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Abstract
Learning statistical regularities of target objects speeds visual search performance. However, we
do not yet know whether this statistical learning effect is driven by biasing attentional selection
at the early perceptual stage of processing, as theories of attention propose, or by improving the
decision-making efficiency at a late response-related stage. Leveraging the high temporal
resolution of the event-related potential (ERP) technique, we had sixteen human observers
perform a visual search task where we inserted a fine-grained statistical regularity that the target
shapes appeared in different colors with six unique probabilities. Observers unintentionally
learned these regularities such that they were faster to report targets that appeared in more likely
target colors. The observers” ERPs showed that this learning effect resulted in subjects making
faster decisions about the target presence, and not by preferentially shifting attention to more
rapidly select likely target colors, as is often assumed by the attentional selection account,
supporting a post-selection account for statistical learning of the probabilistic regularities of
target features. These results provide fundamental insights into the attentional control
mechanisms of statistical learning.
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Public Significance Statement
Humans are able to learn regularities from the surrounding environment to increase their
efficiency. However, the mechanisms underlying this statistical learning are not yet clear.
Leveraging the high temporal resolution of human electrophysiology, we examined the
attentional control mechanisms of statistical learning with a novel visual search paradigm. We
used fine-grained statistical regularities that paired target shapes with different colors across
trials. Our results demonstrated that observers could successfully learn the complex statistical
regularities of the environment unintentionally. Contrary to theories of attentional selection, we
found that this statistical learning effect was driven by more efficient decision-making, not
biasing attention to select targets with prioritized features, helping solve the long-standing
theoretical controversy regarding the cognitive control mechanisms underlying statistical

learning.
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When a human arrives in a new environment, it has an array of learning and memory
mechanisms at its disposal to help it learn how to find and recognize objects that are critical for
its survival (Turk-Browne et al., 2009; Turk-Browne, 2012; Goujon et al., 2015; Sha et al., 2017;
Ferrante et al., 2018; Wang & Theeuwes, 2018; Batterink et al., 2019; Failing et al., 2019; Zhang
et al., 2019; Conn et al., 2020; Kerzel et al., 2022). Theories propose that this learning allows the
human brain to shift perceptual attention to objects that have target features, speeding behavioral
reaction time (or RT, see reviews from Desimone & Duncan, 1995; Egeth & Yantis, 1997;
Kastner & Ungerleider, 2000; Corbetta & Shulman, 2002). Although we know that learning
speeds behavioral RTs, we do not yet know how the brain achieves this feat.

Although researchers have repeatedly confirmed the existence of statistical learning
effects during visual search, they do not yet know how this might change attentional control.
According to one view, past experiences bias attention to objects that contain target features
(Awh et al., 2012; Wolfe & Horowitz, 2017; Theeuwes, 2019). However, faster RTs could also
be due to more efficient post perceptual processing. That is, the repetition of the target features
speed behavioral RTs by speeding a decision stage of processing (Huang et al., 2004). This
alternative seems plausible given previous research suggesting that learning allows observers to
make decisions faster after attention is shifted to a candidate target object (Huang et al., 2004;
Huang & Pashler, 2005), and can increase the efficiency of a motor response (e.g., Cohen &
Magen, 1999). Thus, our goal was to distinguish between these alternatives.

Purpose of the Present Study

To examine the attentional and post-perceptual accounts of the locus of statistical
learning benefits, we focused our measurements on two event-related potential (ERP)
components. The N2pc (for a Negative going waveform, 200 ms following an array, with a

posterior and contralateral distribution) and LPC (for Late Positive Complex) were measured
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while observers were learning a sophisticated pattern of statistical regularities in which the color
of a target shape was manipulated across trials (e.g. targets were in red for 33% trials, in magenta
for 26% trials, in yellow for 19% trials, in green for 12% trials, in blue for 5% trials, and in
baseline colors for 5% trials). The N2pc emerges approximately 200ms following the search
array onset and tracks the attentional selection of targets at early sensory-perception stage (Luck
& Hillyard, 1994; Eimer, 1996; Woodman & Luck, 1999; Hopf et al., 2000). The LPC emerges
approximately 500ms after stimulus onset and tracks post-perceptual decision-making (Friedman
& Johnson, 2000; Rugg & Curran, 2007; Voss et al., 2010).

According to the attentional selection account, prioritized attention should be biased to
targets with more predictable features, if this was the case, we should see larger amplitude N2pc
for targets paired with high-probability colors. However, if differences in decision-making
efficiency account for the statistical learning effect, we should observe that the LPC has a larger
amplitude for targets paired with high-probability colors.

Transparency and Openness

This experiment was not preregistered. Deidentified data and the data-analysis scripts are
available at https://osf.io/f9p4r/.

Materials and Methods
Participants

Twenty-one undergraduates and graduate students from Vanderbilt University
participated in the current experiment for gift card compensation ($15/hour). All participants
self-reported normal or corrected-to-normal acuity, normal color vision, and received informed
consent for procedures approved by the Vanderbilt University Institutional Review Board. Five
participants were excluded from further data analysis due to excessive eye movements and

muscular artifacts during EEG recording (see details in the EEG data preprocessing section),
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leaving 16 participants (11 females and 5 males, Mean age = 22.6 years, SD age = 2.0 years) in
the final data set. All the gender and age information were self-reported by the participants with
a free-response box.
Sample Size Analysis

We estimated the necessary sample size for the present experiment using a multi-step
procedure. First, we looked to the existing literature that has examined effects of statistical
learning on attention for guidance (e.g., 12-24 participants across experiments in Sha et al., 2017;
Cosman & Vecera, 2014). Second, we used approximately 4 times as many trials as the previous
reports due to recording brain activity. Third, we performed a post-hoc power analysis for our

sample size (N=16) using the G*Power analysis software (Faul et al., 2009). We took the effect
size estimate (N> = 0.269) from the one-way repeated measures ANOVA of the RTs across

target color probability (F(5, 75) = 5.520, p = 0.001, np°= 0.269; see Behavioral Results). Instead
of setting a power threshold (e.g., 0.8) to estimate a suitable sample size, the post-hoc power
analysis outputs a power estimate with the input of a given sample size. An output power
estimate larger than 0.8 implies a reasonable sample size. Our post-hoc power analysis revealed
an output power value of 0.965 with the given sample size of 16, demonstrating the statistical
power available in the current experimental design.
Stimuli

Stimuli were presented using MATLAB (R2017b 9.3.0.; MathWorks) and the
Psychophysics Toolbox (version 3.0.12) (Brainard, 1997) on a CRT monitor contained in
Faraday cage. Stimuli were presented on a white background (75.2 cd/m?). Participants were
seated approximately 75 cm from the screen.

Figure 1A shows example trials of the shape visual search task. Each trial began with a

display containing a black fixation cross (1.2 cd/m?, 0.4° of visual angle) in the center of the
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screen for 1000 ms, followed by a search array surrounding fixation containing one target box
(box with an opening on the top edge or the bottom edge) and eleven distractor boxes (box with
an opening on the left edge or the right edge). This display was visible until participants made a
response on each trial. All boxes were unfilled squares (the square length*width, 0.7° *0.7°
visual angle, and the edge thickness, 0.1° visual angle) with an opening (the opening width, 0.5°
visual angle) on one of the four edges, and were evenly distributed on an invisible circle with the
eccentricity of 4.4° visual angle. All boxes were randomly placed at twelve fixed positions of the
invisible circle (from 0 circle degrees to 330 degrees, in steps of 30 degrees). Participants were
instructed to use their peripheral vision to search for the target box while keeping their eyes fixed
on the black fixation cross. They were also encouraged to make responses as fast and accurate as
they could. After the search array disappeared as the response was made, a blank screen
appeared with a variable inter-trial interval ranging from 1000 ms to 1500 ms. The “top” target
and the “bottom” target trials were equally probable (50%) across experiment. Participants
pressed “f” or “j” on the keyboard to indicate that they found a “top” or “bottom” target. The
response keys were counterbalanced across subjects.

The colors of the boxes were chosen from a pool of eight highly discriminable colors: red
(x=0.55, y=0.33), green (x=0.28, y=0.61), magenta (x=0.29, y=0.15), yellow (x=0.42, y=0.50),
blue (x=0.11, y=0.07), cyan (x=0.20, y=0.29), black (1.2 c¢d/m?), and orange (x=0.48, y=0.38).
We manipulated target color probability differently for the learning session and the test session
(Figure 1B). For the learning session, targets were paired with five out of the eight colors from
the color pool with a probability distribution of 33%, 26%, 19%, 12%, 5% for each color, with
the remaining 5% of all trials randomly paired with the three remaining colors from the pool to
form the baseline. In the test session, the targets were paired with each of the eight colors with a

probability of 12.5% on a given trial. For each search array, the colors of the distractors were
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randomly chosen from the color pool, without repetition with the color of target, and with no
more than two distractors appeared in the same color. It is worth noting that the colors paired
with targets were not exclusive, they could be paired with distractors across the experiment. The
probability-matching colors were randomized across participants to prevent confounds from
stable color preferences across the sample (i.e., red was just as often as baseline or 5% color as it
was the 33% color).
Procedure

Figure 1C illustrates the experimental design of a session with an individual observer.
Each observer completed two learning sessions and a test session. The goal of the test session
was to determine if the statistical learning effect survives interference from another task in which
color is task relevant. With this goal, half of the observers completed the test session
immediately after the learning session, while the other half of the observers completed a working
memory task after the learning session, but before the test session. By comparing the influence of
the learned statistical regularities on test session performance on these two groups, we could tell
whether the statistical learning effect survived interference for the interposed task performance.
The immediate-test group also completed the working memory task, but after the test session.
Observers completed two learning sessions, each learning session includes five blocks of 200
trials with all target colors (33%, 26%, 19%, 12%, 5%, and 5% Baseline) and target shapes
(upward, and downward) intermixed randomly. The test session includes two blocks of 80 trials
with all eight colors from the color pool (12.5% for each color) and target shapes (upward, and
downward) intermixed randomly.

To examine the relationship between WM capacity and statistical learning effect, a
classic color change-detection task was used to estimate observers’ WM capacity (Luck &

Vogel, 1997; Vogel & Machizawa, 2004). In this task, participants were instructed to memorize
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the colors of a variable number of squares (3, 6, or 8, with width x height of 0.65° x 0.65° visual
angle) that appeared in a memory array. During each trial, a memory array appeared on the
screen for 100 ms, followed by a 900 ms delay period, before the appearance of the test array.
The test array consisted one probe colored square presented at the location of a square in the
memory array. On 50% of trials the color of the square in the test array would change to another
color not previously seen in the memory array, and stays the same for the other 50% of trials.
The locations of the colored squares in the test array stayed the same as it appeared in the
memory arrays. Participants pressed “f” or 5> on the keyboard to indicate whether the color of
the square in the test array had changed or stayed the same. The change versus no-change keys
were counterbalanced across subjects.

The colors of the squares were chosen from the same pool of seven highly discriminable
colors as the search items: red, green, magenta, yellow, blue, black, and white (same metrics as
above). The colors of the squares in the sample array were randomly chosen from the color pool,
with each color appearing no more than twice on a given trial. Each square was located in one of
the 24 positions on three invisible circles (with eccentricities of 1.5°, 2.7°, and 3.9° visual angle,
respectively). Each participant completed 48 trials at each set size (3, 6, and 8), and trials with
different set sizes were intermixed within the block.

To examine whether observers were explicitly aware the mapping of color to target
likelihood after learning, they completed a post-test questionnaire. In the questionnaire, they
were asked if they thought that the target shape appeared more often in some colors than others.
If they answered yes, they were further asked to write down the ranking for each color in terms
of its relative frequency (rank the color that the target appeared in the most, the second most, the

third most, etc.), and its corresponding approximate probability (they could at maximum rank all
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8 colors, with 100% representing the highest probability). If they answered no, they were not
required to answer further questions.
EEG Acquisition

The electroencephalogram was recorded in an electrically shielded, soundproof booth
from a 20-channel cap (Electro-cap International, OH) embedded with tin electrodes that make
contact with the skin through electrode gel. The 20 electrodes were positioned according to the
International 10-20 system (F3, F4, C3, C4, P3, P4, PO3, PO4, O1, 02, PO7, POS, T3, T4, P7,
P8, Fpz, Fz, Cz, Pz). Impedance values were kept below 4 kQ. The reference electrodes were
affixed with stickers to the left and right mastoids with the left mastoid operating as the online
reference electrode, and a ground electrode placed at Fpz. Electrooculogram (EOG) activity was
recorded with two horizontal EOG electrodes placed ~1 cm lateral to the outer canthi of the two
eyes, and one vertical EOG electrode was placed below the right eye to detect eye movements
and blinks. All channels were bandpass filtered from 0.01-100 Hz and recorded with a 250 Hz
sampling rate.
Data Analyses
RT Analysis

For the visual search task performance analysis, we analyzed reaction time (RT) for trials
with targets paired with each color. To avoid contributions from outliers, only trials with RT
faster than 3 seconds and trials with correct responses were included in the mean RT analyses.
Calculation of Working Memory Capacity

Observers’ working memory capacity was calculated from the averaged capacity of all
three sample set sizes (3 vs. 6 vs. 8). The calculation of working memory capacity (K) for each
set size in the change detection task followed the formula K = Set size* (Hit rate — False Alarm

rate) (Rouder et al., 2011), where hit rate represents proportion of correct responses on change
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trials, and false alarm rate represents proportion of incorrect responses on no-change trials. As
the correlations between performance of this task and the statistical learning task are not relevant
for the accounts we are distinguishing between in this study, we report these in the Supplemental
Materials (see Figure S1).
EEG Data Preprocessing

A low-pass filter at 30 Hz was first applied to EEG data to remove high frequency
activity caused by muscle and environmental noise. Data were then re-referenced offline to the
average of the left and right mastoid reference. EEG epochs were then extracted from the re-
referenced EEG signal. These epochs last for 1000 ms, beginning 200 ms prior to the search
array onset, with the 200 ms pre-stimulus period serving as the baseline. Trials including artifacts
due to blinks, amplifier saturation, or excessive noise that exceed -100puV to +100p1V range were
first rejected using a standard signal-rejection function from the EEGLAB Toolbox
(eegthresh.m; Delorme & Makeig, 2004). A stricter threshold of -50uV and +50uV range was
further conducted on the horizontal EOG signal (the difference voltage between horizontal EOG
recorded from left and right eyes) and the vertical EOG signal, respectively, to remove trials
contaminated by the horizontal and vertical eye movements. Five observers with fewer than 70%
artifact-free trials remaining were excluded following the artifact rejection steps, with an average
82.3% (SD = 7.0%) of trials being kept for the remaining observers.
ERP Analysis

N2pc Analysis: The N2pc component was analyzed as an electrophysiological marker of
attentional selection of targets among distractors that operates at an early perceptual stage of
processing (Woodman & Luck, 2003). The N2pc is a negativity that typically emerges between
180 and 200 msec after visual search array onset and is assumed to reflect the spatial of object

representations in extrastriate visual cortex during early perceptual processing level (e.g., Luck
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& Hillyard, 1994; Eimer, 1996; Woodman & Luck, 1999; Hopf et al., 2000). In current study,
the N2pc amplitude was computed by subtracting the averaged activity from electrodes with
target presented ipsilateral to its location from the activity of the electrodes contralateral to the
target. Following precedent, we focused on the posterior-lateral electrode PO7/POS8 (Grubert et
al., 2016). The time window for the N2pc analysis was 250-350 ms after the search array onset.
The onset latency of the N2pc was calculated using the jackknife method in which we measured
the latency at which the N2pc reached 50% of the area under the curve (Kiesel et al., 2008).
Since only trials with targets presented laterally can be included in the N2pc analysis, we merged
trials with targets in the low-probability colors (12%, 5%, and 5% baseline) to increase the
signal-to-noise ratio of our N2pc analysis.

LPC Analysis: Following the N2pc, we measured a post-perceptual component known as
the LPC (for late positive complex). The LPC is a relative positivity that emerges across the
posterior scalp electrodes beginning about 500 ms after stimulus onset. Substantial evidence
indicates that LPC potentials signal episodic retrieval from long-term memory (Friedman &
Johnson, 2000; Rugg & Curran, 2007; Voss et al., 2010). Observers could store the probability of
instances for targets paired with each color they saw from the search history in their long-term
memory to extract the regularity and apply the regularity to guide their forthcoming search.
Regularity extraction, target identification, and response decision-making requires comparison
between the current features of target with the features stored in long-term memory. In the
current experiment, the LPC amplitude was calculated by averaging signals across the parietal
electrodes: P3/P4, P7/P8, PO3/PO4, PO7/POS. The time window for the LPC analysis was 450-
650 ms after the search array onset.

Experimental Design and Statistical Analyses
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To examine the influence of the target color probability on behavioral performance and
the electrophysiological markers, one-way repeated-measures ANOV As with the within-subjects
factor of Target Color Probability (33%, 26%, 19%, 12%, 5%, and baseline) were performed on
observers’ mean RT and LPC amplitude. A 2 x 4 RMANOVA with within-subjects factors of
Laterality (electrode contralateral vs. ipsilateral to target) and Target Color Probability (33% vs.
26% vs. 19% vs. 12%+5%+baseline) was applied to the N2pc analysis. Bonferroni corrections
for multiple comparisons were applied to all paired-wise comparisons. All these statistical
analyses were performed in Matlab and SPSS 19.0 (IBM Inc.).

Results
Behavioral Results
Statistical Learning Speeds Visual Search for Targets in High-Probability Colors

As shown in Figure 2A, our analyses on observers’ RT for trials with targets appearing
in different-probability colors demonstrated that behavior mirrored the probability structure that
we imposed on the experimental environment.

The one-way repeated measures ANOVA revealed a significant main effect of Target
Color Probability (F(5, 75) = 5.520, p = 0.001, np,> = 0.269), with faster RT for targets paired
with higher probability colors. Next, we performed pair-wise sample t-tests between RTs in each
color probability against RTs when the target appeared in the baseline colors. These revealed a
significant reduction in RT for targets appearing in the three highest-probability colors (#15) =
3.963, 3.297, 3.416, p = 0.019, 0.073, 0.058 for 33%, 26%, and 19% colors, respectively), while
no significant change in RT for targets appearing in the two lowest-probability colors (#15) =
2.158,0.327, p =0.713, 1.000 for 12% and 5% colors, respectively). Moreover, there were no
significant difference between RTs when the target appeared in the three highest-probability

colors (|f|s <0.772, ps = 1.000). In summary, the behavioral results demonstrate that subjects’
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learning reflected the regularities in the environment. We next examined whether these were
task-specific representations that our observers acquired, or whether this kind of statistical
learning survives a change in task context.

The Statistical Learning Effect is Short-Lived

Figure 2B shows the duration of the learning effect as measured with performance in the
test session. We calculated RT for targets in each color in the test session where targets were
paired with equivalent probability colors, but binned according to their role in the previous
learning sessions. Our results show that the learned target probability effects did not last into the
test session in a robust enough form to determine observer’s patterns of RT. Although a trend
may seem visible in without interference, this pattern did not achieve significance, as we
describe next.

The mean RTs during the test sessions were entered into a mixed-model two-way
RMANOVA with the between-subjects factor of Group (immediate-test group vs. working-
memory-task-interference-test group) and a within-subjects factor of Target Color Probability
(33%, 26%, 19%, 12%, 5%, 5% baseline). The analysis revealed no significant group difference
(F(1, 13) =0.208, p = 0.656, N> = 0.016), no main effect of Target Color Probability (F(5, 65) =
1.352, p = 0.266, N> = 0.094), nor an interaction between these two factors (F(5, 65) = 0.306, p =
0.907, np? = 0.023). These null results suggest that the color priority settings acquired during
learning were specific to the task in which they were acquired. This is consistent with other
studies of statistical learning in which the representations of incidentally learned features are
fragile and confined to the task (Sha et al., 2017; Ferrante et al., 2018; Conn et al., 2020).
Ruling Out Confounding Factors

Because we paired different colors with the target shape, the learning effect could be

driven by factors other than using the probability information to behave adaptively. For example,
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our pattern of RTs could be due to observers’ inherent preference for a specific color that may
attract their attention due to experience outside the laboratory. Moreover, to manipulate the
probability of targets appearing in different colors, the number of trials in each cell is
confounded with color by design. As shown in Figure 2A, our control analyses rule out the
contribution of several possible confounding factors to the statistical learning effects that we
observed.

Color Preference: Even though we randomized the color assignment across observers, it
is still possible that the RT-facilitation effect for the high-probability colors might be driven by
participants’ preference for some specific colors. For example, maybe the RT benefits for the
33% color are driven by the observers who were randomly assigned to have green as the most
probably target color (e.g., associated with fast behaviors due to traffic light signals). To exclude
this possibility, we analyzed the RTs for the first 5% trials (about 100 trials) for targets in each
color when observers had not yet learned the regularities of the target color probability mapping.
Our analysis confirmed no inherent preference for processing specific colors at the beginning of
the learning session. One-way RMANOV As with within-subjects factor of Target Color
Probability (33%, 26%, 19%, 12%, 5%, and baseline) on observers’ mean RT of the first 5%
trials across all conditions revealed no significant main effect of Target Color Probability (F(5,
75) = 1.381, p = 0.255, n,> = 0.084).

Inequivalent Trial Number: Within the learning session, observers saw more instances
of targets paired with higher-probability colors. Therefore, it is possible that the faster RTs
observed in these conditions were driven by greater statistical power for the high probability
colors and more noisy samples at lower probability. To test this possibility, we randomly
selected equivalent number of trials (5% of all trials for each condition) for targets in each

probability color from all trials. This analysis confirmed a similar pattern of learning for targets



STATISTICAL LEARNING IMPROVES DECISION-MAKING 16

paired with different probability colors as the original analysis (F(5, 75) = 4.134, p = 0.007, n,> =
0.216), excluding the possibility that the learning effect was driven by uneven sampling.

Priming: Priming refers to the phenomenon that the search speed for target in the current
trial is boosted if the target shares consistent features with target from a previous trial (Treisman,
1992; Maljkovic & Nakayama, 1994; 1996; see a review of Kristjdnsson & Campana, 2010). In
the current study, the odds that two adjacent trials would share the same color of target was
higher for high-probability colors. Therefore, the larger learning effect for higher probabilities
could purely be due to more trials benefitting from priming by the previous trial. To exclude this
possibility, we analyzed trials without adjacent trial color priming by removing trial pairs with
repetitive target colors (i.e., the target was red for two trials in a row), and our analysis
confirmed a robust learning effect even with no trials containing target color repetitions from the
previous trial (F(5, 75) = 4.159, p = 0.007, n,>= 0.217), excluding the possibility that the
learning effect was purely driven by priming effect.
Post-Test Awareness

We analyzed observers’ responses in the post-test questionnaire to probe whether they
became explicitly aware of the regularities of the target color probability matrix after learning.
Our analyses demonstrated significant individual difference in observers’ memory for the
regularity after learning. The first question in the questionnaire was whether observers noticed
the targets appearing in some colors more often than other colors. Most observers reported
awareness of the probability difference of target color (13/16 observers answered yes), with the
remainder reporting no perceived target color probability difference (3/16 observers answered
no). Next, we analyzed their answers regarding the probability rank for each color (the rank
ranges from 1 to 8, with 1 being the most probable color). The calculation of the recall accuracy

of the probability rank for each color included two steps. First, we calculated the reported
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distance between the probability rank and the actual probability rank for each color. We used the
absolute difference between observers’ self-reported probability rank (ranges from 1 to 8) and
the actual probability rank (ranges from 1 to 6) of this color. The calculated reported-actual
probability rank distance runs from 0 to 7, with 0 representing correct recall. Second, we scored
rank distance within 1 (i.e., values of 0 and 1) and above 1 (i.c., 2-7) as correct recall and
incorrect recall, respectively. The total number of correct recalls were then counted within all
observers for each color. Even though the awareness rate of the statistical regularity was high
(i.e., 81.3%), observers were highly inaccurate in correctly reporting the probability rank of any
of the colors, including the most likely possible target colors. Specifically, the number of
observers out of 16 that correctly reported which color they saw in each probability bin was: 5/16,
7/16, 8/16, 8/16, 6/16, 5/16 observers for the color with a probability of 33%, 26%, 19%, 12%,
5%, and baseline, respectively. None of these values were significantly higher than the mean
correct recall rates calculated from a Monte Carlo simulation with 10000 random draws for bin:
3.3/16,4.9/16,4.9/16, 4.9/16, 4.9/16, 4.9/16, respectively across the probability bins. These
results suggest that even though most observers reported being aware of the regularity, their
memory for which colors were actually more likely strikingly was imprecise.
ERP Results
Attentional Selection Was Unbiased Following Statistical Learning

Recall that the N2pc signal reflects the attentional selection of a target among distractors,
with a larger N2pc amplitude indicating a more efficient attentional selection of the target
(Grubert et al., 2016). If learning the statistical regularities of target color matrix biases
attentional selection, then we should see a larger amplitude N2pc for targets in higher-probability
colors than targets in lower-probability and baseline colors. However, our N2pc analysis

revealed an equivalent N2pc amplitude contralateral to the target hemifield for targets paired
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with different probability colors, indicating that this perceptual attention mechanism operated the
same on targets regardless of the color in which they appeared. This is verified by the following
statistical analyses of the N2pc amplitudes.

Figure 3A shows the ERP waveforms elicited by search displays from electrodes
PO7/PO8 contralateral and ipsilateral to the side of target in the 800 ms interval following
display onset. The ERPs are shown separately for targets paired with different probability colors
(33%, 26%, 19%, and 12%+5%tbaseline, note that trials with target color probability of 12%,
and 5%, and baseline were merged together to increase the signal-to-noise ratio of the N2pc
analysis), The corresponding contralateral-ipsilateral difference waveforms for these four
conditions are shown in Figure 3B. Clear N2pc components were triggered by targets paired
with each probability color (33%, 26%, 19%, 12%+5%tbaseline), but these amplitudes did not
differ across probability bins. Mean ERP amplitudes obtained 250-350 ms after search display
onset were entered into a 2 x 4 RMANOVA with within-subjects factors of Laterality (electrode
contralateral vs. ipsilateral to target) and Target Color Probability (33% vs. 26% vs. 19% vs.
12%+5%+baseline). The analysis revealed a significant main effect of Laterality (F(1, 15) =
46.221, p <0.001, np>= 0.755), with the contralateral signal more negative than the ipsilateral
signal. However, neither a significant main effect of Target Color Probability (F(3, 45) = 0.402,
p =0.752, > = 0.026), nor a significant interaction between these two factors were found (F(3,
45) =1.290, p = 0.289, np,> = 0.079), suggesting the manipulation of the target color probability
had no influence on attentional selection for shape-defined targets.

It is possible that the lack of an effect on the N2pc component was due to the fact that
this ERP component is less reliable than the LPC. This might explain why the LPC amplitude
shows clear effects of target color probability, whereas the N2pc amplitude does not. To address

this, we also applied a Bayesian Repeated Measures ANOVA with the within-subjects factors of



STATISTICAL LEARNING IMPROVES DECISION-MAKING 19

Laterality (electrode contralateral vs. ipsilateral to target) and Target Color Probability (33% vs.
26% vs. 19% vs. 12%+5%+baseline) to the N2pc amplitude data to determine how much more
likely the null hypothesis (that there was no difference between the N2pc amplitude across target
color probabilities) was than the possibility that the N2pc amplitude actually did show a
modulation by target color probability (JZS, Rouder et al., 2017). We found that for the effect of
Target Color Probability on the N2pc amplitude, the null hypothesis was 15.9 times more likely
than the hypothesis that a difference existed. Moreover, across all of the pair-wise comparisons
of the N2pc amplitude across target color probabilities, the null hypothesis was on average 4.1
times (Bayes Factors range from 3.1 to 5.3, mean = 4.13, SD = 0.87) more likely than the
hypothesis that a difference existed. These analyses demonstrate that our comparisons of the
N2pc amplitude across target color probabilities were not simply limited by power, but instead
there was a convincing null effect when measuring the N2pc amplitudes across targets appearing
in different probability colors.

The next possibility that we addressed with regard to the N2pc component is the
possibility that learning the target color probability leads to faster attentional selection for targets
paired with higher-probability colors. If this happened reliably, we would observe this faster time
course as an earlier onset latency of the N2pc in these conditions. To test this possibility, we
examined the onset latency of the N2pc across target color probability conditions using a
jackknife approach in which we measured the latency at which N2pc reached 50% of the area
under the curve (Kiesel et al., 2008). The analyses revealed no effect of target color probability
on the N2pc onset latency (£(3,45)adjusted = 0.066, padjusted = 0.978), ruling out the possibility that
the RT facilitation effects established from statistical learning in the current paradigm is the

result of faster attentional selection. Thus, the null effect of target color probability on both the
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N2pc amplitude and onset latency together support a post-selection account for statistical
learning in the current paradigm.
The Statistical Learning Effect is Due to Differences in Post-Perceptual Processes

If learning did not change how early perceptual attention was deployed, then the RT
effects may be due to post-perceptual mechanisms that handle the objects differently depending
on their surface features. For example, targets may be recognized faster when appearing in a
target color, or subjects’ decision-making may be more efficient for these items. Consistent with
this view, our analyses revealed that the LPC amplitude linearly tracked the target color
probability, with larger amplitude LPCs for targets paired with higher-probability colors,
suggesting an essential role of post-perceptual cognitive control in realizing the benefits of
statistical learning. These observations were verified by the following statistical analyses of LPC
amplitudes.

Figure 3C shows the ERPs elicited by search displays averaged across the posterior
electrodes (P3/P4, P7/P8, PO3/PO4, PO7/POS8) following display onset. The LPC amplitude
monotonically increased with the target color probability and reached an asymptote after the
19% color. Mean ERP amplitudes averaged across the time window from 450-650 ms after
search display onset were entered into one-way RMANOV As with within-subjects factor of
Target Color Probability (33% vs. 26% vs. 19% vs. 12% vs. 5% vs. baseline). The analyses
revealed a significant main effect of Target Color Probability (F(5, 75) = 4.174, p = 0.007, n,*> =
0.218), with within-subjects contrasts revealing a linear increase from low to high probability
colors (F(1, 15) =20.696, p < 0.001, ny*> = 0.580 (Linear). Thus, this initial analysis suggests that
the behavioral effects we observed were due to the most likely target colors benefitting from
more efficient post-perceptual decision-making, not earlier shifts of attention as the N2pc would

have evidenced.
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In the N2pc analysis, trials with targets appearing in lower probability colors
(12%+5%+BL) were binned to increase the signal-to-noise ratio of the N2pc. However, the LPC
analysis was focused on six target color probabilities. To further verify that the effect of LPC
modulation by target color probability is not due to our analyses of this component having more
probability conditions, we also binned trials with targets appearing in lower probabilities
(12%+5%+BL) for the LPC analysis. A one-way RMANOVA on LPC amplitude across four
probability conditions (33%, 26%, 19%, and 12%+5%+BL) again confirmed a significant main
effect of Target Color Probability (F(3, 45) = 3.464, p = 0.024, n,” = 0.188), with within-subjects
contrasts revealing a linear increase from low to high probability colors (F(1, 15) =6.363, p =
0.023, ny> = 0.298 (Linear). These results demonstrate that the target probability effect on the
LPC amplitude is sufficiently strong that it can be measured even when viewed with a courser
resolution.

LPC Amplitude Change Selectively Predicts Statistical Learning Effect

We further examined the correlation between our ERP amplitude changes and the extent
of the learning benefit across observers. As shown in Figure 3D, we found that the LPC
amplitude change correlated with the RT benefit, but no such correlation between the N2pc and
RT was found. These observations help bolster our inference that post-perceptual processing was
the locus of the statistical learning benefits we measured.

The amplitude changes of N2pc and LPC were first calculated by subtracting ERP
amplitudes in each probability bin from the baseline condition. The extent of the learning benefit
was calculated by subtracting the mean RT for each probability bin from the baseline RT.
Correlations between the amplitude change and the extent of learning benefit were then
calculated for N2pc and LPC, respectively. Significant negative correlations were found between

the LPC amplitude change and the RT changes for most probability conditions (» = -0.482, -
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0.703, -0.579, -0.408, -0.685, p = 0.059, 0.002, 0.019, 0.117, 0.003 for the 33%, 26%, 19%, 12%,

5% color, respectively), with stronger LPC modulations accompanying a larger spread of RTs

across colors, suggesting that the post-selection process indexed by LPC signal predicts the

magnitude of the statistical learning effect for a given subject. No significant correlation was

found between the N2pc amplitude changes and the RT changes (|r|s < 0.380, ps > 0.147).
Discussion

Statistical learning is ubiquitous in our daily lives. However, exactly how this learning
reshapes our cognitive architecture is not yet known. Here we show that observers could
successfully learn the fine-grained statistical regularities of an incidental target feature, moving
beyond previous work using color pairs (Sha et al., 2017; Conn et al., 2020). The most surprising
results were that this learning did not result in observers differentially shifting attention to the
likely target colors. Instead, the deployment of attentional selection to objects as indexed by the
N2pc was unchanged in our experiment while the post-perceptual ERP components showed the
effects of observers’ learning history. Although the generality of these findings will be important
to establish, it is possible that statistical learning typically shapes post-selection decision-making
processes, and does not change patterns of performance by biasing attentional selection to targets
with prioritized features.

We leveraged the high-temporal resolution of ERP measurements to provide novel
evidence supporting a post-selection locus of statistical learning during attention demanding
visual search. Specifically, our electrophysiological measures of brain activity across the course
of information processing support an account in which learning the statistical regularities about
target features enhances post-perceptual decision-making processes rather than biasing
attentional selection. Our results speak to hypotheses long debated in the literatures on attention

and learning. Previous studies of visual search proposed selection-based accounts in which
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repeating the target feature accelerates selection of the target either by increasing the target’s
relative salience (e.g., Maljkovic & Nakayama, 1996; Becker, 2008) or by speeding shifts of
attention to such items (Yashar & Lamy, 2010). Contrary to these selection-based accounts, the
post-selection accounts insist that learning speeds either a decision stage that occurs after a
candidate target has been located (Huang et al., 2004; Huang & Pashler, 2005), or speeds
response selection and execution (e.g., Cohen & Magen, 1999). We do note that this previous
debate focused on tasks in which the color of the object was a task-relevant feature, while here
we used incidental target features to track learning. However, the similarity of the hypothesized
mechanisms is striking. Based on the episodic theory of priming in visual search (Huang et al.,
2004), we assume that when a candidate target has been selected, the system seeks to verify that
this element is indeed the target by comparing the current potential target with target instances
stored in their episodic memory before proceeding to make the appropriate response. The
confirmation process is faster if the color paired with the current target matches those high-
probability colors retrieved from episodic memory. Otherwise, the system may need additional
time to retrieve enough matching trials instances when the target shape appears in a rare color.
The dissociable pattern of the ERP components in the current study provides vital
evidence supporting a response-selection account of selection history effects (Awh et al., 2012).
The present results are consistent with experiments that measured search slopes across learning.
These studies of contextual cuing and inter-trial priming illustrate robust speeding of responses
for targets appearing in repetitive spatial locations or features compared to targets appearing in
novel spatial locations or features (Chun & Jiang, 1998; Treisman, 1992; Maljkovic &
Nakayama, 1994; 1996). However, this general speeding of search (i.e., a y-intercept effect) was
accompanied by no change in the search slope relating RT to set size, as this is the canonical

measure of how efficiently attention can shift between targets in an array (Lamy et al., 2006;
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Kunar et al., 2007; Makovski & Jiang, 2010; Rausei et al., 2007; Wang et al., 2019; Harris &
Remington, 2017). Thus, both the N2pc results and the lack of a change in search slope after
statistical learning support an account in which this learning changes how efficiently decisions
can be made, but without changing how efficiently attention can be shifted. In the future, we
believe that it would be worth measuring both the N2pc and search slopes in the same
experiment to verify that these effects co-occur.

One reason that a subsequent experiment would also be useful is to test a possibility that
the N2pc effects in the current experiment were caused by the distractors that were present. For
example, if distractors with high target probability colors were presented in the same hemifield
as a target with low probable color, then the N2pc might be artificially inflated. If these same
distractors were in the opposite hemifield from the target then the N2pc might be artificially
reduced in amplitude. We randomized the object locations so that these possible effects would be
balanced out, but the possible contamination of the target N2pc by the distractors that were also
presented in possible-target colors deserves further attention in empirical studies. Future studies
could use a task that allows for the precise estimation of the N2pc amplitude to objects in
isolation, although doing so would inherently use a non-search task.

At the first glance, the statistical learning effect found in the current study looks similar
to the well-studied feature priming effect. It has been shown in previous studies that repetition of
the incidental features in adjacent trials speeds search performance for subsequent targets with
feature matches (Huang et al., 2004; Sha et al., 2017; Conn et al., 2020). However, robust
learning effect still existed in the current experiment with removal of the color-repetitive trial
pairs. Moreover, if the speeding for targets paired with high-probability colors in the current
experiment was resulted from feature priming, we should see the largest speeding for the

highest-probability color given more color repetitions in this condition, which is also not the case
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in the current experiment because equivalent extent of speeding was found for three colors with
different presence frequency (i.e., 33%, 26%, and 19% color). Thus, present work suggests that
what our observers learned is distinct from simple feature priming although future study is
needed.

Statistical learning is a complex process which could involve multiple dissociable
cognitive mechanisms. Though theorists have different opinions about the details of the critical
processes, they agree that the main sub-processes of statistical learning include pattern extraction,
memory storage, and then retrieval and recognition (Karuza et al., 2014; Batterink & Paller, 2017,
Batterink et al., 2019). As a critical neural circuit for both predictive pattern formation and
memory establishment, the hippocampus has been shown to be involved in statistical learning
(Turk-Browne et al., 2009; Bornstein & Daw, 2012; Schapiro et al., 2014; Schapiro et al., 2016).
Moreover, computational models propose that statistical learning arises from a set of processes
that are inherent in memory systems, including extraction of elements of the input into memory
traces, and subsequent integration across those memory traces that emphasize consistent
information (Thiessen et al., 2013; Thiessen, 2017). Thus, we can see the present findings as an
additional piece of evidence supporting the view that the efficiency of memory retrieval may
underlie a variety of statistical learning and selection history effects studied in the laboratory.

Conclusion

The current study recorded the electrophysiological brain activity of observers as they
searched for objects that could appear in different colors. We found that the probabilistic
mapping of color to target changed how the brain performed post-perceptual processing of the
target objects, not how early perceptual attention was deployed to the different colors in the array.

These findings challenge the view that one of the primary functions of human statistical learning



STATISTICAL LEARNING IMPROVES DECISION-MAKING 26

is to change how attention is deployed across our visual field, and bring broad inspiration to

research focusing on statistical learning, attentional control, and decision-making.
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Figure 1
lllustration of the Experimental Paradigm and Procedure.
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A. An example of the shape visual search task from two trials with a “top” target and a “bottom”
target, respectively, as is shown in the dashed circle which is used for illustration only. The
targets are paired with green and magenta for the example trials. B. The probability distribution
of colors paired with targets for the learning session (left) and the test session (right). C.

Experimental procedure.
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Figure 2

The Behavioral Results.
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A. The mean RT for targets in different probability colors across all trials, randomly selected
equal number trials, non-color-repetitive trials, and the first 5% trials in the learning session of
Experiment 1, from left panel to right panel. B. The mean RT for targets in different equal-
probability colors in the test sessions. Error bars indicate the standard errors of the means
(SEMs). Asterisk indicates the significant main effect (** indicates significant difference with

p<0.01, ns represents null significant difference).
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Figure 3
ERP Results.
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A. The waveforms of electrodes contralateral and ipsilateral to the target hemifield for targets in

different probability colors, with panels represents 33%, 26%, 19%, and the merged low-
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probability condition from left to right, respectively. Solid and dashed lines represent
contralateral and ipsilateral signal, respectively. Topographic map of the voltage distribution
across all electrodes, with contralateral signal reflected in the left hemifield and ipsilateral signal
reflected in the right hemifield. B. N2pc difference waveforms for targets in different probability
colors at electrode pair of PO7/8, and the mean N2pc amplitude over PO7/8 across 250-350 ms
time window after search array onset. Red, magenta, yellow, and green line and bar represents
33%, 26%, 19%, and the merged low-probability colors (12%+5%+baseline colors),
respectively. C. LPC waveforms and topographic map for targets in different probability colors
averaged over posterior electrodes (P3/4, P7/8, PO3/4, PO7/8), and the mean LPC amplitude
over posterior electrodes across 450-650 ms time window after search array onset. D.
Correlations between the N2pc amplitude difference and RT difference (left), and correlations
between the LPC amplitude difference and RT difference (right). Each cross represents each
subject in a corresponding condition. Error bars indicate the standard errors of the means
(SEMs). Asterisk indicates the significant pair-wised difference (A), main effect (B and C), or
correlation (D) (*, ** indicate significant difference or correlation with p<0.05, p<0.01,

respectively).
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Supplemental Materials

Figure S1

Correlations Between the Statistical Learning Effect and Working Memory Capacity.
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WM capacity
The correlation between observers’ working memory capacity estimate and their statistical

learning effect calculated from subtracting RTs for targets in each probability color from the
baseline RT. Error bars indicate the standard errors of the means (SEMs). Asterisk indicates the

significant correlation (** indicates significant difference with p<0.01).

Statistical Learning Effect is Predicted by Working Memory Capacity

A recent study suggested that statistical learning is only observed when the items that
need to be learned can be encoded and maintained in working memory (Hall et al., 2015). To
probe this relationship in our current study, we also measured observers’ working memory
capacity. If maintaining target features in working memory is critical for statistical learning, then
observers with higher working memory capacity should be able to represent more task relevant
information and exhibit larger learning benefits. To test this relationship, we performed a
correlation between the size of the statistical learning benefit and working memory capacity for

each individual subject. As shown in Figure S1, Pearson correlations revealed a significant
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negative correlation in the highest-probability color (33% color: » =-0.710, p = 0.002), with
larger response speed increase for observers with higher working memory capacity. Although
they did not reach significance, negative correlations were found in the other probability colors
(r=-0.371,-0.213,-0.414, p = 0.157, 0.429, 0.111, for 26%, 19%, 12% color, respectively),
except for the lowest-probability (the 5% color: » = 0.011, p = 0.968). The correlation remained
significant after we merged the RT benefits across the four highest color frequency conditions (»
=-0.515, p = 0.041). These results are consistent with previous work suggesting that working
memory plays an important role in realizing the benefits of statistical learning (Hall et al., 2015).
Reference
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