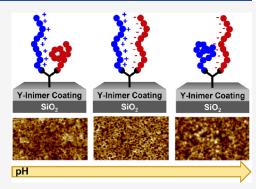
LANGMUIR

pubs.acs.org/Langmuir Article

Porous Morphology of High Grafting Density Mixed Polyelectrolyte Brushes Grown from a Y-Inimer Coating

- ³ Published as part of Langmuir virtual special issue "Highlights in Interface Science and Engineering: Polymer ⁴ Brushes".
- 5 Julia D. Smith, Ri Chen, Nicolas Noriega Osores, and Padma Gopalan*

Cite This: https://doi.org/10.1021/acs.langmuir.4c00556


ACCESS

III Metrics & More

Article Recommendations

Supporting Information

6 ABSTRACT: Mixed A/B polyelectrolyte (PE) brushes of opposite charges are 7 grown from a Y-shaped initiator-bearing coating to facilitate intimate mixing of the 8 A and B polyelectrolytes in a 1:1 grafting ratio. The design of the Y-shaped inimer 9 includes both ATRP and NMP initiators attached to a common Y-junction. A 10 copolymer of a Y-shaped inimer with glycidyl methacrylate is cross-linked to the 11 substrate resulting in a stable ultrathin coating decorated with Y-shaped initiators. 12 Weak PE A/B mixed brushes based on poly(methacrylic acid)/poly(2-vinyl-13 pyridine) (PMAA/P2VP) with a high grafting density of ~1 chain/nm² are grown 14 by surface-initiated ATRP and NMP, respectively. Detailed morphological 15 characterization of the PMAA/P2VP brushes in response to pH changes reveals 16 a nanoporous morphology under conditions that maximize complex coacervate 17 formation between oppositely charged brushes. The charge ratio between the A 18 and B brushes is varied via the composition of the brushes to further study the

morphology evolution. The effect of intimate contact between the A and B brushes on the morphology is probed by comparing with a mixed A/B PE system with random fluctuations in grafting composition. A quantitative and qualitative study of the pore evolution with pH as well as charge composition is presented using a combination of atomic force microscopy, water contact angle measurement, and image analysis using Gwyddion software. These studies demonstrate that the porous morphology is enhanced and most uniform when the brushes are grown from the Y-inimer, indicating that a 1:1 grafting ratio and intimate contact between A and B brushes are essential.

25 INTRODUCTION

26 Polyelectrolyte complex coacervates (PECCs) are formed by 27 the interaction between two oppositely charged polymers in 28 solution, which can undergo associative phase separation into a 29 highly dilute solution phase and a condensed polymer-rich 30 phase. 1-3 The complexation behavior of PECCs and the 31 tunability in charges/charge densities have been explored for 32 an array of potential applications ranging from encapsulation of 33 proteins for drug and gene delivery, 4,5 assembly of conjugated 34 polyelectrolyte donor-acceptor pairs in close proximity for 35 optoelectronics or energy harvesting, 6,7 and underwater 36 adhesives where the water-immiscible dense PECC phase 37 can adhere to wet surfaces.^{8,9} Hence, a number of theoretical 38 and experimental studies have been directed at understanding 39 their design principles and the resulting properties. The 40 properties and formation of PECCs in bulk are primarily 41 determined by both the electrostatic forces and the Flory-42 Huggins interaction parameter.⁵ When the charge fraction is 43 low, the Flory-Huggins interaction parameter or polymer 44 backbone repulsion dominates and the polymers will separate 45 into two phases, one of each polymer. Attractive electrostatic

interactions dominate at a high charge fraction, and the 46 polyelectrolytes form a complex, resulting in a new phase 47 comprising both types of macromolecules. 48

Although polyelectrolyte complexation has been studied for 49 the past century, thin films of PECCs have been explored only 50 in the past two decades. Research in this area has primarily 51 focused on the layer-by-layer (LBL) assembly of oppositely 52 charged polyelectrolytes. The phase behavior of PECCs in 53 LBL assembly has yielded unique microporous polymer films 54 that are being explored for applications in membrane 55 separation and purification where specific pore sizes are 56 needed to selectively exclude molecules of a certain size, 57 supports for sensors and catalysts where nanoparticles can be 58 incorporated into a pore structure of corresponding size, 59

Received: February 15, 2024 Revised: April 29, 2024 Accepted: April 30, 2024

60 scaffolds for tissue engineering where porosity can be tuned to 61 target a high surface area for cell adhesion, and low-dielectric-62 constant materials where higher porosity allows a tunable 63 decrease in the dielectric constant, among others. 14-17 LBL 64 films often require a step-by-step fabrication process, and the 65 stability of the films is often dictated by both the ionic strength 66 and the pH. Cross-linking can be utilized to avoid 67 delamination of PECCs with pH changes. 15 In comparison 68 to the LBL method, PECC thin films can also be made by 69 anchoring two oppositely charged polymers from one end to a 70 substrate to create polyelectrolyte mixed brushes. In general, 71 mixed A/B polymer brushes have primarily drawn interest in 72 two main areas: the design of the nanoscale morphology 18-21 73 and the fabrication of responsive surfaces. 22-25 The interaction 74 of A and B chains with each other and with the environment 75 determines both the surface morphology and proper-76 ties. 21,26-28 For example, when A and B are dissimilar, the 77 immobility of the grafting points leads to microphase separation into a nanoscale morphology, while depending on the environment, A or B can also be preferentially exposed to the topmost surface, leading to switchable surface proper-81 ties. 12,13,20 Mixed A/B PE brushes of opposite charges 82 uniquely combine charge-switchable surface properties and the nanoscale morphology into one system.

Studies so far on PE brushes have mostly been limited to 85 simulations^{29–33} or homopolymers and copolymers.^{34–38} Only 86 one simulation study to date has explored the formation of 87 lateral aggregates via microphase separation in mixed PE 88 brushes. This study explored a relatively low grafting density regime and predicted the formation of lateral aggregates in a 90 ripple structure when both polyelectrolytes were highly charged.³⁹ These predictions are not directly translatable to 92 our studies where the grafting density is very high. 93 Experimental studies are sparse and limited to low brush 94 grafting density $(<0.15 \text{ nm}^{-2})$. The morphology of high 95 grafting density mixed PE brushes with opposite charges 96 remains unexplored. Compared to LBL films, the opposite 97 charges in mixed PE brushes are positioned laterally across the 98 surface instead of in a vertically layered arrangement, 99 potentially leading to intimate lateral mixing of charges and 100 smaller feature sizes. Experimental studies on mixed PE 101 brushes with a long-range order and high grafting density are 102 challenging mainly due to a lack of synthetic methods that are 103 easy to implement in a scalable manner. To achieve high 104 grafting density, grafting-from methods must be used. Most 105 commonly, self-assembled monolayers (SAMs) have been used 106 to grow homopolymer and mixed brushes by grafting-from 107 methods. 43 To overcome some of the limitations of SAMs, 108 such as limited stability to various reagents, substrate-109 dependent anchoring chemistry, degrafting of swollen brushes, 110 and nonhomogeneous distribution of initiators, 43,44 and to 111 achieve high grafting density A/B mixed brushes, we have 112 developed ultrathin, cross-linkable inimer-containing coatings 113 for brush growth using controlled radical polymerization 114 methods. 18,45-47 These coatings contain either two types of 115 inimers that can orthogonally grow A and B brushes, 116 respectively, or a Y-shaped inimer that bears two distinct 117 initiators attached at a single junction point for high grafting 118 density mixed A/B brush growth by sequential surface-initiated 119 atom transfer radical polymerization (SI-ATRP) and nitroxide-120 mediated polymerization (SI-NMP). 48,49 The Y-inimer coating 121 is especially useful for the synthesis of mixed PE brushes as it

ensures intimate contact between oppositely charged brushes 122 and an equal grafting ratio. 123

In this article, we present the synthesis of highly dense mixed 124 A/B brushes made of oppositely charged weak PEs and study 125 their switchable surface morphology. We selected a widely 126 studied model PE system, namely, poly(methacrylic acid)/ 127 poly(2-vinylpyridine) (PMAA/P2VP) brushes, as an example 128 of oppositely charged weak polyelectrolytes to demonstrate the 129 viability and versatility of the Y-inimer chemistry. The PMAA/ 130 P2VP brushes grown by SI-ATRP and SI-NM P, respectively, 131 via a grafting-from approach from the Y-inimer coating ensures 132 a1:1 stoichiometric grafting ratio of the two brushes. The 133 growth of each of these brushes is well-controlled with a high 134 grafting density of ~1 chain/nm². Studies on the properties 135 and morphology of the mixed PE brushes at varying pH values 136 revealed a nanoporous morphology that is most pronounced at 137 pH 6 and disappears at low and high pH extremes. We present 138 a detailed analysis of the pore characteristics along with surface 139 wettability changes at different pH conditions. The effect of the 140 charge ratio of the A/B brushes on the morphology is studied 141 by synthesizing poly(MAA-co-methyl methacrylate (MMA)) 142 copolymer A brushes with varying compositions while keeping 143 the B brush composition fixed. Mixed brushes with A and B 144 chains randomly distributed across the substrate were created 145 from a coating that has random fluctuations in the grafting 146 composition of the two initiators, and the resulting 147 morphology was compared to the Y-inimer case. Our results 148 indicated that maximizing charge complex formation through a 149 1:1 grafting ratio of the brushes along with the intimate contact 150 between A and B enabled by the Y-inimer design is necessary 151 to achieve the most uniform, densely porous morphology. The 152 versatility of this chemistry, access to high grafting density 153 mixed PE A/B brushes, charge tunability, and the stability of 154 the brushes can be widely applied to design robust polymer 155 coatings with tunable and responsive nanopores.

EXPERIMENTAL METHODS

Materials. All solvents and reagents were purchased from Sigma- 158 Aldrich Chemical Co. (Milwaukee, WI) and used without further 159 purification unless otherwise specified. Glycidyl methacrylate (GMA) 160 was stirred over calcium hydride and then distilled under vacuum and 161 stored under Ar gas in the fridge. Ethyl α -bromoisobutyrate (EBiB) 162 was distilled from CaH2 and stored at 2 °C. 2-Vinylpyridine (2VP) 163 was stirred over calcium hydride and then distilled under vacuum at 164 40 °C and stored under Ar gas in the fridge. Styrene (S), tert-butyl 165 methacrylate (tBMA), and methyl methacrylate (MMA) were filtered 166 through basic alumina before use. 2,2'-Azobis(2-methylpropionitrile) 167 (AIBN) was recrystallized from methanol and dried under vacuum. 168 The Y-inimer was synthesized through a multicomponent reaction 169 using a formamide methacrylate monomer according to our previous 170 work (Figure S1).⁴⁹ An ATRP inimer and an NMP inimer were 171 synthesized according to our previous reports. 45,46 A free NMP 172 initiator was synthesized from a reported procedure. ⁵⁹ Si(100) wafers 173 were test-grade wafers purchased from UniversityWafer, Inc.

Characterization. Size exclusion chromatography (SEC) of the Y- 175 inimer copolymer, mixed inimer copolymer, and PtBMA was 176 performed using a Viscotek 2210 system equipped with three Waters 177 columns (HR4, HR4E, and HR3). THF was used as the eluent with a 178 flow rate of 1 mL/min at 30 °C. The calibration curve for analysis 179 consisted of nine narrow dispersity PS standards with $M_{\rm n}$ from 1 to 180 400 kg/mol. SEC of P2VP was performed using a Shimadzu LC-40D 181 pump with two inline Agilent PLgel columns, a Wyatt Technology 182 DAWN Heleos II light scattering detector, and a Wyatt Technology 183 Optilab T-rEX refractive index detector. HPLC-grade DMF with 0.05 184 M LiBr was used as the mobile phase with a flow rate of 1 mL/min. 185 The absolute weight-average molecular weight of P2VP was 186

157

187 determined using the dn/dc value of 0.1444 mL/g in DMF. ¹H NMR 188 spectra were recorded in CDCl₃ with a TMS internal standard using a 189 Bruker Avance 400 spectrometer. Film thickness was measured by 190 ellipsometry using a Rudolph Research Auto EL at three wavelengths 191 (632.8, 546.1, and 405 nm). Scanning electron microscopy (SEM) 192 images were acquired using a Zeiss Gemini 450 FESEM or a Zeiss 193 Gemini 300 FESEM at a 1 kV accelerating voltage. Atomic force 194 microscopy (AFM) images were acquired using a Bruker Dimension 195 Icon with ScanAsyst probe tips in the tapping mode. Contact angle 196 measurements were performed using a DataPhysics OCA 15 plus 197 contact angle measuring device. pH values of the aqueous baths were 198 measured using a Fisherbrand accumet AE150 benchtop pH meter.

Y-Inimer Coating Copolymerization. A Y-inimer (0.1262 g, 200 0.21 mmol), glycidyl methacrylate (GMA) (17.3 mg, 16.2 μ L, 0.11 201 mmol), azobis(isobutyronitrile) (AIBN) (1.4 mg, 0.01 mmol), and 202 anisole (0.5 mL) were added to a Schlenk flask. The solution was then 203 purged with Ar for 30 min and then heated up to 70 °C for 18 h. The 204 copolymer was purified by precipitating in hexane 5 times to yield a 205 red to yellow solid. The composition of the copolymer from ¹H NMR 206 quantification was 50:50 Y-inimer:GMA (Figures S2 and S3).

Mixed Inimer Coating Copolymerization. An NMP inimer (0.574 g, 2.34 mmol), an ATRP inimer (0.307 g, 1.27 mmol), GMA (0.114 g, 0.94 mmol), styrene (0.238 g, 2.67 mmol), AIBN, 4-cyano-210 4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (0.0094 g, 211 0.067 mmol), CDSPA (0.0046 g, 0.0134 mmol), and anisole (2 mL) 212 were added to a Schlenk flask. The solution was then purged with Ar 213 for 30 min and heated at 70 °C for 18 h. The copolymer was purified 214 by precipitating into methanol 3 times to yield a white powder. The 215 composition of the copolymer from ¹H NMR quantification (Figure 216 S4) was [ATRP]:[NMP]:[styrene]:[GMA] = 23:23:38:16.

Substrate Preparation and Thin-Film Formation. $\rm Si(100)$ substrates were cleaned with piranha acid ($\rm H_2SO_4$: $\rm H_2O_2=3:1$, highly explosive when in contact with organics). A Y-inimer coating copolymer solution in toluene (0.15 wt %) or a mixed inimer copolymer solution in toluene (0.10 wt %) was spin-coated onto the cleaned wafers and annealed under vacuum at 120 °C for 30 min to cross-link the film. Chains that were not cross-linked were removed by soaking the coatings in toluene for 30 min and rinsing with a copious comparation amount of toluene. The coatings were dried under nitrogen and contact with piranha acid ($\rm H_2SO_4$) was spin-coated onto the coating the film. Chains that were not cross-linked were removed by comparation of toluene. The coatings were dried under nitrogen and coating the fridge.

Poly(tert-butyl methacrylate) (PtBMA) Brush Growth. 227 228 PtBMA brushes were grown using activators regenerated by electron 229 transfer (ARGET) ATRP. CuBr₂ (0.0011 g, 0.046 mmol) and tris[2-230 (dimethylamino)ethyl]amine (Me₆TREN) (0.012 mL, 0.46 mmol) were mixed in anisole (3 mL) in a 10 mL Schlenk flask and sonicated 232 until a light green/yellow uniform mixture was obtained. tBMA (3 233 mL, 18.4 mmol) and EBiB (0.0068 mL, 0.46 mmol) were then added, 234 and the mixture was degassed by argon bubbling for 30 min. After 30 235 min, tin(II) 2-ethylhexanoate (Sn(EtH)₂) (0.015 mL, 0.46 mmol) 236 was added along with a Si wafer coated with either Y-inimer or mixed 237 inimer coating, and the mixture was further degassed for 5 min until it 238 became transparent. The reaction was placed in an oil bath at 60 °C 239 for the desired amount of time. The substrate with the PtBMA 240 brushes was soaked in THF overnight and then sonicated for 10 min 241 to remove unattached chains. The polymer from solution was 242 precipitated into a 50/50 v/v solution of water and methanol. The 243 thickness of the brush was measured by ellipsometry.

Substitution of the PtBMA Chain End. Azobis (isobutyronitrile) 245 (AIBN) (0.025 g, 0.15 mmol), tributyltin hydride (0.25 mL, 0.91 246 mmol), and the substrate were added to a Schlenk flask with anisole 247 (10 mL) and degassed by Ar bubbling for 30 min. The system was 248 heated to 60 $^{\circ}$ C for 3 h. Wafers were removed and rinsed copiously 249 with THF and dried.

Poly(tert-butyl methacrylate-co-methyl methacrylate)
251 (Poly(tBMA-co-MMA)) Brush Growth. In the charge ratio variation
252 experiments, poly(tBMA-co-MMA) was grown as the A brush.
253 PMMA is not a polyelectrolyte, so it was used to decrease the
254 amount of negative charge in the A brush. Poly(tBMA-co-MMA) was
255 grown with ARGET ATRP following the same procedure above, but
256 MMA was included as a comonomer with tBMA. The feed ratio of

tBMA to MMA was adjusted to obtain poly(tBMA $_{20}$ -co-MMA $_{80}$), 257 poly(tBMA $_{50}$ -co-MMA $_{50}$), and poly(tBMA $_{80}$ -co-PMMA $_{20}$) brushes. 258 Copolymer compositions of the brushes were confirmed by NMR of 259 the polymer formed in solution. After growth of P2VP as the B brush, 260 the PtBMA was deprotected to yield PMAA as described below.

Poly(2-vinylpyridine) (P2VP) Brush Growth. 2VP (3 mL, 27.8 262 mmol), the free initiator 1-phenyl-1-(2,2,6,6-tetramethyl-1- 263 piperidinyloxy)ethane (0.015 g, 0.056 mmol), and anisole (3 mL) 264 were mixed in a Schlenk flask with a substrate containing NMP 265 initiators. The flask was degassed by argon bubbling for 30 min and 266 then immersed in a 135 °C oil bath for the desired amount of time. 267 The flask was removed from the oil bath and cooled under running 268 water. The substrates were removed from the flask and washed with 269 THF. After washing, the substrates were soaked in THF overnight 270 and sonicated for 10 min and dried under nitrogen. The polymer from 271 solution was precipitated into hexane. The thickness of the brush was 272 measured using ellipsometry.

Substitution of the P2VP Chain End. The substrates with 274 mixed brushes were placed in a solution of 1-dodecanethiol (0.17 mL, 275 0.72 mmol) and anisole (8 mL) in a 10 mL Schlenk flask. The 276 solution was degassed by purging with argon gas for 30 min. The flask 277 was heated in an oil bath at 135 °C for 1 h. After cooling to room 278 temperature, the wafers were removed and rinsed thoroughly with 279 THF and dried under nitrogen.

Grafting Density Calculation. Grafting densities of the brushes 281 were calculated based on the thickness of the brush (h) and the 282 molecular weight of the polymer formed in solution $(\overline{M}_{\rm n})$ using the 283 following equation:

$$\sigma = \frac{h\rho N_{\rm A}}{\overline{M}_{\rm n}}$$

where $N_{\rm A}$ is Avogadro's number and $\rho=1.02~{\rm g/cm^2}$ for PtBMA and $\rho=1.15~{\rm g/cm^2}$ for P2VP. The height of the B brush was calculated by 286 subtracting the height of the A brush from the total mixed brush 287 height according to our previous method. Previous work has shown 288 that the molecular weight of the polymer grown in solution during SI-289 ATRP is a relatively good estimate of the molecular weight of the 290 brush. NH, we have shown that brushes 291 cleaved from the surface have ~ 1.56 times higher molecular weight 292 than the polymers in solution. Based on these previous studies, a 293 correction factor of 1.56 was used to calculate the adjusted molecular 294 weight of the P2VP brushes on the surface.

Deprotection of the *tert*-Butyl Groups on the PtBMA 296 Brushes. After growth of both brush components and chain end 297 substitution, the PtBMA/P2VP brushes were immersed in a solution 298 of 10% v/v trifluoroacetic acid in DCM overnight. Wafers were 299 removed and rinsed thoroughly and soaked in DI water.

pH Variation Experiments. Aqueous baths at different pH values 301 were prepared using either hydrochloric acid or sodium hydroxide in 302 DI water (DI water for pH 6, 10 and 0.1 mM HCl for pH 2 and pH 4, 303 respectively, and 0.001, 0.1, and 10 mM NaOH for pH 8, pH 10, and 304 pH 12, respectively). Wafers containing polymer brushes were soaked 305 in the desired solution for at least 3 h and rapidly dried before 306 analysis.

Pore Analysis. Pores were analyzed using the Gwyddion software 308 package. The pores in each of the images were distinguished and 309 marked using the watershed algorithm. In the watershed algorithm, 310 virtual water droplets are placed on the test surface, and their free 311 spreading is numerically simulated. The virtual water drops follow the 312 steepest descent path to minimize potential energy, stopping when 313 they reach a local minimum. Drops partially fill the local minimum 314 with their volume resulting in "lakes" that are interpreted as pores. 315 The process was controlled by both the drop size and the number of 316 steps to achieve the best marking of pores across the sample. Based on 317 the watershed process, pores were quantified based on the equivalent 318 disc radius, projected area, pore volume, and total pore area.

Scheme 1. Schematic Overview of the Chemical Structure of the Y-Inimer Coating and Growth of Mixed A/B PE Brushes with Opposite Charges (PMAA and P2VP) to Form a Polymer Brush Complex Coacervate

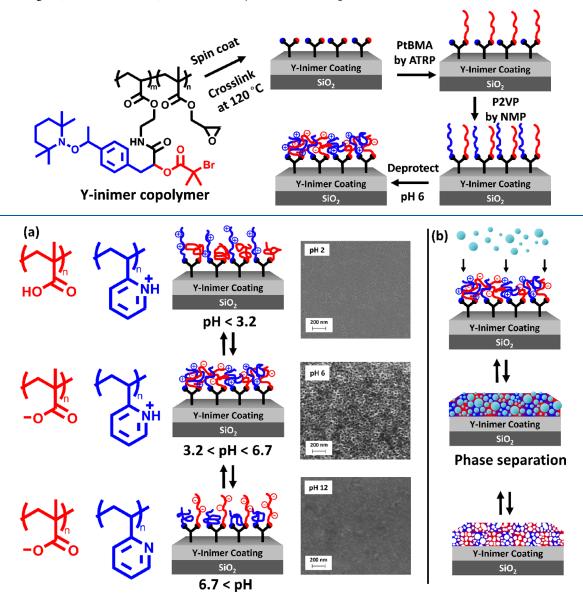


Figure 1. (a) Schematic overview of surface charge and brush conformation for the PMAA/P2VP mixed brush depending on the pH along with corresponding SEM images at pH 2, 6, and 12. pH was adjusted by adding HCl or NaOH to the aqueous bath at the appropriate concentration (DI water for pH 6, 10 mM HCl for pH 2, and 10 mM NaOH for pH 12). The grafting densities of the PMAA and P2VP brushes were 1.09 and 1.00, respectively (Table S1). SEM images show a switchable porous morphology. (b) Schematic showing the proposed mechanism for formation of pores at pH between 3.2 and 6.7. Mixed A/B PE brushes form complexes that undergo phase separation in aqueous conditions, and pores remain after rapid drying of the sample.

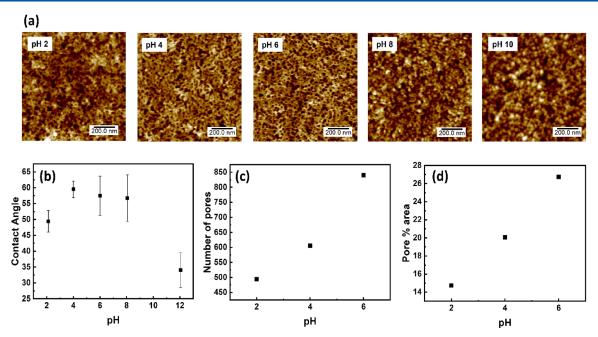
320 RESULTS AND DISCUSSION

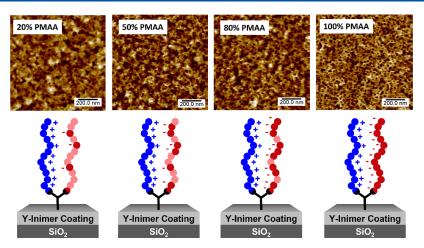
Design and Synthesis. Mixed A/B PECC brushes were synthesized by a grafting-from method using a previously developed Y-shaped inimer-bearing coating with ATRP and NMP initiators. Y-shaped initiators are unique because they contain two orthogonal initiators attached at a common junction point, which ensures a 1:1 grafting ratio and intimate contact of subsequently grown polymers across the entire substrate. The Y-inimer was synthesized using a previously developed one-pot multicomponent reaction to incorporate both initiators into one monomer unit (Figure S1). The Y-si inimer was then copolymerized with glycidyl methacrylate (GMA) by free radical polymerization to form poly(Y-inimer-

r-GMA) with a 1:1 ratio of the Y-inimer to GMA according to 333 our previously developed method (Figures S2 and S3). ⁴⁹ A 334 poly(Y-inimer-*r*-GMA) solution in toluene was spin-coated 335 onto silicon substrates, and the epoxide group in GMA was 336 cross-linked by thermal annealing at 120 °C to form a stable 337 coating with a 1:1 ratio of ATRP and NMP initiators that 338 could withstand subsequent brush growth conditions (Scheme 339 s1 1). Coatings with a thickness between 3 and 4 nm were 340 s1 targeted by spin coating a 0.15 wt % solution of the copolymer. 341

The intimate mixing between the A and B chains facilitated $_{342}$ by the Y-architecture is especially attractive to explore $_{343}$ polyelectrolyte complexation behavior between oppositely $_{344}$ charged brushes. Mixed PMAA/P2VP brushes were synthe- $_{345}$

Langmuir pubs.acs.org/Langmuir Article




Figure 2. (a) AFM images of the PMAA/P2VP mixed brushes showing the morphology after exposure to aqueous baths ranging from pH 2 to 10. pH was adjusted by adding HCl or NaOH to the aqueous bath at the appropriate concentration (DI water for pH 6, 10 and 0.1 mM HCl for pH 2 and pH 4, respectively, and 0.001 and 0.1 mM NaOH for pH 8 and pH 10, respectively). (b) Water contact angle after exposure to different pH values. Water contact angles are the highest when the PECC forms at middle pH values and the lowest when the surface has a net positive or negative charge at the pH extremes. (c) Number of pores for samples exposed to pH 2, 4, and 6. (d) Pore % area for samples at pH 2, 4, and 6. There are the greatest number of pores and the highest pore % area at pH 6 when the complex coacervate forms.

346 sized as an example of weak polyelectrolytes with opposite 347 charges (Scheme 1) from the Y-inimer coating. Poly(tert-butyl 348 methacrylate) (PtBMA) brushes were first grown by SI-ATRP 349 as protected analogues to PMAA brushes. To prevent 350 interference with the growth of P2VP brushes by SI-NMP in 351 the subsequent step, the bromine chain ends from the ATRP 352 initiator were substituted with a proton. After the SI-NMP of 353 P2VP, the nitroxide end groups were substituted with a 354 proton. S2 In the final step, the PtBMA brushes were 355 deprotected with trifluoroacetic acid (TFA) in dichloro-356 methane (DCM) resulting in the targeted PMAA/P2VP 357 mixed brush. The water contact angle decreased from 94 to 358 44.5°, upon deprotection of the tert-butyl group confirming the 359 formation of a more hydrophilic PMAA (Figure S5).

Morphology Evolution with pH. Top-down SEM of the 360 361 deprotected mixed brushes did not show a porous morphology 362 before soaking in an aqueous bath (Figure S6). Both PMAA 363 and P2VP are weak PEs; hence, the charge density is a function 364 of the pH. Mixed PMAA/P2VP brushes were placed in 365 aqueous solutions with varying pH and dried to study the 366 surface properties and morphology of the brushes. At 3.2 < pH < 6.7, both polymers were charged and interacted to form a complex, which was evident from the evolution of a porous morphology as observed by SEM (Figure 1a). This porous morphology resulted from the formation of a complex coacervate and phase separation into a polymer-rich phase and a dilute solution phase. After drying and exclusion of water, pores remained in place of the dilute solution phase (Figure 1b). Simulations of low grafting density mixed polyelectrolyte brushes show laterally isolated aggregates due 376 to complex coacervation.³⁹ Our system has a much higher 377 grafting density than the system studied in simulation. At a 378 high grafting density, the solvent is the minority species; hence, 379 inverted solvent micelles (pores) are formed as the solvent

minimizes surface contact with the coacervate phase. This is 380 consistent with simulations by Pattanayek et al. showing hole 381 formation in high density polymer brushes in poor solvents. 53 382 The porous morphology was indeed switchable with pH. At 383 pH below 3.2, the protonated P2VP is positively charged, and 384 the PMAA remains neutral; meanwhile, at pH above 6.7, 385 deprotonated PMAA is negatively charged, and P2VP remains 386 neutral. At the extreme pH values, the highly porous structure 387 disappeared as the brushes no longer engaged in complex 388 coacervation, and the morphology was instead controlled by 389 incompatibility between the two brushes. Homopolymer 390 brushes of PMAA and P2VP were studied as controls. SEM 391 analysis of these homopolymer brushes subjected to the same 392 conditions as the Y-shaped mixed brushes did not display any 393 porous morphology, indicating that the complexation of the 394 PEs was necessary for formation of nanopores (Figure S6). 395

Detailed AFM analysis at five different pH conditions is 396 shown in Figure 2a along with corresponding water contact 397 f2 angles (Figure 2b). Brushes were exposed to aqueous baths at 398 pH 2, 4, 6, 8, and 10 and rapidly dried for analysis. AFM in 399 solution showed a similar porous morphology (Figure S7). 400 Qualitatively, the brush had the most porous morphology after 401 exposure to pH 6 conditions. This is consistent with the fact 402 that at the middle pH values (between 3.2 and 6.7), both 403 brushes are charged, and the PECC can form. Some pores 404 were still present after exposure to pH 4 and pH 2, but as the 405 pH decreased, the brush appeared less porous, and the pores 406 that existed appeared less uniform in size and shape, especially 407 at pH 2. After exposure to pH 8 and 10, the nanoporous 408 morphology disappeared and was replaced by a nanoscale 409 mixed brush morphology. These observations are consistent 410 with the fact that at the pH extremes, only one of the brushes 411 is charged, eliminating the associative interactions of PMAA 412 and P2VP, and the morphology is dictated primarily by the 413

Figure 3. AFM images of mixed A/B polyelectrolyte brushes with varying charge ratios. As shown in the schematics below, the charge ratio was varied by growing a poly(MAA-co-MMA) copolymer as the A brush with 20, 50, 80, and 100% of PMAA units (PMAA shown in red, PMMA shown in pink, and P2VP shown in blue). Grafting densities for all brushes were between 0.75 and 1.2 chains/nm² (Table S2). The most uniform porous structure was observed in the 100% PMAA case where the charge ratio was equal (far right).

414 incompatibility between the two brushes. Similar to the studies 415 on the P2VP-b-PAA polyampholyte system⁵⁴ where at high 416 pH, the P2VP is not protonated and hydrophobic while PAA 417 remains negatively charged and hydrophilic leading to micelle 418 formation with PAA in the corona, it is likely that the 419 morphology that we observe at the high pH of 10 (Figure 2) is 420 also a micellar aggregate. The changes in surface charges were 421 apparent in the contact angle measurements. At the low and 422 high pH extremes (2 and 10), the surface is charged with either 423 protonated P2VP or deprotonated PMAA, respectively, and 424 thus, contact angles were relatively low (50 and 34°, 425 respectively). In the midrange pH values, a maximum contact 426 angle of 60° is reached due to complexation that results in 427 charge neutralization making the surface more hydrophobic. Qualitatively, the SEM agrees with the AFM images (Figure 429 S8). The cross-linked inimer coating was robust enough that 430 there was minimal degrafting of swollen brushes after exposure 431 to different pH conditions, with brushes retaining 90% of their 432 original thickness after overnight soaking at the pH extremes. Quantitative information about pores, such as the equivalent 434 pore radius distribution, can be obtained through statistical 435 analysis of SEM and TEM images. 55,56 In image analysis, it is 436 often challenging to accurately and systematically mark pores, and the information is typically derived only from the top surface of the sample. AFM is one of the best existing methods 439 to analyze nanoscale pore structures because the imaging is in 440 three dimensions. This means that in addition to 2D pore characteristics such as the diameter and area, 3D characteristics 442 such as the pore volume can also be analyzed. Furthermore, several types of software have been developed for statistical analysis of features in AFM images. Gwyddion is one such 445 open-source AFM image processing software that has been 446 widely used to mark and quantify pores using grayscale images 447 to represent the height of the sample surface. ^{57–59} Therefore, 448 the pore characteristics of the mixed PE brushes synthesized 449 were analyzed quantitatively using the watershed algorithm for 450 AFM grain analysis in Gwyddion software. The watershed 451 algorithm marks and classifies pores based on local minima 452 across the sample surface (more details in the experimental 453 section). Although the watershed algorithm overcomes some 454 of the issues of marking pores in more complicated structures 455 when there is a lot of local height variation, no pore marking algorithm is perfect, and these methods tend to work less well 456 over larger sample areas. The pores in the AFM images from 457 the pH 2, 4, and 6 conditions in Figure 2 were first marked 458 using the watershed algorithm (Figure S9), and then, the 459 equivalent disc radius and pore volume were extracted along 460 with the total number of pores and total pore area (Figure 2c,d 461 and Table S3). Based on this analysis, the number of pores per 462 μ m² decreased by 41% as the pH decreased from pH 6 to pH 463 2. Similarly, the pore % area decreased from 27 to only 15% of 464 the total area (Figure 2c,d). The median pore volume also 465 clearly decreased from 1180 μ m³ at pH 6 to 777 μ m³ at pH 4 466 to 293 μ m³ at pH 2 (Table S3). These results show that PECC 467 formation is necessary to maximize the nanoporous brush 468 morphology.

Morphology Modulation by the Charge Ratio. The 470 effect of the charge ratio between the A/B brushes at pH 6 was 471 investigated by synthesizing a series of mixed PE brushes with 472 poly(MAA-co-MMA) copolymers with varying mole % of 473 PMAA (20, 50, 80, and 100%) as the A brush, while the B 474 brush was fixed as the P2VP homopolymer as before. As 475 PMMA is not a polyelectrolyte, increasing the PMMA mole % 476 resulted in lower charge density in the A brush and hence an 477 increasing charge imbalance between the A and B brushes at 478 pH 6. By controlling the feed ratio of the tBMA:MMA 479 monomers in the SI-ATRP of the A brush, the resulting brush 480 composition was predictably controlled. NMR analysis of the 481 solution poly(MAA-co-MMA) was used to estimate the 482 copolymer composition (Figure S10). The resulting surface 483 morphology was studied by AFM (Figure 3). Qualitatively, the 484 f3 poly(MAA₂₀-co-MMA₈₀)/P2VP brushes showed the fewest 485 pores, compared to the poly(MAA₅₀-co-MMA₅₀)/P2VP and 486 poly(MAA₈₀-co-MMA₂₀)/P2VP brushes. Irrespective of the 487 composition, all three brushes showed a large variability in 488 pore sizes and spacing. In comparison, the PMAA/P2VP 489 brushes showed the most pores with a relatively regular pore 490 spacing and size. This indicated that equal mixing of the 491 opposite charges is essential to maximize the porous structure 492 in the polymer brushes.

Quantitative pore analysis for the samples with varied charge 494 ratios was done with the watershed algorithm using Gwyddion 495 software (Figure S11) as described above, and the pore 496 characteristics were summarized by the median and range disc 497

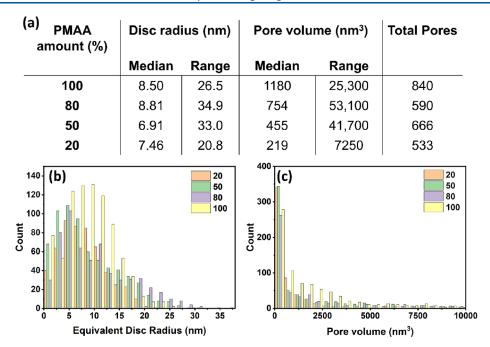
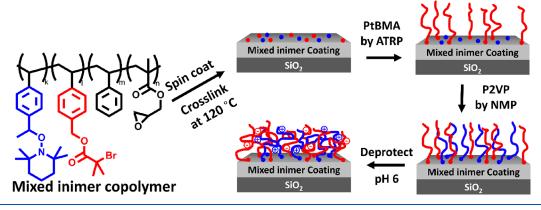
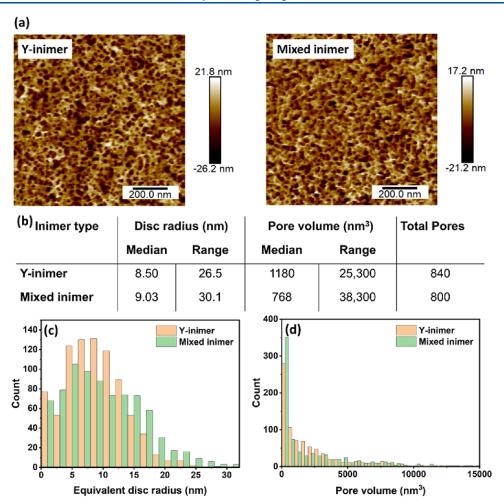



Figure 4. Pore characteristics analyzed using Gwyddion software. (a) Median and range for the pore disc radius and pore volume along with the total number of pores for samples with varying charge ratios between A and B brushes. (b,c) Histograms are shown for the disc radius and pore volume.

Scheme 2. Schematic Overview for the Chemical Structure of the Mixed Inimer Coating, Thermal Cross-Linking, and Growth of Mixed A/B PE Brushes with Opposite Charges (PMAA and P2VP) to Form a Polymer Brush Complex Coacervate



498 radius and volume, along with the total number of pores 499 (Figure 4a). The distribution of pore sizes in each brush was 500 further visualized and compared through histograms of the 501 pore disc radius and pore volume (Figure 4b,c). As the mole % 502 of PMAA in the A brush decreased from 100 to 20%, the 503 number of pores decreased by 60%. This indicated that an 504 increasing mismatch in the ratio of negative and positive 505 charges decreased the pore formation. Both the poly(MAA₅₀-506 co-MMA₅₀)/P2VP and poly(MAA₈₀-co-MMA₂₀)/P2VP 507 brushes had more pores than the poly(MAA₂₀-co-MMA₈₀)/ 508 P2VP brush. Based on the range and distribution plots for the 509 disc radius and pore volume, the pores in the (MAA₅₀-co-510 MMA₅₀)/P2VP and (MAA₈₀-co-MMA₂₀)/P2VP brushes were 511 less uniform than in the PMAA/P2VP brushes. For example, 512 the range for the disc radius in the PMAA/P2VP brush was 513 only 26.5 nm compared to 33.0 and 34.9 nm in the (MAA₅₀-co-514 MMA₅₀)/P2VP and (MAA₈₀-co-MMA₂₀)/P2VP brushes, 515 respectively. A similar trend was observed for the pore volume. 516 A second set of images at a different spot on the sample surface

was also analyzed, and the trends were found to be similar, 517 indicating consistency across the sample surface (Table S4). 518 Together, these results confirmed that similar amounts of 519 positive and negative charges are needed to obtain a mixed 520 brush with the most dense and uniform pore structure.

Morphology Changes with Variations in Local 522 Initiator Distribution from a Mixed Inimer Coating. 523 Simulations have shown that inhomogeneous grafting 524 compositions in mixed polymer brushes can influence the 525 resulting morphology. ⁶⁰ To study if the porous morphology of 526 the PMAA/P2VP mixed PE brushes is influenced by the 527 proximity of A and B chains with an equal grafting ratio, we 528 synthesized PMAA/P2VP mixed PE brushes from an inimer 529 coating with locally random fluctuations in the grafting 530 composition of the two initiators (mixed inimer coating). In 531 this mixed inimer coating, the NMP and ATRP initiator- 532 bearing monomers (inimers) were copolymerized with GMA 533 and styrene and cross-linked onto the substrate, as compared 534 to the Y-inimer coating where the ATRP and NMP initiators 535

Langmuir pubs.acs.org/Langmuir Article

Figure 5. Comparison of the porous morphology in mixed PMAA/P2VP brushes grown from a Y-inimer coating and a mixed inimer coating. Grafting densities of the Y-inimer brushes were 1.09 and 1.00 chains/nm² for the PMAA and P2VP, respectively, while grafting densities of the mixed inimer brushes were 0.71 and 0.58 chains/nm² (Table S1). (a) AFM images for the two samples both showed a highly porous structure. (b) Analysis of the pore characteristics using Gwyddion software showed that the pores are more uniform in the Y-inimer sample, which can be visualized in the (c) histograms for the equivalent disc radius and pore volume.

536 are attached to a common Y-junction in a single monomer unit 537 (Scheme 2).

We synthesized the previously developed mixed inimer 539 coating with a copolymer composition that contained an overall equal mole ratio of ATRP and NMP initiators (ATRP:NMP:styrene:GMA ratio of 23:23:38:16). Even 542 though globally, on the surface, the distribution of the two 543 initiators is in a 1:1 ratio, this does not necessarily translate 544 locally into a 1:1 grafting composition. After thermally cross-545 linking the mixed inimer copolymer to the substrate, brushes 546 were grown using the same sequential process as with the Y-547 inimer, and the pore structure was studied by AFM (Figure 5). Qualitatively, the AFM images were relatively similar, and 549 both samples were highly porous (Figure 5a). Based on the 550 analysis of the pores using the Gwyddion watershed algorithm, the samples had an approximately equal number of pores (840 552 and 800 for the Y-inimer and mixed inimer, respectively); 553 however, the pores in the Y-inimer sample were smaller and 554 more uniform and formed a denser network (Figure 5b,c). The 555 median disc radius and pore volume in the Y-inimer sample 556 were smaller than in the mixed inimer sample (8.50 nm 557 compared to 9.03 nm), indicating smaller pores in the Y-inimer 558 sample. However, the median pore volume was higher in the 559 Y-inimer sample (1180 nm³ compared to 768 nm³), indicating

that the 3D pore network was denser and more interconnected 560 in the Y-inimer sample. The range for the disc radius and pore 561 volume was also smaller for the Y-inimer, indicating a narrower 562 distribution of pore sizes for the Y-inimer sample, which can be 563 visualized in the histograms for the equivalent disc radius and 564 pore volume (Figure 5c). Typically, in mixed brushes, there is 565 a relatively thick crossover zone of the two brushes near the 566 substrate. Simulation results show that the mixed region 567 occupies about 10-15% of the total thickness, and it is not 568 affected by the grafting density but increases with decreasing 569 segregation strength between A and B brushes. 18 This 570 crossover region is eliminated when the Y-architecture for 571 the mixed polyelectrolyte system is used. Hence, the Y-inimer 572 coating has a unique ability to ensure intimate mixing and an 573 equal grafting ratio across the surface for the oppositely 574 charged polyelectrolytes and thus leads to the most uniformly 575 porous brush structure.

CONCLUSIONS

In conclusion, we have grown high density mixed A/B polymer $_{578}$ brushes made of weak polyelectrolytes, PMAA and P2VP, of $_{579}$ opposite charges from a Y-shaped inimer coating. The unique $_{580}$ structure of the Y-inimer, where orthogonal initiators for $_{581}$

577

582 growth of the A and B brushes are attached at a common 583 junction point, ensured an equal grafting ratio and intimate 584 mixing of the oppositely charged PMAA and P2VP brushes, 585 leading to formation of a complex coacervate brush and a 586 porous morphology. Due to the charge switching at different 587 pH, the porous morphology could be switched on and off by 588 exposing the brush to aqueous conditions with different pH. By 589 growing poly(MAA-co-MMA) for the A brush, the ratio of 590 negative to positive charges could be systematically controlled. 591 Samples with a greater discrepancy in the charge ratio showed 592 fewer and less uniform pores in AFM, indicating that a similar 593 charge ratio is necessary to achieve the porous morphology. 594 Finally, PMAA/P2VP brushes grown from a mixed inimer 595 coating, where the local ratio of initiators can vary and poses a 596 crossover region near the substrate, showed a less uniform pore 597 structure. These studies reveal that the intimate mixing of the 598 two brushes in a 1:1 grafting ratio enabled by the Y-inimer 599 leads to the most uniformly porous brush structure. These 600 studies also confirm that local random fluctuations in the 601 grafting ratio of the two brushes even if the overall grafting 602 ratio is 1:1 can still affect the pore size distribution. 603 Polyelectrolyte complex coacervate formation is one example 604 where the 1:1 grating ratio of A and B enabled by the Y-inimer 605 is critical. Our Y-inimer has broader utility in other systems 606 where a 1:1 grafting ratio and intimate mixing of two brushes 607 are desirable, such as donor/acceptor pairs and phase 608 separation of high- χ mixed brushes.

609 ASSOCIATED CONTENT

610 Supporting Information

611 The Supporting Information is available free of charge at 612 https://pubs.acs.org/doi/10.1021/acs.langmuir.4c00556.

Additional characterization information, including ¹H NMR spectra, GPC, brush molecular weight, thickness, and grafting density values, contact angle, SEM, and details of pore analysis using Gwyddion (PDF)

617 **AUTHOR INFORMATION**

618 Corresponding Author

Padma Gopalan – Department of Chemistry and Department
of Materials Science and Engineering, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United
States; orcid.org/0000-0002-1955-640X;
Email: pgopalan@wisc.edu

624 Authors

Julia D. Smith – Department of Chemistry, University of
 Wisconsin-Madison, Madison, Wisconsin 53706, United
 States; orcid.org/0009-0008-9715-9101
 Ri Chen – Department of Materials Science and Engineering,

Ri Chen – Department of Materials Science and Engineering
University of Wisconsin-Madison, Madison, Wisconsin
53706, United States

Nicolas Noriega Osores – Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States

634 Complete contact information is available at:

635 https://pubs.acs.org/10.1021/acs.langmuir.4c00556

636 Notes

637 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

J.D.S., R.C., and P.G. acknowledge support for this work by the 639 National Science Foundation: DMR-2003891 and DMR- 640 1507409. P.G. and R.C. acknowledge partial support for this 641 research by the University of Wisconsin-Madison, Office of the 642 Vice Chancellor for Research and Graduate Education with 643 funding from the Wisconsin Alumni Research Foundation. We 644 gratefully acknowledge support from the staff and use of the 645 facilities and instrumentation at the UW-Madison Wisconsin 646 Centers for Nanoscale Technology (wcnt.wisc.edu) partially 647 supported by the NSF through the University of Wisconsin 648 Materials Research Science and Engineering Center (DMR- 649 1720415). We are especially grateful for the support from Dr. 650 Julie Morasch and Dr. Nick Bulloss during AFM imaging. The 651 Bruker Avance 400 NMR spectrometer was supported by NSF 652 grant CHE-1048642. P.G. and J.D.S. also acknowledge 653 discussions with Prof. David Lynn on potential applications 654 of these brushes and with Dr. Sean Michael Foradori on the 655 AFM analysis.

REFERENCES

- (1) Rumyantsev, A. M.; Jackson, N. E.; de Pablo, J. J. Polyelectrolyte 658 Complex Coacervates: Recent Developments and New Frontiers. 659 Annu. Rev. Condens. Matter Phys. 2021, 12, 155–176. 660
- (2) Zhou, L.; Shi, H.; Li, Z.; He, C. Recent Advances in Complex 661 Coacervation Design from Macromolecular Assemblies and Emerging 662 Applications. *Macromol. Rapid Commun.* **2020**, 41 (21), 2000149. 663
- (3) Neitzel, A. E.; Fang, Y. N.; Yu, B.; Rumyantsev, A. M.; de Pablo, 664 J. J.; Tirrell, M. V. Polyelectrolyte Complex Coacervation across a 665 Broad Range of Charge Densities. *Macromolecules* **2021**, 54 (14), 666 6878–6890.
- (4) Johnson, N. R.; Wang, Y. Coacervate Delivery Systems for 668 Proteins and Small Molecule Drugs. Expert Opin. Drug Delivery 2014, 669 11 (12), 1829–1832.
- (5) Lankalapalli, S.; Kolapalli, V. R. M. Polyelectrolyte Complexes: A 671 Review of Their Applicability in Drug Delivery Technology. *Indian J.* 672 *Pharm. Sci.* **2009**, 71 (5), 481–487.
- (6) Kim, H. J.; Yang, B.; Park, T. Y.; Lim, S.; Cha, H. J. Complex 674 Coacervates Based on Recombinant Mussel Adhesive Proteins: Their 675 Characterization and Applications. *Soft Matter* **2017**, *13* (42), 7704—676 7716
- (7) Stewart, R. J.; Wang, C. S.; Shao, H. Complex Coacervates as a 678 Foundation for Synthetic Underwater Adhesives. *Adv. Colloid Interface* 679 *Sci.* **2011**, *167* (1–2), 85–93.
- (8) Danielsen, S. P. O.; Nguyen, T.-Q.; Fredrickson, G. H.; 681 Segalman, R. A. Complexation of a Conjugated Polyelectrolyte and 682 Impact on Optoelectronic Properties. *ACS Macro Lett.* **2019**, 8 (1), 683 88–94.
- (9) Hollingsworth, W. R.; Segura, C.; Balderrama, J.; Lopez, N.; 685 Schleissner, P.; Ayzner, A. L. Exciton Transfer and Emergent 686 Excitonic States in Oppositely-Charged Conjugated Polyelectrolyte 687 Complexes. J. Phys. Chem. B 2016, 120 (31), 7767–7774.
- (10) Rumyantsev, A. M.; Kramarenko, E. Yu.; Borisov, O. V. 689 Microphase Separation in Complex Coacervate Due to Incompati- 690 bility between Polyanion and Polycation. *Macromolecules* **2018**, *51* 691 (17), 6587–6601.
- (11) Smith, R. J.; Long, C. T.; Grunlan, J. C. Transparent 693 Polyelectrolyte Complex Thin Films with Ultralow Oxygen Trans- 694 mission Rate. *Langmuir* **2018**, 34 (37), 11086–11091.
- (12) Petrila, L.-M.; Bucatariu, F.; Mihai, M.; Teodosiu, C. 696 Polyelectrolyte Multilayers: An Overview on Fabrication, Properties, 697 and Biomedical and Environmental Applications. *Materials* **2021**, 14 698 (15), 4152.
- (13) Séon, L.; Lavalle, P.; Schaaf, P.; Boulmedais, F. Polyelectrolyte 700 Multilayers: A Versatile Tool for Preparing Antimicrobial Coatings. 701 *Langmuir* **2015**, 31 (47), 12856–12872. 702

- 703 (14) Fery, A.; Schöler, B.; Cassagneau, T.; Caruso, F. Nanoporous 704 Thin Films Formed by Salt-Induced Structural Changes in Multilayers 705 of Poly(Acrylic Acid) and Poly(Allylamine). *Langmuir* **2001**, *17* (13), 706 3779—3783.
- 707 (15) Mendelsohn, J. D.; Barrett, C. J.; Chan, V. V.; Pal, A. J.; Mayes, 708 A. M.; Rubner, M. F. Fabrication of Microporous Thin Films from 709 Polyelectrolyte Multilayers. *Langmuir* **2000**, *16* (11), 5017–5023.
- 710 (16) Sung, C.; Heo, Y. Porous Layer-by-Layer Films Assembled 711 Using Polyelectrolyte Blend to Control Wetting Properties. *Polymers* 712 **2021**, *13* (13), 2116.
- 713 (17) Schönhoff, M. Self-Assembled Polyelectrolyte Multilayers. *Curr.* 714 Opin. Colloid Interface Sci. **2003**, 8 (1), 86–95.
- 715 (18) Wei, W.; Kim, T.-Y.; Balamurugan, A.; Sun, J.; Chen, R.; 716 Ghosh, A.; Rodolakis, F.; McChesney, J. L.; Lakkham, A.; Evans, P. 717 G.; Hur, S.-M.; Gopalan, P. Phase Behavior of Mixed Polymer 718 Brushes Grown from Ultrathin Coatings. *ACS Macro Lett.* **2019**, 8 719 (9), 1086–1090.
- 720 (19) Müller, M. Phase Diagram of a Mixed Polymer Brush. *Phys. Rev.* 721 *E: Stat., Nonlinear, Soft Matter Phys.* **2002**, *65* (3), No. 030802, 722 DOI: 10.1103/PhysRevE.65.030802.
- 723 (20) Minko, S.; Müller, M.; Usov, D.; Scholl, A.; Froeck, C.; Stamm, 724 M. Lateral versus Perpendicular Segregation in Mixed Polymer 725 Brushes. *Phys. Rev. Lett.* **2002**, *88* (3), No. 035502.
- 726 (21) Price, A. D.; Hur, S.-M.; Fredrickson, G. H.; Frischknecht, A. 727 L.; Huber, D. L. Exploring Lateral Microphase Separation in Mixed 728 Polymer Brushes by Experiment and Self-Consistent Field Theory 729 Simulations. *Macromolecules* **2012**, *45* (1), 510–524.
- 730 (22) Julthongpiput, D.; Lin, Y.-H.; Teng, J.; Zubarev, E. R.; Tsukruk, 731 V. V. Y-Shaped Polymer Brushes: Nanoscale Switchable Surfaces. 732 *Langmuir* **2003**, *19* (19), 7832–7836.
- 733 (23) Li, M.; Pester, C. W. Mixed Polymer Brushes for "Smart" 734 Surfaces. *Polymers* **2020**, *12* (7), 1553.
- 735 (24) Lemieux, M.; Usov, D.; Minko, S.; Stamm, M.; Shulha, H.; 736 Tsukruk, V. V. Reorganization of Binary Polymer Brushes: Reversible 737 Switching of Surface Microstructures and Nanomechanical Properties. 738 *Macromolecules* **2003**, *36* (19), 7244–7255.
- 739 (25) Uhlmann, P.; Ionov, L.; Houbenov, N.; Nitschke, M.; Grundke, 740 K.; Motornov, M.; Minko, S.; Stamm, M. Surface Functionalization by 741 Smart Coatings: Stimuli-Responsive Binary Polymer Brushes. *Prog.* 742 Org. Coat. 2006, 55 (2), 168–174.
- 743 (26) Santer, S.; Kopyshev, A.; Yang, H.-K.; Rühe, J. Local 744 Composition of Nanophase-Separated Mixed Polymer Brushes. 745 *Macromolecules* **2006**, *39* (8), 3056–3064.
- 746 (27) Uhlmann, P.; Merlitz, H.; Sommer, J.-U.; Stamm, M. Polymer 747 Brushes for Surface Tuning. *Macromol. Rapid Commun.* **2009**, 30 (9–748 10), 732–740.
- 749 (28) Hur, S.-M.; Frischknecht, A. L.; Huber, D. L.; Fredrickson, G. 750 H. Self-Consistent Field Simulations of Self- and Directed-Assembly
- 751 in a Mixed Polymer Brush. Soft Matter 2011, 7 (19), 8776–8788.
 752 (29) Shusharina, N. P.; Linse, P. Oppositely Charged Polyelec753 trolytes Grafted onto Planar Surface: Mean-Field Lattice Theory. Eur.
- 752 (25) Shasharma, 14. 14, Ernse, 11. Sppearer, Sharged Folyere 753 trolytes Grafted onto Planar Surface: Mean-Field Lattice Theory. *Eur.* 754 *Phys. J. E* **2001**, 6 (2), 147–155.
- 755 (30) Das, S.; Banik, M.; Chen, G.; Sinha, S.; Mukherjee, R. 756 Polyelectrolyte Brushes: Theory, Modelling. *Synthesis and Applica-* 757 tions. *Soft Matter* **2015**, 11 (44), 8550–8583.
- 758 (31) Sing, C. E.; Qin, J. Bridging Field Theory and Ion Pairing in the 759 Modeling of Polyelectrolytes and Complex Coacervation. *Macro-*760 molecules **2023**, 56 (15), 5941–5963.
- 761 (32) Kubota, R.; Hiroi, T.; Ikuta, Y.; Liu, Y.; Hamachi, I. Visualizing 762 Formation and Dynamics of a Three-Dimensional Sponge-like 763 Network of a Coacervate in Real Time. *J. Am. Chem. Soc.* **2023**, 764 145 (33), 18316–18328.
- 765 (33) Zhao, X.; Zhang, G. A Theoretical Investigation on the pH-766 Induced Switching of Mixed Polyelectrolyte Brushes. *Chin. J. Polym.* 767 Sci. **2014**, 32 (5), 568–576.
- 768 (34) Ayres, N.; Boyes, S. G.; Brittain, W. J. Stimuli-Responsive 769 Polyelectrolyte Polymer Brushes Prepared via Atom-Transfer Radical 770 Polymerization. *Langmuir* **2007**, 23 (1), 182–189.

- (35) Yu, K.; Wang, H.; Xue, L.; Han, Y. Stimuli-Responsive 771 Polyelectrolyte Block Copolymer Brushes Synthesized from the Si 772 Wafer via Atom-Transfer Radical Polymerization. *Langmuir* **2007**, 23 773 (3), 1443–1452.
- (36) Calvo, A.; Fuertes, M. C.; Yameen, B.; Williams, F. J.; Azzaroni, 775 O.; Soler-Illia, G. J. A. A. Nanochemistry in Confined Environments: 776 Polyelectrolyte Brush-Assisted Synthesis of Gold Nanoparticles inside 777 Ordered Mesoporous Thin Films. *Langmuir* **2010**, 26 (8), 5559–778 5567.
- (37) Ayres, N.; Cyrus, C. D.; Brittain, W. J. Stimuli-Responsive 780 Surfaces Using Polyampholyte Polymer Brushes Prepared via Atom 781 Transfer Radical Polymerization. *Langmuir* **2007**, 23 (7), 3744–3749. 782
- (38) Sanjuan, S.; Tran, Y. Stimuli-Responsive Interfaces Using 783 Random Polyampholyte Brushes. *Macromolecules* **2008**, 41 (22), 784 8721–8728.
- (39) Debais, G.; Tagliazucchi, M. Microphase Separation and 786 Aggregate Self-Assembly in Brushes of Oppositely Charged 787 Polyelectrolytes Triggered by Ion Pairing. *J. Chem. Phys.* **2020**, *153* 788 (14), 144903.
- (40) Drechsler, A.; Elmahdy, M. M.; Uhlmann, P.; Stamm, M. pH 790 and Salt Response of Mixed Brushes Made of Oppositely Charged 791 Polyelectrolytes Studied by in Situ AFM Force Measurements and 792 Imaging. *Langmuir* **2018**, *34* (16), 4739–4749.
- (41) Houbenov, N.; Minko, S.; Stamm, M. Mixed Polyelectrolyte 794 Brush from Oppositely Charged Polymers for Switching of Surface 795 Charge and Composition in Aqueous Environment. *Macromolecules* 796 **2003**, 36 (16), 5897–5901.
- (42) Hinrichs, K.; Aulich, D.; Ionov, L.; Esser, N.; Eichhorn, K.-J.; 798 Motornov, M.; Stamm, M.; Minko, S. Chemical and Structural 799 Changes in a pH-Responsive Mixed Polyelectrolyte Brush Studied by 800 Infrared Ellipsometry. *Langmuir* **2009**, 25 (18), 10987–10991.
- (43) Olivier, A.; Meyer, F.; Raquez, J.-M.; Damman, P.; Dubois, P. 802 Surface-Initiated Controlled Polymerization as a Convenient Method 803 for Designing Functional Polymer Brushes: From Self-Assembled 804 Monolayers to Patterned Surfaces. *Prog. Polym. Sci.* **2012**, *37* (1), 805 157–181.
- (44) Ding, Z.; Chen, C.; Yu, Y.; de Beer, S. Synthetic Strategies to 807 Enhance the Long-Term Stability of Polymer Brush Coatings. *J.* 808 *Mater. Chem. B* **2022**, *10* (14), 2430–2443.
- (45) Wei, W.; Balamurugan, A.; Dwyer, J. H.; Gopalan, P. Substrate- 810 Independent Approach to Dense Cleavable Polymer Brushes by 811 Nitroxide-Mediated Polymerization. *ACS Macro Lett.* **2018**, 7 (1), 812 100–104.
- (46) Sweat, D. P.; Kim, M.; Yu, X.; Gopalan, P. A Single- 814 Component Inimer Containing Cross-Linkable Ultrathin Polymer 815 Coating for Dense Polymer Brush Growth. *Langmuir* **2013**, 29 (11), 816 3805–3812.
- (47) Smith, J. D.; Salas, L. A. P.; Kreft, C.; Hur, S.-M.; Gopalan, P. 818 Chain End-Functionalized Dense Polymer Brushes from an Inimer 819 Coating by SI-RAFT. *Langmuir* **2023**, 39, 8267.
- (48) Chen, R.; Ayyakkalai, B.; Sun, J.; Lee, G. A.; Gopalan, P. 821 Formamide Based Monomer for Highly Functionalized Polymers. *J.* 822 *Polym. Sci.* **2022**, *60* (1), 131–141.
- (49) Chen, R.; Smith, J. D.; Osores, N. N.; Gopalan, P. Synthesis 824 and Applications of a Y-Inimer with Two Orthogonal Controlled Free 825 Radical Polymerization Initiators. *J. Polym. Sci.* **2023**, *61* (24), 3295—826 3306
- (50) Husseman, M.; Malmström, E. E.; McNamara, M.; Mate, M.; 828 Mecerreyes, D.; Benoit, D. G.; Hedrick, J. L.; Mansky, P.; Huang, E.; 829 Russell, T. P.; Hawker, C. J. Controlled Synthesis of Polymer Brushes 830 by "Living" Free Radical Polymerization Techniques. *Macromolecules* 831 1999, 32 (5), 1424–1431.
- (51) Koylu, D.; Carter, K. R. Stimuli-Responsive Surfaces Utilizing 833 Cleavable Polymer Brush Layers. *Macromolecules* **2009**, 42 (22), 834 8655–8660.
- (52) Petton, L.; Ciolino, A. E.; Dervaux, B.; Du Prez, F. E. From 836 One-Pot Stabilisation to in Situ Functionalisation in Nitroxide 837 Mediated Polymerisation: An Efficient Extension towards Atom 838

- 839 Transfer Radical Polymerisation. *Polym. Chem.* **2012**, 3 (7), 1867–840 1878.
- 841 (53) Pattanayek, S. K.; Pham, T. T.; Pereira, G. G. Morphological 842 Structures Formed by Grafted Polymers in Poor Solvents. *J. Chem.* 843 *Phys.* **2005**, *122* (21), 214908.
- 844 (54) Briggs, N. P.; Budd, P. M.; Price, C.; Robb, I. D. The Synthesis 845 and Solution Properties of Statistical and Block Copolymers of 2-
- 846 Vinyl Pyridine and Acrylic Acid. *Eur. Polym. J.* **1992**, 28 (7), 739–745.
- 847 (55) Hojat, N.; Gentile, P.; Ferreira, A. M.; Siller, L. Automatic Pore 848 Size Measurements from Scanning Electron Microscopy Images of 849 Porous Scaffolds. *J. Porous Mater.* **2023**, *30* (1), 93–101.
- 850 (56) AlMarzooqi, F. A.; Bilad, M. R.; Mansoor, B.; Arafat, H. A. A 851 Comparative Study of Image Analysis and Porometry Techniques for 852 Characterization of Porous Membranes. *J. Mater. Sci.* **2016**, *51* (4), 853 2017–2032.
- 854 (57) Shen, R.; Xiong, W.; Lang, X.; Wang, L.; Guo, H.; Zhou, H.; 855 Zhang, X.; Yang, H. Quantitative Analysis of Nano-Scale Pore 856 Structures of Broad Sense Shale Oil Reservoirs Using Atomic Force 857 Microscopy. *Energy Explor. Exploit.* **2021**, 39 (6), 1839–1856.
- 858 (58) Zhao, S.; Li, Y.; Wang, Y.; Ma, Z.; Huang, X. Quantitative 859 Study on Coal and Shale Pore Structure and Surface Roughness Based 860 on Atomic Force Microscopy and Image Processing. *Fuel* **2019**, 244, 861 78–90.
- 862 (59) Khanukaeva, D. Yu.; Filippov, A. N.; Bildyukevich, A. V. An 863 AFM Study of Ultrafiltration Membranes: Peculiarities of Pore Size 864 Distribution. *Pet. Chem.* **2014**, *54* (7), 498–506.
- 865 (60) Hur, S.-M.; Frischknecht, A. L.; Huber, D. L.; Fredrickson, G. 866 H. Self-Assembly in a Mixed Polymer Brush with Inhomogeneous 867 Grafting Density Composition. *Soft Matter* **2013**, *9* (22), 5341–5354.