RZ) o ';;é(zl/l]l—l/pz)(IRZ)

holds for 1 < py < py < ,1<q) <qy <, ands €R.
(3) Letl<p <oo,t 20, x> 0. Then,

(2.0) le ™A fllir@ey < Ce S 2 A fllrwe)

holds for all j € Z. Here, A* is the fractional Laplacian of order & defined as
a Fourier multiplier with symbol |E|%.
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(4) LetR = (Ry,Ry) be the Riesz transform, that is, fork € {1,2}, Ry = 0kA™L
For each p € [1, 0|, there is a positive constant C > 0 depending only on p
(independent of j) such that

2.7) AR f lrr2) < CIA;f e (r2)

holds for all j € 7. Hence, for s € R and 1 < p,q < oo, R is bounded from
BS 1 (R?) to itself.

The following decomposition formula holds.

Proposition 2.2. Let f,g € S}, (R?). Then,

(2.8) Ai(fg) = D Aj(SkifAkg) + D Aj(SkgAif)
k>j-2 k>j-2

= 2 ASkngAf) + X Aj(SkfArg)
k=j-2 k=j-2

holds for any j € Z.

The proof is based on Bony’s paraproduct, and is presented in Appendix A.
Throughout this paper C (or Ci,i = 1,2,...) denotes a positive constant that
may change from line to line in the proofs.

3. WELL-POSEDNESS IN LEBESGUE SPACES

We consider the transport and nonlocal diffusion equation
(3.1) orp+u-Vp+Ap =0

in the whole space R?, where

(3.2) u=-P(pRp).

The initial data are

(3.3) p(x,0) = po(x).

Here, P is the Leray-Hodge projector, A = (=A)V2 is the fractional Laplacian,
and R = VA~! is the 2D vector of Riesz transforms.

Definition 3.1. A solution p of the initial value problem (3.1)—(3.3) is said
to be a weak solution on [0, T'] if

p € L¥(0,T;L2(R?)) n L*(0, T; H'2(R?))
and p obeys

t t
(P (1), ®) 12 — (o, )2 — J (p, 1 - V)2 ds + j (AV2p, A7) 12 ds = 0
0 0

for all time-independent test functions ® € H>/?(R?) and almost every t € [0, T].
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For € € (0,11, let J¢ be the standard mollifier operator Jef = J¢ * f, and let
p¢ be the solution of

(3.4) Orpf + 0 - Vp& + Apf —eApt =0,
where 71¢ = —J:P(p¢Rp¢) with smoothed-out initial data

(3.5 PS = JePo-

Remark 3.2. We note that P and J¢ commute, so ¢ is divergence free.

Theorem 3.3. Let T > O be arbitrary. Let py € L*(R?). Then, for each
€ € (0, 11, the mollified initial value problem (3.4)—(3.5) has a solution p® on [0, T]

satisfying
1 t 1
6.6 oS + [ IA12p5 o)l s < Sleol

for all t € [0,T]. Moreover, the sequence {p'/"™}s_, has a subsequence that con-
verges strongly in L2(0, T; L2(R?)) and weakly in L2(0, T; HY?(R?)) to a function
p obeying

1 t 1
6.7 SlelE: + [ 1727 ds < Slleol

for almost every t € [0,T1. If py € L>*O(R?) for some & > 0, then p is a weak
solution of (3.1)—(3.3) on [0, T'].

The proof is found in Appendix B.

As a consequence of the Cérdoba-Cérdoba inequality [12], the LP norm of
any solution of the equation (3.1)—(3.2) is bounded by the L¥ norm of the initial
data for any p € (2, «].

Proposition 3.4. Let p > 2 and py € LP (R?). Suppose p is a smooth solution
of (3.1)=(3.3) on [0, T1. Then,

(3.8) lo(E)llLe < llpollre

holds for all t € [0, T].

Proof: We multiply (3.1) by plp|P~? and we integrate in the space variable.
We obtain the differential inequality

d
— < 0.
dt||10||er <

This gives (3.8). O
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Remark 3.5. Weak solutions also obey

3.9) e, )l < llpollLe,

a fact that can be proved by using a De Giorgi methodology [4].

Definition 3.6. A weak solution p of (3.1)—(3.3) is said to be a strong solution
on [0, T] if it obeys

p € L*(0,T; H*(R?)) n L?*(0, T; H'*(R?)).

Theorem 3.7. Let po € H*(R2). Then, there exists Ty > 0 depending only on
| polle2 such that a unique strong solution of (3.1)—(3.3) exists on [0, To].

The proof is found in Appendix C.

4. EXISTENCE OF GLOBAL SOLUTIONS IN BESOV SPACES

In this section, we show the existence of a global-in-time solution in Besov spaces
for sufficiently small initial data. The proof uses methods of [2, 6].

Theorem 4.1. Let1 < p < oo. Let py € B?,{f’([Rz) be sufficiently small. We
consider the functional space E, defined by

Ep = {f(t) € SH(R?) : || fllg, = ”f”if"fsf/f’ + Hf”i}Bf/f’” < oo},
Then, (3.1)—(3.3) has a unique global-in-time solution p € E,.
Proof. Let p'® = 0. For each positive integer 1, let p™ be the solution of

4.1) atp(n) +Ap(") = -0, vp(n—l) in [Rz’
where
wmD = _p(p(n-DRpn-D)
with initial data
(4.2) pg” = p™(-,0) = po.

We write p™ in the integral form

t
p(n)(t) _ e—t/\po _ L) e—(t—s)/\v . (u("_l)p("_l))(s) ds
— eftApO _ B(unflipnfl),
where B is the bilinear form defined by

t
B(v,0) = L e =9IAG L (v 0)(s)ds.

(See [6] for a similar approach.)
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Step 1. Fix a positive integer . We show that
(4.3) o™ lg, < Cillpoll gy + CZHP(WU”;'

We start by estimating e~**pg in E,. We apply Aj and take the L? norm. In view
of the bound (2.6), we have

_ ey
le ™ Ajpolly < Ce € ™ 1A;polire,

and so

e pollg, = lle™*

APOHE?BW + ||€7tAPO||i%B;{f+1 < CHPOHB,Z,ff"

Now, we estimate the term B(u™~V, pm-1) jn E,. First, we note that

(4.4) B, pM=1)|p < C||u("*1)p("*1)||E%B§{f,+1_

Indeed, we apply Aj to B(u™ D, p=1) and we estimate. On one hand,
||Ajg(u(n—l)’p(n—l))”LtwLp

. t B .
< C2]H [ e ¢ H(t-s5)2) ”Aj(u(n—l)p(n—l))(s)||Lp ds
0

Ly
< C2j||Aj(u(”‘1)p(”_1))||Ll1Lp

in view of Bernstein’s inequality (2.3) and the bound (2.6). We multiply by 27/(/7)
and take the £! norm. We obtain the bound

(n-1) =Dy (-1 -1y
(4.5) IB(u P )”Li"Bf,ff’ <Cllu p ||Lt1B§1{lp .
On the other hand,
||AJ,B(u(n—1),p(n—1))”L;Lp

t .
< CH J 2Jp=€ H(t-s)27 ||Aj(u(n—l)p(n—1))(s) e ds
0

Li
< CJO (JO 2jefc_1(t*5)2»7.x[o’t] (S) dt) ||Aj(u(n71)p(n71))(5)||Lp ds

< ClA; @™ D p D)y,

where X denotes the characteristic function of the set E. Multiplying by 2/2/P+1
and taking the £! norm yields the bound

(4.6) 1B, p )y gaper < Cllu ™D p =y

F1p2/p+
LBy,
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Combining (4.5) and (4.6), we obtain (4.4). Accordingly, our next goal is to show
that

(4.7) ||u(n71)p(n71)||£%8§{1,,+1 < C||P(n71)||135n,
which gives (4.3). To establish the bound (4.7), we use the decomposition (2.8)

AjumDpm=Dy = 3 A(Su™ D Ap )
k>j-2
2 A (Skap" A7),
k>j-2

We apply the L} LP norm, and use the bound

1A flie < Cllf e

that holds for any f € S}, where C is a positive universal constant independent of
J; we obtain
”Aj(u(n—l)p(n—l)) ”L}Ll"

<C 2 IS Vligers 1Ak ™ Vi
k>j-2

+C > MSke1p ™ Vllpre 1AV 1.
k>j-2

In view of Bernstein’s inequality (2.4), we have

(4.8) ISkr1p ™ Vlpzrs < D I1AP TV |z
<k
< C > 2@ |apn-D llLerr
<k

< CIIP("fl)IIi;ch”/f-

We show below that
n-1) (n-1)]|2
(4.9) ISku™ Vliper= < Cllp™ ||i§oB§{{o
and
(4.10) AU ™V, < C||p<"-1>||i;o,;;{f( > 1Amp ™ V).

m=k-2
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Using the bounds (4.9) and (4.10), we obtain

(4.11) A ™D pn=Dy||
— 2 —
SCHp(” 1)||£§°B;/1V{ Z ||Akp(n I)HLIILV
T k=j-2
+ Z Z ||Amp(n71)||LgLn}-
k>j-2m=>k-2

We multiply (4.11) by 27©/P*1) and take the £! norm. In view of Young’s convo-
lution inequality, we have in the first term

(4.12) Z Z 2j(2/p+1)||Akp(n_l)||LI1UJ
JELk=j-2
= Z Z 2f(k*j)(2/lﬂ+1)2k(2/n+l)||Akp(n71)||L%Lp
JjEZk=j-2
< ( D 2,,-(2,,“1))( D 2j(2/"””||Ajp("’”||L;Ln)
j=-2 jez

< Cllp™ Vg

For the second summation on the righthand side of (4.11), we apply Fubini’s
theorem and then estimate as in (4.12). Thus, we have

(4.13) Z Z Z 2j(2/p+1)”Amp(nfl)”LllU]
JjEZk=j-2m=>k-2
= Z Z Z 2*(m*j)(2/l’+l)2m(2/l’+l)||Amp(n71)||L%Lp

JjE€EIm=j—4 j-2<k<m+2
— Z Z (m-j+ 5)27(1"*]')(2/Iﬂ+1)2m(2/lﬂ+1)||Amp(nfl)||L%LV

Jj€EZm=j—4
<CY > 27mmDWermam@p ) Ay, pM Dy,
Jj€Zm=j—4
+SZ Z 2—(m—j)(2/11+1)2WI(2/l!7+1)||Amp(n—1)||LéUl
j€ETm=j—4

(n-1)
<Cllp HHB;/,FH'
Here, we have used the fact that
x27X < C27%?

for all x € R. Putting (4.12) and (4.13) together, we obtain (4.7).
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We end the proof of Szep I by showing the estimates (4.9) and (4.10). For
each | € Z, we use again paraproducts to decompose A(pM~DRpM=1) 55

(4.14) A IRpY) = T ASmap ™V ARRp ™)

m=1-2

+ Z Al(Sme(n—l)Amp(n—l))_

m=1-2

In view of the boundedness of the Riesz transform (2.7) and the definition of the
Leray projector as P = I + R ® R, we bound

ISk ™ Vs < > 1AW Vs s

I<k-1
<C Z 21(2/p)||Alu(n—1)”leLp
I<k-1
<C > 21(2/’0)||Al(p(n71)Rp(n71))”L;"LV
I<k-1

for any p € [1, co]; using the paraproduct decomposition (4.14), we obtain

1Sk ™D o

<C > 2P 3 1S p ™ Ve 1AmRp "V e pp

l<k-1 mz=l-2
+C 210 3T 1SmRp ™ Ve 1Amp ™ Vg e,
I<k-1 m=l-2

We note that
1Sm+10 ™ Vlpere < Clp™ Ve porm
t Pp,1

as shown in (4.8). Moreover, in view of (2.7), we have

(4.15) ISmRp " Vllpere < > NAZRp™ Vs s
z<m-1
<C > 22UPARp Vs
zs=m-1
<C > 22UPNAp ey
zs=m-1

< Cllp™ Vg gerp-

Now we use the assumption that p < co, which implies 2/p > 0, so we can apply
Young’s convolution inequality to obtain
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(4.16) ISku ™ V| pppe
-1 L2 -1
< Clp" Dl 2 207 3 12mp ™ Vlliers |

I<k-1 m=l-2
= Cllp™mD ;e Z/p{ Z Z 27(m—l)(2/n)2m(2/p)||Amp<n71)||LtwLp}
I<k-1m=1-2

< Cllo™ Vg
which proves (4.9). We proceed to show (4.10). Using the paraproduct decom-
position (4.14) and the bound (2.7), we have
1A Vi < ClAE™ P Rp™ ) 10
<C > MSme1p " Vlirpre 1AmRp ™ Vg1

m=k-2

+C Z ||Sme(n_1)||L§°L°° ||Amp(n_1)||Lt1Lv

m=k-2

< ClP" Vligege (X 18mp™ Vi),

m=k—-2
yielding (4.10). This ends the proof of Szep 1.
Step 2. We show there is an & > 0 sufficiently small such that if C[|poll jorr < &,
P

then the sequence {p™}5_; converges to a unique solution p of (3.1)—(3.3) that
obeys [Ipllg, < 2.

First, choose an € > 0 such that C;(2¢)3 < &, where C, is the constant in
(4.3), and suppose that Cy/poll B2 < &. Then, an inductive argument yields

(4.17) lp™llg, <2 foralln = 1.
Indeed,
oM llg, < Cillpollow < € < 2¢
p,1

in view of (4.3). Suppose that |pm-D g, < 2¢ Then,
||P(")||E,, <e+C(26)3 < e+ =2e.

Therefore, we obtain (4.17).
Now, we show that the sequence {p™}7_; is Cauchy. Indeed, the difference
p™ — p™=D obeys

(p™ —pm=) (1)
t
_ J e =AY L [ (p) _ p(n=D) _ (yn=1) _ 30y (=D () ds
0

=B(u n) p(n 1) ) B(u(nfl) _ u(n),p(n—l))_
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As in Step 1, and by using (4.17), it can be shown that

(4.18) llp™ —pm Vg,
< I1Bu™,p™ —pm=V) g, + B D —u™ pr=U)|p
< Cllp™ V= p" 2,

where C(¢) is a constant depending on € obeying C(¢) < 1 for a sufficiently small
€. Therefore, the sequence {p™}5_, is Cauchy in E,, and converges to a solution
p of (3.1)=(3.3). Uniqueness follows from a similar estimate to (4.18). This
finishes the proof of Step 2. Therefore, the proof of Theorem 4.1 is complete. O

5. ANALYTICITY OF SOLUTIONS IN BESOV SPACES

In this section, we prove that solutions of (3.1)—(3.3) are analytic in Besov spaces.
Theorem 5.1. Letp € (1,0). Let ¢ € (0, %). Let py € B;{f)([RZ) be suffi-
ciently small. Then, the unique solution p € Ep of (3.1)—(3.3), obtained in Theo-

rem 4.1, obeys eXMp € Ep for all t > 0, where Ay is the Fourier multiplier with
symbol ||y = |&1] + &2 1.

Proof. The main step in the proof is to show that if

t
p(t) = ety —J e~ =INY . (up)(s) ds,
0

then
«tA atAy )3
lle*A pllg, < Csllpoll gy + Calle*™ pl[,

First, we note that the operator eX"1=2¢A s 3 Fourier multiplier that is

bounded on L? spaces for p € (1, o). The proof of this latter statement is similar
to the proof of Lemma 2 in [2], and this is based on the fact that eXtA1=2XtA jg
uniformly bounded by 1.

Accordingly, for j € Z, we have

_ — — — J
||€(XtA1€ tAAij”Lp — HeatAl ZatAe(Z(x l)tAAjPOHLV < Ce ct2 ||Ajp0||LV;

—tA

and so we have ||e*Aie pollg, < Cllpolle/{o.
P,

Now, we estimate

t
XM B(y, p) = XM J e IAY L (up)(s)ds in Ep.
0

We start by writing eXMB(y, p) as
t

eo(tAlB(u, ’U) — J eo((t—s)Alef2a(tfs)Ae(20(71)(tfs)A
0

X ecstlv ) (e—asAlae—asAlp—)(s)ds

where 71(s) = e*My(s) and p(s) = eXMip(s).
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—2xtA

Using the uniform boundedness of the operator e®A: on L? spaces for

p € (1, o), Bernstein’s inequality, and the bound (2.6), we get

le*MB(u, v) g, < Clle®™ (em*Miie™ ™M p) 11 poipe.
tbp.1
Decomposing Aj(e’“SA‘ﬂe’“SA‘ﬁ) as

Aj(e_“SAlfLe_“SAlﬁ) _ Z Aj[(e—(stlSkﬂ)(e—(stlAkﬁ)]
k>j-2
+ > Ajl(em M S p) (e M A ],
k>j-2
we have

||eO(SA1Aj(efo(SAlﬂefo(SAlﬁ) ”L;U’
<C D lle®M(em*MSiit) (e” M Ap) iy
k>j-2

+C D lleM (e NS p) (e M ART) Iy -
k>j-2

It is shown in [2] that the bilinear operator By, (f, g) defined by

(5.1) By (f,g) = e¥M (e WhiegThig)
obeys
1Buw (fs @) Ir < CIZYy fZ5 91

where C > 0 is a positive constant depending only on p, and Z}, and Z2 are
bounded linear operators on L? for p € (1,0) such that their norms are inde-
pendent of w. For simplicity, we drop the index w, and we write Z! for Z}, and
Z? for Z2,.

Consequently,

||eO(SA1 Aj(efo(SAl aefo(s/\l ﬁ) ”L}LV

<C Y NZ'S@Z*Mplige +C D NZ'Ske1pZ* Al
k=j-2 k=j-2

Now we proceed as in Szep 1 of the proof of Theorem 4.1. Indeed,

1Z' Sk Pl < D 21PN ZV A e
I<k
< C Y2 AP e < Cllpl g gerp-
I<k ’
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If we show that

(5.2) Akl e < ClANgp (2 1AmAlLn )
m=k-2
and
~ ~112
(5.3) 1 Z! Sl pr~ < C||p||i;°Bf,f{”'

then the rest follows as in Szep 7 of Theorem 4.1.
Hence, we proceed to prove the bounds (5.2) and (5.3). We note that

a — eo(sAlu — ecxsm [P’(pRp) — ecxsm p(e—tstlﬁefasAlRp—)_
We decompose Aj(e~ M pe~*MRp) as

Al(efo(sAlp—e—o(sAlRﬁ) _ Z Al[(e—asAlsmHﬁ)(efo(sAlAme—)]

m=1-2

+ > Al(e M ARp) (e NS, Rp) ]

m=1-2

In view of the boundedness of the operators Z! and P, we estimate

1Z'Skitllers < C > 2" || Ap e

I<k-1
<C 3 2O arfe M (em N pem SN RA) ||
I<k-1
<C > Y 2By (Smi1h AmRA)lLpLr
I<k—-1m=1-2
+C Z Z 2l(z/p)”Bas(SmRﬁ,Amﬁ)HL;”Lv
I<k—-1m=>1-2

where By, (f, g) is defined in (5.1). This implies that

12 Skdiller <C > > 21D (2! Sps1 P)(Z*AmRP) 1510
l<k—-1m=1-2

+C D> S 22 S Rp)(Z2AmP) Lz rr
I<k—-1m=>1-2

Now we proceed as in (4.15) and (4.16), and we obtain (5.3). Finally, we estimate

Ak, < CllAke®™ (e p) (e Rp) ||y
<C Y [[e™M (e M Spma1f) (e M AR |
m>k-2

+C Y [leM (e MSRp) (e M A p) ] 11

m=k—-2
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=C Z ||B(x5(5m+1p~,Ame~)”L;Ln

m=k-2
+C Z ||B(x5 (SmRﬁ,Amﬁ) ||LgLn
m=k-2
<C > N1Z'Sm1pllLyrs 1Z*AmRp i 1w
m=k-2
+C > NZ'SmRplpre 1Z2Amp e
m=k-2
= Clpleger (3 18mpliy),
m=k-2
which proves (5.2). This ends the proof of Theorem 5.1. O

6. REGULARITY OF SOLUTIONS FOR SMALL INITIAL DATA

Here, we consider the regularity of solutions of (3.1)—(3.3) for small initial data.
We use the following lemma.

Lemma 6.1. Let j € Z, t > 0, x € [0,1), ¢ > 0. Then, there is a positive
constant C > O that depends on & but does not depend on j or t such that the estimate

t
6.1) J 2emct=9)2 g~ q¢ < Ct=«
0

holds.
Proof. We split the given integral into the sum
t/2

t , , , t ,
J Dip—ct=92 ¢—at g — i cU=9)2 gmxqg 4 i c=92 gy,
0 0 t/2

Using the fact that 2ie=ct=927 < C(t — s)~ forall s € [0, /2], we estimate

t2 , t/2
6.2) 2le=ct=1Yg-aqe < C| (t—s)" s *ds
0 0

t/2
< Ct’lj sT%ds < Cut ™.
0

Using the fact that s7* < 2%t~ ® forall s € [t/2, t], we estimate
t

t j M
(6.3) J 2igmct=9)2 gmx g < Cat*"‘J 2ip—c(t=5)27 ¢
t/2 t/2

= Cut ™ X[1 —e 27"t < Cut .

Adding (6.2) and (6.3), we obtain (6.1). O
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Theorem 6.2. Let « € [0,1), B > 0. Let py € B (R?) n BE S (R?) be
sufficiently small. Then, there is a positive constant C > O depending on the initial
data so that the unique solution p of (3.1)—(3.3) satisfies sup,., t*| p(t) g =<C.

Proof. We consider the approximating initial value problem (4.1)—(4.2) whose
solution is given by

p(")(t) _ e—tAp0 _ B(u(n—l),p(n—l))_
First, we estimate

L 27F e A A po i < Ct%e 2" 27F || Apo |
< C277%2IB | A poll~ < Cllpoll g

in view of (2.6) and the bound x%e™* < C that holds for all x > 0.
We show that

(6.4) sup{t*[Bu™ D, p™ D) (t)l 5}
t>0 '

< Cllp™ V|2 garp sup Lt o™V () g 1.
t Pp,1 t>0 00,00

First, we apply A; to B(u™~, p"~1) using the paraproduct decomposition

AjumDpm=Dy = 3 A(Sru™ D Ap ")
k>j-2
2 Aj(Skep™ M),
k>j-2
and we obtain
ABu Y, pMy = By (D, pM) 4+ By (M, ph)

where
Blj(u(n—D,p(nfﬂ)

t
= L e~ (I=9Ay . [ > Aj(Sku(”‘l)Akp("‘”)](s)ds
k=j-2

and
sz(u(n—D,p(nfﬂ)

t
= L e I=9Ay . [ > Aj(Ska("‘”Aku(”‘”)](s)ds.
k>j-2
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In view of Bernstein’s inequality (2.3), the bounds (2.6) and (4.9), and Lemma 6.1,
we estimate

27818y j(u™D p Dy
t

< Cziﬁzij

. e—c(t—s)zf[ Z ISk ™D | ||Akp(n—1)||Lm] ds

k>j-2

_ 2
< Cllp"™ Vliep,

o . .
X{J (2Je—c(t—s)215—(x)< s 2—(k—J)BS(x2kB||Akp(n—1)||Lm>ds}
0 -
k>j-2

t
— 2 — i —c(t— o
< Cllp"™ Vliep, stu[g{to‘llp(" l)llBgm}JO 2 ct=92 gmx g
>

< Ct=%|[p™V

2 _
izgy, sup{tlp™ Vg 1,
t>0

and so,

(6.5) t¥27B By (D, p D) s

_ 2 _
< Cllp™ Vlizp, Stug{t“llp‘" Dligs 3
>

Now, we estimate 27818, j(u™=1, pM=D)|| . We note first that

> 92 AV
k>j-2
<C Y 2P| a(p™VRp™ V)1
k>j-2

<C Y sU8( Y 1Sp ™ Vs AR ™V )
k=j-2 I=k-2

+C Y sf P ISIRp MY I 1A ™ )
k>j-2 1=k-2

< Clp™ Dligppy, > 2 27 2P ap® D
Ckzj-212k-2

=Clp™ Vg, > 2 270Ps 2B ap® V.
’ 1>j—4 j-2<k<l+2

= Clp ™ Vligpsy, 2 U=j+52 P 2TV
T -4

< Clp ™ Vlizpgy, suptt®llp™ Ve 3.
" t>0 '
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Here, we have used the boundedness of the Leray projector in Besov spaces,
the paraproduct decomposition (4.14), the bound (4.8), Fubini’s theorem, and
Young’s convolution inequality. This implies

27811 By j(u™ D, pM Dy || L
t .
e—c(t—s)zl[ Z ||Sk+1p(n—1) Il e ||Aku(n—1) ||L°°] ds

< Cziﬁzlf
k>j-2

0
2 t ;
< Cllo" Vlf=p, Sup{t“llp("f”llggm}J 2emct=92 gma g
" t>0 ' 0
_ “n12 _
<Ct a”p(n 1)||1?B%lsup{t<x”p(n U”Bﬁm}’
T t>0 ’
and hence

(6.6) t 2B By ;(u ™V, pM D) 1w

_ 2 _
< C||p(n 1) i?"Bi,l Sug{t“”p(" U”Bgm}'
t> ’

Putting (6.5) and (6.6) together, we obtain (6.4). Therefore,

sup t1p™ ()l s
t>0 ’

— 2 —
< Gsllpollgs-o + Callp™ VI gy, supltllp™ " () llgg -
' T t>0 '

Now, we use the smallness of the initial data and proceed as in Theorem 4.1. We
omit further details. O

We recall the following relationship between the inhomogeneous Besov space
B3, ., and Hélder spaces.

Remark 6.3. For s € R* \ N, the inhomogeneous Besov space Bﬁo’oo([Rz)

coincides with the Hélder space Cls1s=Is1(R2) of bounded functions f whose
derivatives of order || < s are bounded and satisfy

10%f (x) = 3% f(»)| < Clx — y|*~1s!

for |x — y| < 1 (see [3]).
As a consequence, we obtain the following regularity result.
Corollary 6.4. Lets = 1 be an integer, and let

po € L (R?) n B} (R?) N BST L2 (R?)

be sufficiently small. Further, let p be the unique solution of (3.1)—(3.3). Then,
DYp € L*(R?) Jor |y| <s, and its L® norm is uniformly bounded in time. More-
over, for |y| < s, DY p is Holder continuous with a uniform-in-time Holder bound.
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Proof. In view of (2.2), the bound (3.9), and Theorem 6.2 applied with & = 0
and B =5+ %, we have

o () llgenz < CLIPO gz + o)1=} < C(1+ llpollz),

where C is a constant depending only on the initial data. Remark 6.3 completes

the proof of Corollary 6.4. O

We now consider the long-time behavior of derivatives of solutions of (3.1)—
(3.3) for sufficiently small initial data in Besov spaces.

Corollary 6.5. Let s = 1 be an integer, and 6 € (0,1). Ler also
po € L®(R?) N B} (R?) N B2 (R?)
be sufficiently small. Let p be the unique solution of (3.1)—(3.3). Then,

(6.7) tlgrglo{llDyp(t)lle +[DYp(t)]s} =0 forall |yl <s,

where

[DYp(t)]s = sup [DYp(y) - DYP(X)I'
0<|x-y|<1 lx —y|®

Proof. We show that p(+,t) € H*(R?) in order to apply Remark 3.5. Indeed,

J, o s, at <[ o, at=c |3 21800t
jez
=C Y 2Y8p®) e = Cliplifig, <o
jez

in view of the continuous Besov embedding (2.5) and the monotone conver-
gence theorem. But B3, coincides with the Sobolev space H2. Thus, we have
lp(t) 2 < oo for almost every t € (0, ), and so p(-,t) € H? for almost every
te[0, ).

In view of Remark 6.3 and Theorem 6.2 applied with & = 5 and B = s + 6,
we obtain

IDYp (D)= + [DYp(t)]s < Cllp ()l psss

1 ool )
S C (t '5+ + (t o S C 7 + T+ Ctlonll e ’
o) lgges + llp(0) [} <ﬁ 1+ Ctlpollie

where in the last inequality we used a time-decay estimate [12]. Letting t — oo,
we obtain (6.7). O
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7. REGULARITY OF SOLUTIONS FOR ARBITRARY INITIAL DATA

In this section, we prove that any solution of (3.1)—(3.3) is smooth for arbitrary
initial data, provided it satisfies a certain regularity condition.

Theorem 7.1. Let p be a weak solution of (3.1)—(3.3) on [0, ). Ler 0 < to <
t < oo If

(7.1) p e L®([ty, t1;C%(R?)) forsome S € (0, 1),
then
(7.2) p e C®((ty, t] x R?).

Proof. We sketch the main ideas. Let us note first that
(7.3) u € L™ ([to, t1;C°(R?)).
where u = —P(pRp). Indeed, for any s € [t, t], we have

lu(s)lics < Clip(s)Rp($)llcs
<CllpS) = IRp ()L + Cllp($)llz= IRp(S) |l cs
+ ClIRp($) L= lp(s) s

< Cllp()][zs

in view of the boundedness of the Leray projector and Riesz transforms on the
Holder space C?. Consequently, the Holder regularity of p imposed in (7.1)
gives (7.3).

Next, we show that

(7.4) p € L™ ([to, t]; By, (R*) N CO (R?))
and
(7.5) u € L ([to, t]; BY', (R?) N CO1(R?))

forany p > 2 and 61 = 6(1 — 2/p). Indeed, for any s € [to, t], we have

Lo ()l ga1_ =sup (2271 A;p($)]I1r)
e jez

< sup (227]|2;0()][1=""7 140 () II72")
jez

< CUps)lgs )Pl
< Clp(s)lles) 2P| ()|,
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and similarly
1)l = CCS)lgg )7 (o)

< CUlus)lles) =27 |p(s)|[2F.

The last inequality holds in view of the boundedness of the Leray projector on

L? followed by an application of Holder’s inequality with exponents 4,4. The
interpolation inequality [|p(s) I+ < ||[)(S)||i£o2 ||p(5)||¥2 together with (7.3) and
(7.1) gives (7.4) and (7.5).

Now, we proceed as in [11]. We apply Aj to (3.1), we multiply the resulting
equation by p|AjplP~2Ajp, and we integrate first in the space variable x € R?

and then in time from t( to t. We obtain the bound

. t . ,
(7.6 1ap(0)lr < Co @0 asp(te) 1+ C [ e/ -020-200;
to

x (o) o usHliga + lus)lics lp()lizn )ds

(see [11] for details). We multiply by 22917 and take the £ norm in j. This yields
the bound

o (D)l s, < Csup{227e=¢ =Y ||p(tg) || o+ Csup{l — e~ (E-0)}
e jez e jez

X sup {llp(s)lica lu(s)lzo + llu(s)lico lp($)zo 3
selto,t] e P
Therefore,
p(-,t) € BXL(R?), foranyp = 2.

In view of the continuous Besov embedding (2.5), we have the continuous inclu-
sion
B;(,Sf}o(Rz) i Bgol?éoiz/p(ﬂkz) forany p > 2.

We choose p > (2 +26)/6 so that 26, — 2/p > 61, so
(7.7) p(,t) € B2 (R?) N C(R?)  where 55 > 6.

In fact, the spacial regularity (7.7) holds at any s in [ty, t] because the pointwise-
in-time estimate (7.6) holds at those times as well. Now we iterate the above
process infinitely many times to upgrade the spacial regularity of the solution, and
we simultaneously use the PDE (3.1) to upgrade their time regularity. This yields
the desired smoothness (7.2), completing the proof of Theorem 7.1. O
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8. PERIODIC CASE

In this section, we consider the initial value problem (3.1)—(3.3) posed on the
torus T2 with periodic boundary conditions. We assume the initial data po have
zero mean. We prove existence and regularity of solutions.

Theorem 8.1. Let 1 < p < . Let py € Bf,{lp(ﬂ'z) be suffficiently small. We
consider the functional space E,, defined by

Ep(T?) = {f(t) € D{(T?) :

”f”EpﬂTz) = ”f”igoB;/f’(-n'z) + ”f”i%B;/f]H(Tz) < OO}

where Dy (T?) is the dual space of
Do(T?) = {f e C>(T?): Lpf(x)dx = 0}.

Then, (3.1)—(3.3) has a unique global-in-time solution p € E, (T?).

The proof of Theorem 8.1 follows from the proof of Theorem 4.1.

In view of the Besov embedding and Theorem 8.1, we can conclude that if
po € B3 (T?) is sufficiently small, then there is a constant C > 0 depending only
on the initial data such that the unique solution p of (3.1)—(3.3) obeys

(8.1) sup 1V0(8) ll2r2) + jo 1Ap(6) 22y dt < C.
t>0

Using this latter estimate, we end this section by showing that the L?(T?)
norm of A/2p converges exponentially in time to zero.
We use the following uniform Gronwall lemma [1].

Lemma 8.2. Let y (t) = 0 obey a differential inequality

d
ay+c1y <F +F(t)

with initial datum y (0) = Yo with F1 a nonnegative constant, and F (t) = 0 obeying

t+1
J F(s)ds < goe ' + F,
t

where 1, Ca, go are positive constants and F, is a nonnegative constant. Then,

e
1—e

Y(t) < yoe 1t + goer T (t + 1)et + ciFl + F
1

holds with ¢ = min{cy, c3}.
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Corollary 8.3. Let po € B} | (T?) be sufficiently small. Then, there is a constant
C > 0 depending only on the initial data such that the unique solution p of (3.1)—
(3.3) obeys

(8.2) IAY2p ()| 52y < Ce™ forall t = 0.

Proof. We take the inner product in L2(T?) of (3.1) with Ap to obtain

2dt||A”2p(t)||Lz = + 1A O[22 = J (u - Vp)Ap dx.

We estimate the nonlinear term

‘ er(u -Vp)Apdx | < Cllpllr=) lpllsay IVo sy IVl

< Clipllse [1Vollzsr 1Vl )

< Cllpllibte 1V ol APl

in view of the boundedness of the Leray projector and Riesz transforms on L4(T?),
the continuous embedding W'#(T?) — L®(T?), and the Ladyzhenskaya interpo-
lation inequality.

Since H'(T?) is continuously embedded in H'/2(T?), we have

IAY2pll12(r2) < CIIAPN12(12),
yielding the differential inequality
d
(8.3) EIIAI/ZPHU(W) + CLIAY2p 12 r2)
12 5/2
= C2||p||L£(T2) ||VP||L£ 12 AP N2 (12).
We note that

(8.4) o)l < Cllpollzae ™t forallt = 0.

Indeed, we multiply (3.1) by p and we integrate in the space variable. Then,
we use the cancellation of the nonlinear term and the continuous embedding of
HY2(T?) in L2(T?) to obtain

d
EHP(t)HLZ(W) + Cllp(®) l2(12y <0,
which gives (8.4).

Now we go back to the differential inequality (8.3). Using the bounds (8.1)
and (8.4) together with Lemma 8.2, we obtain (8.2). 0
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9. SUBCRITICAL PERIODIC CASE

In this section, we consider the subcritical case where the dissipation is given by
A% for & € (1,2]; that is, we consider the equation

9.1) op+u-Vp+A%p =0
posed on T2, where

9.2) u=-P(pRp).
The initial data are given by

9.3) p(x,0) = po(x)

and have zero mean.
Global weak solutions exist, as follows.

Theorem 9.1. Let x € (1,21, and T > 0 be arbitrary. Let also py € L2(T2).
Then, (9.1)~9.3) has a weak solution p on [0, T] obeying

1 t 1
EHp(t)Hizqz) + JO ||Aa/2p(5)”%2(T2) ds < EHPOHiZ(Tz) fOI't S [O,T]

The proof is similar to that of Theorem 3.3, and we omit the details.
We note that the regularity of the initial data imposed in the critical case
(x = 1), namely py € L2%% for some & > 0, is not required in the subcritical case
in view of the fact that p obeys
p € L*(0, T; H¥?(T?)).

The following proposition is the analogue of Proposition 3.4.

Proposition 9.2. Let x € (1,2], and let p > 2 and py € LP (T?). Suppose p
is a smooth solution of (9.1)—(9.3) on [0, T1. Then,

lp ()l r2y < llpollLrr2) holds forall t € [0, T].
Moreover, if pg € L*(T?), then
||p(t)||Loo('|]'Z) < ||p0||Loc('|]'Z) hOldS fOI‘ all t e [0, T]

The solutions of the initial value problem (9.1)—(9.3) with large smooth data
are globally regular.
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Theorem 9.3. Let x € (1,2], s > 0, and T > 0 be arbitrary. Furthermore, let
po € HS(T2) N L®(T?). Then, there are positive constants C1, Ca, and C3 depending
only on || pollL=(12) such that the solution of (9.1)—(9.2) with initial data py exists
and satisfies

(9.4) IASp ()l 212y < 1A poll 272y €€t
and

t
9.5) JO A2 (1) |, 2y AT
< [[A°pollf2r2) + Cal|A ol [72r2) (€S = 1) for t € [0, T].

Proof. Fixasmall € € (0,1) such that & > € + 1. We multiply (9.1) by A*p,
and we integrate in the space variable over T2. We obtain the equation

1d 2 2
SN Pl + 1Al ) = - er(u - Vp)A¥pdx.

We estimate the nonlinear term. Integrating by parts and using Hélder’s in-

equality, we have
‘ J Z(u ) vp)AZSpdx' — ' [ 2A/\S—(X/Zv . (up)AS-HX/Zde
T T
< IAS=*2 ) 2 () INST X2 p |22y -

In view of the commutator estimate

(9.6) IA°(fFg) e r2y < Cllglloe rzy IA® FllLez 2y
+ CIIN gllrrs (v2) L f |l opar2)

that holds for any mean zero functions f,g € C*(T?), s > 0, p € (1, %), with

p P P2 ps ops T

(see [10]), we estimate
||Asfo(/2+l(u )” < CH AS*O(/2+1
P22y < Cllullp2re 2y | pllpza-o (12
+ Cllpllp= ) 1A% 2 || 12 2.

In view of the boundedness of the Riesz transforms (and hence the Leray
projector) on L?(T?) for p € (1, ) and Proposition 9.2, we bound

lullp2re(r2y < CllpRp | p2rer2y < Cllpllps 2y o lp2re (12
2 2
< Cllplli=(r2y = Cllpollz=y2)-
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By the commutator estimate (9.6), we have

IAS=2H |l 22y < CIAS™ 2 (pRp) |l 12(12)
< Cliplie ) IA* 1 Rp |l 2 (12)
+ CIIRP Nl 2re(r2) 1A~ ol pasa-e) (2
< Clipollzs 2 IAS~2  pllp2(p2)

+ CllpollL=12) IAS~* 2 pl 1200 (12
Hence

— 2 _
IAS~2  (up) |2y < Cllpollze vz 1A~ pll oo (12

+ C||p0||12_°°('ﬂ'2) ||A37a/2+1p ”LZ(TZ) .

In view of the continuous Sobolev embedding H®(T?) — L2/(1=8)(T?), we
obtain the bound

- 2 -
A2 )2y < Cllpolle rey 1A 924 p 2y

2 _
+ C||p0||L°°('ﬂ'2)||AS (X/ZHPHLZ(W)-

Using the Sobolev interpolation inequality

9.7) A% fll2 ey < C||/\S°f||iz_gr2) A f I )

that holds for any mean zero function f € H*(T?) and s; = (1 — 0)sp + 0 S2,
o € [0, 1], we estimate
[AS=X2 |l 22y < CUIAS pllp2(rey) 2@ D/
X (|ASTX2p || 122y ) 2/ &1
and
[AS=X24 141 22y < CUIAS pllp2(r2)) 2 & €D/

X (||A5+a/2p||Ll(1]’2) )2(e+1)/¢x—1 .
Consequently,

IAS= 2 (up) 22y IAST 2 pll 2 (12
2 .
< C||p0||L°°('n'2)(”ASPHLZ(P))z(O( ETDIX(ASTE2p || 122y ) HEF D

2 _
+ CHPoHLqu)(||ASP||L2(1I2))2(°‘ DICASTA 2 p || 122y ) 2 &,
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By Young’s inequality, we end up with
2 1 2
‘ er(u - VPIAZpdx| < CplIAplliar) + z”AHa/ZPHLZ(W)

where Cp, is a constant depending on the L* norm of the initial data py.
Therefore, we obtain the differential inequality

d 2 2 2
9.8) ap NPl + A2 pl[ 12 12y < 2Cp, |IA° P2 129,

which gives (9.4) and (9.5). O

We have shown existence of global smooth solutions in the subcritical case,
provided that the initial data is smooth enough. No smallness condition is im-
posed on the size of the initial data.

Remark 9.4. The solutions in the subcritical case are unique. This is obtained
by following the same argument as for the uniqueness of local strong solutions in
the critical case (see the proof of Theorem 3.7 in Appendix C).

Remark 9.5. The results obtained in Theorem 9.3 hold as well in the whole
space R? when the initial data is smooth. The proof of Theorem 9.3 is mainly
based on commutator estimates (9.6) which hold in the whole space (see [17]),
the uniform boundedness of the L¥ norms of solutions to the subcritical equa-
tion which is obtained in R? (see Proposition 3.4 and Remark 3.5), and periodic
Sobolev interpolation inequalities given by (9.7) which, in the whole space setting,
becomes

1 Ve @) < ClF ko gey 1FN5rsr oy
for f € H2(R2?) and 51 = (1 = 0)so+ TS, 0 € [0, 1]. Therefore, the differential
inequality (9.8) becomes

d 2 2 2
EHASpHLZ([R{Z) + (1A pl[ 12 mey < CYIIA P72y + G,

where CY and CY are constants depending only on the initial data, yielding the
desired bounds.

APPENDIX A. PROOF OF PROPOSITION 2.2

In this appendix, we prove Proposition 2.2.

Proof. Let f,g € S},. Bony’s paraproduct gives the decomposition

fg=> Si-1fAjg+ > SiaigAif+ > AjfAjg.
JEZ JEZ lj—Jj'l=1
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We note that

> AifArg =Y AjfAg+ D A fA g+ D AifAjag

lji-J'l=1 jez jet Jjet
= Z AjifAig + Z AifAji1g + Z Aj-1fAjg
Jjez Jjez Jjez
= D (Ajf +AiNAG+ D AjifAjag.
jez Jjez
This implies that

fg=> SinfAjg+ > Sighif.
jez jez

Now we apply A;. In view of (2.1), we have

(A.1) k<j—2= Aj(SkgArf) =0
and

(A.2) k<j-3=A;(SkafArg) = 0.
Indeed,

F A5 (SkgAL)E) = ¥ (EDF (SgBe) ()
~wEn] X | wiE-y)FaE - n(yNFF )y}

I<k-1
“HOED] X | RUESYDFOE -~y YD FF 0]

= Y (IEN ¥ (8),

where

BE= S L W(E - YD FIE - MWy DFL () dy.

l<ke1 ) 2K12=ly1<2K5/4

Fixl < k — 1. Let v € R? be such that 2¥/2 < |y| < 2k5/4 and ¥, (|E — y|) # 0.
This implies that | — | < 2!5/4, and so

l k k-1 k
|§|SIE—yI+|y|s%+%5245+24—5=2’<—315.

Consequently, if [§] > 2k=315, then ¥;(|E — y|) = 0 forall I < k — 1 and for
all y satisfying 2k/2 < |y| < 2k5/4, and so ¥x(E) = 0. We conclude that the
support of ¥y is included in the closed ball centered at 0 with radius 2€-315. But
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the support of ¥;(| - |) is included in the closed annulus centered at 0 with radii
27/2 and 275/4. Therefore, if k + 1 < j — 1, then 2315 < 2k*1 < 27-1 and
so F(Aj(SkgArf)) = 0, which gives (A.1). The property (A.2) follows from a
similar argument. Therefore, we obtain the decomposition

Aj(fg) = D Aj(SkerfArg) + > Aj(SkgArf).
k=j-2 k=j-2

This ends the proof of Proposition 2.2. O
APPENDIX B. PROOF OF THEOREM 3.3
Proof. We take the L? inner product of (3.4) with p#, and obtain

1d

(B.1) 2dt

[l I1Z: + 1A 2p% 22 + €l | Vo[ 12 = 0.

Here, we used the fact that ¢ is divergence free, which implies that
(af - Vpt, p*) = 0.

Integrating (B.1) in time from 0 to t, we obtain (3.6). Therefore, the family
{p?: €€ (0,11} is uniformly bounded in L?(0, T; H'/?). Moreover, we have

(AP, @) 2] = [(AV2pE, AV20) 12| < [IAY2p% |12 |20 12
< CIIAY2p% |2 1@l prsie,
l(=Ap%, @) 12| = €] (pF, —AP) 12| < CllpElIp2 1@l srz,
and

(G - Vp&, @) 12| = | (18 pE, V@) 12| < (18112 11 9% 12 V@ I
< Cllpfl1E pf Nl 1@l

for all ® € H>2. Here, we used the boundedness of the Riesz operator on L4, and
the continuous Sobolev embedding H 3/2 . 1 Therefore, we obtain the bound

15 - V& llg-s + IAP N5 + EllAPE -5

< C(lpfIp Nl + %l + 1A% 12).

In view of the continuous embedding H 12 o, 14 we conclude that the family
{0ipf : € € (0,11} is uniformly bounded in L'(0, T; H>/?). Now, we note
that the inclusion H'/?2 — L? is compact whereas the inclusion L2 — H™/2 is
continuous. Let &, be a decreasing sequence in (0, 1] converging to 0. By the
Aubin-Lions lemma and (3.6), the sequence {p®r};_; has a subsequence that
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converges strongly in L2(0, T5 L?) and weakly in L2(0, T; H'/?) to some function
p. By the lower semi-continuity of the norms, we obtain (3.7).

For simplicity of notation, assume p¢ converges to p strongly in L2(0, T; L?)
and weakly in L?(0, T; H'/?). We note that

t
(05 (1), ®)12 — (po, B2 + JO (@ - Vp?, &) 2 ds

t t
+J(A”HﬁJU”@huk+£J(Vpﬂv¢hub=0
0 0

holds for all ® € H>'?2 and t € [0, T]. Without loss of generality, we may assume
that p€ converges to p in L? for almost every t € [0, T], and so

[(pe(t), @)1z — (p(£), @) 2| < [Ip® = plir2 1@z — 0

for all ® € H>/? and almost every t € [0,T]. By the weak convergence in
L2(0,T;HY?), we obtain

t t
‘JmWfAW@pm—JmmmN%mmS~0
0 0

for all ® € H>/2 and all t € [0, T]. For the nonlinear term, we let ® € H>/?,
t € [0,T], and write

t t
[ (it - Vp&,®)p2ds —[ (u-Vp,®)p2ds
0 0

t t
—_ L ((0° - p)u, V)12 ds - jo (@ — w)pt, V) 2 ds

=1 + 1.
We note that
t 2
L] = Cll s L oI 105 = pllzds — 0

by the Lebesgue Dominated Convergence theorem. For I, we split it as

t
I = JO ((JP(p(RP — Rp)))pE, V)12 ds

t
. JO ((JeP((pF — pIRP%))p%, V)12 ds

= 12,1 + 12,2.
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In view of the boundedness of the Riesz transform on L? and the boundedness of
the Leray operator on L4/3, we have

t
1] < ClI®llps2 JO Ip%lILa IP(PR (P = p))llLass ds

t
< Cll® ]y L 10 10114 0% - pll2 ds

t 2 1/2 t 3 2 1/2
< Cl@lse( | Nofliteds) (] llelillet = pllfds) 0

by the Lebesgue Dominated Convergence theorem.

We note that we have not yet used the assumption that py € L?>*9. This will
be needed to estimate |15 |. Indeed, we multiply equation (3.4) by pElpt|%, and
we integrate in the space variable. We use the Cérdoba-Cérdoba inequality [12]

J , IpE1% (pEApE) dx = 0,
R
and we obtain the differential inequality

d
E”PE(t)HLu& < 0.

Integrating in time from 0 to ¢, we end up having the bound
e (E) 225 < llpollpaes  forall t € [0, T).

Asa consequence,

t
22| < Cll®@l s L Ipfls &N avs 1pF = pllpsrasrse ds

t
< Cl1® 32 I poll 25 JO lp%1ls |of — pl| B35 ||pF = pl| 7010 as

t ) 2/(2+9) t ) 6/(2+06)
< Cll®llgs2 ||P0||L2+6<JO ||pf||L4) (L lo* = Pl ds)
t ’ 1/2
+ Cli®llps ||po||Lm(Jo ||pf||L4)

too (2-8)/(4+28) , ct 5 5/(2+8)
X <L llpllLs dS) (JO o = pllr2 ds) - 0.

Here, we used the interpolation inequality

If 1 L sra)r2v30) < C||f||£226)/(2+6)||f||](§_5)/(2+5)’

which holds for any f € L4.
Thus, p is a weak solution of (3.1). This ends the proof of Theorem 3.3. DO
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APPENDIX C. PROOF OF THEOREM 3.7
Proof: We apply —A = A? to (3.4), and obtain

(C.1) —0;Apf — 0k - VAPE —2VUEVVpE — Alif - Vpf + A3pf + eAApE = 0.
Multiply (C.1) by —Apé#, and integrate over R2. Given (iif - VApE, Ap®)2 = 0,
we obtain

1d
S APEIIE + 1A% |22 + el A%

2dt
= =2(VUa*VVp, Ap®): — (AU - V¥, Ap®) 2.

Using the product rule || fgllgs < Cll.fllgs 1gllz=+Cligllms II.f Iz~ that holds
forany f,g € H, s > 0, we estimate

IVaslips < Cllatllpse < Cllp*Rpllps:e
< Clpfliee lIRpHIps2 + CIRPE = | p% Nl 132
= Cllp*[zar-
Here, we have used the continuous embedding H'/> — L4, the fact that the Leray

projector is bounded on H?/2, and the boundedness of the Riesz transforms as
operators from H?/? into L*. Similarly, we bound

AT s < Cllp*RpE s
< Cllptliee IRpEMlgsiz + ClIIRP = IRpE Ml s
< Clipllpsi 1p=psa.

Consequently,

2 2
A0 + (1A p%| I
< 2Vl 1V V% s 1Ap% e + AT |4 |V p% s 1 AP% I

4
dt

S

< Cllof [ llo s 1805 2,
and, by Young’s inequality, we obtain
d £]|2 5/2 H€||2
g 180° ML + 1Al

< Cl|p% |32 1|80 |1 + Cllo% 75 105122 AP 12
6 4
< C(le*llg2 + 1lo%[lg2)-
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We note that

Il = 11+ 1D F () ()2 < CllFpElz + CllApElL:
= Cllptliz + CllApE 2 < Clipollzz + CllApE|iz2

in view of Plancherel’s theorem and the uniform boundedness of p¢ in L? de-
scribed by (3.7). Therefore, we obtain the differential inequality

d
(C2) 18P + 1A% 2 = Cllapf + Cp,

where Cp, is a positive constant depending only on py and some universal con-
stants. This implies that

S (1apel1E + 1) = Colllapt . + 1)

for some constant Cy depending only on the initial data. Dividing both sides by
(IIApE1%, + 1)3 and integrating in time from 0 to t, we get

1 1
2 7 = 2
2([lapel + )7 2(lapollr + 1)

5~ CoTo forallt € [0, T()].

We choose a positive time Ty > 0 such that

1
< 2 29
2Co([|apollp> + 1)

Ty

and we conclude that

2
A 1
HApg(t)Hiz < || pO||L2+

V1= 2CoTo(||Apo| 2 + 1)

forall t € [0, Tp].

In view of the energy inequality (C.2), we also have that

To
JO 1A% p% (0)]|72 dt = T(po, To),

where T'(po, To) is a positive constant depending only on the initial data and Tp.
This shows that {p¢ : € € (0, 1]} is uniformly bounded in

L®(0, T; H*(R?)) n L%(0, T; H>/2(R?)).

Passing to the limit on a subsequence and using the lower semicontinuity of
norms, we conclude that the weak solution p, obtained in Theorem 3.3, is strong.
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For uniqueness, suppose that p; and p, are two strong solutions of (3.1) on
[0, To] with the same initial condition. Let p = p1 — p> and u = ©u; — u;. Then,
p obeys the equation

op+u-Vpr+uy-Vp+Ap =0.
We take the L? inner product with p, and obtain

1d

EEHlJIliz +[AY2pll7: = —(u - Vp1,p)12.

In view of the boundedness of the Riesz transforms on L4, we have

lulle < IP(eRp) s + [IP(p2RP) I 14
= Cliplizs IRp1llL= + llp2llz= IRp Il L4
< Cllpllslipilipse + llp2llpsr2).

Hence,

[(u - Vpr,p)ezl < llulles [IVprlis llplic

1 2 2 2 2 2
< sllelle + Clellise + o2l ez ol

Therefore,
d
Lol < Kool

where ) , ,
K(t) = C(|lprllgsr + o2l o1 [gre-

We note that K(t) is time integrable on [0, Ty] since p; and p; belong to the
space L*(0, To; H2(R?)). This shows that for each t > 0, p1(-,t) = pa(-, 1)
almost everywhere in R?, and so we obtain uniqueness. This completes the proof

of Theorem 3.7.
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