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Abstract 

Learning statistical regularities of target objects speeds visual search performance. However, we 

do not yet know whether this statistical learning effect is driven by biasing attentional selection 

at the early perceptual stage of processing, as theories of attention propose, or by improving the 

decision-making efficiency at a late response-related stage. Leveraging the high temporal 

resolution of the event-related potential (ERP) technique, we had sixteen human observers 

perform a visual search task where we inserted a fine-grained statistical regularity that the target 

shapes appeared in different colors with six unique probabilities. Observers unintentionally 

learned these regularities such that they were faster to report targets that appeared in more likely 

target colors. The observers’ ERPs showed that this learning effect resulted in subjects making 

faster decisions about the target presence, and not by preferentially shifting attention to more 

rapidly select likely target colors, as is often assumed by the attentional selection account, 

supporting a post-selection account for statistical learning of the probabilistic regularities of 

target features. These results provide fundamental insights into the attentional control 

mechanisms of statistical learning. 

           Keywords: Statistical learning, Attentional selection, Decision-making, N2pc, LPC 
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Public Significance Statement 

Humans are able to learn regularities from the surrounding environment to increase their     

efficiency. However, the mechanisms underlying this statistical learning are not yet clear. 

Leveraging the high temporal resolution of human electrophysiology, we examined the 

attentional control mechanisms of statistical learning with a novel visual search paradigm. We 

used fine-grained statistical regularities that paired target shapes with different colors across 

trials. Our results demonstrated that observers could successfully learn the complex statistical 

regularities of the environment unintentionally. Contrary to theories of attentional selection, we 

found that this statistical learning effect was driven by more efficient decision-making, not 

biasing attention to select targets with prioritized features, helping solve the long-standing 

theoretical controversy regarding the cognitive control mechanisms underlying statistical 

learning. 
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When a human arrives in a new environment, it has an array of learning and memory 

mechanisms at its disposal to help it learn how to find and recognize objects that are critical for 

its survival (Turk-Browne et al., 2009; Turk-Browne, 2012; Goujon et al., 2015; Sha et al., 2017; 

Ferrante et al., 2018; Wang & Theeuwes, 2018; Batterink et al., 2019; Failing et al., 2019; Zhang 

et al., 2019; Conn et al., 2020; Kerzel et al., 2022). Theories propose that this learning allows the 

human brain to shift perceptual attention to objects that have target features, speeding behavioral 

reaction time (or RT, see reviews from Desimone & Duncan, 1995; Egeth & Yantis, 1997; 

Kastner & Ungerleider, 2000; Corbetta & Shulman, 2002). Although we know that learning 

speeds behavioral RTs, we do not yet know how the brain achieves this feat.  

Although researchers have repeatedly confirmed the existence of statistical learning 

effects during visual search, they do not yet know how this might change attentional control. 

According to one view, past experiences bias attention to objects that contain target features 

(Awh et al., 2012; Wolfe & Horowitz, 2017; Theeuwes, 2019). However, faster RTs could also 

be due to more efficient post perceptual processing. That is, the repetition of the target features 

speed behavioral RTs by speeding a decision stage of processing (Huang et al., 2004). This 

alternative seems plausible given previous research suggesting that learning allows observers to 

make decisions faster after attention is shifted to a candidate target object (Huang et al., 2004; 

Huang & Pashler, 2005), and can increase the efficiency of a motor response (e.g., Cohen & 

Magen, 1999). Thus, our goal was to distinguish between these alternatives. 

Purpose of the Present Study 

To examine the attentional and post-perceptual accounts of the locus of statistical 

learning benefits, we focused our measurements on two event-related potential (ERP) 

components. The N2pc (for a Negative going waveform, 200 ms following an array, with a 

posterior and contralateral distribution) and LPC (for Late Positive Complex) were measured 
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while observers were learning a sophisticated pattern of statistical regularities in which the color 

of a target shape was manipulated across trials (e.g. targets were in red for 33% trials, in magenta 

for 26% trials, in yellow for 19% trials, in green for 12% trials, in blue for 5% trials, and in 

baseline colors for 5% trials). The N2pc emerges approximately 200ms following the search 

array onset and tracks the attentional selection of targets at early sensory-perception stage (Luck 

& Hillyard, 1994; Eimer, 1996; Woodman & Luck, 1999; Hopf et al., 2000). The LPC emerges 

approximately 500ms after stimulus onset and tracks post-perceptual decision-making (Friedman 

& Johnson, 2000; Rugg & Curran, 2007; Voss et al., 2010). 

According to the attentional selection account, prioritized attention should be biased to 

targets with more predictable features, if this was the case, we should see larger amplitude N2pc 

for targets paired with high-probability colors. However, if differences in decision-making 

efficiency account for the statistical learning effect, we should observe that the LPC has a larger 

amplitude for targets paired with high-probability colors.  

Transparency and Openness 

This experiment was not preregistered. Deidentified data and the data-analysis scripts are 

available at https://osf.io/f9p4r/. 

Materials and Methods 

Participants 

Twenty-one undergraduates and graduate students from Vanderbilt University 

participated in the current experiment for gift card compensation ($15/hour). All participants 

self-reported normal or corrected-to-normal acuity, normal color vision, and received informed 

consent for procedures approved by the Vanderbilt University Institutional Review Board. Five 

participants were excluded from further data analysis due to excessive eye movements and 

muscular artifacts during EEG recording (see details in the EEG data preprocessing section), 
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leaving 16 participants (11 females and 5 males, Mean age = 22.6 years, SD age = 2.0 years) in 

the final data set. All the gender and age information were self-reported by the participants with 

a free-response box.  

Sample Size Analysis 

We estimated the necessary sample size for the present experiment using a multi-step 

procedure. First, we looked to the existing literature that has examined effects of statistical 

learning on attention for guidance (e.g., 12-24 participants across experiments in Sha et al., 2017; 

Cosman & Vecera, 2014). Second, we used approximately 4 times as many trials as the previous 

reports due to recording brain activity. Third, we performed a post-hoc power analysis for our 

sample size (N=16) using the G*Power analysis software (Faul et al., 2009). We took the effect 

size estimate (ηp2 = 0.269) from the one-way repeated measures ANOVA of the RTs across 

target color probability (F(5, 75) = 5.520, p = 0.001, ηp2= 0.269; see Behavioral Results). Instead 

of setting a power threshold (e.g., 0.8) to estimate a suitable sample size, the post-hoc power 

analysis outputs a power estimate with the input of a given sample size. An output power 

estimate larger than 0.8 implies a reasonable sample size. Our post-hoc power analysis revealed 

an output power value of 0.965 with the given sample size of 16, demonstrating the statistical 

power available in the current experimental design. 

Stimuli  

Stimuli were presented using MATLAB (R2017b 9.3.0.; MathWorks) and the 

Psychophysics Toolbox (version 3.0.12) (Brainard, 1997) on a CRT monitor contained in 

Faraday cage. Stimuli were presented on a white background (75.2 cd/m2). Participants were 

seated approximately 75 cm from the screen. 

Figure 1A shows example trials of the shape visual search task. Each trial began with a 

display containing a black fixation cross (1.2 cd/m2, 0.4° of visual angle) in the center of the 
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screen for 1000 ms, followed by a search array surrounding fixation containing one target box 

(box with an opening on the top edge or the bottom edge) and eleven distractor boxes (box with 

an opening on the left edge or the right edge). This display was visible until participants made a 

response on each trial. All boxes were unfilled squares (the square length*width, 0.7° *0.7° 

visual angle, and the edge thickness, 0.1° visual angle) with an opening (the opening width, 0.5° 

visual angle) on one of the four edges, and were evenly distributed on an invisible circle with the 

eccentricity of 4.4° visual angle. All boxes were randomly placed at twelve fixed positions of the 

invisible circle (from 0 circle degrees to 330 degrees, in steps of 30 degrees). Participants were 

instructed to use their peripheral vision to search for the target box while keeping their eyes fixed 

on the black fixation cross. They were also encouraged to make responses as fast and accurate as 

they could. After the search array disappeared as the response was made, a blank screen 

appeared with a variable inter-trial interval ranging from 1000 ms to 1500 ms. The “top” target 

and the “bottom” target trials were equally probable (50%) across experiment. Participants 

pressed “f” or “j” on the keyboard to indicate that they found a “top” or “bottom” target. The 

response keys were counterbalanced across subjects.  

The colors of the boxes were chosen from a pool of eight highly discriminable colors: red 

(x=0.55, y=0.33), green (x=0.28, y=0.61), magenta (x=0.29, y=0.15), yellow (x=0.42, y=0.50), 

blue (x=0.11, y=0.07), cyan (x=0.20, y=0.29), black (1.2 cd/m2), and orange (x=0.48, y=0.38). 

We manipulated target color probability differently for the learning session and the test session 

(Figure 1B). For the learning session, targets were paired with five out of the eight colors from 

the color pool with a probability distribution of 33%, 26%, 19%, 12%, 5% for each color, with 

the remaining 5% of all trials randomly paired with the three remaining colors from the pool to 

form the baseline. In the test session, the targets were paired with each of the eight colors with a 

probability of 12.5% on a given trial. For each search array, the colors of the distractors were 
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randomly chosen from the color pool, without repetition with the color of target, and with no 

more than two distractors appeared in the same color. It is worth noting that the colors paired 

with targets were not exclusive, they could be paired with distractors across the experiment. The 

probability-matching colors were randomized across participants to prevent confounds from 

stable color preferences across the sample (i.e., red was just as often as baseline or 5% color as it 

was the 33% color).  

Procedure 

Figure 1C illustrates the experimental design of a session with an individual observer. 

Each observer completed two learning sessions and a test session. The goal of the test session 

was to determine if the statistical learning effect survives interference from another task in which 

color is task relevant. With this goal, half of the observers completed the test session 

immediately after the learning session, while the other half of the observers completed a working 

memory task after the learning session, but before the test session. By comparing the influence of 

the learned statistical regularities on test session performance on these two groups, we could tell 

whether the statistical learning effect survived interference for the interposed task performance. 

The immediate-test group also completed the working memory task, but after the test session. 

Observers completed two learning sessions, each learning session includes five blocks of 200 

trials with all target colors (33%, 26%, 19%, 12%, 5%, and 5% Baseline) and target shapes 

(upward, and downward) intermixed randomly. The test session includes two blocks of 80 trials 

with all eight colors from the color pool (12.5% for each color) and target shapes (upward, and 

downward) intermixed randomly. 

To examine the relationship between WM capacity and statistical learning effect, a 

classic color change-detection task was used to estimate observers’ WM capacity (Luck & 

Vogel, 1997; Vogel & Machizawa, 2004). In this task, participants were instructed to memorize 
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the colors of a variable number of squares (3, 6, or 8, with width × height of 0.65° × 0.65° visual 

angle) that appeared in a memory array. During each trial, a memory array appeared on the 

screen for 100 ms, followed by a 900 ms delay period, before the appearance of the test array. 

The test array consisted one probe colored square presented at the location of a square in the 

memory array. On 50% of trials the color of the square in the test array would change to another 

color not previously seen in the memory array, and stays the same for the other 50% of trials. 

The locations of the colored squares in the test array stayed the same as it appeared in the 

memory arrays. Participants pressed “f” or “j” on the keyboard to indicate whether the color of 

the square in the test array had changed or stayed the same. The change versus no-change keys 

were counterbalanced across subjects.  

The colors of the squares were chosen from the same pool of seven highly discriminable 

colors as the search items: red, green, magenta, yellow, blue, black, and white (same metrics as 

above). The colors of the squares in the sample array were randomly chosen from the color pool, 

with each color appearing no more than twice on a given trial. Each square was located in one of 

the 24 positions on three invisible circles (with eccentricities of 1.5°, 2.7°, and 3.9° visual angle, 

respectively). Each participant completed 48 trials at each set size (3, 6, and 8), and trials with 

different set sizes were intermixed within the block. 

To examine whether observers were explicitly aware the mapping of color to target 

likelihood after learning, they completed a post-test questionnaire. In the questionnaire, they 

were asked if they thought that the target shape appeared more often in some colors than others. 

If they answered yes, they were further asked to write down the ranking for each color in terms 

of its relative frequency (rank the color that the target appeared in the most, the second most, the 

third most, etc.), and its corresponding approximate probability (they could at maximum rank all 
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8 colors, with 100% representing the highest probability). If they answered no, they were not 

required to answer further questions. 

EEG Acquisition  

The electroencephalogram was recorded in an electrically shielded, soundproof booth 

from a 20-channel cap (Electro-cap International, OH) embedded with tin electrodes that make 

contact with the skin through electrode gel. The 20 electrodes were positioned according to the 

International 10-20 system (F3, F4, C3, C4, P3, P4, PO3, PO4, O1, O2, PO7, PO8, T3, T4, P7, 

P8, Fpz, Fz, Cz, Pz). Impedance values were kept below 4 kΩ. The reference electrodes were 

affixed with stickers to the left and right mastoids with the left mastoid operating as the online 

reference electrode, and a ground electrode placed at Fpz. Electrooculogram (EOG) activity was 

recorded with two horizontal EOG electrodes placed ~1 cm lateral to the outer canthi of the two 

eyes, and one vertical EOG electrode was placed below the right eye to detect eye movements 

and blinks. All channels were bandpass filtered from 0.01-100 Hz and recorded with a 250 Hz 

sampling rate.  

Data Analyses 

RT Analysis 

For the visual search task performance analysis, we analyzed reaction time (RT) for trials 

with targets paired with each color. To avoid contributions from outliers, only trials with RT 

faster than 3 seconds and trials with correct responses were included in the mean RT analyses.  

Calculation of Working Memory Capacity  

Observers’ working memory capacity was calculated from the averaged capacity of all 

three sample set sizes (3 vs. 6 vs. 8). The calculation of working memory capacity (K) for each 

set size in the change detection task followed the formula K = Set size* (Hit rate – False Alarm 

rate) (Rouder et al., 2011), where hit rate represents proportion of correct responses on change 
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trials, and false alarm rate represents proportion of incorrect responses on no-change trials. As 

the correlations between performance of this task and the statistical learning task are not relevant 

for the accounts we are distinguishing between in this study, we report these in the Supplemental 

Materials (see Figure S1). 

EEG Data Preprocessing 

A low-pass filter at 30 Hz was first applied to EEG data to remove high frequency 

activity caused by muscle and environmental noise. Data were then re-referenced offline to the 

average of the left and right mastoid reference. EEG epochs were then extracted from the re-

referenced EEG signal. These epochs last for 1000 ms, beginning 200 ms prior to the search 

array onset, with the 200 ms pre-stimulus period serving as the baseline. Trials including artifacts 

due to blinks, amplifier saturation, or excessive noise that exceed -100μV to +100μV range were 

first rejected using a standard signal-rejection function from the EEGLAB Toolbox 

(eegthresh.m; Delorme & Makeig, 2004). A stricter threshold of -50μV and +50μV range was 

further conducted on the horizontal EOG signal (the difference voltage between horizontal EOG 

recorded from left and right eyes) and the vertical EOG signal, respectively, to remove trials 

contaminated by the horizontal and vertical eye movements. Five observers with fewer than 70% 

artifact-free trials remaining were excluded following the artifact rejection steps, with an average 

82.3% (SD = 7.0%) of trials being kept for the remaining observers. 

ERP Analysis 

N2pc Analysis: The N2pc component was analyzed as an electrophysiological marker of 

attentional selection of targets among distractors that operates at an early perceptual stage of 

processing (Woodman & Luck, 2003). The N2pc is a negativity that typically emerges between 

180 and 200 msec after visual search array onset and is assumed to reflect the spatial of object 

representations in extrastriate visual cortex during early perceptual processing level (e.g., Luck 
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& Hillyard, 1994; Eimer, 1996; Woodman & Luck, 1999; Hopf et al., 2000). In current study, 

the N2pc amplitude was computed by subtracting the averaged activity from electrodes with 

target presented ipsilateral to its location from the activity of the electrodes contralateral to the 

target. Following precedent, we focused on the posterior-lateral electrode PO7/PO8 (Grubert et 

al., 2016). The time window for the N2pc analysis was 250-350 ms after the search array onset. 

The onset latency of the N2pc was calculated using the jackknife method in which we measured 

the latency at which the N2pc reached 50% of the area under the curve (Kiesel et al., 2008). 

Since only trials with targets presented laterally can be included in the N2pc analysis, we merged 

trials with targets in the low-probability colors (12%, 5%, and 5% baseline) to increase the 

signal-to-noise ratio of our N2pc analysis. 

LPC Analysis: Following the N2pc, we measured a post-perceptual component known as 

the LPC (for late positive complex). The LPC is a relative positivity that emerges across the 

posterior scalp electrodes beginning about 500 ms after stimulus onset. Substantial evidence 

indicates that LPC potentials signal episodic retrieval from long-term memory (Friedman & 

Johnson, 2000; Rugg & Curran, 2007; Voss et al., 2010). Observers could store the probability of 

instances for targets paired with each color they saw from the search history in their long-term 

memory to extract the regularity and apply the regularity to guide their forthcoming search. 

Regularity extraction, target identification, and response decision-making requires comparison 

between the current features of target with the features stored in long-term memory. In the 

current experiment, the LPC amplitude was calculated by averaging signals across the parietal 

electrodes: P3/P4, P7/P8, PO3/PO4, PO7/PO8. The time window for the LPC analysis was 450-

650 ms after the search array onset.  

Experimental Design and Statistical Analyses 
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To examine the influence of the target color probability on behavioral performance and 

the electrophysiological markers, one-way repeated-measures ANOVAs with the within-subjects 

factor of Target Color Probability (33%, 26%, 19%, 12%, 5%, and baseline) were performed on 

observers’ mean RT and LPC amplitude. A 2 × 4 RMANOVA with within-subjects factors of 

Laterality (electrode contralateral vs. ipsilateral to target) and Target Color Probability (33% vs. 

26% vs. 19% vs. 12%+5%+baseline) was applied to the N2pc analysis. Bonferroni corrections 

for multiple comparisons were applied to all paired-wise comparisons. All these statistical 

analyses were performed in Matlab and SPSS 19.0 (IBM Inc.). 

Results 

Behavioral Results 

Statistical Learning Speeds Visual Search for Targets in High-Probability Colors 

As shown in Figure 2A, our analyses on observers’ RT for trials with targets appearing 

in different-probability colors demonstrated that behavior mirrored the probability structure that 

we imposed on the experimental environment.  

The one-way repeated measures ANOVA revealed a significant main effect of Target 

Color Probability (F(5, 75) = 5.520, p = 0.001, ηp2 = 0.269), with faster RT for targets paired 

with higher probability colors. Next, we performed pair-wise sample t-tests between RTs in each 

color probability against RTs when the target appeared in the baseline colors. These revealed a 

significant reduction in RT for targets appearing in the three highest-probability colors (t(15) = 

3.963, 3.297, 3.416, p = 0.019, 0.073, 0.058 for 33%, 26%, and 19% colors, respectively), while 

no significant change in RT for targets appearing in the two lowest-probability colors (t(15) = 

2.158, 0.327, p = 0.713, 1.000 for 12% and 5% colors, respectively). Moreover, there were no 

significant difference between RTs when the target appeared in the three highest-probability 

colors (|t|s < 0.772, ps = 1.000). In summary, the behavioral results demonstrate that subjects’ 
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learning reflected the regularities in the environment. We next examined whether these were 

task-specific representations that our observers acquired, or whether this kind of statistical 

learning survives a change in task context.  

The Statistical Learning Effect is Short-Lived 

Figure 2B shows the duration of the learning effect as measured with performance in the 

test session. We calculated RT for targets in each color in the test session where targets were 

paired with equivalent probability colors, but binned according to their role in the previous 

learning sessions. Our results show that the learned target probability effects did not last into the 

test session in a robust enough form to determine observer’s patterns of RT. Although a trend 

may seem visible in without interference, this pattern did not achieve significance, as we 

describe next.  

The mean RTs during the test sessions were entered into a mixed-model two-way 

RMANOVA with the between-subjects factor of Group (immediate-test group vs. working-

memory-task-interference-test group) and a within-subjects factor of Target Color Probability 

(33%, 26%, 19%, 12%, 5%, 5% baseline). The analysis revealed no significant group difference 

(F(1, 13) = 0.208, p = 0.656, ηp2 = 0.016), no main effect of Target Color Probability (F(5, 65) = 

1.352, p = 0.266, ηp2 = 0.094), nor an interaction between these two factors (F(5, 65) = 0.306, p = 

0.907, ηp2 = 0.023). These null results suggest that the color priority settings acquired during 

learning were specific to the task in which they were acquired. This is consistent with other 

studies of statistical learning in which the representations of incidentally learned features are 

fragile and confined to the task (Sha et al., 2017; Ferrante et al., 2018; Conn et al., 2020).  

Ruling Out Confounding Factors 

Because we paired different colors with the target shape, the learning effect could be 

driven by factors other than using the probability information to behave adaptively. For example, 
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our pattern of RTs could be due to observers’ inherent preference for a specific color that may 

attract their attention due to experience outside the laboratory. Moreover, to manipulate the 

probability of targets appearing in different colors, the number of trials in each cell is 

confounded with color by design. As shown in Figure 2A, our control analyses rule out the 

contribution of several possible confounding factors to the statistical learning effects that we 

observed. 

Color Preference: Even though we randomized the color assignment across observers, it 

is still possible that the RT-facilitation effect for the high-probability colors might be driven by 

participants’ preference for some specific colors. For example, maybe the RT benefits for the 

33% color are driven by the observers who were randomly assigned to have green as the most 

probably target color (e.g., associated with fast behaviors due to traffic light signals). To exclude 

this possibility, we analyzed the RTs for the first 5% trials (about 100 trials) for targets in each 

color when observers had not yet learned the regularities of the target color probability mapping. 

Our analysis confirmed no inherent preference for processing specific colors at the beginning of 

the learning session. One-way RMANOVAs with within-subjects factor of Target Color 

Probability (33%, 26%, 19%, 12%, 5%, and baseline) on observers’ mean RT of the first 5% 

trials across all conditions revealed no significant main effect of Target Color Probability (F(5, 

75) = 1.381, p = 0.255, ηp2 = 0.084). 

Inequivalent Trial Number: Within the learning session, observers saw more instances 

of targets paired with higher-probability colors. Therefore, it is possible that the faster RTs 

observed in these conditions were driven by greater statistical power for the high probability 

colors and more noisy samples at lower probability. To test this possibility, we randomly 

selected equivalent number of trials (5% of all trials for each condition) for targets in each 

probability color from all trials. This analysis confirmed a similar pattern of learning for targets 
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paired with different probability colors as the original analysis (F(5, 75) = 4.134, p = 0.007, ηp2 = 

0.216), excluding the possibility that the learning effect was driven by uneven sampling. 

Priming: Priming refers to the phenomenon that the search speed for target in the current 

trial is boosted if the target shares consistent features with target from a previous trial (Treisman, 

1992; Maljkovic & Nakayama, 1994; 1996; see a review of Kristjánsson & Campana, 2010). In 

the current study, the odds that two adjacent trials would share the same color of target was 

higher for high-probability colors. Therefore, the larger learning effect for higher probabilities 

could purely be due to more trials benefitting from priming by the previous trial. To exclude this 

possibility, we analyzed trials without adjacent trial color priming by removing trial pairs with 

repetitive target colors (i.e., the target was red for two trials in a row), and our analysis 

confirmed a robust learning effect even with no trials containing target color repetitions from the 

previous trial (F(5, 75) = 4.159, p = 0.007, ηp2 = 0.217), excluding the possibility that the 

learning effect was purely driven by priming effect. 

Post-Test Awareness 

We analyzed observers’ responses in the post-test questionnaire to probe whether they 

became explicitly aware of the regularities of the target color probability matrix after learning. 

Our analyses demonstrated significant individual difference in observers’ memory for the 

regularity after learning. The first question in the questionnaire was whether observers noticed 

the targets appearing in some colors more often than other colors. Most observers reported 

awareness of the probability difference of target color (13/16 observers answered yes), with the 

remainder reporting no perceived target color probability difference (3/16 observers answered 

no). Next, we analyzed their answers regarding the probability rank for each color (the rank 

ranges from 1 to 8, with 1 being the most probable color). The calculation of the recall accuracy 

of the probability rank for each color included two steps. First, we calculated the reported 
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distance between the probability rank and the actual probability rank for each color. We used the 

absolute difference between observers’ self-reported probability rank (ranges from 1 to 8) and 

the actual probability rank (ranges from 1 to 6) of this color. The calculated reported-actual 

probability rank distance runs from 0 to 7, with 0 representing correct recall. Second, we scored 

rank distance within 1 (i.e., values of 0 and 1) and above 1 (i.e., 2-7) as correct recall and 

incorrect recall, respectively. The total number of correct recalls were then counted within all 

observers for each color. Even though the awareness rate of the statistical regularity was high 

(i.e., 81.3%), observers were highly inaccurate in correctly reporting the probability rank of any 

of the colors, including the most likely possible target colors. Specifically, the number of 

observers out of 16 that correctly reported which color they saw in each probability bin was: 5/16, 

7/16, 8/16, 8/16, 6/16, 5/16 observers for the color with a probability of 33%, 26%, 19%, 12%, 

5%, and baseline, respectively. None of these values were significantly higher than the mean 

correct recall rates calculated from a Monte Carlo simulation with 10000 random draws for bin: 

3.3/16, 4.9/16, 4.9/16, 4.9/16, 4.9/16, 4.9/16, respectively across the probability bins. These 

results suggest that even though most observers reported being aware of the regularity, their 

memory for which colors were actually more likely strikingly was imprecise. 

ERP Results 

Attentional Selection Was Unbiased Following Statistical Learning  

Recall that the N2pc signal reflects the attentional selection of a target among distractors, 

with a larger N2pc amplitude indicating a more efficient attentional selection of the target 

(Grubert et al., 2016). If learning the statistical regularities of target color matrix biases 

attentional selection, then we should see a larger amplitude N2pc for targets in higher-probability 

colors than targets in lower-probability and baseline colors. However, our N2pc analysis 

revealed an equivalent N2pc amplitude contralateral to the target hemifield for targets paired 
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with different probability colors, indicating that this perceptual attention mechanism operated the 

same on targets regardless of the color in which they appeared. This is verified by the following 

statistical analyses of the N2pc amplitudes. 

Figure 3A shows the ERP waveforms elicited by search displays from electrodes 

PO7/PO8 contralateral and ipsilateral to the side of target in the 800 ms interval following 

display onset. The ERPs are shown separately for targets paired with different probability colors 

(33%, 26%, 19%, and 12%+5%+baseline, note that trials with target color probability of 12%, 

and 5%, and baseline were merged together to increase the signal-to-noise ratio of the N2pc 

analysis), The corresponding contralateral-ipsilateral difference waveforms for these four 

conditions are shown in Figure 3B. Clear N2pc components were triggered by targets paired 

with each probability color (33%, 26%, 19%, 12%+5%+baseline), but these amplitudes did not 

differ across probability bins. Mean ERP amplitudes obtained 250–350 ms after search display 

onset were entered into a 2 × 4 RMANOVA with within-subjects factors of Laterality (electrode 

contralateral vs. ipsilateral to target) and Target Color Probability (33% vs. 26% vs. 19% vs. 

12%+5%+baseline). The analysis revealed a significant main effect of Laterality (F(1, 15) = 

46.221, p < 0.001, ηp2 = 0.755), with the contralateral signal more negative than the ipsilateral 

signal. However, neither a significant main effect of Target Color Probability (F(3, 45) = 0.402, 

p = 0.752, ηp2 = 0.026), nor a significant interaction between these two factors were found (F(3, 

45) = 1.290, p = 0.289, ηp2 = 0.079), suggesting the manipulation of the target color probability 

had no influence on attentional selection for shape-defined targets.  

It is possible that the lack of an effect on the N2pc component was due to the fact that 

this ERP component is less reliable than the LPC. This might explain why the LPC amplitude 

shows clear effects of target color probability, whereas the N2pc amplitude does not. To address 

this, we also applied a Bayesian Repeated Measures ANOVA with the within-subjects factors of 
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Laterality (electrode contralateral vs. ipsilateral to target) and Target Color Probability (33% vs. 

26% vs. 19% vs. 12%+5%+baseline) to the N2pc amplitude data to determine how much more 

likely the null hypothesis (that there was no difference between the N2pc amplitude across target 

color probabilities) was than the possibility that the N2pc amplitude actually did show a 

modulation by target color probability (JZS, Rouder et al., 2017). We found that for the effect of 

Target Color Probability on the N2pc amplitude, the null hypothesis was 15.9 times more likely 

than the hypothesis that a difference existed. Moreover, across all of the pair-wise comparisons 

of the N2pc amplitude across target color probabilities, the null hypothesis was on average 4.1 

times (Bayes Factors range from 3.1 to 5.3, mean = 4.13, SD = 0.87) more likely than the 

hypothesis that a difference existed. These analyses demonstrate that our comparisons of the 

N2pc amplitude across target color probabilities were not simply limited by power, but instead 

there was a convincing null effect when measuring the N2pc amplitudes across targets appearing 

in different probability colors. 

The next possibility that we addressed with regard to the N2pc component is the 

possibility that learning the target color probability leads to faster attentional selection for targets 

paired with higher-probability colors. If this happened reliably, we would observe this faster time 

course as an earlier onset latency of the N2pc in these conditions. To test this possibility, we 

examined the onset latency of the N2pc across target color probability conditions using a 

jackknife approach in which we measured the latency at which N2pc reached 50% of the area 

under the curve (Kiesel et al., 2008). The analyses revealed no effect of target color probability 

on the N2pc onset latency (F(3,45)adjusted = 0.066, padjusted = 0.978), ruling out the possibility that 

the RT facilitation effects established from statistical learning in the current paradigm is the 

result of faster attentional selection. Thus, the null effect of target color probability on both the 
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N2pc amplitude and onset latency together support a post-selection account for statistical 

learning in the current paradigm. 

The Statistical Learning Effect is Due to Differences in Post-Perceptual Processes 

If learning did not change how early perceptual attention was deployed, then the RT 

effects may be due to post-perceptual mechanisms that handle the objects differently depending 

on their surface features. For example, targets may be recognized faster when appearing in a 

target color, or subjects’ decision-making may be more efficient for these items. Consistent with 

this view, our analyses revealed that the LPC amplitude linearly tracked the target color 

probability, with larger amplitude LPCs for targets paired with higher-probability colors, 

suggesting an essential role of post-perceptual cognitive control in realizing the benefits of 

statistical learning. These observations were verified by the following statistical analyses of LPC 

amplitudes. 

Figure 3C shows the ERPs elicited by search displays averaged across the posterior 

electrodes (P3/P4, P7/P8, PO3/PO4, PO7/PO8) following display onset. The LPC amplitude 

monotonically increased with the target color probability and reached an asymptote after the 

19% color. Mean ERP amplitudes averaged across the time window from 450–650 ms after 

search display onset were entered into one-way RMANOVAs with within-subjects factor of 

Target Color Probability (33% vs. 26% vs. 19% vs. 12% vs. 5% vs. baseline). The analyses 

revealed a significant main effect of Target Color Probability (F(5, 75) = 4.174, p = 0.007, ηp2 = 

0.218), with within-subjects contrasts revealing a linear increase from low to high probability 

colors (F(1, 15) = 20.696, p < 0.001, ηp2 = 0.580 (Linear). Thus, this initial analysis suggests that 

the behavioral effects we observed were due to the most likely target colors benefitting from 

more efficient post-perceptual decision-making, not earlier shifts of attention as the N2pc would 

have evidenced. 
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In the N2pc analysis, trials with targets appearing in lower probability colors 

(12%+5%+BL) were binned to increase the signal-to-noise ratio of the N2pc. However, the LPC 

analysis was focused on six target color probabilities. To further verify that the effect of LPC 

modulation by target color probability is not due to our analyses of this component having more 

probability conditions, we also binned trials with targets appearing in lower probabilities 

(12%+5%+BL) for the LPC analysis. A one-way RMANOVA on LPC amplitude across four 

probability conditions (33%, 26%, 19%, and 12%+5%+BL) again confirmed a significant main 

effect of Target Color Probability (F(3, 45) = 3.464, p = 0.024, ηp2 = 0.188), with within-subjects 

contrasts revealing a linear increase from low to high probability colors (F(1, 15) = 6.363, p = 

0.023, ηp2 = 0.298 (Linear). These results demonstrate that the target probability effect on the 

LPC amplitude is sufficiently strong that it can be measured even when viewed with a courser 

resolution. 

LPC Amplitude Change Selectively Predicts Statistical Learning Effect 

We further examined the correlation between our ERP amplitude changes and the extent 

of the learning benefit across observers. As shown in Figure 3D, we found that the LPC 

amplitude change correlated with the RT benefit, but no such correlation between the N2pc and 

RT was found. These observations help bolster our inference that post-perceptual processing was 

the locus of the statistical learning benefits we measured.  

The amplitude changes of N2pc and LPC were first calculated by subtracting ERP 

amplitudes in each probability bin from the baseline condition. The extent of the learning benefit 

was calculated by subtracting the mean RT for each probability bin from the baseline RT. 

Correlations between the amplitude change and the extent of learning benefit were then 

calculated for N2pc and LPC, respectively. Significant negative correlations were found between 

the LPC amplitude change and the RT changes for most probability conditions (r = -0.482, -
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0.703, -0.579, -0.408, -0.685, p = 0.059, 0.002, 0.019, 0.117, 0.003 for the 33%, 26%, 19%, 12%, 

5% color, respectively), with stronger LPC modulations accompanying a larger spread of RTs 

across colors, suggesting that the post-selection process indexed by LPC signal predicts the 

magnitude of the statistical learning effect for a given subject. No significant correlation was 

found between the N2pc amplitude changes and the RT changes (|r|s < 0.380, ps > 0.147). 

Discussion 

Statistical learning is ubiquitous in our daily lives. However, exactly how this learning 

reshapes our cognitive architecture is not yet known. Here we show that observers could 

successfully learn the fine-grained statistical regularities of an incidental target feature, moving 

beyond previous work using color pairs (Sha et al., 2017; Conn et al., 2020). The most surprising 

results were that this learning did not result in observers differentially shifting attention to the 

likely target colors. Instead, the deployment of attentional selection to objects as indexed by the 

N2pc was unchanged in our experiment while the post-perceptual ERP components showed the 

effects of observers’ learning history. Although the generality of these findings will be important 

to establish, it is possible that statistical learning typically shapes post-selection decision-making 

processes, and does not change patterns of performance by biasing attentional selection to targets 

with prioritized features.  

We leveraged the high-temporal resolution of ERP measurements to provide novel 

evidence supporting a post-selection locus of statistical learning during attention demanding 

visual search. Specifically, our electrophysiological measures of brain activity across the course 

of information processing support an account in which learning the statistical regularities about 

target features enhances post-perceptual decision-making processes rather than biasing 

attentional selection. Our results speak to hypotheses long debated in the literatures on attention 

and learning. Previous studies of visual search proposed selection-based accounts in which 
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repeating the target feature accelerates selection of the target either by increasing the target’s 

relative salience (e.g., Maljkovic & Nakayama, 1996; Becker, 2008) or by speeding shifts of 

attention to such items (Yashar & Lamy, 2010). Contrary to these selection-based accounts, the 

post-selection accounts insist that learning speeds either a decision stage that occurs after a 

candidate target has been located (Huang et al., 2004; Huang & Pashler, 2005), or speeds 

response selection and execution (e.g., Cohen & Magen, 1999). We do note that this previous 

debate focused on tasks in which the color of the object was a task-relevant feature, while here 

we used incidental target features to track learning. However, the similarity of the hypothesized 

mechanisms is striking. Based on the episodic theory of priming in visual search (Huang et al., 

2004), we assume that when a candidate target has been selected, the system seeks to verify that 

this element is indeed the target by comparing the current potential target with target instances 

stored in their episodic memory before proceeding to make the appropriate response. The 

confirmation process is faster if the color paired with the current target matches those high-

probability colors retrieved from episodic memory. Otherwise, the system may need additional 

time to retrieve enough matching trials instances when the target shape appears in a rare color.  

The dissociable pattern of the ERP components in the current study provides vital 

evidence supporting a response-selection account of selection history effects (Awh et al., 2012). 

The present results are consistent with experiments that measured search slopes across learning. 

These studies of contextual cuing and inter-trial priming illustrate robust speeding of responses 

for targets appearing in repetitive spatial locations or features compared to targets appearing in 

novel spatial locations or features (Chun & Jiang, 1998; Treisman, 1992; Maljkovic & 

Nakayama, 1994; 1996). However, this general speeding of search (i.e., a y-intercept effect) was 

accompanied by no change in the search slope relating RT to set size, as this is the canonical 

measure of how efficiently attention can shift between targets in an array (Lamy et al., 2006; 
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Kunar et al., 2007; Makovski & Jiang, 2010; Rausei et al., 2007; Wang et al., 2019; Harris & 

Remington, 2017). Thus, both the N2pc results and the lack of a change in search slope after 

statistical learning support an account in which this learning changes how efficiently decisions 

can be made, but without changing how efficiently attention can be shifted. In the future, we 

believe that it would be worth measuring both the N2pc and search slopes in the same 

experiment to verify that these effects co-occur.   

One reason that a subsequent experiment would also be useful is to test a possibility that 

the N2pc effects in the current experiment were caused by the distractors that were present. For 

example, if distractors with high target probability colors were presented in the same hemifield 

as a target with low probable color, then the N2pc might be artificially inflated. If these same 

distractors were in the opposite hemifield from the target then the N2pc might be artificially 

reduced in amplitude. We randomized the object locations so that these possible effects would be 

balanced out, but the possible contamination of the target N2pc by the distractors that were also 

presented in possible-target colors deserves further attention in empirical studies. Future studies 

could use a task that allows for the precise estimation of the N2pc amplitude to objects in 

isolation, although doing so would inherently use a non-search task. 

At the first glance, the statistical learning effect found in the current study looks similar 

to the well-studied feature priming effect. It has been shown in previous studies that repetition of 

the incidental features in adjacent trials speeds search performance for subsequent targets with 

feature matches (Huang et al., 2004; Sha et al., 2017; Conn et al., 2020). However, robust 

learning effect still existed in the current experiment with removal of the color-repetitive trial 

pairs. Moreover, if the speeding for targets paired with high-probability colors in the current 

experiment was resulted from feature priming, we should see the largest speeding for the 

highest-probability color given more color repetitions in this condition, which is also not the case 
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in the current experiment because equivalent extent of speeding was found for three colors with 

different presence frequency (i.e., 33%, 26%, and 19% color). Thus, present work suggests that 

what our observers learned is distinct from simple feature priming although future study is 

needed.   

Statistical learning is a complex process which could involve multiple dissociable 

cognitive mechanisms. Though theorists have different opinions about the details of the critical 

processes, they agree that the main sub-processes of statistical learning include pattern extraction, 

memory storage, and then retrieval and recognition (Karuza et al., 2014; Batterink & Paller, 2017; 

Batterink et al., 2019). As a critical neural circuit for both predictive pattern formation and 

memory establishment, the hippocampus has been shown to be involved in statistical learning 

(Turk-Browne et al., 2009; Bornstein & Daw, 2012; Schapiro et al., 2014; Schapiro et al., 2016). 

Moreover, computational models propose that statistical learning arises from a set of processes 

that are inherent in memory systems, including extraction of elements of the input into memory 

traces, and subsequent integration across those memory traces that emphasize consistent 

information (Thiessen et al., 2013; Thiessen, 2017). Thus, we can see the present findings as an 

additional piece of evidence supporting the view that the efficiency of memory retrieval may 

underlie a variety of statistical learning and selection history effects studied in the laboratory.   

Conclusion 

The current study recorded the electrophysiological brain activity of observers as they 

searched for objects that could appear in different colors. We found that the probabilistic 

mapping of color to target changed how the brain performed post-perceptual processing of the 

target objects, not how early perceptual attention was deployed to the different colors in the array. 

These findings challenge the view that one of the primary functions of human statistical learning 
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is to change how attention is deployed across our visual field, and bring broad inspiration to 

research focusing on statistical learning, attentional control, and decision-making. 
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Figure 1 

Illustration of the Experimental Paradigm and Procedure. 

  

A. An example of the shape visual search task from two trials with a “top” target and a “bottom” 

target, respectively, as is shown in the dashed circle which is used for illustration only. The 

targets are paired with green and magenta for the example trials. B. The probability distribution 

of colors paired with targets for the learning session (left) and the test session (right). C. 

Experimental procedure.  
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Figure 2 

The Behavioral Results. 

 

A. The mean RT for targets in different probability colors across all trials, randomly selected 

equal number trials, non-color-repetitive trials, and the first 5% trials in the learning session of 

Experiment 1, from left panel to right panel. B. The mean RT for targets in different equal-

probability colors in the test sessions. Error bars indicate the standard errors of the means 

(SEMs). Asterisk indicates the significant main effect (** indicates significant difference with 

p<0.01, ns represents null significant difference). 
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Figure 3 

ERP Results.  

 

A. The waveforms of electrodes contralateral and ipsilateral to the target hemifield for targets in 

different probability colors, with panels represents 33%, 26%, 19%, and the merged low-



STATISTICAL LEARNING IMPROVES DECISION-MAKING 

 

38 

probability condition from left to right, respectively. Solid and dashed lines represent 

contralateral and ipsilateral signal, respectively. Topographic map of the voltage distribution 

across all electrodes, with contralateral signal reflected in the left hemifield and ipsilateral signal 

reflected in the right hemifield. B. N2pc difference waveforms for targets in different probability 

colors at electrode pair of PO7/8, and the mean N2pc amplitude over PO7/8 across 250-350 ms 

time window after search array onset. Red, magenta, yellow, and green line and bar represents 

33%, 26%, 19%, and the merged low-probability colors (12%+5%+baseline colors), 

respectively. C. LPC waveforms and topographic map for targets in different probability colors 

averaged over posterior electrodes (P3/4, P7/8, PO3/4, PO7/8), and the mean LPC amplitude 

over posterior electrodes across 450-650 ms time window after search array onset. D. 

Correlations between the N2pc amplitude difference and RT difference (left), and correlations 

between the LPC amplitude difference and RT difference (right). Each cross represents each 

subject in a corresponding condition. Error bars indicate the standard errors of the means 

(SEMs). Asterisk indicates the significant pair-wised difference (A), main effect (B and C), or 

correlation (D) (*, ** indicate significant difference or correlation with p<0.05, p<0.01, 

respectively). 
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Supplemental Materials 

Figure S1 

Correlations Between the Statistical Learning Effect and Working Memory Capacity. 

 
The correlation between observers’ working memory capacity estimate and their statistical 

learning effect calculated from subtracting RTs for targets in each probability color from the 

baseline RT. Error bars indicate the standard errors of the means (SEMs). Asterisk indicates the 

significant correlation (** indicates significant difference with p<0.01). 

 

Statistical Learning Effect is Predicted by Working Memory Capacity 

A recent study suggested that statistical learning is only observed when the items that 

need to be learned can be encoded and maintained in working memory (Hall et al., 2015). To 

probe this relationship in our current study, we also measured observers’ working memory 

capacity. If maintaining target features in working memory is critical for statistical learning, then 

observers with higher working memory capacity should be able to represent more task relevant 

information and exhibit larger learning benefits. To test this relationship, we performed a 

correlation between the size of the statistical learning benefit and working memory capacity for 

each individual subject. As shown in Figure S1, Pearson correlations revealed a significant 
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negative correlation in the highest-probability color (33% color: r = -0.710, p = 0.002), with 

larger response speed increase for observers with higher working memory capacity. Although 

they did not reach significance, negative correlations were found in the other probability colors 

(r = -0.371, -0.213, -0.414, p = 0.157, 0.429, 0.111, for 26%, 19%, 12% color, respectively), 

except for the lowest-probability (the 5% color: r = 0.011, p = 0.968). The correlation remained 

significant after we merged the RT benefits across the four highest color frequency conditions (r 

= -0.515, p = 0.041). These results are consistent with previous work suggesting that working 

memory plays an important role in realizing the benefits of statistical learning (Hall et al., 2015). 
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