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ABSTRACT. We consider the evolution of a surface charge density
interacting with a two-dimensional fluid in a porous medium. In the
momentum equation, Stokes’s law is replaced by Darcy’s law balanced
by the electrical forces. This results in an active scalar equation, in
which the transport velocity is computed from the scalar charge den-
sity via a nonlinear and nonlocal relation. We address the model in
the whole space R2 and in the periodic setting on T2. We prove the

global existence and uniqueness of solutions in Besov spaces Ḃ
2/p
p,1 for

small initial data. We also obtain the analyticity, regularity, and long-
time behavior of solutions.

1. INTRODUCTION

Electroconvection, the evolution of charge distributions in fluids, was investigated
experimentally and numerically in situations in which the fluid and charges are
confined to thin films [13, 19, 20]. The charge distribution is carried by the fluid
and diffuses because of the parallel component of the electrical field. This results
in a nonlocal transport equation for the charge density Ã:

(1.1) "tÃ +u · 'Ã +�Ã = 0

where � = (2&)1/2 is the square root of the two-dimensional Laplacian and u
is the fluid velocity. The fluid is incompressible and is forced by electrical forces
F = ÃE, where E is the parallel component of the electrical field E = 2'§, with
' the gradient in R2. The relationship between the electrical potential § and the
charge distribution confined to a two-dimensional region is

§ = �21Ã,
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and we thus have

(1.2) F = 2ÃRÃ,

with R = '�21 the Riesz transforms. In general, the fluid obeys Navier-Stokes
or related equations driven by the forces F . The derivation of this system for the
physical setup in bounded domains was obtained in [7], where global regularity
and uniqueness of solutions were obtained for the coupling with Navier-Stokes
equations.

In this paper we consider flow through a porous medium, in which the dom-
inant dissipation mechanism is due not to the viscosity of the fluid, but rather to
an effective damping caused by flow through pores. The Stokes operator is then
replaced by u+'p. We consider a system in which the fluid equilibrates rapidly
and the Reynolds number is low, so that forces are balanced by damping,

u+'p = F.

This balance, together with (1.2) and the requirement of incompressibility,

' ·u = 0,

leads to

u = 2P(ÃRÃ)(1.3)

where P is the Leray-Hodge projector on divergence-free vector fields. The elec-
troconvection situation described above leads to the active scalar equation (1.1)
with constitutive law (1.3), which is the equation we study in this work. In com-
parison to the work [7], the nonlinear advection is missing, but also there is no
viscosity, and because of the nonlinearity in the electrical force, the velocity’s de-
pendence of the charge density is more singular. The equation is L>-critical, and
resembles critical SQG [8–10, 15] except for the constitutive law (1.3) which in
this case is nonlinear and doubly nonlocal. Global regularity of critical SQG was
originally proved by different methods in [4,18] and was subsequently extensively
studied. In [16], the balance law (1.3) was used to describe the solvent in a Nernst-
Planck-Darcy system of ionic diffusion in 2D and 3D. An active scalar equation
describing flow through porous media with fractional dissipation and linear non-
local constitutive law was studied in [5], and global regularity was obtained.

In this paper we show that the equation (1.1), (1.3) has global weak solutions.
We describe local existence and uniqueness results for strong solutions. We also
show that solutions with small initial data in Besov spaces slightly smaller than L>

exist globally and are Gevrey regular.
This paper is organized as follows. In Section 2, we recall results about Besov

spaces and Littlewood-Paley decomposition. In Section 3, we prove existence of
global-in-time weak solutions of (1.1), (1.3) for initial data in L2+·(R2) for some
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· > 0. If the initial data is in Lp(R2) for p * (2,>], then the Lp norm of any
solution of (1.1), (1.3) remains bounded in time. If the initial data is H2(R2)
regular, then we obtain a unique local strong solution. In Section 4, we show that
a global-in-time solution exists provided that the initial data is sufficiently small in
Besov spaces that are slightly smaller than L>(R2). In Section 5 we prove that so-
lutions are Gevrey regular under a smallness condition imposed on the initial data.
In Section 6, we study the regularity and long-time behavior of solutions for small
initial data, whereas in Section 7, we show that Hölder continuity of the charge
distribution is a sufficient condition for the smoothness of solutions for arbitrary
initial data, a result that is similar to the situation for SQG [11]. In Section 8,
we treat the periodic case, and we prove that the solution of the problem (1.1),
(1.3) posed on the two-dimensional torus converges exponentially in time to zero.
Finally, we consider in Section 9 the subcritical Darcy’s law electroconvection, and
show existence of global smooth solutions for arbitrary initial data.

2. PRELIMINARIES

For f * S2(R2), we denote the Fourier transform of f by

Ff (¿) = f̂ (¿) = 1
2Ã

∫

R2
f (x)e2i¿·x dx,

and its inverse by F21.
Let § be a nonnegative, nonincreasing, infinitely differentiable, radial func-

tion such that §(r) = 1 for r * [0, 1
2] and §(r) = 0 for r * [ 5

8 ,>]. Let

«(r) = §
(
r

2

)
2 §(r).

For each j * Z, let

«j(r) = «(22jr).
We have

§(|¿|)+
>∑

j=0

«j(|¿|) = 1 for all ¿ * R2

and
>∑

j=2>
«j(|¿|) = 1 for all ¿ * R2 \ {0}.

We define the homogeneous dyadic blocks

&jf (x) =
1

2Ã

∫

R2
«j(|¿|)f̂ (¿)ei¿·x d¿ = F21[«j(| · |)f̂ (·)](x)
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and the lower frequency cutoff functions

Sjf =
∑

kfj21

&kf .

We note that the Fourier transform of each dyadic block is compactly supported.
More precisely, we have

(2.1) suppF(&jf ) ¢ 2j
[

1
2
,
5
4

]
for all j * Z.

Let S2h(R2) be the set of all tempered distributions u * S2(R2) such that

lim
j³2>

Sju = 0 in S2(R2).

For f * S2h(R2), we denote the homogeneous Littlewood-Paley decomposition of
f by

f =
∑

j*Z
&jf .

For s * R,1 f p,q f >, we denote the homogeneous Besov space

Ḃsp,q(R
2) = {f * S2h(R2) : ‖f‖Ḃsp,q(R2) < >}

where

‖f‖Ḃsp,q(R2) =
( ∑

j*Z
2jsq

∥∥&jf
∥∥q
Lp(R2)

)1/q

and the inhomogeneous Besov space

Bsp,q(R
2) = {f * S2(R2) : ‖f‖Bsp,q(R2) <>}

where

‖f‖Bsp,q(R2) =
(
22sq

∥∥&̃21f
∥∥q
Lp(R2) +

>∑

j=0

2jsq
∥∥&jf

∥∥q
Lp(R2)

)1/q

with the usual modification when q = >. Here,

&̃21f =
1

2Ã

∫

R2
§(|¿|)f̂ (¿)ei¿·x d¿ = F21[§(| · |)f̂ (·)](x).

We note that the definition of the space Ḃsp,q is independent of the function §
which defines the dyadic blocks. Indeed, any other dyadic partition yields an
equivalent norm.
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If s > 0, 1 f p,q f >, then

(2.2) Bsp,q(R
2) = Ḃsp,q(R2)+ Lp(R2).

Moreover, the norms ‖f‖Bsp,q(R2) and ‖f‖Ḃsp,q(R2) + ‖f‖Lp(R2) are equivalent.
We also consider the following time-dependent homogeneous Besov spaces:

Lr(0, T ; Ḃsp,q(R
2)) =

{
f (t) * S2h(R2) : ‖f‖Lr (0,T ;Ḃsp,q(R2))

=
∥∥‖f (·, t)‖Ḃsp,q(R2)

∥∥
Lr (0,T) < >

}

and

L̃r(0, T ; Ḃsp,q(R
2)) = {f (t) * S2h(R2) : ‖f‖L̃r (0,T ;Ḃsp,q(R2)) < >},

where

‖f‖L̃r (0,T ;Ḃsp,q(R2)) =
( ∑

j*Z
2jsq

∥∥&jf
∥∥q
Lr (0,T ;Lp(R2))

)1/q
.

We recall inequalities that are used in the paper (see, e.g., [3, 14, 21]).

Proposition 2.1. Let f * S2h(R2).

(1) (Bernstein’s inequality). Let 1 f p f >. Let k be a nonnegative integer.
Then,

(2.3) sup
|³|=k

‖"³&jf‖Lp(R2) f Ck2jk‖&jf‖Lp(R2)

holds for all j * Z.
(2) Let 1 f p f q f >. Then,

(2.4) ‖&jf‖Lq(R2) f C22j(1/p21/q)‖&jf‖Lp(R2)

holds for all j * Z. Moreover, the continuous Besov embedding

(2.5) Ḃsp1,q1
(R2)� Ḃ

s22(1/p121/p2)
p2,q2 (R2)

holds for 1 f p1 f p2 f >, 1 f q1 f q2 f >, and s * R.
(3) Let 1 f p f >, t g 0, ³ > 0. Then,

(2.6) ‖e2t�³&jf‖Lp(R2) f Ce2C
21t2j³‖&jf‖Lp(R2)

holds for all j * Z. Here, �³ is the fractional Laplacian of order ³ defined as
a Fourier multiplier with symbol |¿|³.
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(4) Let R = (R1, R2) be the Riesz transform, that is, for k * {1,2}, Rk = "k�21.
For each p * [1,>], there is a positive constant C > 0 depending only on p
(independent of j) such that

(2.7) ‖&jRf‖Lp(R2) f C‖&jf‖Lp(R2)

holds for all j * Z. Hence, for s * R and 1 f p,q f >, R is bounded from
Ḃsp,q(R

2) to itself.

The following decomposition formula holds.

Proposition 2.2. Let f , g * S2h(R2). Then,

&j(fg) =
∑

kgj22

&j(Sk+1f&kg)+
∑

kgj22

&j(Skg&kf )(2.8)

=
∑

kgj22

&j(Sk+1g&kf )+
∑

kgj22

&j(Skf&kg)

holds for any j * Z.
The proof is based on Bony’s paraproduct, and is presented in Appendix A.
Throughout this paper C (or Ci, i = 1,2, . . . ) denotes a positive constant that

may change from line to line in the proofs.

3. WELL-POSEDNESS IN LEBESGUE SPACES

We consider the transport and nonlocal diffusion equation

(3.1) "tÃ +u · 'Ã +�Ã = 0

in the whole space R2, where

(3.2) u = 2P(ÃRÃ).

The initial data are

(3.3) Ã(x,0) = Ã0(x).

Here, P is the Leray-Hodge projector, � = (2&)1/2 is the fractional Laplacian,
and R = '�21 is the 2D vector of Riesz transforms.

Definition 3.1. A solution Ã of the initial value problem (3.1)–(3.3) is said
to be a weak solution on [0, T ] if

Ã * L>(0, T ;L2(R2))+ L2(0, T ; Ḣ1/2(R2))

and Ã obeys

(Ã(t),§)L2 2 (Ã0,§)L2 2
∫ t

0
(Ã,u · '§)L2 ds +

∫ t

0
(�1/2Ã,�1/2§)L2 ds = 0

for all time-independent test functions § * H5/2(R2) and almost every t * [0, T ].
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For · * (0,1], let J· be the standard mollifier operator J·f = J· 7 f , and let
Ã· be the solution of

(3.4) "tÃ
· + ũ· · 'Ã· +�Ã· 2 ·&Ã· = 0,

where ũ· = 2J·P(Ã·RÃ·) with smoothed-out initial data

(3.5) Ã·0 = J·Ã0.

Remark 3.2. We note that P and J· commute, so ũ· is divergence free.

Theorem 3.3. Let T > 0 be arbitrary. Let Ã0 * L2(R2). Then, for each
· * (0,1], the mollified initial value problem (3.4)–(3.5) has a solution Ã· on [0, T ]
satisfying

1
2

∥∥Ã·(t)
∥∥2
L2 +

∫ t

0

∥∥�1/2Ã·(s)
∥∥2
L2 ds f 1

2

∥∥Ã0

∥∥2
L2(3.6)

for all t * [0, T ]. Moreover, the sequence {Ã1/n}>n=1 has a subsequence that con-
verges strongly in L2(0, T ;L2(R2)) and weakly in L2(0, T ;H1/2(R2)) to a function
Ã obeying

1
2

∥∥Ã(t)
∥∥2
L2 +

∫ t

0

∥∥�1/2Ã(s)
∥∥2
L2 ds f 1

2

∥∥Ã0

∥∥2
L2(3.7)

for almost every t * [0, T ]. If Ã0 * L2+·(R2) for some · > 0, then Ã is a weak
solution of (3.1)–(3.3) on [0, T ].

The proof is found in Appendix B.
As a consequence of the Córdoba-Córdoba inequality [12], the Lp norm of

any solution of the equation (3.1)–(3.2) is bounded by the Lp norm of the initial
data for any p * (2,>].

Proposition 3.4. Let p > 2 and Ã0 * Lp(R2). Suppose Ã is a smooth solution
of (3.1)–(3.3) on [0, T ]. Then,

(3.8) ‖Ã(t)‖Lp f ‖Ã0‖Lp

holds for all t * [0, T ].
Proof. We multiply (3.1) by Ã|Ã|p22 and we integrate in the space variable.

We obtain the differential inequality

d

dt
‖Ã‖Lp f 0.

This gives (3.8). w
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Remark 3.5. Weak solutions also obey

(3.9) ‖Ã(·, t)‖L> f ‖Ã0‖L> ,

a fact that can be proved by using a De Giorgi methodology [4].

Definition 3.6. A weak solution Ã of (3.1)–(3.3) is said to be a strong solution
on [0, T ] if it obeys

Ã * L>(0, T ; Ḣ2(R2))+ L2(0, T ; Ḣ5/2(R2)).

Theorem 3.7. Let Ã0 * H2(R2). Then, there exists T0 > 0 depending only on
‖Ã0‖H2 such that a unique strong solution of (3.1)–(3.3) exists on [0, T0].

The proof is found in Appendix C.

4. EXISTENCE OF GLOBAL SOLUTIONS IN BESOV SPACES

In this section, we show the existence of a global-in-time solution in Besov spaces
for sufficiently small initial data. The proof uses methods of [2, 6].

Theorem 4.1. Let 1 f p < >. Let Ã0 * Ḃ2/p
p,1 (R

2) be sufficiently small. We
consider the functional space Ep defined by

Ep = {f (t) * S2h(R2) : ‖f‖Ep = ‖f‖L̃>t Ḃ2/p
p,1
+ ‖f‖

L̃1
t Ḃ

2/p+1
p,1

< >}.

Then, (3.1)–(3.3) has a unique global-in-time solution Ã * Ep.

Proof. Let Ã(0) = 0. For each positive integer n, let Ã(n) be the solution of

"tÃ
(n) +�Ã(n) = 2u(n21) · 'Ã(n21) in R2,(4.1)

where

u(n21) = 2P(Ã(n21)RÃ(n21)),

with initial data

Ã(n)0 = Ã(n)(·,0) = Ã0.(4.2)

We write Ã(n) in the integral form

Ã(n)(t) = e2t�Ã0 2
∫ t

0
e2(t2s)�' · (u(n21)Ã(n21))(s)ds

= e2t�Ã0 2B(un21, Ãn21),

where B is the bilinear form defined by

B(v, ») =
∫ t

0
e2(t2s)�' · (v»)(s)ds.

(See [6] for a similar approach.)
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Step 1. Fix a positive integer n. We show that

(4.3) ‖Ã(n)‖Ep f C1‖Ã0‖Ḃ2/p
p,1
+ C2

∥∥Ã(n21)
∥∥3
Ep
.

We start by estimating e2t�Ã0 in Ep. We apply &j and take the Lp norm. In view
of the bound (2.6), we have

‖e2t�&jÃ0‖Lp f Ce2C
21t2j‖&jÃ0‖Lp ,

and so

‖e2t�Ã0‖Ep = ‖e2t�Ã0‖L̃>t Ḃ2/p
p,1
+ ‖e2t�Ã0‖L̃1

t Ḃ
2/p+1
p,1

f C‖Ã0‖Ḃ2/p
p,1
.

Now, we estimate the term B(u(n21), Ã(n21)) in Ep. First, we note that

(4.4) ‖B(u(n21), Ã(n21))‖Ep f C‖u(n21)Ã(n21)‖
L̃1
t Ḃ

2/p+1
p,1

.

Indeed, we apply &j to B(u(n21), Ã(n21)) and we estimate. On one hand,

‖&jB(u(n21), Ã(n21))‖L>t Lp

f C2j
∥∥∥∥
∫ t

0
e2c

21(t2s)2j‖&j(u(n21)Ã(n21))(s)‖Lp ds
∥∥∥∥
L>t

f C2j‖&j(u(n21)Ã(n21))‖L1
tL
p

in view of Bernstein’s inequality (2.3) and the bound (2.6). We multiply by 2j(2/p)

and take the 31 norm. We obtain the bound

(4.5) ‖B(u(n21), Ã(n21))‖
L̃>t Ḃ

2/p
p,1
f C‖u(n21)Ã(n21)‖

L̃1
t Ḃ

2/p+1
p,1

.

On the other hand,

‖&jB(u(n21), Ã(n21))‖L1
tL
p

f C
∥∥∥∥
∫ t

0
2je2c

21(t2s)2j‖&j(u(n21)Ã(n21))(s)‖Lp ds
∥∥∥∥
L1
t

f C
∫>

0

(∫>

0
2je2c

21(t2s)2jÇ[0,t](s)dt
)
‖&j(u(n21)Ã(n21))(s)‖Lp ds

f C‖&j(u(n21)Ã(n21))‖L1
tL
p

where ÇE denotes the characteristic function of the set E. Multiplying by 2j(2/p+1)

and taking the 31 norm yields the bound

(4.6) ‖B(u(n21), Ã(n21))‖
L̃1
t Ḃ

2/p+1
p,1

f C‖u(n21)Ã(n21)‖
L̃1
t Ḃ

2/p+1
p,1

.
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Combining (4.5) and (4.6), we obtain (4.4). Accordingly, our next goal is to show
that

(4.7) ‖u(n21)Ã(n21)‖
L̃1
t Ḃ

2/p+1
p,1

f C
∥∥Ã(n21)

∥∥3
Ep ,

which gives (4.3). To establish the bound (4.7), we use the decomposition (2.8)

&j(u(n21)Ã(n21)) =
∑

kgj22

&j(Sku(n21)&kÃ(n21))

+
∑

kgj22

&j(Sk+1Ã
(n21)&ku(n21)).

We apply the L1
tL
p norm, and use the bound

‖&jf‖Lp f C‖f‖Lp

that holds for any f * S2h where C is a positive universal constant independent of
j; we obtain

‖&j(u(n21)Ã(n21))‖L1
tL
p

f C
∑

kgj22

‖Sku(n21)‖L>t L> ‖&kÃ(n21)‖L1
tL
p

+ C
∑

kgj22

‖Sk+1Ã
(n21)‖L>t L> ‖&ku(n21)‖L1

tL
p .

In view of Bernstein’s inequality (2.4), we have

‖Sk+1Ã
(n21)‖L>t L> f

∑

lfk
‖&lÃ(n21)‖L>t L>(4.8)

f C
∑

lfk
2l(2/p)‖&lÃ(n21)‖L>t Lp

f C‖Ã(n21)‖
L̃>t Ḃ

2/p
p,1
.

We show below that

(4.9) ‖Sku(n21)‖L>t L> f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

2/p
p,1

and

(4.10) ‖&ku(n21)‖L1
tL
p f C‖Ã(n21)‖

L̃>t Ḃ
2/p
p,1

( ∑

mgk22

‖&mÃ(n21)‖L1
tL
p

)
.
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Using the bounds (4.9) and (4.10), we obtain

‖&j(u(n21)Ã(n21))‖L1
tL
p(4.11)

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

2/p
p,1

{ ∑

kgj22

‖&kÃ(n21)‖L1
tL
p

+
∑

kgj22

∑

mgk22

‖&mÃ(n21)‖L1
tL
p

}
.

We multiply (4.11) by 2j(2/p+1) and take the 31 norm. In view of Young’s convo-
lution inequality, we have in the first term

∑

j*Z

∑

kgj22

2j(2/p+1)‖&kÃ(n21)‖L1
tL
p(4.12)

=
∑

j*Z

∑

kgj22

22(k2j)(2/p+1)2k(2/p+1)‖&kÃ(n21)‖L1
tL
p

f
( ∑

jg22

22j(2/p+1)
)( ∑

j*Z
2j(2/p+1)‖&jÃ(n21)‖L1

tL
p

)

f C‖Ã(n21)‖
L̃1
t Ḃ

2/p+1
p,1

.

For the second summation on the righthand side of (4.11), we apply Fubini’s
theorem and then estimate as in (4.12). Thus, we have

∑

j*Z

∑

kgj22

∑

mgk22

2j(2/p+1)‖&mÃ(n21)‖L1
tL
p(4.13)

=
∑

j*Z

∑

mgj24

∑

j22fkfm+2

22(m2j)(2/p+1)2m(2/p+1)‖&mÃ(n21)‖L1
tL
p

=
∑

j*Z

∑

mgj24

(m2 j + 5)22(m2j)(2/p+1)2m(2/p+1)‖&mÃ(n21)‖L1
tL
p

f C
∑

j*Z

∑

mgj24

22(m2j)(1/p+1/2)2m(2/p+1)‖&mÃ(n21)‖L1
tL
p

+ 5
∑

j*Z

∑

mgj24

22(m2j)(2/p+1)2m(2/p+1)‖&mÃ(n21)‖L1
tL
p

f C‖Ã(n21)‖
L̃1
t Ḃ

2/p+1
p,1

.

Here, we have used the fact that

x22x f C22x/2

for all x * R. Putting (4.12) and (4.13) together, we obtain (4.7).
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We end the proof of Step 1 by showing the estimates (4.9) and (4.10). For
each l * Z, we use again paraproducts to decompose &l(Ã(n21)RÃ(n21)) as

&l(Ã(n21)RÃ(n21)) =
∑

mgl22

&l(Sm+1Ã
(n21)&mRÃ(n21))(4.14)

+
∑

mgl22

&l(SmRÃ(n21)&mÃ(n21)).

In view of the boundedness of the Riesz transform (2.7) and the definition of the
Leray projector as P = I + R · R, we bound

‖Sku(n21)‖L>t L> f
∑

lfk21

‖&lu(n21)‖L>t L>

f C
∑

lfk21

2l(2/p)‖&lu(n21)‖L>t Lp

f C
∑

lfk21

2l(2/p)‖&l(Ã(n21)RÃ(n21))‖L>t Lp

for any p * [1,>]; using the paraproduct decomposition (4.14), we obtain

‖Sku(n21)‖L>t L>
f C

∑

lfk21

2l(2/p)
∑

mgl22

‖Sm+1Ã
(n21)‖L>t L> ‖&mRÃ(n21)‖L>t Lp

+ C
∑

lfk21

2l(2/p)
∑

mgl22

‖SmRÃ(n21)‖L>t L> ‖&mÃ(n21)‖L>t Lp .

We note that
‖Sm+1Ã

(n21)‖L>t L> f C‖Ã(n21)‖
L̃>t Ḃ

2/p
p,1

as shown in (4.8). Moreover, in view of (2.7), we have

‖SmRÃ(n21)‖L>t L> f
∑

zfm21

‖&zRÃ(n21)‖L>t L>(4.15)

f C
∑

zfm21

2z(2/p)‖&zRÃ(n21)‖L>t Lp

f C
∑

zfm21

2z(2/p)‖&zÃ(n21)‖L>t Lp

f C‖Ã(n21)‖
L̃>t Ḃ

2/p
p,1
.

Now we use the assumption that p < >, which implies 2/p > 0, so we can apply
Young’s convolution inequality to obtain
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(4.16) ‖Sku(n21)‖L>t L>

f C‖Ã(n21)‖
L̃>t Ḃ

2/p
p,1

{ ∑

lfk21

2l(2/p)
∑

mgl22

‖&mÃ(n21)‖L>t Lp
}

= C‖Ã(n21)‖
L̃>t Ḃ

2/p
p,1

{ ∑

lfk21

∑

mgl22

22(m2l)(2/p)2m(2/p)‖&mÃ(n21)‖L>t Lp
}

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

2/p
p,1

which proves (4.9). We proceed to show (4.10). Using the paraproduct decom-
position (4.14) and the bound (2.7), we have

‖&ku(n21)‖L1
tL
p f C‖&k(Ã(n21)RÃ(n21))‖L1

tL
p

f C
∑

mgk22

‖Sm+1Ã
(n21)‖L>t L> ‖&mRÃ(n21)‖L1

tL
p

+ C
∑

mgk22

‖SmRÃ(n21)‖L>t L> ‖&mÃ(n21)‖L1
tL
p

f C‖Ã(n21)‖
L̃>t Ḃ

2/p
p,1

( ∑

mgk22

‖&mÃ(n21)‖L1
tL
p

)
,

yielding (4.10). This ends the proof of Step 1.

Step 2. We show there is an · > 0 sufficiently small such that if C1‖Ã0‖Ḃ2/p
p,1
< ·,

then the sequence {Ã(n)}>n=1 converges to a unique solution Ã of (3.1)–(3.3) that
obeys ‖Ã‖Ep < 2·.

First, choose an · > 0 such that C2(2·)3 < ·, where C2 is the constant in
(4.3), and suppose that C1‖Ã0‖Ḃ2/p

p,1
< ·. Then, an inductive argument yields

‖Ã(n)‖Ep < 2· for all n g 1.(4.17)

Indeed,

‖Ã(1)‖Ep f C1‖Ã0‖Ḃ2/p
p,1
< · < 2·

in view of (4.3). Suppose that ‖Ã(n21)‖Ep < 2· Then,

‖Ã(n)‖Ep < · + C2(2·)3 < · + · = 2·.

Therefore, we obtain (4.17).
Now, we show that the sequence {Ã(n)}>n=1 is Cauchy. Indeed, the difference

Ã(n) 2 Ã(n21) obeys

(Ã(n) 2 Ã(n21))(t)

=
∫ t

0
e2(t2s)�' · [u(n)(Ã(n) 2 Ã(n21))2 (u(n21) 2u(n))Ã(n21)](s)ds

= B(u(n), Ã(n) 2 Ã(n21))2B(u(n21) 2u(n), Ã(n21)).
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As in Step 1, and by using (4.17), it can be shown that

‖Ã(n) 2 Ã(n21)‖Ep(4.18)

f ‖B(u(n), Ã(n) 2 Ã(n21))‖Ep + ‖B(u(n21) 2u(n), Ã(n21))‖Ep
f C(·)‖Ã(n21) 2 Ã(n22)‖Ep

where C(·) is a constant depending on · obeying C(·) < 1 for a sufficiently small
·. Therefore, the sequence {Ã(n)}>n=1 is Cauchy in Ep, and converges to a solution
Ã of (3.1)–(3.3). Uniqueness follows from a similar estimate to (4.18). This
finishes the proof of Step 2. Therefore, the proof of Theorem 4.1 is complete. w

5. ANALYTICITY OF SOLUTIONS IN BESOV SPACES

In this section, we prove that solutions of (3.1)–(3.3) are analytic in Besov spaces.

Theorem 5.1. Let p * (1,>). Let ³ * (0, 1
2). Let Ã0 * Ḃ2/p

p,1 (R
2) be suffi-

ciently small. Then, the unique solution Ã * Ep of (3.1)–(3.3), obtained in Theo-
rem 4.1, obeys e³t�1Ã * Ep for all t > 0, where �1 is the Fourier multiplier with
symbol |¿|1 = |¿1| + |¿2|.

Proof. The main step in the proof is to show that if

Ã(t) = e2t�Ã0 2
∫ t

0
e2(t2s)�' · (uÃ)(s)ds,

then

‖e³t�1Ã‖Ep f C3‖Ã0‖Ḃ2/p
p,1
+ C4

∥∥e³t�1Ã
∥∥3
Ep
.

First, we note that the operator e³t�122³t� is a Fourier multiplier that is
bounded on Lp spaces for p * (1,>). The proof of this latter statement is similar
to the proof of Lemma 2 in [2], and this is based on the fact that e³t�122³t� is
uniformly bounded by 1.

Accordingly, for j * Z, we have

‖e³t�1e2t�&jÃ0‖Lp = ‖e³t�122³t�e(2³21)t�&jÃ0‖Lp f Ce2ct2
j‖&jÃ0‖Lp ,

and so we have ‖e³t�1e2t�Ã0‖Ep f C‖Ã0‖Ḃ2/p
p,1

.

Now, we estimate

e³t�1B(u, Ã) = e³t�1

∫ t

0
e2(t2s)�' · (uÃ)(s)ds in Ep.

We start by writing e³t�1B(u, Ã) as

e³t�1B(u,v) =
∫ t

0
e³(t2s)�1e22³(t2s)�e(2³21)(t2s)�

× e³s�1' · (e2³s�1ũe2³s�1 Ã̃)(s)ds

where ũ(s) = e³s�1u(s) and Ã̃(s) = e³s�1Ã(s).
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Using the uniform boundedness of the operator e³t�122³t� on Lp spaces for
p * (1,>), Bernstein’s inequality, and the bound (2.6), we get

‖e³t�1B(u,v)‖Ep f C‖e³s�1(e2³s�1ũe2³s�1 Ã̃)‖
L̃1
t Ḃ

2/p+1
p,1

.

Decomposing &j(e2³s�1ũe2³s�1 Ã̃) as

&j(e2³s�1ũe2³s�1 Ã̃) =
∑

kgj22

&j[(e2³s�1Skũ)(e
2³s�1&kÃ̃)]

+
∑

kgj22

&j[(e2³s�1Sk+1Ã̃)(e
2³s�1&kũ)],

we have

‖e³s�1&j(e2³s�1ũe2³s�1 Ã̃)‖L1
tL
p

f C
∑

kgj22

‖e³s�1(e2³s�1Skũ)(e
2³s�1&kÃ̃)‖L1

tL
p

+ C
∑

kgj22

‖e³s�1(e2³s�1Sk+1Ã̃)(e
2³s�1&kũ)‖L1

tL
p .

It is shown in [2] that the bilinear operator Bw(f , g) defined by

Bw(f , g) = ew�1(e2w�1e2�1g)(5.1)

obeys

‖Bw(f , g)‖Lp f C‖Z1
wfZ

2
wg‖Lp

where C > 0 is a positive constant depending only on p, and Z1
w and Z2

w are
bounded linear operators on Lp for p * (1,>) such that their norms are inde-
pendent of w. For simplicity, we drop the index w, and we write Z1 for Z1

w and
Z2 for Z2

w .
Consequently,

‖e³s�1&j(e2³s�1ũe2³s�1 Ã̃)‖L1
tL
p

f C
∑

kgj22

‖Z1SkũZ
2&kÃ̃‖L1

tL
p + C

∑

kgj22

‖Z1Sk+1Ã̃Z
2&kũ‖L1

tL
p .

Now we proceed as in Step 1 of the proof of Theorem 4.1. Indeed,

‖Z1Sk+1Ã̃‖L>t L> f
∑

lfk
2l(2/p)‖Z1&lÃ̃‖L>t Lp

f C
∑

lfk
2l(2/p)‖&lÃ̃‖L>t Lp f C‖Ã̃‖L̃>t Ḃ2/p

p,1
.
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If we show that

(5.2) ‖&kũ‖L1
tL
p f C‖Ã̃‖L>t Ḃ2/p

p,1

( ∑

mgk22

‖&mÃ̃‖L1
tL
p

)

and

(5.3) ‖Z1Skũ‖L>t L> f C
∥∥Ã̃
∥∥2
L̃>t Ḃ

2/p
p,1
,

then the rest follows as in Step 1 of Theorem 4.1.
Hence, we proceed to prove the bounds (5.2) and (5.3). We note that

ũ = e³s�1u = e³s�1P(ÃRÃ) = e³s�1P(e2³s�1 Ã̃e2³s�1RÃ̃).

We decompose &l(e2³s�1 Ã̃e2³s�1RÃ̃) as

&l(e2³s�1 Ã̃e2³s�1RÃ̃) =
∑

mgl22

&l[(e2³s�1Sm+1Ã̃)(e
2³s�1&mRÃ̃)]

+
∑

mgl22

&l[(e2³s�1&mÃ̃)(e2³s�1SmRÃ̃)].

In view of the boundedness of the operators Z1 and P, we estimate

‖Z1Skũ‖L>t L> f C
∑

lfk21

2l(2/p)‖&lũ‖L>t Lp

f C
∑

lfk21

2l(2/p)
∥∥&l[e³s�1(e2³s�1 Ã̃e2³s�1RÃ̃)]

∥∥
L>t Lp

f C
∑

lfk21

∑

mgl22

2l(2/p)‖B³s(Sm+1Ã̃,&mRÃ̃)‖L>t Lp

+ C
∑

lfk21

∑

mgl22

2l(2/p)‖B³s(SmRÃ̃,&mÃ̃)‖L>t Lp

where Bw(f , g) is defined in (5.1). This implies that

‖Z1Skũ‖L>t L> f C
∑

lfk21

∑

mgl22

2i(2/p)‖(Z1Sm+1Ã̃)(Z
2&mRÃ̃)‖L>t Lp

+ C
∑

lfk21

∑

mgl22

2l(2/p)‖(Z1SmRÃ̃)(Z
2&mÃ̃)‖L>t Lp .

Now we proceed as in (4.15) and (4.16), and we obtain (5.3). Finally, we estimate

‖&kũ‖L1
tLp

f C
∥∥&ke³s�1[(e2³s�1 Ã̃)(e2³s�1RÃ̃)]

∥∥
L1
tL
p

f C
∑

mgk22

∥∥e³s�1[(e2³s�1Sm+1Ã̃)(e
2³s�1&mRÃ̃)]

∥∥
L1
tL
p

+ C
∑

mgk22

∥∥e³s�1[(e2³s�1SmRÃ̃)(e
2³s�1&mÃ̃)]

∥∥
L1
tL
p
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= C
∑

mgk22

‖B³s(Sm+1Ã̃,&mRÃ̃)‖L1
tL
p

+ C
∑

mgk22

‖B³s(SmRÃ̃,&mÃ̃)‖L1
tL
p

f C
∑

mgk22

‖Z1Sm+1Ã̃‖L>t L> ‖Z2&mRÃ̃‖L1
tL
p

+ C
∑

mgk22

‖Z1SmRÃ̃‖L>t L> ‖Z2&mÃ̃‖L1
tL
p

f C‖Ã̃‖
L̃>t Ḃ

2/p
p,1

( ∑

mgk22

‖&mÃ̃‖L1
tL
p

)
,

which proves (5.2). This ends the proof of Theorem 5.1. w

6. REGULARITY OF SOLUTIONS FOR SMALL INITIAL DATA

Here, we consider the regularity of solutions of (3.1)–(3.3) for small initial data.
We use the following lemma.

Lemma 6.1. Let j * Z, t > 0, ³ * [0,1), c > 0. Then, there is a positive
constant C > 0 that depends on ³ but does not depend on j or t such that the estimate

(6.1)
∫ t

0
2je2c(t2s)2

j
s2³ ds f Ct2³

holds.

Proof. We split the given integral into the sum

∫ t

0
2je2c(t2s)2

j
s2³ ds =

∫ t/2

0
2je2c(t2s)2

j
s2³ ds +

∫ t

t/2
2je2c(t2s)2

j
s2³ ds.

Using the fact that 2je2c(t2s)2
j f C(t 2 s)21 for all s * [0, t/2], we estimate

∫ t/2

0
2je2c(t2s)2

j
s2³ ds f C

∫ t/2

0
(t 2 s)21s2³ ds(6.2)

f Ct21
∫ t/2

0
s2³ ds f C³t2³.

Using the fact that s2³ f 2³t2³ for all s * [t/2, t], we estimate

∫ t

t/2
2je2c(t2s)2

j
s2³ ds f C³t2³

∫ t

t/2
2je2c(t2s)2

j
ds(6.3)

= C³t2³[12 e22j21ct] f C³t2³.

Adding (6.2) and (6.3), we obtain (6.1). w
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Theorem 6.2. Let ³ * [0,1), ³ > 0. Let Ã0 * Ḃ1
2,1(R

2) + Ḃ³2³>,> (R2) be
sufficiently small. Then, there is a positive constant C > 0 depending on the initial
data so that the unique solution Ã of (3.1)–(3.3) satisfies supt>0 t

³‖Ã(t)‖
Ḃ
³
>,>
f C.

Proof. We consider the approximating initial value problem (4.1)–(4.2) whose
solution is given by

Ã(n)(t) = e2t�Ã0 2B(u(n21), Ã(n21)).

First, we estimate

t³2j³‖e2t�&jÃ0‖L> f Ct³e2ct2
j
2j³‖&jÃ0‖L>

f C22j³2j³‖&jÃ0‖L> f C‖Ã0‖Ḃ³2³>,>

in view of (2.6) and the bound x³e2x f C that holds for all x g 0.
We show that

sup
t>0
{t³‖B(u(n21), Ã(n21))(t)‖

Ḃ
³
>,>
}(6.4)

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

2/p
p,1

sup
t>0
{t³‖Ã(n21)(t)‖

Ḃ
³
>,>
}.

First, we apply &j to B(u(n21), Ãn21)), using the paraproduct decomposition

&j(u(n21)Ã(n21)) =
∑

kgj22

&j(Sku(n21)&kÃ(n21))

+
∑

kgj22

&j(Sk+1Ã
(n21)&ku(n21)),

and we obtain

&jB(u(n21), Ã(n21)) = B1,j(u
(n21), Ã(n21))+B2,j(u

(n21), Ã(n21))

where

B1,j(u
(n21), Ã(n21))

=
∫ t

0
e2(t2s)�' ·

[ ∑

kgj22

&j(Sku(n21)&kÃ(n21))
]
(s)ds

and

B2,j(u
(n21), Ã(n21))

=
∫ t

0
e2(t2s)�' ·

[ ∑

kgj22

&j(Sk+1Ã
(n21)&ku(n21))

]
(s)ds.



On Electroconvection in Porous Media 2611

In view of Bernstein’s inequality (2.3), the bounds (2.6) and (4.9), and Lemma 6.1,
we estimate

2j³‖B1,j(u
(n21), Ã(n21))‖L>

f C2j³2j
∫ t

0
e2c(t2s)2

j
[ ∑

kgj22

‖Sku(n21)‖L> ‖&kÃ(n21)‖L>
]
ds

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

1
2,1

×
{∫ t

0
(2je2c(t2s)2

j
s2³)

( ∑

kgj22

22(k2j)³s³2k³‖&kÃ(n21)‖L>
)
ds

}

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

1
2,1

sup
t>0
{t³‖Ã(n21)‖

Ḃ
³
>,>
}
∫ t

0
2je2c(t2s)2

j
s2³ ds

f Ct2³
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

1
2,1

sup
t>0
{t³‖Ã(n21)‖

Ḃ
³
>,>
},

and so,

t³2j³‖B1,j(u
(n21), Ã(n21))‖L>(6.5)

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

1
2,1

sup
t>0
{t³‖Ã(n21)‖

Ḃ
³
>,>
}.

Now, we estimate 2j³‖B2,j(u(n21), Ã(n21))‖L> . We note first that

∑

kgj22

s³2j³‖&ku(n21)‖L>

f C
∑

kgj22

s³2j³‖&k(Ã(n21)RÃ(n21))‖L>

f C
∑

kgj22

s³2j³
( ∑

lgk22

‖Sl+1Ã
(n21)‖L> ‖&lRÃ(n21)‖L>

)

+ C
∑

kgj22

s³2j³
( ∑

lgk22

‖SlRÃ(n21)‖L>‖&lÃ(n21)‖L>
)

f C‖Ã(n21)‖L̃>t Ḃ1
2,1

∑

kgj22

∑

lgk22

22(l2j)³s³2l³‖&lÃ(n21)‖L>

= C‖Ã(n21)‖L̃>t Ḃ1
2,1

∑

lgj24

∑

j22fkfl+2

22(l2j)³s³2l³‖&lÃ(n21)‖L>

= C‖Ã(n21)‖L̃>t Ḃ1
2,1

∑

lgj24

(l2 j + 5)22(l2j)³s³2l³‖&lÃ(n21)‖L>

f C‖Ã(n21)‖L̃>t Ḃ1
2,1

sup
t>0
{t³‖Ã(n21)‖

Ḃ
³
>,>
}.
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Here, we have used the boundedness of the Leray projector in Besov spaces,
the paraproduct decomposition (4.14), the bound (4.8), Fubini’s theorem, and
Young’s convolution inequality. This implies

2j³‖B2,j(u
(n21), Ã(n21))‖L>

f C2j³2j
∫ t

0
e2c(t2s)2

j
[ ∑

kgj22

‖Sk+1Ã
(n21)‖L> ‖&ku(n21)‖L>

]
ds

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

1
2,1

sup
t>0
{t³‖Ã(n21)‖

Ḃ
³
>,>
}
∫ t

0
2je2c(t2s)2

j
s2³ ds

f Ct2³
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

1
2,1

sup
t>0
{t³‖Ã(n21)‖

Ḃ
³
>,>
},

and hence

t³2j³‖B2,j(u
(n21), Ã(n21))‖L>(6.6)

f C
∥∥Ã(n21)

∥∥2
L̃>t Ḃ

1
2,1

sup
t>0
{t³‖Ã(n21)‖

Ḃ
³
>,>
}.

Putting (6.5) and (6.6) together, we obtain (6.4). Therefore,

sup
t>0

t³‖Ã(n)(t)‖
Ḃ
³
>,>

f C3‖Ã0‖Ḃ³2³>,>
+ C4

∥∥Ã(n21)
∥∥2
L̃>t Ḃ

1
2,1

sup
t>0
{t³‖Ã(n21)(t)‖

Ḃ
³
>,>
}.

Now, we use the smallness of the initial data and proceed as in Theorem 4.1. We
omit further details. w

We recall the following relationship between the inhomogeneous Besov space
Bs>,> and Hölder spaces.

Remark 6.3. For s * R
+ \ N, the inhomogeneous Besov space Bs>,>(R

2)

coincides with the Hölder space C[s],s2[s](R2) of bounded functions f whose
derivatives of order |³| f s are bounded and satisfy

|"³f (x)2 "³f (y)| f C|x 2y|s2[s]

for |x 2y| f 1 (see [3]).

As a consequence, we obtain the following regularity result.

Corollary 6.4. Let s g 1 be an integer, and let

Ã0 * L>(R2)+ Ḃ1
2,1(R

2)+ Ḃs+1/2
>,> (R2)

be sufficiently small. Further, let Ã be the unique solution of (3.1)–(3.3). Then,
D³Ã * L>(R2) for |³| f s, and its L> norm is uniformly bounded in time. More-
over, for |³| f s, D³Ã is Hölder continuous with a uniform-in-time Hölder bound.



On Electroconvection in Porous Media 2613

Proof. In view of (2.2), the bound (3.9), and Theorem 6.2 applied with ³ = 0
and ³ = s + 1

2 , we have

‖Ã(t)‖Bs+1/2
>,>

f C{‖Ã(t)‖Ḃs+1/2
>,>

+ ‖Ã(t)‖L>} f C(1+ ‖Ã0‖L>),

where C is a constant depending only on the initial data. Remark 6.3 completes
the proof of Corollary 6.4. w

We now consider the long-time behavior of derivatives of solutions of (3.1)–
(3.3) for sufficiently small initial data in Besov spaces.

Corollary 6.5. Let s g 1 be an integer, and · * (0,1). Let also

Ã0 * L>(R2)+ Ḃ1
2,1(R

2)+ Ḃs+·>,>(R
2)

be sufficiently small. Let Ã be the unique solution of (3.1)–(3.3). Then,

lim
t³>

{‖D³Ã(t)‖L> + [D³Ã(t)]·} = 0 for all |³| f s,(6.7)

where

[D³Ã(t)]· = sup
0<|x2y|f1

|D³Ã(y)2D
³Ã(x)|

|x 2y|· .

Proof. We show that Ã(·, t) * H2(R2) in order to apply Remark 3.5. Indeed,

∫>

0
‖Ã(t)‖Ḃ2

2,2
dt f C

∫>

0
‖Ã(t)‖Ḃ2

2,1
dt = C

∫>

0

∑

j*Z
22j‖&jÃ(t)‖L2 dt

= C
∑

j*Z
22j‖&jÃ(t)‖L1

tL
2 = C‖Ã‖L̃1

t Ḃ
2
2,1
<>

in view of the continuous Besov embedding (2.5) and the monotone conver-
gence theorem. But B2

2,2 coincides with the Sobolev space H2. Thus, we have
‖Ã(t)‖H2 < > for almost every t * (0,>), and so Ã(·, t) * H2 for almost every
t * [0,>).

In view of Remark 6.3 and Theorem 6.2 applied with ³ = 1
2 and ³ = s + ·,

we obtain

‖D³Ã(t)‖L> + [D³Ã(t)]· f C‖Ã(t)‖Bs+·>,>

f C{‖Ã(t)‖Ḃs+·>,> + ‖Ã(t)‖L>} f C
(

1:
t
+ ‖Ã0‖L>

1+ Ct‖Ã0‖L>

)
,

where in the last inequality we used a time-decay estimate [12]. Letting t ³ >,
we obtain (6.7). w
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7. REGULARITY OF SOLUTIONS FOR ARBITRARY INITIAL DATA

In this section, we prove that any solution of (3.1)–(3.3) is smooth for arbitrary
initial data, provided it satisfies a certain regularity condition.

Theorem 7.1. Let Ã be a weak solution of (3.1)–(3.3) on [0,>). Let 0 < t0 <
t < >. If

Ã * L>([t0, t];C·(R2)) for some · * (0,1),(7.1)

then

Ã * C>((t0, t]×R2).(7.2)

Proof. We sketch the main ideas. Let us note first that

(7.3) u * L>([t0, t];C·(R2)).

where u = 2P(ÃRÃ). Indeed, for any s * [t0, t], we have

‖u(s)‖C· f C‖Ã(s)RÃ(s)‖C·
f C‖Ã(s)‖L> ‖RÃ(s)‖L> + C‖Ã(s)‖L> ‖RÃ(s)‖C·

+ C‖RÃ(s)‖L> ‖Ã(s)‖C·
f C

∥∥Ã(s)
∥∥2
C·

in view of the boundedness of the Leray projector and Riesz transforms on the
Hölder space C·. Consequently, the Hölder regularity of Ã imposed in (7.1)
gives (7.3).

Next, we show that

Ã * L>([t0, t]; Ḃ·1
p,>(R

2)+ C·1(R2))(7.4)

and

u * L>([t0, t]; Ḃ·1
p,>(R

2)+ C·1(R2))(7.5)

for any p g 2 and ·1 = ·(12 2/p). Indeed, for any s * [t0, t], we have

‖Ã(s)‖
Ḃ
·1
p,>
= sup
j*Z
(2·1j‖&jÃ(s)‖Lp)

f sup
j*Z

(
2·1j

∥∥&jÃ(s)
∥∥122/p
L>

∥∥&jÃ(s)
∥∥2/p
L2

)

f C(‖Ã(s)‖Ḃ·>,>)
122/p

∥∥Ã(s)
∥∥2/p
L2

f C(‖Ã(s)‖C·)122/p
∥∥Ã(s)

∥∥2/p
L2 ,
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and similarly

‖u(s)‖
Ḃ
·1
p,>
f C(‖u(s)‖Ḃ·>,>)

122/p
∥∥u(s)

∥∥2/p
L2

f C(‖u(s)‖C·)122/p
∥∥Ã(s)

∥∥4/p
L4 .

The last inequality holds in view of the boundedness of the Leray projector on
L2 followed by an application of Hölder’s inequality with exponents 4,4. The

interpolation inequality ‖Ã(s)‖L4 f
∥∥Ã(s)

∥∥1/2
L>
∥∥Ã(s)

∥∥1/2
L2 together with (7.3) and

(7.1) gives (7.4) and (7.5).
Now, we proceed as in [11]. We apply &j to (3.1), we multiply the resulting

equation by p|&jÃ|p22&jÃ, and we integrate first in the space variable x * R2

and then in time from t0 to t. We obtain the bound

‖&jÃ(t)‖Lp f Ce2c2j(t2t0)‖&jÃ(t0)‖Lp + C
∫ t

t0
e2c2j(t2s)2(122·1)j(7.6)

× (‖Ã(s)‖C·1 ‖u(s)‖Ḃ·1
p,>
+ ‖u(s)‖C·1 ‖Ã(s)‖Ḃ·1

p,>
)ds

(see [11] for details). We multiply by 22·1j and take the 3> norm in j. This yields
the bound

‖Ã(t)‖
Ḃ

2·1
p,>
f C sup

j*Z
{2·1je2c2j(t2t0)}‖Ã(t0)‖Ḃ·1

p,>
+ C sup

j*Z
{12 e2c2j(t2t0)}

× sup
s*[t0,t]

{‖Ã(s)‖C·1 ‖u(s)‖Ḃ·1
p,>
+ ‖u(s)‖C·1 ‖Ã(s)‖Ḃ·1

p,>
}.

Therefore,

Ã(·, t) * Ḃ2·1
p,>(R

2), for any p g 2.

In view of the continuous Besov embedding (2.5), we have the continuous inclu-
sion

Ḃ2·1
p,>(R

2)� Ḃ
2·122/p
>,> (R2) for any p g 2.

We choose p > (2+ 2·)/· so that 2·1 2 2/p > ·1, so

(7.7) Ã(·, t) * Ḃ·2
p,>(R

2)+ C·2(R2) where ·2 > ·1.

In fact, the spacial regularity (7.7) holds at any s in [t0, t] because the pointwise-
in-time estimate (7.6) holds at those times as well. Now we iterate the above
process infinitely many times to upgrade the spacial regularity of the solution, and
we simultaneously use the PDE (3.1) to upgrade their time regularity. This yields
the desired smoothness (7.2), completing the proof of Theorem 7.1. w
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8. PERIODIC CASE

In this section, we consider the initial value problem (3.1)–(3.3) posed on the
torus T2 with periodic boundary conditions. We assume the initial data Ã0 have
zero mean. We prove existence and regularity of solutions.

Theorem 8.1. Let 1 f p < >. Let Ã0 * Ḃ
2/p
p,1 (T

2) be sufficiently small. We
consider the functional space Ep defined by

Ep(T
2) =

{
f (t) * D2

0(T
2) :

‖f‖Ep(T2) = ‖f‖L̃>t Ḃ2/p
p,1 (T

2)
+ ‖f‖

L̃1
t Ḃ

2/p+1
p,1 (T2)

< >
}

where D2
0(T

2) is the dual space of

D0(T
2) =

{
f * C>(T2) :

∫

T2
f (x)dx = 0

}
.

Then, (3.1)–(3.3) has a unique global-in-time solution Ã * Ep(T2).
The proof of Theorem 8.1 follows from the proof of Theorem 4.1.
In view of the Besov embedding and Theorem 8.1, we can conclude that if

Ã0 * Ḃ1
2,1(T

2) is sufficiently small, then there is a constant C > 0 depending only
on the initial data such that the unique solution Ã of (3.1)–(3.3) obeys

(8.1) sup
t>0

‖'Ã(t)‖L2(T2) +
∫>

0
‖&Ã(t)‖L2(T2) dt f C.

Using this latter estimate, we end this section by showing that the L2(T2)
norm of �1/2Ã converges exponentially in time to zero.

We use the following uniform Gronwall lemma [1].

Lemma 8.2. Let y(t) g 0 obey a differential inequality

d

dt
y + c1y f F1 + F(t)

with initial datum y(0) = y0 with F1 a nonnegative constant, and F(t) g 0 obeying

∫ t+1

t
F(s)ds f g0e

2c2t + F2

where c1, c2, g0 are positive constants and F2 is a nonnegative constant. Then,

y(t) f y0e
2c1t + g0e

c1+c(t + 1)e2ct + 1
c1
F1 +

ec1

12 e2c1
F2

holds with c = min{c1, c2}.
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Corollary 8.3. Let Ã0 * Ḃ1
2,1(T

2) be sufficiently small. Then, there is a constant
C > 0 depending only on the initial data such that the unique solution Ã of (3.1)–
(3.3) obeys

(8.2)
∥∥�1/2Ã(t)

∥∥2
L2(T2) f Ce2t for all t g 0.

Proof. We take the inner product in L2(T2) of (3.1) with �Ã to obtain

1
2

d

dt

∥∥�1/2Ã(t)
∥∥2
L2(T2) +

∥∥�Ã(t)
∥∥2
L2(T2) = 2

∫

T2
(u · 'Ã)�Ã dx.

We estimate the nonlinear term
∣∣∣∣
∫

T2
(u · 'Ã)�Ã dx

∣∣∣∣ f C‖Ã‖L>(T2) ‖Ã‖L4(T2) ‖'Ã‖L4(T2) ‖'Ã‖L2(T2)

f C‖Ã‖L4(T2)

∥∥'Ã
∥∥2
L4(T2) ‖'Ã‖L2(T2)

f C
∥∥Ã
∥∥1/2
L2(T2)

∥∥'Ã
∥∥5/2
L2(T2) ‖&Ã‖L2(T2)

in view of the boundedness of the Leray projector and Riesz transforms on L4(T2),
the continuous embedding W 1,4(T2) � L>(T2), and the Ladyzhenskaya interpo-
lation inequality.

Since H1(T2) is continuously embedded in H1/2(T2), we have

‖�1/2Ã‖L2(T2) f C‖�Ã‖L2(T2),

yielding the differential inequality

d

dt
‖�1/2Ã‖L2(T2) + C1‖�1/2Ã‖L2(T2)(8.3)

f C2

∥∥Ã
∥∥1/2
L2(T2)

∥∥'Ã
∥∥5/2
L2(T2) ‖&Ã‖L2(T2).

We note that

(8.4) ‖Ã(t)‖L2(T2) f C‖Ã0‖L2(T2)e
2ct for all t g 0.

Indeed, we multiply (3.1) by Ã and we integrate in the space variable. Then,
we use the cancellation of the nonlinear term and the continuous embedding of
H1/2(T2) in L2(T2) to obtain

d

dt
‖Ã(t)‖L2(T2) + C‖Ã(t)‖L2(T2) f 0,

which gives (8.4).
Now we go back to the differential inequality (8.3). Using the bounds (8.1)

and (8.4) together with Lemma 8.2, we obtain (8.2). w
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9. SUBCRITICAL PERIODIC CASE

In this section, we consider the subcritical case where the dissipation is given by
�³ for ³ * (1,2]; that is, we consider the equation

"tÃ +u · 'Ã +�³Ã = 0(9.1)

posed on T2, where

u = 2P(ÃRÃ).(9.2)

The initial data are given by

Ã(x,0) = Ã0(x)(9.3)

and have zero mean.
Global weak solutions exist, as follows.

Theorem 9.1. Let ³ * (1,2], and T > 0 be arbitrary. Let also Ã0 * L2(T2).
Then, (9.1)–(9.3) has a weak solution Ã on [0, T ] obeying

1
2

∥∥Ã(t)
∥∥2
L2(T2) +

∫ t

0

∥∥�³/2Ã(s)
∥∥2
L2(T2) ds f

1
2

∥∥Ã0

∥∥2
L2(T2) for t * [0, T ].

The proof is similar to that of Theorem 3.3, and we omit the details.
We note that the regularity of the initial data imposed in the critical case

(³ = 1), namely Ã0 * L2+· for some · > 0, is not required in the subcritical case
in view of the fact that Ã obeys

Ã * L2(0, T ;H³/2(T2)).

The following proposition is the analogue of Proposition 3.4.

Proposition 9.2. Let ³ * (1,2], and let p > 2 and Ã0 * Lp(T2). Suppose Ã
is a smooth solution of (9.1)–(9.3) on [0, T ]. Then,

‖Ã(t)‖Lp(T2) f ‖Ã0‖Lp(T2) holds for all t * [0, T ].

Moreover, if Ã0 * L>(T2), then

‖Ã(t)‖L>(T2) f ‖Ã0‖L>(T2) holds for all t * [0, T ].

The solutions of the initial value problem (9.1)–(9.3) with large smooth data
are globally regular.
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Theorem 9.3. Let ³ * (1,2], s > 0, and T > 0 be arbitrary. Furthermore, let
Ã0 * Hs(T2)+L>(T2). Then, there are positive constants C1, C2, and C3 depending
only on ‖Ã0‖L>(T2) such that the solution of (9.1)–(9.2) with initial data Ã0 exists
and satisfies

(9.4) ‖�sÃ(t)‖L2(T2) f ‖�sÃ0‖L2(T2)e
C1t

and ∫ t

0

∥∥�s+³/2Ã(Ç)
∥∥2
L2(T2) dÇ(9.5)

f
∥∥�sÃ0

∥∥2
L2(T2) + C2

∥∥�sÃ0

∥∥2
L2(T2)(e

C3t 2 1) for t * [0, T ].

Proof. Fix a small · * (0,1) such that ³ g ·+ 1. We multiply (9.1) by �2sÃ,
and we integrate in the space variable over T2. We obtain the equation

1
2

d

dt

∥∥�sÃ
∥∥2
L2(T2) +

∥∥�s+³/2Ã
∥∥2
L2(T2) = 2

∫

T2
(u · 'Ã)�2sÃ dx.

We estimate the nonlinear term. Integrating by parts and using Hölder’s in-
equality, we have

∣∣∣∣
∫

T2
(u · 'Ã)�2sÃ dx

∣∣∣∣ =
∣∣∣∣
∫

T2
�s2³/2' · (uÃ)�s+³/2Ã dx

∣∣∣∣

f ‖�s2³/2+1(uÃ)‖L2(T2) ‖�s+³/2Ã‖L2(T2).

In view of the commutator estimate

‖�s(fg)‖Lp(T2) f C‖g‖Lp1 (T2) ‖�sf‖Lp2(T2)(9.6)

+ C‖�sg‖Lp3 (T2) ‖f‖Lp4(T2)

that holds for any mean zero functions f , g * C>(T2), s > 0, p * (1,>), with

1
p
= 1
p1
+ 1
p2
= 1
p3
+ 1
p4
, p2, p3 * (1,>)

(see [10]), we estimate

‖�s2³/2+1(uÃ)‖L2(T2) f C‖u‖L2/·(T2) ‖�s2³/2+1Ã‖L2/(12·)(T2)

+ C‖Ã‖L>(T2) ‖�s2³/2+1u‖L2(T2).

In view of the boundedness of the Riesz transforms (and hence the Leray
projector) on Lp(T2) for p * (1,>) and Proposition 9.2, we bound

‖u‖L2/·(T2) f C‖ÃRÃ‖L2/·(T2) f C‖Ã‖L>(T2) ‖Ã‖L2/·(T2)

f C
∥∥Ã
∥∥2
L>(T2) f C

∥∥Ã0

∥∥2
L>(T2).
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By the commutator estimate (9.6), we have

‖�s2³/2+1u‖L2(T2) f C‖�s2³/2+1(ÃRÃ)‖L2(T2)

f C‖Ã‖L>(T2) ‖�s2³/2+1RÃ‖L2(T2)

+ C‖RÃ‖L2/·(T2) ‖�s2³/2+1Ã‖L2/(12·)(T2)

f C‖Ã0‖L>(T2) ‖�s2³/2+1Ã‖L2(T2)

+ C‖Ã0‖L>(T2) ‖�s2³/2+1Ã‖L2/(12·)(T2)

Hence

‖�s2³/2+1(uÃ)‖L2(T2) f C
∥∥Ã0

∥∥2
L>(T2) ‖�s2³/2+1Ã‖L2/(12·)(T2)

+ C
∥∥Ã0

∥∥2
L>(T2) ‖�s2³/2+1Ã‖L2(T2).

In view of the continuous Sobolev embedding H·(T2) � L2/(12·)(T2), we
obtain the bound

∥∥�s2³/2+1(uÃ)
∥∥
L2(T2) f C

∥∥Ã0

∥∥2
L>(T2)

∥∥�s2³/2+1+·Ã
∥∥
L2(T2)

+ C
∥∥Ã0

∥∥2
L>(T2)

∥∥�s2³/2+1Ã
∥∥
L2(T2).

Using the Sobolev interpolation inequality

(9.7) ‖�s1f‖L2(T2) f C
∥∥�s0f

∥∥12Ã
L2(T2)

∥∥�s2f
∥∥Ã
L2(T2)

that holds for any mean zero function f * Hs2(T2) and s1 = (1 2 Ã)s0 + Ãs2,
Ã * [0,1], we estimate

‖�s2³/2+1Ã‖L2(T2) f C(‖�sÃ‖L2(T2))
2(³21)/³

× (‖�s+³/2Ã‖L2(T2))
2/³21

and

‖�s2³/2+1+·Ã‖L2(T2) f C(‖�sÃ‖L2(T2))
2(³2·21)/³

× (‖�s+³/2Ã‖L2(T2))
2(·+1)/³21.

Consequently,

‖�s2³/2+1(uÃ)‖L2(T2) ‖�s+³/2Ã‖L2(T2)

f C
∥∥Ã0

∥∥2
L>(T2)(‖�sÃ‖L2(T2))

2(³2·21)/³(‖�s+³/2Ã‖L2(T2))
2(·+1)/³

+ C
∥∥Ã0

∥∥2
L>(T2)(‖�sÃ‖L2(T2))

2(³21)/³(‖�s+³/2Ã‖L2(T2))
2/³.
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By Young’s inequality, we end up with

∣∣∣∣
∫

T2
(u · 'Ã)�2sÃ dx

∣∣∣∣ f CÃ0

∥∥�sÃ
∥∥2
L2(T2) +

1
2

∥∥�s+³/2Ã
∥∥2
L2(T2)

where CÃ0 is a constant depending on the L> norm of the initial data Ã0.
Therefore, we obtain the differential inequality

(9.8)
d

dt

∥∥�sÃ
∥∥2
L2(T2) +

∥∥�s+³/2Ã
∥∥2
L2(T2) f 2CÃ0

∥∥�sÃ
∥∥2
L2(T2),

which gives (9.4) and (9.5). w

We have shown existence of global smooth solutions in the subcritical case,
provided that the initial data is smooth enough. No smallness condition is im-
posed on the size of the initial data.

Remark 9.4. The solutions in the subcritical case are unique. This is obtained
by following the same argument as for the uniqueness of local strong solutions in
the critical case (see the proof of Theorem 3.7 in Appendix C).

Remark 9.5. The results obtained in Theorem 9.3 hold as well in the whole
space R2 when the initial data is smooth. The proof of Theorem 9.3 is mainly
based on commutator estimates (9.6) which hold in the whole space (see [17]),
the uniform boundedness of the Lp norms of solutions to the subcritical equa-
tion which is obtained in R2 (see Proposition 3.4 and Remark 3.5), and periodic
Sobolev interpolation inequalities given by (9.7) which, in the whole space setting,
becomes

‖f‖Hs1(R2) f C
∥∥f
∥∥12Ã
Hs0 (R2)

∥∥f
∥∥Ã
Hs1 (R2)

for f * Hs2(R2) and s1 = (12Ã)s0+Ãs2, Ã * [0,1]. Therefore, the differential
inequality (9.8) becomes

d

dt

∥∥�sÃ
∥∥2
L2(R2) +

∥∥�s+³/2Ã
∥∥2
L2(R2) f C0

1

∥∥�sÃ
∥∥2
L2(T2) + C0

2 ,

where C0
1 and C0

2 are constants depending only on the initial data, yielding the
desired bounds.

APPENDIX A. PROOF OF PROPOSITION 2.2

In this appendix, we prove Proposition 2.2.

Proof. Let f , g * S2h. Bony’s paraproduct gives the decomposition

fg =
∑

j*Z
Sj21f&jg +

∑

j*Z
Sj21g&jf +

∑

|j2j2|f1

&jf&j2g.
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We note that

∑

|j2j2|f1

&jf&j2g =
∑

j*Z
&jf&jg +

∑

j*Z
&jf&j21g +

∑

j*Z
&jf&j+1g

=
∑

j*Z
&jf&jg +

∑

j*Z
&jf&j21g +

∑

j*Z
&j21f&jg

=
∑

j*Z
(&j21f +&jf )&jg +

∑

j*Z
&jf&j21g.

This implies that

fg =
∑

j*Z
Sj+1f&jg +

∑

j*Z
Sjg&jf .

Now we apply &j . In view of (2.1), we have

k f j 2 2 ó &j(Skg&kf ) = 0(A.1)

and

k f j 2 3 ó &j(Sk+1f&kg) = 0.(A.2)

Indeed,

F(&j(Skg&kf )(¿) = «j(|¿|)F(Skg&kf )(¿)

= «j(|¿|)
{ ∑

lfk21

∫

R2
«l(|¿ 2y|)Fg(¿ 2y)«k(|y|)Ff (y)dy

}

= «j(|¿|)
{ ∑

lfk21

∫

2k/2f|y|f2k5/4
«l(|¿ 2y|)Fg(¿ 2y)«k(|y|)Ff (y)dy

}

= «j(|¿|)«̃k(¿),

where

«̃k(¿) =
∑

lfk21

∫

2k/2f|y|f2k5/4
«l(|¿ 2y|)Fg(¿ 2y)«k(|y|)Ff (y)dy.

Fix l f k21. Let y * R2 be such that 2k/2 f |y| f 2k5/4 and «l(|¿2y|) 6= 0.
This implies that |¿ 2y| f 2l5/4, and so

|¿| f |¿ 2 y| + |y| f 2l5
4
+ 2k5

4
f 2k215

4
+ 2k5

4
= 2k2315.

Consequently, if |¿| > 2k2315, then «l(|¿ 2 y|) = 0 for all l f k 2 1 and for
all y satisfying 2k/2 f |y| f 2k5/4, and so «̃k(¿) = 0. We conclude that the
support of «̃k is included in the closed ball centered at 0 with radius 2k2315. But
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the support of «j(| · |) is included in the closed annulus centered at 0 with radii
2j/2 and 2j5/4. Therefore, if k + 1 f j 2 1, then 2k2315 < 2k+1 f 2j21, and
so F(&j(Skg&kf )) = 0, which gives (A.1). The property (A.2) follows from a
similar argument. Therefore, we obtain the decomposition

&j(fg) =
∑

kgj22

&j(Sk+1f&kg)+
∑

kgj22

&j(Skg&kf ).

This ends the proof of Proposition 2.2. w

APPENDIX B. PROOF OF THEOREM 3.3

Proof. We take the L2 inner product of (3.4) with Ã·, and obtain

(B.1)
1
2

d

dt

∥∥Ã·
∥∥2
L2 +

∥∥�1/2Ã·
∥∥2
L2 + ·

∥∥'Ã·
∥∥2
L2 = 0.

Here, we used the fact that ũ· is divergence free, which implies that

(ũ· · 'Ã·, Ã·)L2 = 0.

Integrating (B.1) in time from 0 to t, we obtain (3.6). Therefore, the family
{Ã· : · * (0,1]} is uniformly bounded in L2(0, T ;H1/2). Moreover, we have

|(�Ã· ,§)L2| = |(�1/2Ã·,�1/2§)L2| f ‖�1/2Ã·‖L2 ‖�/12§‖L2

f C‖�1/2Ã·‖L2 ‖§‖H5/2,

·|(2&Ã·,§)L2| = ·|(Ã·,2&§)L2| f C‖Ã·‖L2 ‖§‖H5/2 ,

and

|(ũ· · 'Ã·,§)L2| = |(ũ·Ã·,'§)L2| f ‖ũ·‖L2 ‖Ã·‖L2 ‖'§‖L>
f C

∥∥Ã·
∥∥2
L4 ‖Ã·‖L2 ‖§‖H5/2

for all § * H5/2. Here, we used the boundedness of the Riesz operator on L4, and
the continuous Sobolev embedding H3/2

� L>. Therefore, we obtain the bound

‖ũ· · 'Ã·‖H25/2 + ‖�Ã·‖H25/2 + ·‖&Ã·‖H25/2

f C
(∥∥Ã·

∥∥2
L4 ‖Ã·‖L2 + ‖Ã·‖L2 + ‖�1/2Ã·‖L2

)
.

In view of the continuous embedding H1/2
� L4, we conclude that the family

{"tÃ· : · * (0,1]} is uniformly bounded in L1(0, T ;H25/2). Now, we note
that the inclusion H1/2

� L2 is compact whereas the inclusion L2
� H25/2 is

continuous. Let ·n be a decreasing sequence in (0,1] converging to 0. By the
Aubin-Lions lemma and (3.6), the sequence {Ã·n}>n=1 has a subsequence that
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converges strongly in L2(0, T ;L2) and weakly in L2(0, T ;H1/2) to some function
Ã. By the lower semi-continuity of the norms, we obtain (3.7).

For simplicity of notation, assume Ã· converges to Ã strongly in L2(0, T ;L2)
and weakly in L2(0, T ;H1/2). We note that

(Ã·(t),§)L2 2 (Ã0,§)L2 +
∫ t

0
(ũ· · 'Ã·,§)L2 ds

+
∫ t

0
(�1/2Ã·,�1/2§)L2 ds + ·

∫ t

0
('Ã· ,'§)L2 ds = 0

holds for all § * H5/2 and t * [0, T ]. Without loss of generality, we may assume
that Ã· converges to Ã in L2 for almost every t * [0, T ], and so

|(Ã·(t),§)L2 2 (Ã(t),§)L2| f ‖Ã· 2 Ã‖L2 ‖§‖L2 ³ 0

for all § * H5/2 and almost every t * [0, T ]. By the weak convergence in
L2(0, T ;H1/2), we obtain

∣∣∣∣
∫ t

0
(�1/2Ã·,�1/2§)L2 ds 2

∫ t

0
(�1/2Ã,�1/2§)L2 ds

∣∣∣∣ ³ 0

for all § * H5/2 and all t * [0, T ]. For the nonlinear term, we let § * H5/2,
t * [0, T ], and write

∫ t

0
(ũ· · 'Ã·,§)L2 ds 2

∫ t

0
(u · 'Ã,§)L2 ds

= 2
∫ t

0
((Ã· 2 Ã)u,'§)L2 ds 2

∫ t

0
((ũ· 2u)Ã·,'§)L2 ds

= I1 + I2.

We note that

|I1| f C‖§‖H5/2

∫ t

0

∥∥Ã
∥∥2
L4 ‖Ã· 2 Ã‖L2 ds ³ 0

by the Lebesgue Dominated Convergence theorem. For I2, we split it as

I2 =
∫ t

0
((J·P(Ã(RÃ

· 2 RÃ)))Ã·,'§)L2 ds

+
∫ t

0
((J·P((Ã

· 2 Ã)RÃ·))Ã·,'§)L2 ds

= I2,1 + I2,2.
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In view of the boundedness of the Riesz transform on L2 and the boundedness of
the Leray operator on L4/3, we have

|I2,1| f C‖§‖H5/2

∫ t

0
‖Ã·‖L4 ‖P(ÃR(Ã· 2 Ã))‖L4/3 ds

f C‖§‖H5/2

∫ t

0
‖Ã·‖L4 ‖Ã‖L4 ‖Ã· 2 Ã‖L2 ds

f C‖§‖H5/2

(∫ t

0

∥∥Ã·
∥∥2
L4 ds

)1/2(∫ t

0

∥∥Ã
∥∥2
L4

∥∥Ã· 2 Ã
∥∥2
L2 ds

)1/2

³ 0

by the Lebesgue Dominated Convergence theorem.
We note that we have not yet used the assumption that Ã0 * L2+·. This will

be needed to estimate |I2,2|. Indeed, we multiply equation (3.4) by Ã·|Ã·|·, and
we integrate in the space variable. We use the Córdoba-Córdoba inequality [12]

∫

R2
|Ã·|·(Ã·�Ã·)dx g 0,

and we obtain the differential inequality

d

dt
‖Ã·(t)‖L2+· f 0.

Integrating in time from 0 to t, we end up having the bound

‖Ã·(t)‖L2+· f ‖Ã0‖L2+· for all t * [0, T ].

As a consequence,

|I2,2| f C‖§‖H5/2

∫ t

0
‖Ã·‖L4 ‖Ã·‖L2+· ‖Ã· 2 Ã‖L(8+4·)/(2+3·) ds

f C‖§‖H5/2 ‖Ã0‖L2+·

∫ t

0
‖Ã·‖L4

∥∥Ã· 2 Ã
∥∥(2·)/(2+·)
L2

∥∥Ã· 2 Ã
∥∥(22·)/(2+·)
L4 ds

f C‖§‖H5/2 ‖Ã0‖L2+·

(∫ t

0

∥∥Ã·
∥∥2
L4

)2/(2+·)(∫ t

0

∥∥Ã· 2 Ã
∥∥2
L2 ds

)·/(2+·)

+ C‖§‖H5/2 ‖Ã0‖L2+·

(∫ t

0

∥∥Ã·
∥∥2
L4

)1/2

×
(∫ t

0

∥∥Ã
∥∥2
L4 ds

)(22·)/(4+2·)(∫ t

0

∥∥Ã· 2 Ã
∥∥2
L2 ds

)·/(2+·)
³ 0.

Here, we used the interpolation inequality

‖f‖L(8+4·)/(2+3·) f C
∥∥f
∥∥(2·)/(2+·)
L2

∥∥f
∥∥(22·)/(2+·)
L4 ,

which holds for any f * L4.
Thus, Ã is a weak solution of (3.1). This ends the proof of Theorem 3.3. w
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APPENDIX C. PROOF OF THEOREM 3.7

Proof. We apply 2& = �2 to (3.4), and obtain

(C.1) 2 "t&Ã· 2 ũ· ·'&Ã· 2 2'ũ·''Ã· 2&ũ· ·'Ã· +�3Ã· + ·&&Ã· = 0.

Multiply (C.1) by 2&Ã·, and integrate over R2. Given (ũ· · '&Ã·,&Ã·)L2 = 0,
we obtain

1
2

d

dt

∥∥&Ã·
∥∥2
L2 +

∥∥�5/2Ã·
∥∥2
L2 + ·

∥∥�3Ã·
∥∥2
L2

= 22('ũ·''Ã· ,&Ã·)L2 2 (&ũ· · 'Ã·,&Ã·)L2 .

Using the product rule ‖fg‖Hs f C‖f‖Hs ‖g‖L>+C‖g‖Hs ‖f‖L> that holds
for any f , g * Hs , s > 0, we estimate

‖'ũ·‖L4 f C‖ũ·‖H3/2 f C‖Ã·RÃ·‖H3/2

f C‖Ã·‖L> ‖RÃ·‖H3/2 + C‖RÃ·‖L> ‖Ã·‖H3/2

f C
∥∥Ã·

∥∥2
H3/2 .

Here, we have used the continuous embedding H1/2
� L4, the fact that the Leray

projector is bounded on H3/2, and the boundedness of the Riesz transforms as
operators from H3/2 into L>. Similarly, we bound

‖&ũ·‖L4 f C‖Ã·RÃ·‖H5/2

f C‖Ã·‖L> ‖RÃ·‖H5/2 + C‖RÃ·‖L> ‖RÃ·‖H5/2

f C‖Ã·‖H3/2 ‖Ã·‖H5/2 .

Consequently,

1
2

d

dt

∥∥&Ã·
∥∥2
L2 +

∥∥�5/2Ã·
∥∥2
L2

f 2‖'ũ·‖L4 ‖''Ã·‖L4 ‖&Ã·‖L2 + ‖&ũ·‖L4 ‖'Ã·‖L4 ‖&Ã·‖L2

f C
∥∥Ã·

∥∥2
H3/2‖Ã·‖H5/2 ‖&Ã·‖L2 ,

and, by Young’s inequality, we obtain

d

dt

∥∥&Ã·
∥∥2
L2 +

∥∥�5/2Ã·
∥∥2
L2

f C
∥∥Ã·

∥∥4
H3/2

∥∥&Ã·
∥∥2
L2 + C

∥∥Ã·
∥∥2
H3/2 ‖Ã·‖L2 ‖&Ã·‖L2

f C
(∥∥Ã·

∥∥6
H2 +

∥∥Ã·
∥∥4
H2

)
.
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We note that

‖Ã·‖H2 = ‖(1+ |.|2)F(Ã·)(.)‖L2 f C‖FÃ·‖L2 + C‖&Ã·‖L2

= C‖Ã·‖L2 + C‖&Ã·‖L2 f C‖Ã0‖L2 + C‖&Ã·‖L2

in view of Plancherel’s theorem and the uniform boundedness of Ã· in L2 de-
scribed by (3.7). Therefore, we obtain the differential inequality

(C.2)
d

dt

∥∥&Ã·
∥∥2
L2 +

∥∥�5/2Ã·
∥∥2
L2 f C

∥∥&Ã·
∥∥6
L2 + CÃ0

where CÃ0 is a positive constant depending only on Ã0 and some universal con-
stants. This implies that

d

dt

(∥∥&Ã·
∥∥2
L2 + 1

)
f C0

(∥∥&Ã·
∥∥2
L2 + 1

)3

for some constant C0 depending only on the initial data. Dividing both sides by
(‖&Ã·‖2

L2 + 1)3 and integrating in time from 0 to t, we get

1

2
(∥∥&Ã·(t)

∥∥2
L2 + 1

)2 g
1

2
(∥∥&Ã0

∥∥2
L2 + 1

)2 2 C0T0 for all t * [0, T0].

We choose a positive time T0 > 0 such that

T0 <
1

2C0
(∥∥&Ã0

∥∥2
L2 + 1

)2 ,

and we conclude that

∥∥&Ã·(t)
∥∥2
L2 f

∥∥&Ã0

∥∥2
L2 + 1√

12 2C0T0
(∥∥&Ã0

∥∥2
L2 + 1

)2
for all t * [0, T0].

In view of the energy inequality (C.2), we also have that

∫ T0

0

∥∥�5/2Ã·(t)
∥∥2
L2 dt f � (Ã0, T0),

where � (Ã0, T0) is a positive constant depending only on the initial data and T0.
This shows that {Ã· : · * (0,1]} is uniformly bounded in

L>(0, T ; Ḣ2(R2))+ L2(0, T ; Ḣ5/2(R2)).

Passing to the limit on a subsequence and using the lower semicontinuity of
norms, we conclude that the weak solution Ã, obtained in Theorem 3.3, is strong.
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For uniqueness, suppose that Ã1 and Ã2 are two strong solutions of (3.1) on
[0, T0] with the same initial condition. Let Ã = Ã1 2 Ã2 and u = u1 2u2. Then,
Ã obeys the equation

"tÃ +u · 'Ã1 +u2 · 'Ã +�Ã = 0.

We take the L2 inner product with Ã, and obtain

1
2

d

dt

∥∥Ã
∥∥2
L2 +

∥∥�1/2Ã
∥∥2
L2 = 2(u · 'Ã1, Ã)L2 .

In view of the boundedness of the Riesz transforms on L4, we have

‖u‖L4 f ‖P(ÃRÃ1)‖L4 + ‖P(Ã2RÃ)‖L4

f C‖Ã‖L4 ‖RÃ1‖L> + ‖Ã2‖L> ‖RÃ‖L4

f C‖Ã‖L4(‖Ã1‖H3/2 + ‖Ã2‖H3/2).

Hence,

|(u · 'Ã1, Ã)L2 | f ‖u‖L4 ‖'Ã1‖L4 ‖Ã‖L2

f 1
2

∥∥Ã
∥∥2
H1/2 + C

(∥∥Ã1

∥∥2
H3/2 +

∥∥Ã2

∥∥2
H3/2

)∥∥Ã1

∥∥2
H3/2

∥∥Ã
∥∥2
L2 .

Therefore,
d

dt

∥∥Ã
∥∥2
L2 f K(t)

∥∥Ã
∥∥2
L2

where
K(t) = C

(∥∥Ã1

∥∥2
H3/2 +

∥∥Ã2

∥∥2
H3/2

)∥∥Ã1

∥∥2
H3/2 .

We note that K(t) is time integrable on [0, T0] since Ã1 and Ã2 belong to the
space L>(0, T0;H2(R2)). This shows that for each t g 0, Ã1(·, t) = Ã2(·, t)
almost everywhere in R2, and so we obtain uniqueness. This completes the proof
of Theorem 3.7. w
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