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Abstract

It has been debated if attention can penetrate early perceptual representations to alter visual
appearance or it simply induces response biases. Here, we tested these alternative accounts by
evaluating attentional modulations of EEG responses recorded from human subjects while they
compared the perceived contrasts of cued and uncued visual stimuli of varying physical
contrasts. We found that attention enhanced the response gain of neural contrast response
functions (CRFs) computed based on the amplitude of the P1 component, an early visually
evoked potential. Quantitative models suggested that the response gain of the P1-based CRFs
could account for attention-induced changes in perceived contrast. Instead, attentional cues
induced changes in the baseline offset of the CRFs based on 9-12Hz alpha-band oscillations and
these baseline-offset changes better accounted for cue-induced response biases. Together, these
results suggest that different neural mechanisms underlie the effects of attention on perceptual
experience and on response biases.



Introduction

Selective attention refers to the set of mechanisms that supports faster and more accurate
processing of behaviorally relevant sensory information compared to irrelevant stimuli -8, Many
past studies suggest that — in addition to faster and more accurate processing — attention also
penetrates early sensory processing to alter the subjective experience of visual stimuli *=° . In
contrast, others have argued that attention does not alter perception and that reports of changes in
subjective experience instead reflect cue-induced response biases 182231736,

In a recent study, we argued that attentional effects on visual appearance and on response biases
co-existed and were expressed to varying degrees depending on the overall levels of stimulus
contrast and decision uncertainty (determined by the degree of contrast difference between the
cued and uncued stimuli 22 . For example, subjects often guessed that a cued stimulus had a
higher contrast than an uncued stimulus when the cued and uncued stimuli were rendered at very
low contrasts or at very high contrasts > However, changes in perceived contrast were most
evident at intermediate contrast levels 71822 |

While our recent findings suggest that attention can alter contrast appearance in certain
circumstances and induce response bias in others, it is unclear whether changes in perceived
contrast and response bias reflect different underlying neural processes. This is in part due to a
lack of quantitative links between different neural markers of visual information processing and
the effects of attention on visual appearance and response bias. To address this gap, we
concurrently measured attentional modulations of two EEG signals that track early visual
processing — the P1 component and the amplitude of posterior alpha oscillations — as well as
EEG signals that track response preparation (the lateralized readiness potential or LRP). We then
used a signal-detection-theory-based model to assess how cue-related modulations of each signal
maps onto behavioral changes in perceived contrast and response bias 233740

First, we found that cue-related modulations of the visually evoked P1 component predicted
behaviorally assessed effects of attention on perceived contrast at low-to-mid-level of stimulus
contrast. In contrast, we found that changes in alpha amplitude tracked response bias in the
psychometric data when the cued and uncued stimuli rendered at either a very low or a very high
contrast. Finally, we found that the LRP tracked response biases at both low and high contrast
levels, even in the absence of attentional modulations of the P1 component, consistent with the
LRP being an index of response-planning *'~4° . Together, these findings suggest that dissociable
neural markers of information processing track attention-induced changes in subjective
appearance and response-related attentional modulations of behavior.
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Figure 1. Task and stimuli. (a) The attention-cueing comparative contrast judgment task.
Subjects were tasked with reporting the orientation of the stimulus they perceived as having a
higher contrast. (b) Depiction of all contrast pairs in the cue-left condition. Note that the same
fully-crossed contrast manipulation was also used in the cue-right condition.

Results
Study Design

The present study investigated the neural mechanisms that underlie the effects of attention on
perceived contrast and response bias. We employed a comparative judgment task where the
contrast of cued and uncued visual stimuli were fully crossed and systematically manipulated
from 0%-100% Michelson contrast (Figure 1; see ref??and Materials and Methods). In this task,
subjects used button press responses to report whether the cued or the uncued visual stimulus
subjectively appeared to have a higher contrast value. EEG signals and behavioral responses
were concurrently measured across the full range of contrast values for both cued and uncued
stimuli. The simultaneous recording of the behavioral and EEG data allowed us to examine
attentional modulations of behavioral and neural responses as a function of contrast (i.e., the



neural contrast response function, or CRF) and to quantitatively link the attentional modulations

of neural CRFs to changes in perceived contrast and response bias in the psychometric data
(Figure 2).
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Figure 2. Predictions. (a-c) Alternative predictions for the behavioral results. (a) Attention
increases the perceived contrast of visual stimuli via a leftward shift in the behavioral contrast
response functions. In this scenario, attention should only decrease the contrast gain factor (G.)
and there should not be any changes in the baseline offset (B) or response gain (G,). (b) Attention
induces baseline-offset response bias (B; additive upward shift) without changes in a leftward
shift of the CRFs (i.e. no change in G.). This corresponds to a response bias for the cued stimulus
without a change in perceived contrast. (¢) Attention could induce changes in both subjective
appearance and response bias as indexed by changes in both G. and B, respectively. (d-e)
Different patterns of attentional modulations in the neural contrast response functions (CRFs)
measured over visual cortex. Since the estimated G, and G, parameters could extend beyond the
realistic range of stimulus contrast (>100%), the response gain and contrast gain of neural CRFs
were reparameterized as the maximal response (Rqax or the response at 100% contrast minus the
baseline offset) and the semi-saturation contrast (Cso or the contrast at which the response
reached half maximum), respectively. (d) Attention increases neural contrast sensitivity or
contrast gain as indexed by changes in the semi-saturation contrast factor (Cso). Alternatively,
attention could increase the multiplicative response gain or the slope of the neural CRFs as
indexed by the maximum neural response (Rqax). Lastly, attention could shift the baseline offset
of the neural CRFs so that overall responses to the cued stimulus are enhanced in a manner that
is independent of stimulus contrast. One past modeling study from our group suggests that the
response gain mechanism (panel e) is sufficient to account for psychophysical changes in
contrast appearance (panel a). However, a change in the baseline of neural CRFs (panel f) is



required to explain changes in the behavioral baseline-offset response bias (panel b) (see ref??),
That said, there is still no neural evidence that validates these modeling predictions.

Attention induces changes in contrast appearance and response bias

To examine the effects of attention on changes in perceived contrast and response bias, we
performed two complementary analyses that compared the probabilities of reporting either the
cued or the uncued stimulus as having a higher contrast. First, we computed the probability of
reporting a cued stimulus at each contrast level as having a higher perceived contrast than the
uncued stimulus at all other contrast levels. For example, we computed the probability of
reporting a 5% contrast cued stimulus as having a higher contrast than a 0%, 5%, 10%, ..., 100%
uncued stimulus and we repeated this exhaustive analysis for each possible contrast level of the
cued stimulus. We then performed an analogous analysis quantifying the probability of reporting
an uncued stimulus at each contrast level as having a higher perceived contrast when it was
paired with a cued stimulus of all possible contrast values. Note that for purposes of data
exposition, we always refer to the stimulus being held constant as the standard stimulus and the
stimulus being varied as the test stimulus. Thus, in the example above, the 5% contrast cued
stimulus would be the standard compared against uncued test stimuli that ranged in contrast
systematically from 0% to 100%. Importantly, both the cued and uncued stimuli served as
standard and test stimuli depending on the nature of the analysis being performed. This allowed
us to plot summary data for cued and uncued stimuli on the same axes as shown in Figure 3, with
data from the cued stimulus plotted in blue/cyan and data associated with the uncued stimulus in
red/magenta.

To better quantify these behavioral data, we fit each psychometric function using a Naka-
Rushton (NR) function 22448 to estimate the baseline offset (B), contrast gain (G.), and response
gain (G,), which control the baseline, the horizontal position (e.g. leftward shift), and the slope of
the behavioral CRFs, respectively (see Figures 2a-c and Methods and Materials). Here, we used
changes in the baseline offset (B) to track cue-induced response bias on the basis that reporting
the cued contrast as higher contrast than the uncued stimulus when the cued stimulus was 0%
contrast must reflect bias??> . On the other hand, we used changes in contrast gain (G.) to index
changes in contrast appearance. We focused on G. instead of the point of subjective equality
(PSE) because it has previously been suggested that PSE overestimates changes in contrast
appearance when there were significant amounts of cue-induced response bias 82232733,
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Figure 3. Behavioral data. (a) The probability that subjects reported the test stimulus (i.e., the
stimulus of interest, either cued or uncued) as having a higher contrast than the standard stimulus
(i.e., the paired cued or uncued stimulus) plotted as a function of test contrast for all possible
standard contrast levels. We used B to index the baseline-offset response bias that the cued
stimulus had a higher contrast than the uncued stimulus even when the cued stimulus was not
physically present (i.e., presented at 0% contrast) 322, (b) Overall, we found a significant
attention-induced increase in response bias when the contrast of the standard was relatively low,
with a decreasing effect of response bias as the contrast of the standard increased. (¢) The
contrast gain parameter (G.) controls the horizontal position of the psychometric function, which
we used to index changes in contrast appearance. Attention reduced G, as indexed by a leftward
shift in the psychometric functions, which should correspond to an increase in perceived
contrast, predominantly at low-to-mid-levels of standard contrast. (d) The response gain
parameter (G-) controls the slope of the psychometric function. Note that G- and B are conflated
because behavioral response probabilities could not exceed 1. At low-to-mid level standard
contrasts, there were large attentional effects on B (panel b). Thus, this increase in B must also
lead to a decrease in slope, or G, given the fixed ceiling of the psychometric response functions.
Instead, attention increased G, without changing B at higher contrasts (ie., 80%-100%). Error
bars represent the within-subject standard errors of the mean (£1 SEMs). Att*** Ctt**, and Att
x Ctt*** represent the significant main effects of attention, standard contrast, and the interaction
between the two factors, respectively (all p’s <0.001).

Consistent with a recent report from our group, we found that the effects of attention on contrast
appearance and response bias depend on the overall level of stimulus contrasts and stimulus
uncertainty (i.e., whether the stimuli were rendered at the same contrast)?>. When there was no
stimulus presented at the cued and the uncued locations, subjects were more likely to report that
the cued location had a higher contrast than the uncued location (even though no stimuli were



presented, see the leftmost panel of Figure 3a). This response bias resulted in an increase in the
baseline-offset parameter (B) of the psychometric function. Importantly, this response-bias-
induced baseline-offset became smaller as the contrast of the uncued stimulus increased. To
statistically evaluate these effects, a repeated measures two-way ANOVA with attention (cued
vs. uncued) and the contrast of the standard as factors revealed a significant main effect of
attention on B: F(1, 19) = 60.82, p < 0.001, a significant main effect of the contrast of the
standard stimulus on B: F(6, 114) = 159.93, p <0.001, and a significant interaction between
attention and the contrast of the standard stimulus on B: F (6, 114) =114.94, p <0.001. A
separate ANOV A was also performed on only the correct trials (i.e., we only counted the
comparative responses in trials where subjects correctly discriminated the orientation offset of
the chosen visual stimulus) and revealed the same pattern of results: there was a significant main
effect of attention on B: F(1, 19) = 61.73, p <0.001, a significant main effect of the contrast
level of the paired or standard stimulus on B: F(6, 114) = 128.96, p’s < 0.001, and a significant
interaction between attention and the contrast of the standard stimulus on B: F (6, 114) = 100.88,
p <0.001. Post-hoc paired t-tests showed that the attention effects on B were significant for
standard contrast levels of 0%, 5%, 10% and 20% (t(19)’s = 3.26-24.00 and 2.88-24.57 for all
trials and correct-only trials, respectively, all p’s < 0.0042, Holm-Bonferroni corrected).
However, differences in B were not significant for standard contrast levels of 40%, 80% and-
100% (t(19)’s = 1.3612-1.8034 and 1.38-1.88 for all trials and correct-only trials, respectively,
all p’s > 0.0751). Overall, these results suggest that attention indeed induced response bias
especially when the contrasts of the standard stimuli were relatively low and attention-induced
response bias reduced as the standard contrasts increased.

To measure changes in contrast appearance, we next examined attentional modulations of the
contrast gain parameter (G.) that controls the horizontal shift of the psychometric functions. We
found that attention reduced the G. parameter which led to a leftward shift of the psychometric
functions. However, these leftward shifts were most pronounced at low-to-middle standard
contrast levels and then became smaller as the standard contrast approached 100%. A two-way
repeated measures ANOVA on G, with attention and standard contrast as factors revealed a
significant main effect of attention: F(1, 19)’s =48.08 and 35.42, p’s < 0.001, a significant main
effect of standard contrast: F(6, 114)’s = 111.89 and 103.21, p’s < 0.001, and a significant
interaction between the two factors: F(6, 114)’s = 9.64 and 9.34 for all trials and correct-only
trials respectively, with p’s <0.001. Post-hoc paired t-tests showed that in the all-trial analysis,
attention effects on G. were significant for standard contrast levels of 5%, 20%, 40%, and 80%
(t(19)’s =-2.7713 t0 -9.1541 p’s < 0.0122, Holm-Bonferroni corrected), but were not significant
for standard contrast levels of 0%, 10% and 100% contrasts (t(19)’s = 1.3612-1.8034, p’s >
0.0153, not passing the corrected threshold of 0.0125). For the correct-only trials, the attention
effects on G. were significant for the standard contrast levels of 10%-80% contrast (t(19)’s =-
9.1541 to -2.7713, p’s < 0.0122, Holm-Bonferroni corrected) but were not significant for the
standard contrast levels of 0% and 100% contrast (t(19)’s = -0.9563 and -2.1384, p’s > 0.0457,
not passing the corrected threshold of 0.025). These results suggest that attention could also alter
contrast appearance but the appearance effects were restricted to low-to-mid-level contrasts.

The lack of a significant contrast gain modulation (G.) at the highest standard contrast was in
part due to the fact that the psychometric functions in this condition did not reach the maximum
possible value of 1 (i.e., p(stimulus of interest > paired stimulus) was less than 1). Thus,



attentional modulations of the psychometric functions at the highest standard contrast (100%)
manifested as an increase in the response gain parameter (G,), corresponding to a steeper slope
of the psychometric functions (t(19)’s = 10.93 and 10.23 for all trials and correct-only trials,
respectively, p’s <0.001, 2-tailed). Note that a recent study has shown that attention-induced gain
changes measured at high standard contrasts might not purely reflect changes in appearance per
se and could be influenced by response bias driven by high stimulus uncertainty (i.e., subjects
were unsure which of the two already high contrast stimuli had a slightly higher contrast, thus
they were biased to follow the attentional cue) (see ref 22).

Possible mechanisms of attention-related changes in appearance

Several neural mechanisms have been proposed to explain attention-related modulations in
information processing and attention-related changes in stimulus appearance (Figures 2d-f)
17.23.3848-67 " The contrast gain account posits that attention shifts the neural CRFs horizontally to
the left, consistent with attention increasing the contrast sensitivity of neural responses that
respond to cued stimuli (Figure 2d) 7533960 In addition, multiplicative response gain models
posit that attention can amplify neural activity to increase the slope of neural CRFs, thereby
increasing sensitivity to detect small differences in contrast (Figure 2¢) 48-51:35:61-63 [ astly, the
additive shift account suggests that attention can lead to increases in the baseline activity of
neural CRFs (Figure 2f) 2338546467 n the following sections, we examined how each of these
mechanisms might best link attentional modulations of the P1 event-related potential (EPR)
component and of the amplitude of alpha band oscillations as recorded over human visual cortex.

Predictions for linking neural responses and behavior

Here, we targeted two EEG indices that are thought to track different aspects of visual
information processing: (i) the P1 component, which is an early visually evoked potential that
peaks approximately 100ms after stimulus onset and (ii) the amplitude of posterior occipital
alpha-band oscillations (i.e., EEG oscillations in the ~9-12Hz band). We used these two EEG
markers because they have been previously linked to bias in subjective contrast perception
29.68.69 That said, we hypothesized that the attentional modulations of the visual P1 component
and alpha band activity would differentially relate to the effects of attention on visual contrast
appearance and response bias for several reasons. First, attention enhances the amplitude of the
P1 component 773 and attentional gain of P1 amplitude has been linked to improved detection
and discrimination for low-level visual features like orientation 3273, Recent studies have also
found that selective attention induces a multiplicative response gain of neural CRFs based on P1
amplitude (see Figure 2e) and quantitative models suggest that these gain modulations predict
attention-related changes in perceptual contrast discrimination thresholds 362, Importantly —
especially for the present experiment — attentional gain of P1 amplitude has been previously
related to an increase in the perceived contrast of cued compared to uncued visual stimuli 2°-%°.
Although changes in subjective experience were not quantitatively linked to changes in P1
amplitude using a formal linking model, this finding 2**° — coupled with suggestive earlier work
26556269 _ jg consistent with the hypothesis that multiplicative gain of the P1 is tightly coupled
with attention-induced changes in perceived contrast 22,

In addition to changes in perceived contrast, attention is also thought to influence other aspects
of behavioral performance. For example, prior work suggests that attention cues — particularly
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the peripheral cues used in most comparative judgment tasks — can induce a bias such that
subjects are more likely to select the cued stimulus as having a higher contrast, independent of
the perceptual experience of the subject 2231735, We hypothesized that these attention-induced
changes in response bias might be related to modulations in the amplitude of oscillatory activity
in the alpha band. First, past studies have found that alpha amplitude at the time of stimulus
onset predicts shifts in response bias (i.e., response criterion) but not shifts in perceptual
sensitivity in some visual detection and discrimination tasks 7#7°. Second, attention has been
shown to reduce the amplitude of contralateral posterior occipital alpha band oscillations even in
the absence of visual stimuli, suggesting that it may simply reflect top-down inputs from
downstream areas in visual cortex onto early sensory areas and does not tract the interaction
between attention and sensory inputs #-%°. Consistent with this idea, recent studies have found
that attention shifts the baseline offset of CRFs based on the amplitude of alpha oscillations,
reflecting a shift in general arousal or responsiveness that does not interact with the actual
intensity of the stimulus (Figure 2f %%, Based on these observations, we predicted that a shift in
the baseline offset of alpha-based CRFs would be systematically linked with attention-induced
response bias 2. Finally, even though a recent study has previously linked alpha band
modulations to bias in subjective contrast perception 8, it did not examine response bias that
prominently occurred with low contrast stimuli ':!822 and did not rule out the possibility that
response bias could also occur even with near- and supra-theshold stimuli 8317354,

Attention amplifies response gain of the Pl response

To obtain the stimulus-specific P1 activity, we first subtracted the event-related potentials
(ERPs) elicited in trials with a cue followed by 0%-contrast cued and uncued stimuli (termed as
the cue-only trials) from the ERPs evoked by trials with a cue plus the stimulus in each attention
condition and contrast level (Figure 4a in the top row; see refs 322 and Materials and Methods).
After this procedure, we observed a clear P1 component that peaked ~60-90ms post-stimulus
over posterior occipital electrodes that were contralateral to the stimulus of interest (Figure 4a in
the bottom row). Next, we plotted the mean amplitude of the isolated P1 component as a function
of stimulus contrast (i.c., test contrast) to obtain the P1-based CRFs for each attention condition
and contrast level of the standard stimulus (Figure 4c). Then, we fit these P1-based CRFs with a
Naka-Rushton equation (Equation 1) to examine changes in the baseline offset (B), response gain
(G) and contrast gain (G.) of the neural CRFs. Since the estimated G-and G. parameters can
potentially go beyond the realistic range of stimulus contrast (>>100%), we reparameterized the
response gain and contrast gain of neural CRFs as the maximal response (Ruax or the response at
100% contrast minus the baseline offset) and the semi-saturation contrast (Csy or the contrast at
which the response reached half maximum), respectively (see Materials and Methods, section
Early Sensory Evoked Response).

10
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Figure 4. The P1 component across cue and standard contrast conditions. (a: top row) The non-
subtracted ERPs from the contralateral posterior occipital electrodes (see the red circle on the
right hemisphere of the head model in (b)). These non-subtracted ERPs contained both cue-
evoked and stimulus-evoked responses. Note that in these plots the cue onset and stimulus onsets
were at -100 ms (vertical black dotted lines) and 0 ms, respectively (vertical black solid lines).
The data were baseline-corrected from -200 to Oms before the cue onset. (a: bottom row) The
extracted stimulus-evoked potentials obtained after subtracting the cue-only condition (the
leftmost panel from the top row of panel a) from all other stimulus contrast conditions. We
observed a P1 component peaking ~60-90 ms with its amplitude increasing as a function of the
contrast of the test stimulus. Moreover, attention increased the P1 amplitude at high test stimulus
contrast levels. All shaded areas represent within-subject SEMs. (b) Topographical maps of the
P1 amplitude averaged across ~60-90ms post-stimulus. The rings mark each of 5 electrodes over
the contralateral/ipsilateral posterior occipital sites where the P1 (Figure 4) and alpha data were
analyzed (Figure 5; red rings) and on the contralateral/ipsilateral central sites where the LRP data
were analyzed (Figure 7; blue rings). (¢) The P1-based contrast-response functions (CRFs)
plotted separately for the cued and uncued conditions across different levels of standard contrast.
Attention enhanced the multiplicative response gain of the P1 data. (d-f) The corresponding best-
fitting parameters from the NR function. (d) There were no differences in the baseline offset. (e)
Attention selectively enhanced response gain indexed by an increase in the maximum response
of the P1 component (Ruax), Which were relatively more robust at low-to-mid-level standard
contrasts. (f) There were no differences in the semi-saturation contrast level or the level at which
the P1 amplitude reached half maximum (Csg). Error bars represent the within-subject SEMs
where the mean values between attention conditions were removed before computing the
standard errors. Att* and Att x Ctt* represent the significant main effect of attention (p <0.05)
and the trending interaction between attention and standard contrast, respectively (p = 0.053).
n.s.= non-significant.

Overall, we found that attention increased the maximum response (i.€., Rnax) 0of the P1-based
CRF (main effect of attention: F(1, 19) = 6.26, p= 0.0217). In addition, there were larger
attentional modulations at the low-to-mid-level standard contrasts (5%-20%) compared to when
the standard was absent (0% contrast) and when the standard had a higher contrast (40%-100%)
(Figure 4e). This gave rise to a trending interaction between attention and the contrast of the
standard stimulus (F(6, 114) =2.16, p= 0.0586). Post-hoc paired t-tests showed significant and
marginal attentional modulations at the low-to-mid-level standard contrasts (t(19)’s = 4.33, 2.04,
and 2.00 with p’s = 0.0002, 0.0280, and 0.0297 for 5%, 10%, 20% contrasts, 1-tailed due to the
predicted directions of the modulations with Holm-Bonferroni corrected threshold of 0.0071) but
not at 0% contrast (t(19) = 0.37 with p = 0.3581, 1-tailed) or high standard contrast levels
(t(19)’s = 1.26, 0.36, and 0.20 with p’s =0.1113, 0.3612, and 0.4215 for 40%, 80%, 100%
contrasts, 1-tailed).

Importantly, attention had a selective effect on the R parameter of the P1 response, as there
were no changes in any other parameters (Figures 4d and f; main effect of attention: F(1, 19) =
2.17,p=0.1572 for B, F(1, 19) = 0.99, p = 0.3329 for Cs¢; main effect of standard contrast level:
F(6, 114) =1.25, p = 0.2856 for B, F(6, 114) = 1.53, p = 0.1741 for Csp; interaction between the
attention and standard contrast: F(6, 114) =0.20, p = 0.9756 for B; F(6, 114) = 0.96, p= 0.4544
for Csp). The slightly elevated response gain of the P1-based CFRs at low-to-mid-level contrast
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levels was consistent with the fact that changes in appearance, as indexed by changes in contrast
gain (G.), were observed most prominently at these contrast levels.

Attention induces an additive shift in the amplitude of posterior occipital alpha oscillations

Next, we examined the effects of attention on the contralateral posterior occipital alpha band
activity (i.e., EEG oscillations at ~9 —12 Hz), another commonly-used neural index of
visuospatial attention **81-%° | Past studies have found that alpha amplitude modulations track the
relevance of visual stimuli in a topographically selective manner. For example, covert spatial
attention induced by endogenous cues decreases alpha amplitude in the posterior occipital areas
contralateral to the attended visual field and increases alpha amplitude in areas contralateral to
the unattended visual field 8!-82:8486.88.89.96-98 " Recent studies using exogenous cues presented at
the peripheral locations also observed similar cue-induced decreases in alpha band activity in the
posterior occipital area to the cued locations, suggesting that lateralized alpha activity reflects
visuocortical biasing across both exogenous and endogenous attention **°°, Consistent with these
previous observations, we found a significant cue-related reduction in the amplitude of alpha
oscillations — compared to a pre-cue baseline period — that was also modulated by the contrast of
the test stimulus. These alpha amplitude modulations were most prominent over the posterior
occipital electrodes that were contralateral to the stimulus of interest (Figures 5a-b).

Figure 5c shows the alpha data plotted as a function of both test and standard contrast levels to
form CRFs. In contrast to the P1 data, we found that attention cues modulated the baseline offset
(B) of the neural CRFs based on the post-cue reduction of the posterior occipital alpha activity
(main effect of attention; F(1, 19) =45.07, p <0.001). Note that these lateralized alpha changes
likely reflect a mixture of low-level sensory-evoked activity elicited by the peripheral visual cues
themselves as well as alpha changes due to attentional biases. This cue-induced reduction in
alpha band activity occurred to a comparable degree across all standard contrast levels (no main
effect of standard contrast level: F(6, 114) = 0.62, p = 0.7172; no interaction between attention
and standard contrast: F(6, 114) = 0.60, p = 0.7334). Since the degree of cue-induced modulation
of the alpha amplitude was relatively more robust at the lower compared to the higher test
contrasts, the R.qx parameters describing the alpha-based CRFs became less negative with
attention (i.e., the negative slope of the alpha-based CRFs became shallower, main effect of
attention: F(1, 19) =1 9.73, p = 0.0003). On the other hand, R..xbecame more negative with
increasing standard contrast (main effect of standard contrast: F(6, 114) =3.87, p = 0.0015).
However, there was no interaction between attentional cue and contrast on Ruqx (F(6, 114) =0.99,
p =0.4361). For the semi-saturation contrast parameter (Cso), there was no main effect of
attention cue, no main effect of standard contrast, and no interaction between the two factors

(F(1,19)=0.51, F(6, 114) = 0.49 and F(6, 114) = 0.99, respectively, p’s = 0.4372). Overall, the

shift in the baseline offset of the alpha-based CRFs was consistent with the robust baseline-offset
response bias observed in the behavioral data (Figure 3).
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Figure 5. Post-cue reduction in alpha band activity. (a) Attentional cues induced a reduction in
alpha amplitude in posterior occipital electrodes that were contralateral to the stimulus of
interest. Note that in these plots, the cue onset and stimulus onsets were at -100 ms (the vertical
black dotted lines) and 0 ms (the vertical black solid lines), respectively. The alpha data were
baseline-corrected from -600 to -200 ms before cue onset. (b) Topographical maps showing the
difference in the alpha amplitude between the cued and uncued conditions at different test
contrast levels. (¢) Alpha amplitude plotted as a function of test contrast separately for different
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attention conditions and levels of standard contrast. Attention induced a shift in the baseline
offset of alpha band oscillations, regardless of standard contrast. (d-f) The corresponding best-fit
parameters from a Naka-Rushton function. (d) Overall, attention decreased the baseline offset
(B) of the neural CRFs, consistent with a reduction in the amplitude of alpha oscillations. The
degree of baseline modulation was comparable across standard contrasts. (e) Attention-related
reductions in alpha amplitude became smaller as test contrast increased (e.g., pinching
modularity patterns at 100% test contrast in panel a), leading to a smaller negative slope of
alpha-based CRFs in the cued compared to the uncued condition (i.e., Ruqax became less negative
with attention). However, R became more negative with increasing standard contrast. (f)
There were no differences in the semi-saturation constant (Csp) across test or standard contrast
levels. Error bars represent within-subject SEMs where the mean values between attention
conditions were removed before computing the standard errors. Att***and Ctt** represent the
significant main effects of attention (p’s<0.001) and standard contrast, respectively (p<0.01). n.s.
= non-significant.

Quantitative linking models suggest that different attentional modulations of neural data relate
to different modulations of behavioral data

Next, we used a quantitative model to make a more formal link between the patterns of
attentional modulations of the P1-based and alpha-based CRFs and the pattern of attentional
modulations in the psychometric data (see Materials and Methods 23-37-38:53.35.62,100.101) "The
linking model used the patterns of attentional modulations of the observed P1-based and alpha-
based CRFs to predict changes in contrast appearance and response bias in the observed
behavioral data. The model is based on the assumption derived from the signal detection theory
where observers’ contrast discrimination accuracy relies on the difference in neural responses
(4R) related to the standard (R _standard(c)) and test stimuli (R_test(c)) divided by the trial-by-
trial variability of neural responses (termed as neuronal noise) 2223373962100 For a given pair of
standard and test stimuli, the model computed the probability of a test stimulus being perceived
as having a higher contrast than a standard stimulus ((p(test > standard)) using a maximum
likelihood decision rule with neuronal noise equally distributed across the standard and test
stimuli.

We first stimulated the behavioral data using the normalized P1-based CRFs (termed here as the
P1-based model) and compared the simulated results with those predicted using the normalized
alpha-based CRFs (termed here as the alpha-based model; see details in Materials and Methods).
Note that the amplitude of alpha band activity generally got smaller with attention and stimulus
contrast (see Figure 5; also see refs 4%4%), Therefore, we flipped the sign of the normalized alpha-
based CRFs before estimating contrast discrimination accuracy. Last, we compared the results
with those predicted by a model that sums the normalized P1-based CRFs and the normalized
alpha-based CRFs (with the flipped sign) to predict the behavioral data based on the sum of the
normalized P1 and alpha responses. For each linking model, neuronal noise was one free
parameter shared across all contrast levels and attention conditions. Thus, since each model had
the same number of free parameters, we directly compared the goodness of fit of individual
models (i.e., R? values) to compare how well they predicted the psychophysical data.
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Overall, the P1-based model accounted for the psychophysical data reasonably well (median R?
of the resampling distribution = 0.71), especially at the low-to-mid-level contrasts (median R?
values = 0.77 and 0.79 for 10% and 20% contrast levels, respectively) (Figure 6). Since there
was no baseline offset change in the P1-based CRFs, the P1-model could not capture changes in
the baseline-offset in the behavioral data at lower standard contrast levels. This resulted in lower
model fits at these contrast levels (median R? values = 0.38 and 0.67 for 0% and 5% contrast
levels, respectively). The P1-model also performed poorly at the higher standard contrast levels
(median R? values 0.54, 0.31, and -0.03 for 40%, 80% and 100% contrast levels, respectively).
This poor fit occurred because attentional modulations of the P1-based Ry parameter
diminished with increasing standard contrast, even though the attentional modulations of the
psychophysical data remained robust at these contrast levels (Figure 3).
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Figure 6. (a) Predicting the effects of attention on behavioral responses based on attentional
modulations of neural data. (top row) Modeling based on attentional gain modulations of the
early visual P1 component better captured the psychometric data overall, but did not predict
changes in the baseline offset at low standard contrast levels (0-5%) and did not capture the
attention effect on the behavioral data at the 100% standard contrast. (middle row) In contrast,
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attention-induced changes in alpha band activity tracked large modulations in the baseline offsets
of the psychometric functions across all standard contrast levels. (bottom row) Modeling that
used both P1 and alpha data did the best at predicting the pattern of attentional modulations of
the psychophysical data. (b) The violin plots showing the goodness of fit of the resampled
modeling predictions based on the P1 data, the alpha data, and the combination of the P1 and
alpha data (i.e., the combined model), respectively. (¢) Same as (b) but data presented separately
for individual standard contrast levels.

Compared to the P1 model, the alpha-based model performed worse at predicting the pattern of
the behavioral data in general (median R? = 0.58 compared to 0.71; both models have only one
free parameter which is trial-by-trial variability of the neural activity, i.e., neural noise; see
Materials and Methods). This is because the alpha model could only capture attention-induced
changes in the baseline-offset at the low standard contrast levels which only accounted for a
small fraction of the variance in the overall psychometric data. That said, when we used the
combination of the P1 and alpha data to predict the psychometric functions, we were able to
predict the pattern of the behavioral responses better than using the P1 data or the alpha alone
(median R?=0.79 for the combined model compared to median R? values of 0.58 and 0.71 for
the P1- and alpha- models, respectively). This improvement in modeling performance was due to
the fact that the combined model better captured the baseline-offset response bias at the low
standard contrast levels (median R? values of the combined model vs. the P1 model = 0.72 vs.
0.38 and 0.84 vs. 0.67 for 0% and 5% standard contrasts, respectively) as well as the attentional
modulations of the psychometric data at high standard contrast levels (median R? values of the
combined model vs. the P1 model = 0.74 vs. 0.54 and 0.48 vs. 0.31 and 0.33 and -0.03 for 40%,
80%, and 100% standard contrasts, respectively). Together, these modeling results suggest that
the attentional modulations of the P1 component and alpha band activity underlie the different
effects of attention on contrast appearance and response bias, respectively. Moreover, attentional
modulations of the alpha baseline offset could account for cued-induced biases at both low and
high standard contrast levels.

Attention biases motor responses

The P1-modeling data suggest that the multiplicative gain of early visually evoked responses
could only account for attention-induced changes in contrast appearance when the standard
stimuli were rendered at low-to-mid-level contrasts. While attentional modulations of the P1 data
were not observed at 0% or at high standard contrasts, robust attentional modulations of the
psychometric functions were still observed at 0% and high standard contrast levels. These results
suggest that attention may bias motor responses without modulating early sensory processing
under these stimulus conditions.
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Figure 7. The lateralized readiness potential (LRP). (a) The LRP data from lateral central
electrodes (see the blue ellipses in Figure 4b) time-locked to stimulus onset. Overall, the LRP
was more negative in the electrodes contralateral to the cued hand (blue) compared to the
electrodes ipsilateral to the cued hand (red), which is typically interpreted as more response bias
towards the cue hand. The negative bias of the LRP toward the cued hand got smaller as the
contrast of the uncued stimulus increased. This bias even became positive at high levels of
uncued contrast, possibly reflecting response bias to the uncued hand (i.e., there was more
overlap between the red and blue ERP traces with increased uncued contrast moving from the
left to the right panels). (b) Topographical maps of the cued minus uncued conditions averaged
from 500-1120 ms after stimulus onset. As the contrast of the uncued stimulus increased, the
lateralization of the LRP towards the cued hand became smaller and the sign of the LRP
modulation eventually flipped towards the uncued hand. (¢-d) The cued minus uncued data from
the contralateral to the cued hand plotted as a function of the contrast of the cued and uncued
stimuli. As the contrast of the cued stimulus increased, higher contrast levels of the uncued
stimulus were needed to compete for motor-related activity. (e-f) The corresponding best-fitting
parameters from a NR function. (e) The baseline offset (B) values of the LRP-based CRFs were
negative across all levels of cued contrast, reflecting response bias towards the cued hand when
the cued stimulus of any contrast was presented alone (i.e., paired with the uncued stimulus of
0% contrast). (f) The maximal LRP response of the LRP-based CRFs (i.e., responses to the
uncued contrast of 100% or uncued-LRPmax ) got smaller as a function of cued contrast,
reflecting more influence of the cued stimulus competing with the uncued stimulus of 100%
contrast. Here, the positive and negative values of uncued-LRPmax mean response bias towards
the uncued and cued hand, respectively. When the cued contrasts were 0-20%, they were not
strong enough to compete with the uncued stimulus of 100% contrast, thus producing the
positive uncued-LRPmax values. However, the uncued-LRPmax values for 80% and 100% cued
contrasts were negative, indicating that the cued stimuli of 80% and 100% contrasts could
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compete with the uncued stimuli of 100% contrast for motor responses. At 40% cued contrast,
there was no significant motor bias towards either cued or uncued hand (uncued-LRPmax was not
significantly different from 0), showing comparable influence of the cued stimulus of 40% and
the uncued stimulus of 100% at competing for motor responses. (g) The uncued contrast that
produced no LRP modulations (C-intersect, where the LRP-based CRFs hit 0) increased as a
function of cued contrast, suggesting that the uncued stimulus had to be higher contrast to
effectively compete for motor-related responses associated with cued stimuli rendered at higher
contrasts. Note that we could not estimate C-intersect for the cued contrasts of 80% and 100%
because they were beyond the realistic range or responses (>>100%). All shaded areas and error
bars represent the within-subject SEMs. *, ** and *** showed significant differences from zero
with p’s <0.05, <0.01, and <0.001, respectively (2-tailed, Holm-Bonferroni-corrected). Ctt***’s
represent the significant main effects of cued contrast with p’s <0.001. n.s. = non-significant.

To test this hypothesis, we further examined the cue- and contrast-related modulations of the
lateralized readiness potential (LRP), which is a common EEG index for motor preparation and
response bias '™+ Overall, we found a strong lateralization of the LRP toward the hand subjects
used to respond to the cued location, presumably reflecting the influence of the attentional cue on
response bias (main effect of laterality on the LRP amplitude: F(1, 19) = 100.17, p <0.001)
(Figure 7). However, as the contrast of the uncued stimulus increased, the lateralization of the
LRP towards the cued hand became smaller and the sign of the LRP modulation eventually
flipped towards the uncued hand, leading to a significant interaction between laterality and the
contrast of the uncued stimulus (F(6, 114) =48.20, p <0.001). We also observed a significant
three-way interaction between laterality, the contrast of the cued stimulus, and the contrast of the
uncued stimulus (F(36, 684) =4.53, p < 0.001). This three-way interaction was driven by
changes in the lateralization of the LRP as a function of the contrast of the cued stimulus, which
occurred at different uncued contrasts.

We then fit the LRP data as a function of the contrast of the uncued stimulus with a NR equation.
We found that the baseline offset (B) parameters of the LRP-based CRFs started at negative
values around -1 to -1.5 uV for all cued contrast conditions. Paired t-tests showed that B
parameters were significantly below 0 for all levels of cued contrasts (t(19)’s =-10.12 to -5.49,
p’s <0.001, Holm-Bonferroni corrected) and they were comparable across conditions (a
repeated-measures ANOVA showed no significant main effect of cued contrast: F(6, 114) =0.87,
p =0.5219). We speculate that these negative baseline values reflect response biases toward the
cued stimuli specifically when there was no competing stimulus on the uncued side (i.e., 0%
uncued contrast), consistent with the cue-induced shifts in the baseline offsets in the
psychometric functions and the shifts in alpha band activity.

Nonetheless, as the contrast of the uncued stimulus increased, the LRP became less negative and
eventually flipped to positive values, reflecting motor bias towards the uncued side when the
relative contrast of the uncued stimulus was high enough. As expected, the LRP reached its
maximum when the contrast of the uncued stimulus was rendered at 100% contrast.

Interestingly, we found that the maximal LRP response (i.e., the LRP amplitude when the uncued
stimulus had 100% contrast or uncued-LRPmax) was significantly above 0 only when the cued
stimuli were rendered at 0%-20% contrast (t(19)’s = 2.39-4.86, p’s < 0.0272, 2-tailed, Holm-
Bonferroni corrected) but were below 0 (negative) when the cued stimuli had higher contrast
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values (t(19)’s = -2.8383 and -6.5806, p’s = 0.0105 and <0.001 for 80% and 100% contrasts,
respectively, 2-tailed, Holm-Bonferroni corrected). This resulted in a significant reduction in
uncued-LRPnax as a function of the contrast of the cued stimulus (F(6, 114) = 19.28, p < 0.001),
which reflects the competitive interaction between the cued and uncued contrasts on response
bias. In particular, an uncued stimulus of 100% contrast led to a larger LRP with a positive sign
(showing bias towards the uncued stimulus) when the contrast of the cued stimulus was 0%, 5%,
10% or 20%. However, an uncued stimulus of 100% contrast did not lead to a larger LRP when
the contrast of the cued stimulus was 40%, 80% or 100% contrast. Morecover, the uncued-
LRPmax values for cued contrasts of 80% and 100% were still negative, suggesting that at these
cued contrast levels, an uncued stimulus of 100% contrast did not effectively compete with the
cue for response bias. This suggests that changes in psychometric functions at the highest
standard contrasts could be due to response bias 22. Interestingly, these biases in the LRP
occurred in the absence of attentional gain modulations of the P1 but in the presence of
significant shifts in the amplitude of alpha band oscillations. Together, these data suggest that
attention can bias motor responses and can impact behavioral responses at high contrasts without
modulating early sensory processing as indexed by the P1 (see Figure 4).

Finally, we obtained the contrast level of the uncued stimulus that produced no LRP modulations
(termed here as C-intercept) for each contrast level of the cued stimulus. As expected, the C-
intercept increased as the cued contrast increased (main effect of cued contrast on C-intercept:
F(4,76) = 11.09, p < 0.001), reflecting the fact that higher contrasts of the uncued stimulus were
needed to compete with a cued stimulus of a given contrast (mean C-intercept values = 12.40,
20.57, 33.34, 40.14, and 60.79% uncued contrast for 0%, 5%, 10%, 20%, and 40% cued
contrasts, respectively). Note that we could not estimate the C-intercept values for cued contrast
levels of 80%-100% because the uncued-LRPmax values were negative (i.e., the uncued stimuli of
100% contrast could no longer compete with the cued stimuli). Note that the C-intercept values
were much higher than the actual uncued contrasts, showing the additional influence of the
presence of a cue on inducing motor bias.

Discussion

The present study investigated the relationship between the attentional modulations of two well-
known neural markers for visual information processing-- the P1 component and the alpha band
activity — and changes in perceived contrast and response bias. While attention increased the
multiplicative response gain (or the slope) of P1-based CRFs, it also shifted the baseline offset of
the alpha-based CRFs. Quantitative linking models suggest that the multiplicative response gain
of the P1-based CRFs could account for the increase in perceived contrast only when the cued
stimuli were rendered at low-to-mid-level contrasts. Notably, the range of contrasts where P1
modulations correspond to changes in perceived contrast fall in a similar range to previous
demonstrations of a link between P1 amplitude and contrast appearance ’°. In contrast, the
baseline-offset of the alpha-based CRF tracked shifts in the baseline-offset of psychometric
functions, consistent with a response bias in favor of the cued stimulus when contrast was very
low or 0% '8, This shift in baseline offset of the alpha band activity could also explain response
bias driven by high stimulus uncertainty specifically when both the cued and uncued stimuli
were rendered at high contrasts 2. Importantly, the modulations of the LRP tracked both types of
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response bias (at 0% and at the highest standard contrast levels), which occurred without any
attentional gain modulation of the P1 amplitude.

The current P1 data and the accompanying modeling results are consistent with a theory
proposed in a previous study that the gain amplification of the early visual response can account
for the effect of attention on the subjective appearance of visual stimuli 2% . In addition, we
found that gain amplification of the P1 and its contribution to changes in contrast appearance
were significant only across a specific range of contrasts values for the competing, uncued,
stimulus. These observations are consistent with the idea that the gain amplification of sensory
responses depends on the strength of bottom-up stimulus inputs (or the contrast of the competing
stimulus in our case) 1027104,

We found that attention selectively increased the response gain of the P1-based CRF. Response
gain of early visually evoked signals, like the P1 component and the steady-state visually evoked
potential (SSVEP), has been consistently observed across many studies where subjects
performed visual detection and discrimination tasks 39-48:49.55.58.61-63.72.80.105-107 ‘The ¢onsistency in
the response gain modulations observed across these studies, as well as in the present study,
suggests that the response gain of the early sensory response is a common neural mechanism that
mediates the effects of attention on perceptual performance and on the appearance of visual
stimuli. Interestingly, reductions in response gain of early sensory responses have been shown to
underlie sensory and attention deficits in clinical populations, such as schizophrenia,
neurofibromatosis, and amblyopia '%-!12, Based on these results and our recent findings, it is
possible that these patients perceive the world in a manner that is different from the healthy
populations due to the reduced influence of attention on gain amplification of early sensory
processing.

We also observed different patterns of cue-induced modulations in posterior occipital alpha-band
activity that was contralateral to the target of interest. This kind of alpha band modulation has
been previously used to track the allocation of spatial attention following endogenous and
exogenous cues 281794989 The reduction of alpha amplitude, which is thought to reflect
increased cortical excitability, has also been associated with an increase in the intensity of
stimulus inputs and selective attention, and behavioral performance in perceptual decision-
making tasks 4°-79-81-9498.99.113 " Moreover, the topographic patterns of alpha reduction contain
information about the attended location even in the absence of visual stimuli 7-84.86.89-91.114-116
Consistent with these studies, recent studies have found that attention shifted the baseline offset
of alpha-based CRFs where no visual stimuli were presented 2274, That said, we found that the
magnitude of baseline modulations of the alpha-based CRFs was unaffected by the contrast level
of the paired stimuli.

Interestingly, the overall pattern of the alpha band data observed here is highly similar to the
pattern of blood oxygenation level dependent (BOLD) activity observed in similar tasks. This is
consistent with the idea that alpha band activity is highly correlated with modulations of the
BOLD response recorded in human visual cortex ''7-!18, Specifically, many previous studies
using functional magnetic resonance imaging (fMRI) have shown that spatial attention induces
an additive shift in the baseline response of the BOLD CRF in a manner similar to the attentional
modulation of the alpha-based CRF 38495465-67 byt see the effect of feature-based attention on
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fMRI activity '2°). Consistent with our present study, attentional modulations of BOLD CRFs
were unaffected by the contrast level of the paired or non-target stimulus®’. Previous fMRI
studies have also shown that baseline shifts of BOLD CRFs failed to explain multiplicative
response gain (the slope) of the hypothetical neural activity needed to account for attention-
induced perceptual benefits in variants of attentional-cueing contrast discrimination tasks 3%,
Note that most studies that reported the attention-induced baseline-offset shifts in the CRFs
based on alpha band and fMRI activity used endogenous cues to guide attention. However, we
used exogenous cues in the present study. Thus, changes in the baseline offsets in the alpha-
based CRFs in our study could also reflect bottom-up stimulus processing or visual priming
associated with the peripheral cues. Related to this aspect, studies have argued that changes in
visual appearance could be due to low-level sensory interactions between the cue and the
stimulus, independent of an attention effect 32. In this respect, the observed changes in alpha
band activity could in part reflect these low-level sensory interactions. That said, some of these
alpha changes are likely of attentional nature given that recent studies have found similar
lateralized alpha activity using auditory cues *%!1°,

Our modeling results of the alpha data suggest an alternative account in which shifts in the
baseline offset of neural CRFs might instead mediate preparatory attention and the motor-related
processes that give rise to response bias. In line with our modeling results, reductions in alpha
amplitude have been associated with modulations of post-perceptual processing such as changes
in decision criterion, confidence, and visual awareness, but not changes in perceptual sensitivity
719,120,121 "Counter to this perspective, a recent study argued that changes in alpha band activity
do indeed account for changes in subjective contrast appearance . However, unlike the present
and other studies that have used an exogenous cue to study changes in appearance, this recent
study used an endogenous cue under the assumption that there should be relatively less
attentional capture and response bias driven by an endogenous compared to an exogenous cue .
That said, subjects might still have been more aware of the presence of the cue and the cued
stimulus ?2°1734, Accordingly, this increase in visual awareness, which has also been linked to
weak alpha amplitude, could result in response bias without changing visual appearance per se
18.31-35.49.76-78 'This recent study also did not systematically map out modulations of the alpha
band activity with changes in appearance and response bias across a full range of stimulus
contrast®. Therefore, it is difficult to assess if the reported modulations of alpha band activity
were associated with changes in subjective contrast perception or cue-induced response bias.

Taken together, our results suggest that the different types of neural computations that support
visuospatial attention occur at different stages of visual information processing and they underlie
different perceptual and behavioral effects of attention. While an increase in the multiplicative
response gain modulations of the early visually evoked potential supports attention-induced
changes in perceived contrast, additive shifts of alpha band activity correspond to biases driven
by the attentional cue. Moreover, under circumstances where there is prominent response bias,
attention can directly trigger a bias in motor responses without modulating the processing of
early sensory inputs.

Material and Methods

Subjects
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We recruited 22 neurologically healthy male and female human observers who had normal or
corrected-to-normal vision from the University of California, San Diego (UCSD). In accord with
the local institutional review board at UCSD, they provided written informed consent before
participating in our study. Two subjects terminated their participation before completing the
experiment, resulting in 20 subjects included in the final analysis (9 female, 18-25 years old, 2
left-handed).The sample size was within the typical range used in these types of studies in which

attentional modulations of EEG and psychophysical data are measured across different contrast
leVCIS 39,48,49,55,58,62,63,80,122.

Stimuli and task

We presented stimuli using the Psychophysics Toolbox 2324 and MATLAB (MathWorks,
Natick, MA) run on the personal computer with the Windows XP operating system. Participants
were seated 60 cm from the gray background CRT monitor (34.51 cd/m2, 120 Hz refresh rate) in
a dimly lit sound-attenuated room where they performed the comparative contrast judgment task
(Figure 1; see ref??). In this task, they were asked to judge the relative apparent contrast of two
Gabor stimuli (spatial frequency = 3 ¢/°, standard deviation of the Gaussian envelope = 2.18°,
stimulus radius = 6.53°) that were presented on the left and right of the central fixation point in
the left and right lower quadrants (eccentricity = 13.74°). They reported whether the stimulus
with the higher contrast was tilted 45° clockwise (CW) or counterclockwise (CCW) from
vertical. They responded by pressing one of four buttons on the keyboard, which corresponded to
a CCW left stimulus, a CW left stimulus, a CCW right stimulus, and a CW right stimulus with
their left middle, left index, right index, and right middle fingers, respectively. To examine the
impact of covert spatial attention on subjective reports about the perceived stimulus contrasts, we
presented an exogenous cue, which was a horizontal black bar (0.36° x 3.63° length % thickness)
located to the left or right of fixation 2.04° above the outer edge of the cued stimulus. The cue
was presented for 50 ms followed by a 50-ms blank screen and the two oriented Gabor stimuli,
which were presented for 40ms (50% left-cued and 50% right-cued trials). The contrast values of
the two stimuli were fully-crossed and independently drawn from seven contrast levels (0%, 5%,
10%, 20%, 40%, 80%, 100% Michelson contrasts). There was no response deadline. Following a
button press, there was an intertrial interval (ITI) of 300-800 ms. Trial order was pseudo-
randomized so that subjects were unable to predict the cued side or the contrast of each stimulus.
Each subject completed 2940 trials in total. There were 30 trials for each combination of cue
locations (left or right), left stimulus contrasts (7 levels from 0%-100%), and right stimulus
contrasts (7 levels from 0%-100%).

Analysis of behavioral data

Based on the level of stimulus contrast and the cued location, the probability that each stimulus
of interest was reported as having a higher contrast was evaluated based on the contrast level of
that stimulus, the contrast level of stimulus contrast on the opposite side (i.e., the paired
stimulus), and the cued location (Figures 2-3). We labeled the stimulus of interest as the ‘test’
stimulus and the paired stimulus as the ‘standard’ stimulus. Then, we computed the probability
that the test stimulus was reported as having a higher contrast, termed here as p(test > standard).
We computed this probability separately for cued and uncued test stimuli, as well as when the
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test stimulus was paired with different contrast levels of the standard stimulus. We used the
number of trials in which the reported orientation of the stimulus of interest was ‘correct’ as a
numerator while using the number of all trials as a denominator. For the test stimulus of 0%
contrast, we randomly labeled the direction of the orientation offset (CW or CCW) prior to the
start of the experiment. This was done because no physical stimulus was actually presented in the
0% contrast stimulus condition. The “correct” responses in this condition were then determined
based on a match to these randomly assigned labels. The effect of exogenous cues on guessing
and baseline-offset response bias was then determined by the difference between the probability
of choosing a cued versus an uncued test stimulus on these 0% contrast stimulus conditions.

Next, we fitted the probability values across different test contrasts separately for each standard
contrast and each attention condition (cued/uncued), separately for each subject, with a variant of
the Naka—Rushton equation using a maximum likelihood estimation method:

Pc)= G, *C1/(C1+GA) + B, (Equation 1)

where P(c) is p(test > standard) for a given test contrast value. Here, B is the baseline offset
(indexing response bias), G. is the contrast gain factor that controls the horizontal shift of the
curve (indexing perceived appearance), G is the response gain factor that controls the vertical
shift of the psychometric function, and q is the exponent fixed at 2 !*3, In addition, we
constrained the fit so that 0 > G, <1, 0> G. < 100, P(100) < 1, and P(0) > 0. We did not use
another version of the Naka—Rushton function, termed a baseline-input model 2%, because our
past work using this formula showed that it yielded worse fits compared to the baseline-input
model predicted B values, which were out of the realistic range (that were >>1), making it
difficult to interpret the results.

Next, we used two-way repeated-measures ANOVASs to test the main effects of attention and
contrast values of standard stimuli as well as interactions between these factors on the parameters
B, G,, and G.. Then, we used post-hoc pairwise t-tests to examine differences between attention
conditions (test cued/standard cued) for each standard contrast (two-tailed) and corrected for
multiple comparisons using the Holm-Bonferroni method.

EEG recording and reprocessing

EEG data were recorded with a 64 + 8 channel Biosemi ActiveTwo system at a 512 Hz sampling
rate. We kept signal offsets below 20 uV relatively to the CMS-DRL reference. While their EEG
signals were being recorded, subjects were asked to minimize blinks, eye movements, and head
movements. EEGLAB v2019.1 and in-house MATLAB (R2020a) scripts were used to
preprocess the EEG data offline. First, the continuous EEG data were re-referenced to the mean
of the left and right mastoid electrodes, followed by the application of 0.25-Hz high-pass and 55-
Hz low-pass Butterworth filters (third order). Then, we segmented the continuous EEG data into
epochs extending from -1000 ms before to 2,000 ms after the cue onset. Next, we used
independent component analysis '2%126 to reject prominent eye blink and muscle artifacts and
then discarded epochs contaminated by residual eye blinks and saccades (more than +50-200 uV
deviation from zero, with thresholds chosen for each individual subject), horizontal eye
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movements (more than +50-75 puV deviation from zero), muscle activity, or drifts using threshold
rejection and visual inspection (8.8946% of trials were rejected, + 9.2797% SEM).

Early sensory evoked response

Following the EEG preprocessing steps described above, we baseline-corrected the artifact-
corrected EEG data to their mean EEG response from -200 to 0 ms relative to the cue onset. We
then realigned the epoched EEG data to the onset of the stimulus. The baselined EEG data were
then sorted into the following 98 conditions: left vs. right cued stimuli (2 conditions) x 7 cued
contrast levels (0%-100%) x 7 uncued contrast levels. Next, we averaged the stimulus-locked
EEG data in each of these conditions to obtain the event-related potentials. Note that at this step,
the event-related potentials (ERPs) contained both cue-evoked and stimulus-evoked responses.
In order to isolate the stimulus-evoked responses related to the cued stimuli from the cue-evoked
responses, we subtracted the ERPs from the cue-only trials (0% contrast) from the ERPs related
to the cued stimuli of all contrast levels (0%-100%) as shown in Figure 4a (top row). We also
extracted the stimulus evoked responses related to the uncued stimuli of different contrast levels
by subtracting the ERPs in trials where the uncued stimulus was rendered at 0% contrast. These
steps allowed us to isolate a P1 component peaking ~60-90ms after the stimulus onset at
contralateral posterior occipital electrodes (Figures 4a-b; O1, PO3, PO4, P1, and P3 for left
channels and O2, PO4, POS, P2, and P4 for right channels). Next, we computed the mean
amplitude of the P1 component over 60-90ms across contralateral posterior occipital electrodes
in each cue and contrast condition from individual subjects and then plotted them as a function of
test contrast. This resulted in a P1-based CRFs for each attention condition and standard contrast
level (Figure 4), which were then fit with the Naka—Rushton equation (Equation 1) to determine
if these P1-based CRFs underwent contrast gain, multiplicative response gain, or changes in
baseline offset (Figures 2d-f). For individual attention conditions and standard contrast levels,
this fitting procedure was performed using MATLAB’s “fmincon” function to minimize the root
mean squared error between the data and the fit function with 3 free parameters including the
contrast gain (G.), response gain (G,), baseline-offset parameters (B). Here the exponent q of the
Naka-Rushton equation was fixed at 2 '?7. The guess values for G, G, and B were 1% contrast,
the difference between the maximum and minimum values of the P1 amplitudes across all test
contrast levels, and the minimum value of the P1 amplitude, respectively. Note that the G. and
G, parameters could in principle exceed the realistic range of stimulus contrast (0 —100%
contrast), making it difficult to interpret the results. Therefore, instead of directly comparing
these two parameters, we obtained parameters that indicated the contrast at which neural
responses reached half their maximum (the semi-saturation constant; Csp) and the maximum
neural responses relative to baseline (Ruqx) to track changes in contrast gain and response gain,
respectively. Finally, we used two-way repeated measures ANOVAs to test the main effect of
attention (cued vs. uncued), the main effect of standard contrasts (0%-100%), and their
interaction on the B, Cso, and Ryax.

Alpha band activity
In order to assess cue-induced changes in in posterior alpha band activity, we wavelet-filtered the

artifact-corrected and epoched EEG data using a Gaussian filter centered at 9-12 Hz with a
fractional bandwidth of 0.2 Hz and computed the absolute value of the wavelet coefficients to
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obtain a measure of amplitude '28-13°, Next, we sorted the data into each of the 98 experimental
bins. For each of these experimental bins, we then computed the mean percent change in alpha
amplitude relative to baseline activity from 200-600 ms before the cue onset (or 300-700 ms
before the stimulus onset) using the following equation:

Percent signal change =
(alpha amplitude - baseline activity) x 100% / baseline activity (Equation 2)

To obtain alpha-based CRFs, we then took the averaged values of the alpha data from 100-
700ms after the cue onset (0-600ms after the stimulus onset) across 5 contralateral posterior
occipital electrodes (O1, PO3, PO4, P1, and P3 for left channels and O2, PO4, POS, P2, and P4
for right channels) and plotted them as a function of test contrast for each attention condition and
each standard contrast level in individual subjects (Figure 5). The alpha-based CRFs were then
fit with a Naka—Rushton equation (Equation 2). The fitting routine was similar to that conducted
in the P1 data analysis except that the guessing value for G- was determined based on the
difference between the minimum and maximum values of the post-cue alpha activity across all
test contrast levels due to the fact that the alpha band activity got smaller as a function of test
contrast. Finally, we used two-way repeated measures ANOVAs to test the main effect of
attention (cued vs. uncued), the main effect of standard contrasts (0%-100%), and their
interaction on the B, Cso, and Ryax.

Lateralized readiness potential

In addition to examining the effects of attention on the P1 component and alpha band activity,
we also monitored changes in the LRP, which has been used as an index for motor preparation
41245 First, we obtained the mean ERPs from the central posterior electrodes (C1, C3, C5, CP1,
CP3 for left channels and C2, C4, C6, CP2, and CP4 for right channels) (Figure 7). Then, we
subtracted the ERPs from the electrodes ipsilateral to the cue from the ERPs from the
contralateral electrodes to obtain the LRP which emerged from ~500-1120 ms after the stimulus
onset. The negative differences in the LRP are usually interpreted to indicate motor bias toward
the cue location, whereas a positive difference reflects motor-related responses toward the
uncued location. To examine the effects of cued and uncued contrast as well as their interaction
on the LRP data, we performed a two-way repeated measures ANOVA on the LRP differences
averaged across a window extending from ~500-1120ms window. In addition, we performed
post-hoc pairwise t-tests for individual cued and uncued contrast conditions to test if the mean
LRP differences were significantly above or below zero to determine the direction of motor bias
toward either the cued or uncued location. We corrected for multiple comparisons using the
Holm-Bonferroni method.

We also plotted the LRP differences as a function of uncued contrast for individual cued contrast
levels to examine how motor bias to cued stimuli of different contrast levels were mediated by
the contrast of the competing stimulus (i.e. the uncued stimulus on each trial). We then fit the
LRP-based CRFs for individual cued contrast levels using a Naka—Rushton equation (Equation
1) and MATLAB’s “fmincon” function. Then, we estimated the baseline parameter (B) — or the
degree of bias toward the cued location when there was no competing stimulus — and the
maximal LRP response at the 100% uncued contrast level (uncued-LRPnay ), and the uncued
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contrast that produced no LRP modulations (C-intersect). Note that we could not estimate C-
intersect for cued contrasts of 80% and 100% because they were beyond the realistic range of
responses (>>100%). Next, we used one-way repeated measures ANOV As to examine the main
effect of uncued contrast on B, uncued-LRPnax , and C-intersect. In addition, we performed
paired t-tests to determine if the B and uncued-LRPmax parameters were below or above zero to
determine the direction of response bias towards cued vs. uncued locations. Multiple
comparisons were corrected using the Holm-Bonferroni method.

Modeling behavioral data using EEG data

We examined how different patterns of attentional modulations, specifically the multiplicative
response gain of the P1-based CRFs and the contrast gain of the alpha-based CRFs could be
linked to the attentional effects in our psychometric data. We recently demonstrated that
quantitative models assuming changes in the response gain of hypothetical neural CRFs can
capture attention-induced changes in contrast appearance via modulations in the contrast gain
factor (G,) of the psychometric data. However, this did not account for the baseline-offset in
response biases 22. On the other hand, models assuming shifts in the baseline offset of the
hypothetical neural CRFs could better account for cue-induced changes in the baseline-offset
response bias in the behavioral data 22. Based on these results, we hypothesized that the
multiplicative gain of the P1-based CRFs should account for the leftward shifts of the
psychometric functions which occurred predominantly when the standard stimuli were rendered
at low-to-mid-level contrasts. On the other hands, modulations of baseline offsets in the alpha-
based CRFs should better account for changes in the baseline-offset response bias in the
behavioral data 2.

To test these predictions, we adopted a quantitative modeling method based on signal detection
theory (SDT (Cutrone et al., 2014; Itthipuripat et al., 2019a)). Here, we estimated p(test >
standard) based on the amplitude difference between neural responses (either the P1 data, the
alpha data, or both) evoked by test and standard stimuli that can be drawn from the measured
neural CRFs given a certain level of hypothetical neuronal noise (or trial-by-trial variability)
(Figure 6). To do this, we first obtained the best fit parameters of the Naka—Rushton equation,
including G,, G., and B, which described the P1-based and the alpha-based CRFs of individual
subjects. Next, we resampled subject labels with replacement 10,000 times and obtained the G,
G., and, B parameters averaged across these resampled subjects labels and in each iteration, we
used these average values to generate a hypothetical P1-based and alpha-based CRF in order to
predict the patterns of the behavioral data.

For the P1-based model, we collapsed the G. and B values across different attention and standard
contrast levels so that the same G. and B values were shared across all of these conditions and
could not contribute to changes in the predicted behavioral results. On the other hand, different
G, values obtained from the original fitting routine were assigned to different attention and
standard contrast conditions. These steps ensured that the pattern of attentional modulations in
the predicted behavioral results were selectively due to changes in response gain of the P1-based
CRFs and were not influenced by spurious differences in other factors (B or G.) that may occur
in single-subjects. In each resampled iteration, the simulated P1-based CRFs were normalized
using the following formula:
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Normalized Data = Data - min(Data) / max(Data) - min(Data), (Equation 3)

where min(Data) and max(Data) were the minimum and the maximum values of the simulated
P1-based CRFs across all attention and standard contrast conditions.

For the alpha-based model, we only collapsed the G. parameters across the different attention
conditions and standard contrast levels since there were neither main effects of these factors nor
their interaction on G.. That said, different B and G, values were directly obtained from the
original fitting routine and assigned to different attention and standard contrast conditions. Here,
both B and G, were allowed to be different across experimental conditions because the baseline
shifts in the alpha-based CRFs were the results of the baseline offset (B) becoming more
negative with attention and the response again (G,) becoming smaller with attention (i.e. G-
became less negative so the negative slope was less steep). Since the amplitude of the alpha band
activity was generally reduced as a function of attention and stimulus contrast, we flipped the
sign of the simulated alpha-based CRFs and normalized the data using Equation 3. This sign-
flipping step allowed us to perform the linking model in the similar way as the P1-based model
and to combine the P1 and alpha data to examine the joint contribution of the attentional
modulations of these two different electrophysiological signals to predict the effects of attention
on the behavioral data. Finally, for the combined P1 and alpha model, we computed the sum of
the normalized P1-based and alpha-based CRFs separately for individual attention conditions
and standard contrast levels.

For all of these models, in each of the 10,000 iterations we simulated 1,000 trials in which
responses to the standard and test stimuli of individual contrasts and attention conditions were
randomly drawn from a normal distribution with means obtained from the P1-based CRFs, the
alpha-based CRFs, or the combined data. Neuronal noise, or the standard deviation of the normal
distribution, was assumed to be the same across all standard and test contrast levels as well as
across the different attention conditions. Assuming a maximum likelihood decision rule, p(test >
standard) was estimated based on the probability at which the test stimulus—related neural
response was higher than the standard stimulus—related response in the 1,000 stimulated trials.
For each of 10,000 subject-label resampling iterations, we computed the goodness of fit (R?) for
each model and plotted the median R? values and the resampling distributions of these different
models using the violin plot function 3! to compare their performance (Figure 6). Note that we
could directly compare R? values of different models because all of these models only had 1 free
parameter, which was the neuronal noise shared across all standard and test contrast levels as
well as across the different attention conditions.
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Figure Legends

Figure 1. Task and stimuli. (a) The attention-cueing comparative contrast judgment task.
Subjects were tasked with reporting the orientation of the stimulus they perceived as having a
higher contrast. (b) Depiction of all contrast pairs in the cue-left condition. Note that the same
fully crossed contrast manipulation was also used in the cue-right condition.

Figure 2. Predictions. (a-c) Alternative predictions for the behavioral results. (a) Attention
increases the perceived contrast of visual stimuli via a leftward shift in the behavioral contrast
response functions. In this scenario, attention should only decrease the contrast gain factor (G.)
and there should not be any changes in the baseline offset (B) or response gain (G,). (b) Attention
induces baseline-offset response bias (B; additive upward shift) without changes in a leftward
shift of the CRFs (i.e. no change in G.). This corresponds to a response bias for the cued stimulus
without a change in perceived contrast. (¢) Attention could induce changes in both subjective
appearance and response bias as indexed by changes in both G. and B, respectively. (d-e)
Different patterns of attentional modulations in the neural contrast response functions (CRFs)
measured over visual cortex. Since the estimated G, and G. parameters could extend beyond the
realistic range of stimulus contrast (>100%), the response gain and contrast gain of neural CRFs
were reparameterized as the maximal response (Rqax or the response at 100% contrast minus the
baseline offset) and the semi-saturation contrast (Cso or the contrast at which the response
reached half maximum), respectively. (d) Attention increases neural contrast sensitivity or
contrast gain as indexed by changes in the semi-saturation contrast factor (Cso). Alternatively,
attention could increase the multiplicative response gain or the slope of the neural CRFs as
indexed by the maximum neural response (Ruax). Lastly, attention could shift the baseline offset
of the neural CRFs so that overall responses to the cued stimulus are enhanced in a manner that
is independent of stimulus contrast. One past modeling study from our group suggests that the
response gain mechanism (panel e) is sufficient to account for psychophysical changes in
contrast appearance (panel a). However, a change in the baseline of neural CRFs (panel f) is
required to explain changes in the behavioral baseline-offset response bias (panel b) 22, That said,
there is still no neural evidence that validates these modeling predictions.

Figure 3. Behavioral data. (a) The probability that subjects reported the test stimulus (i.e., the
stimulus of interest, either cued or uncued) as having a higher contrast than the standard stimulus
(i.e., the paired cued or uncued stimulus) plotted as a function of test contrast for all possible
standard contrast levels. We used the parameter B to index the baseline-offset response bias that
the cued stimulus had a higher contrast than the uncued stimulus even when the cued stimulus
was not physically present (i.e., presented at 0% contrast, as in '322). (b) Overall, we found a
significant attention-induced increase in response bias when the contrast of the standard was
relatively low, with a decreasing effect of response bias as the contrast of the standard increased.
(¢) The contrast gain parameter (G.) controls the horizontal position of the psychometric
function, which we used to index changes in contrast appearance. Attention reduced G, as
indexed by a leftward shift in the psychometric functions, which should correspond to an
increase in perceived contrast, predominantly at low-to-mid-levels of standard contrast. (d) The
response gain parameter (G,) controls the slope of the psychometric function. Note that G, and B
are conflated because behavioral response probabilities could not exceed 1. At low-to-mid level
standard contrasts, there were large attentional effects on B (panel b). Thus, this increase in B
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must also lead to a decrease in slope, or G, given the fixed ceiling of the psychometric response
functions. Instead, attention increased G, without changing B at higher contrasts (ie., 80%-
100%). Error bars represent the within-subject standard errors of the mean (£1 SEMs). Att***,
Ctt**, and Att x Ctt*** represent the significant main effects of attention, standard contrast, and
the interaction between the two factors, respectively (all p’s <0.001).

Figure 4. The P1 component across cue and standard contrast conditions. (a: top row) The non-
subtracted ERPs from the contralateral posterior occipital electrodes (see the red circle on the
right hemisphere of the head model in (b)). These non-subtracted ERPs contained both cue-
evoked and stimulus-evoked responses. Note that in these plots the cue onset and stimulus onsets
were at -100 ms (vertical black dotted lines) and 0 ms, respectively (vertical black solid lines).
The data were baseline-corrected from -200 to Oms before the cue onset. (a: bottom row) The
extracted stimulus-evoked potentials obtained after subtracting the cue-only condition (the
leftmost panel from the top row of panel a) from all other stimulus contrast conditions. We
observed a P1 component peaking ~60-90 ms with its amplitude increasing as a function of the
contrast of the test stimulus. Moreover, attention increased the P1 amplitude at high test stimulus
contrast levels. All shaded areas represent within-subject SEMs. (b) Topographical maps of the
P1 amplitude averaged across ~60-90ms post-stimulus. The rings mark each of 5 electrodes over
the contralateral/ipsilateral posterior occipital sites where the P1 (Figure 4) and alpha data were
analyzed (Figure 5; red rings) and on the contralateral/ipsilateral central sites where the LRP data
were analyzed (Figure 8; blue rings). (¢) The P1-based contrast-response functions (CRFs)
plotted separately for the cued and uncued conditions across different levels of standard contrast.
Attention enhanced the multiplicative response gain of the P1 data. (d-f) The corresponding best-
fitting parameters from the NR function. (d) There were no differences in the baseline offset. (e)
Attention selectively enhanced response gain indexed by an increase in the maximum response
of the P1 component (Ruax), which were relatively more robust at low-to-mid-level standard
contrasts. (f) There were no differences in the semi-saturation contrast level or the level at which
the P1 amplitude reached half maximum (Csg). Error bars represent the within-subject SEMs
where the mean values between attention conditions were removed before computing the
standard errors. Att* and Att x Ctt* represent the significant main effect of attention (p <0.05)
and the trending interaction between attention and standard contrast, respectively (p = 0.053).
n.s.= non-significant.

Figure 5. Post-cue reduction in alpha band activity. (a) Attentional cues induced a reduction in
alpha amplitude in posterior occipital electrodes that were contralateral to the stimulus of
interest. Note that in these plots, the cue onset and stimulus onsets were at -100 ms (the vertical
black dotted lines) and 0 ms (the vertical black solid lines), respectively. The alpha data were
baseline-corrected from -600 to -200 ms before cue onset. (b) Topographical maps showing the
difference in the alpha amplitude between the cued and uncued conditions at different test
contrast levels. (¢) Alpha amplitude plotted as a function of test contrast separately for different
attention conditions and levels of standard contrast. Attention induced a shift in the baseline
offset of alpha band oscillations, regardless of standard contrast. (d-f) The corresponding best-fit
parameters from a Naka-Rushton function. (d) Overall, attention decreased the baseline offset
(B) of the neural CRFs, consistent with a reduction in the amplitude of alpha oscillations. The
degree of baseline modulation was comparable across standard contrasts. (e) Attention-related
reductions in alpha amplitude became smaller as test contrast increased (e.g., pinching
modularity patterns at 100% test contrast in panel a), leading to a smaller negative slope of

31



alpha-based CRFs in the cued compared to the uncued condition (i.e., Ruax became less negative
with attention). However, R became more negative with increasing standard contrast. (f)
There were no differences in the semi-saturation constant (Csp) across test or standard contrast
levels. Error bars represent within-subject SEMs where the mean values between attention
conditions were removed before computing the standard errors. Att***and Ctt** represent the
significant main effects of attention (p’s<0.001) and standard contrast, respectively (p<0.01). n.s.
= non-significant.

Figure 6. (a) Predicting the effects of attention on behavioral responses based on attentional
modulations of neural data. (top row) Modeling based on attentional gain modulations of the
early visual P1 component better captured the psychometric data overall, but did not predict
changes in the baseline offset at low standard contrast levels (0-5%) and did not capture the
attention effect on the behavioral data at the 100% standard contrast. (middle row) In contrast,
attention-induced changes in alpha band activity tracked large modulations in the baseline offsets
of the psychometric functions across all standard contrast levels. (bottom row) Modeling that
used both P1 and alpha data did the best at predicting the pattern of attentional modulations of
the psychophysical data. (b) The violin plots showing the goodness of fit of the resampled
modeling predictions based on the P1 data, the alpha data, and the combination of the P1 and
alpha data (i.e., the combined model), respectively. (¢) Same as (b) but data presented separately
for individual standard contrast levels.

Figure 7. The lateralized readiness potential (LRP). (a) The LRP data from lateral central
electrodes (see the blue ellipses in Figure 4b) time-locked to stimulus onset. Overall, the LRP
was more negative in the electrodes contralateral to the cued hand (blue) compared to the
electrodes ipsilateral to the cued hand (red), which is typically interpreted as more response bias
towards the cue hand. The negative bias of the LRP toward the cued hand got smaller as the
contrast of the uncued stimulus increased. This bias even became positive at high levels of
uncued contrast, possibly reflecting response bias to the uncued hand (i.e., there was more
overlap between the red and blue ERP traces with increased uncued contrast moving from the
left to the right panels). (b) Topographical maps of the cued minus uncued conditions averaged
from 500-1120 ms after stimulus onset. As the contrast of the uncued stimulus increased, the
lateralization of the LRP towards the cued hand became smaller and the sign of the LRP
modulation eventually flipped towards the uncued hand. (c-d) The cued minus uncued data from
the contralateral to the cued hand plotted as a function of the contrast of the cued and uncued
stimuli. As the contrast of the cued stimulus increased, higher contrast levels of the uncued
stimulus were needed to compete for motor-related activity. (e-f) The corresponding best-fitting
parameters from a NR function. (e) The baseline offset (B) values of the LRP-based CRFs were
negative across all levels of cued contrast, reflecting response bias towards the cued hand when
the cued stimulus of any contrast was presented alone (i.e., paired with the uncued stimulus of
0% contrast). (f) The maximal LRP response of the LRP-based CRFs (i.e., responses to the
uncued contrast of 100% or uncued-LRPmax ) got smaller as a function of cued contrast,
reflecting more influence of the cued stimulus competing with the uncued stimulus of 100%
contrast. Here, the positive and negative values of uncued-LRPmax mean response bias towards
the uncued and cued hand, respectively. When the cued contrasts were 0-20%, they were not
strong enough to compete with the uncued stimulus of 100% contrast, thus producing the
positive uncued-LRPnax values. However, the uncued-LRPnax values for 80% and 100% cued

32



contrasts were negative, indicating that the cued stimuli of 80% and 100% contrasts could
compete with the uncued stimuli of 100% contrast for motor responses. At 40% cued contrast,
there was no significant motor bias towards either cued or uncued hand (uncued-LRPmax was not
significantly different from 0), showing comparable influence of the cued stimulus of 40% and
the uncued stimulus of 100% at competing for motor responses. (g) The uncued contrast that
produced no LRP modulations (C-intersect, where the LRP-based CRFs hit 0) increased as a
function of cued contrast, suggesting that the uncued stimulus had to be higher contrast to
effectively compete for motor-related responses associated with cued stimuli rendered at higher
contrasts. Note that we could not estimate C-intersect for the cued contrasts of 80% and 100%
because they were beyond the realistic range or responses (>>100%). All shaded areas and error
bars represent the within-subject SEMs. *, ** and *** showed significant differences from zero
with p’s <0.05, <0.01, and <0.001, respectively (2-tailed, Holm-Bonferroni-corrected). Ctt***’s
represent the significant main effects of cued contrast with p’s <0.001. n.s. = non-significant.
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