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Abstract 

It has been debated if attention can penetrate early perceptual representations to alter visual 

appearance or it simply induces response biases. Here, we tested these alternative accounts by 

evaluating attentional modulations of EEG responses recorded from human subjects while they 

compared the perceived contrasts of cued and uncued visual stimuli of varying physical 

contrasts. We found that attention enhanced the response gain of neural contrast response 

functions (CRFs) computed based on the amplitude of the P1 component, an early visually 

evoked potential. Quantitative models suggested that the response gain of the P1-based CRFs 

could account for attention-induced changes in perceived contrast. Instead, attentional cues 

induced changes in the baseline offset of the CRFs based on 9-12Hz alpha-band oscillations and 

these baseline-offset changes better accounted for cue-induced response biases. Together, these 

results suggest that different neural mechanisms underlie the effects of attention on perceptual 

experience and on response biases. 
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Introduction  

 

Selective attention refers to the set of mechanisms that supports faster and more accurate 

processing of behaviorally relevant sensory information compared to irrelevant stimuli 1–8. Many 

past studies suggest that – in addition to faster and more accurate processing – attention also 

penetrates early sensory processing to alter the subjective experience of visual stimuli 9–30 . In 

contrast, others have argued that attention does not alter perception and that reports of changes in 

subjective experience instead reflect cue-induced response biases 18,22,31–36. 

 

In a recent study, we argued that attentional effects on visual appearance and on response biases 

co-existed and were expressed to varying degrees depending on the overall levels of stimulus 

contrast and decision uncertainty (determined by the degree of contrast difference between the 

cued and uncued stimuli 22 . For example, subjects often guessed that a cued stimulus had a 

higher contrast than an uncued stimulus when the cued and uncued stimuli were rendered at very 

low contrasts or at very high contrasts 22 However, changes in perceived contrast were most 

evident at intermediate contrast levels 17,18,22 . 

 

While our recent findings suggest that attention can alter contrast appearance in certain 

circumstances and induce response bias in others, it is unclear whether changes in perceived 

contrast and response bias reflect different underlying neural processes. This is in part due to a 

lack of quantitative links between different neural markers of visual information processing and 

the effects of attention on visual appearance and response bias. To address this gap, we 

concurrently measured attentional modulations of two EEG signals that track early visual  

processing – the P1 component and the amplitude of posterior alpha oscillations – as well as 

EEG signals that track response preparation (the lateralized readiness potential or LRP). We then 

used a signal-detection-theory-based model to assess how cue-related modulations of each signal 

maps onto behavioral changes in perceived contrast and response bias 23,37–40 .   

 

First, we found that cue-related modulations of the visually evoked P1 component predicted 

behaviorally assessed effects of attention on perceived contrast at low-to-mid-level of stimulus 

contrast. In contrast, we found that changes in alpha amplitude tracked response bias in the 

psychometric data when the cued and uncued stimuli rendered at either a very low or a very high 

contrast. Finally, we found that the LRP tracked response biases at both low and high contrast 

levels, even in the absence of  attentional modulations of the P1 component, consistent with the 

LRP being an index of response-planning 41–45 . Together, these findings suggest that dissociable 

neural markers of information processing track attention-induced changes in subjective 

appearance and response-related attentional modulations of behavior.  
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Figure 1. Task and stimuli. (a) The attention-cueing comparative contrast judgment task. 

Subjects were tasked with reporting the orientation of the stimulus they perceived as having a 

higher contrast. (b) Depiction of all contrast pairs in the cue-left condition. Note that the same 

fully-crossed contrast manipulation was also used in the cue-right condition.  

 

Results 

 

Study Design 

 

The present study investigated the neural mechanisms that underlie the effects of attention on 

perceived contrast and response bias. We employed a comparative judgment task where the 

contrast of  cued and uncued visual stimuli were fully crossed and systematically manipulated 

from 0%-100% Michelson contrast (Figure 1; see ref22and Materials and Methods). In this task, 

subjects used button press responses to report whether the cued or the uncued visual stimulus 

subjectively appeared to have a higher contrast value. EEG signals and behavioral responses 

were concurrently measured across the full range of contrast values for both cued and uncued 

stimuli. The simultaneous recording of the behavioral and EEG data allowed us to examine 

attentional modulations of behavioral and neural responses as a function of contrast (i.e., the 
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neural contrast response function, or CRF) and to quantitatively link the attentional modulations 

of neural CRFs to changes in perceived contrast and response bias in the psychometric data 

(Figure 2).  
 

 

 

Figure 2. Predictions. (a-c) Alternative predictions for the behavioral results. (a) Attention 

increases the perceived contrast of visual stimuli via a leftward shift in the behavioral contrast 

response functions. In this scenario, attention should only decrease the contrast gain factor (Gc) 

and there should not be any changes in the baseline offset (B) or response gain (Gr). (b) Attention 

induces baseline-offset response bias (B; additive upward shift) without changes in a leftward 

shift of the CRFs (i.e. no change in Gc). This corresponds to a response bias for the cued stimulus 

without a change in perceived contrast. (c) Attention could induce changes in both subjective 

appearance and response bias as indexed by changes in both Gc and B, respectively. (d-e) 

Different patterns of attentional modulations in the neural contrast response functions (CRFs) 

measured over visual cortex. Since the estimated Gr and Gc parameters could extend beyond the 

realistic range of stimulus contrast (>100%),  the response gain and contrast gain of neural CRFs 

were reparameterized as the maximal response (Rmax or the response at 100% contrast minus the 

baseline offset) and the semi-saturation contrast (C50 or the contrast at which the response 

reached half maximum), respectively. (d) Attention increases neural contrast sensitivity or 

contrast gain as indexed by changes in the semi-saturation contrast factor (C50). Alternatively, 

attention could increase the multiplicative response gain or the slope of the neural CRFs as 

indexed by the maximum neural response (Rmax). Lastly, attention could shift the baseline offset 

of the neural CRFs so that overall responses to the cued stimulus are enhanced in a manner that 

is independent of stimulus contrast. One past modeling study from our group suggests that the 

response gain mechanism (panel e) is sufficient to account for psychophysical changes in 

contrast appearance (panel a). However, a change in the baseline of neural CRFs (panel f) is 
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required to explain changes in the behavioral baseline-offset response bias (panel b) (see ref22), 

That said, there is still no neural evidence that validates these modeling predictions. 

 

Attention induces changes in contrast appearance and response bias 

 

To examine the effects of attention on changes in perceived contrast and response bias, we 

performed two complementary analyses that compared the probabilities of reporting either the 

cued or the uncued stimulus as having a higher contrast. First, we computed the probability of 

reporting a cued stimulus at each contrast level as having a higher perceived contrast than the 

uncued stimulus at all other contrast levels. For example, we computed the probability of 

reporting a 5% contrast cued stimulus as having a higher contrast than a 0%, 5%, 10%, …, 100% 

uncued stimulus and we repeated this exhaustive analysis for each possible contrast level of the 

cued stimulus. We then performed an analogous analysis quantifying the probability of reporting 

an uncued stimulus at each contrast level as having a higher perceived contrast when it was 

paired with a cued stimulus of all possible contrast values. Note that for purposes of data 

exposition, we always refer to the stimulus being held constant as the standard stimulus and the 

stimulus being varied as the test stimulus. Thus, in the example above, the 5% contrast cued 

stimulus would be the standard compared against uncued test stimuli that ranged in contrast 

systematically from 0% to 100%. Importantly, both the cued and uncued stimuli served as 

standard and test stimuli depending on the nature of the analysis being performed. This allowed 

us to plot summary data for cued and uncued stimuli on the same axes as shown in Figure 3, with 

data from the cued stimulus plotted in blue/cyan and data associated with the uncued stimulus in 

red/magenta. 

  

To better quantify these behavioral data, we fit each psychometric function using a Naka-

Rushton (NR) function 22,46–48 to estimate the baseline offset (B), contrast gain (Gc), and response 

gain (Gr), which control the baseline, the horizontal position (e.g. leftward shift), and the slope of 

the behavioral CRFs, respectively (see Figures 2a-c and Methods and Materials). Here, we used 

changes in the baseline offset (B) to track cue-induced response bias on the basis that reporting 

the cued contrast as higher contrast than the uncued stimulus when the cued stimulus was 0% 

contrast must reflect bias22 . On the other hand, we used changes in contrast gain (Gc) to index 

changes in contrast appearance. We focused on Gc instead of the point of subjective equality 

(PSE) because it has previously been suggested that PSE overestimates changes in contrast 

appearance when there were significant amounts of cue-induced response bias 18,22,32–35.  
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Figure 3. Behavioral data. (a) The probability that subjects reported the test stimulus (i.e., the 

stimulus of interest, either cued or uncued) as having a higher contrast than the standard stimulus 

(i.e., the paired cued or uncued stimulus) plotted as a function of test contrast for all possible 

standard contrast levels. We used B to index the baseline-offset response bias that the cued 

stimulus had a higher contrast than the uncued stimulus even when the cued stimulus was not 

physically present (i.e., presented at 0% contrast) 18,22. (b) Overall, we found a significant 

attention-induced increase in response bias when the contrast of the standard was relatively low, 

with a decreasing effect of response bias as the contrast of the standard increased. (c) The 

contrast gain parameter (Gc) controls the horizontal position of the psychometric function, which 

we used to index changes in contrast appearance. Attention reduced Gc, as indexed by a leftward 

shift in the psychometric functions, which should correspond to an increase in perceived 

contrast, predominantly at low-to-mid-levels of standard contrast. (d) The response gain 

parameter (Gr) controls the slope of the psychometric function. Note that Gr and B are conflated 

because behavioral response probabilities could not exceed 1. At low-to-mid level standard 

contrasts, there were large attentional effects on B (panel b). Thus, this increase in B must also 

lead to a decrease in slope, or Gr, given the fixed ceiling of the psychometric response functions. 

Instead, attention increased Gr without changing B at higher contrasts (ie., 80%-100%). Error 

bars represent the within-subject standard errors of the mean (±1 SEMs). Att***, Ctt**, and Att 

x Ctt*** represent the significant main effects of attention, standard contrast, and the interaction 

between the two factors, respectively (all p’s <0.001). 
 

Consistent with a recent report from our group, we found that the effects of attention on contrast 

appearance and response bias depend on the overall level of stimulus contrasts and stimulus 

uncertainty (i.e., whether the stimuli were rendered at the same contrast)22. When there was no 

stimulus presented at the cued and the uncued locations, subjects were more likely to report that 

the cued location had a higher contrast than the uncued location (even though no stimuli were 
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presented, see the leftmost panel of Figure 3a). This response bias resulted in an increase in the 

baseline-offset parameter (B) of the psychometric function. Importantly, this response-bias-

induced baseline-offset became smaller as the contrast of the uncued stimulus increased. To 

statistically evaluate these effects, a repeated measures two-way ANOVA with attention (cued 

vs. uncued) and the contrast of the standard as factors revealed a significant main effect of 

attention on B: F(1, 19) = 60.82, p < 0.001, a significant main effect of the contrast of the 

standard stimulus on B: F(6, 114) = 159.93, p < 0.001, and a significant interaction between 

attention and the contrast of the standard stimulus  on B: F (6, 114) = 114.94, p <0.001. A 

separate ANOVA was also performed on only the correct trials (i.e., we only counted the 

comparative responses in trials where subjects correctly discriminated the orientation offset of 

the chosen visual stimulus) and revealed the same pattern of results: there was a significant main 

effect of attention on B: F(1, 19) = 61.73, p < 0.001, a significant main effect of the contrast 

level of the paired or standard stimulus on B: F(6, 114) = 128.96, p’s < 0.001, and a significant 

interaction between attention and the contrast of the standard stimulus on B: F (6, 114) = 100.88, 

p <0.001. Post-hoc paired t-tests showed that the attention effects on B were significant for 

standard contrast levels  of 0%, 5%, 10% and 20% (t(19)’s = 3.26-24.00 and 2.88-24.57 for all 

trials and correct-only trials, respectively, all p’s ≤  0.0042, Holm-Bonferroni corrected). 

However, differences in B were not significant for standard contrast levels of 40%, 80% and- 

100% (t(19)’s = 1.3612-1.8034 and 1.38-1.88 for all trials and correct-only trials, respectively, 

all p’s ≥ 0.0751). Overall, these results suggest that attention indeed induced response bias 

especially when the contrasts of the standard stimuli were relatively low and attention-induced 

response bias reduced as the standard contrasts increased. 

 

To measure changes in contrast appearance, we next examined attentional modulations of the 

contrast gain parameter (Gc) that controls the horizontal shift of the psychometric functions. We 

found that attention reduced the Gc parameter which led to a leftward shift of the psychometric 

functions. However, these leftward shifts were most pronounced at low-to-middle standard 

contrast levels and then became smaller as the standard contrast approached 100%. A two-way 

repeated measures ANOVA on Gc with attention and standard contrast as factors revealed a 

significant main effect of attention: F(1, 19)’s =48.08 and 35.42, p’s < 0.001, a significant main 

effect of standard contrast: F(6, 114)’s =  111.89  and 103.21, p’s < 0.001, and a significant 

interaction between the two factors: F(6, 114)’s = 9.64 and 9.34 for all trials and correct-only 

trials respectively, with p’s < 0.001. Post-hoc paired t-tests showed that in the all-trial analysis, 

attention effects on Gc were significant for standard contrast levels of 5%, 20%, 40%, and 80% 

(t(19)’s = -2.7713 to -9.1541 p’s ≤ 0.0122, Holm-Bonferroni corrected), but were not significant 

for standard contrast levels of 0%, 10% and 100% contrasts (t(19)’s = 1.3612-1.8034,  p’s ≥ 

0.0153, not passing the corrected threshold  of 0.0125). For the correct-only trials, the attention 

effects on Gc were significant for the standard contrast levels of 10%-80% contrast (t(19)’s =-

9.1541 to -2.7713, p’s ≤ 0.0122, Holm-Bonferroni corrected) but were not significant for the 

standard contrast levels of 0% and 100% contrast (t(19)’s =  -0.9563 and -2.1384, p’s ≥ 0.0457, 

not passing the corrected threshold of 0.025). These results suggest that attention could also alter 

contrast appearance but the appearance effects were restricted to  low-to-mid-level contrasts.  

 

The lack of a significant contrast gain modulation (Gc) at the highest standard contrast was in 

part due to the fact that the psychometric functions in this condition did not reach the maximum 

possible value of 1 (i.e., p(stimulus of interest > paired stimulus) was less than 1). Thus, 
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attentional modulations of the psychometric functions at the highest standard contrast (100%) 

manifested as an increase in the response gain parameter (Gr), corresponding to a steeper slope 

of the psychometric functions (t(19)’s = 10.93 and 10.23 for all trials and correct-only trials, 

respectively, p’s <0.001, 2-tailed). Note that a recent study has shown that attention-induced gain 

changes measured at high standard contrasts might not purely reflect changes in appearance per 

se and could be influenced by response bias driven by high stimulus uncertainty (i.e., subjects 

were unsure which of the two already high contrast stimuli had a slightly higher contrast, thus 

they were biased to follow the attentional cue) (see ref 22). 
 

Possible mechanisms of attention-related changes in appearance 

 

Several neural mechanisms have been proposed to explain attention-related modulations in 

information processing and attention-related changes in stimulus appearance (Figures 2d-f) 
17,23,38,48–67.  The contrast gain account posits that attention shifts the neural CRFs horizontally to 

the left, consistent with attention increasing the contrast sensitivity of neural responses that 

respond to cued stimuli (Figure 2d) 17,55,59,60. In addition, multiplicative response gain models 

posit that attention can amplify neural activity to increase the slope of neural CRFs, thereby 

increasing sensitivity to detect small differences in contrast (Figure 2e) 48,51,55,61–63 . Lastly, the 

additive shift account suggests that attention can lead to increases in the baseline activity of 

neural CRFs (Figure 2f) 23,38,54,64–67. In the following sections, we examined how each of these 

mechanisms might best link attentional modulations of the P1 event-related potential (EPR) 

component and of the amplitude of alpha band oscillations as recorded over human visual cortex. 

 

Predictions for linking neural responses and behavior 

 

Here, we targeted two EEG indices that are thought to track different aspects of visual 

information processing: (i) the P1 component, which is an early visually evoked potential that 

peaks approximately 100ms after stimulus onset and (ii) the amplitude of posterior occipital 

alpha-band oscillations (i.e., EEG oscillations in the  ~9-12Hz band). We used these two EEG 

markers because they have been previously linked to bias in subjective contrast perception 
29,68,69. That said, we hypothesized that the attentional modulations of the visual P1 component 

and alpha band activity would differentially relate to the effects of attention on visual contrast 

appearance and response bias for several reasons. First, attention enhances the amplitude of the 

P1 component 70–73 and attentional gain of P1 amplitude has been linked to improved detection 

and discrimination for low-level visual features like orientation 39,62,73. Recent studies have also 

found that selective attention induces a multiplicative response gain of neural CRFs based on P1 

amplitude (see Figure 2e) and quantitative models suggest that these gain modulations predict 

attention-related changes in perceptual contrast discrimination thresholds 39,62. Importantly – 

especially for the present experiment – attentional gain of P1 amplitude has been previously 

related to an increase in the  perceived contrast of cued compared to uncued visual stimuli 29,69. 

Although changes in subjective experience were not quantitatively linked to changes in P1 

amplitude using a formal linking model, this finding 29,69
 – coupled with suggestive earlier work 

26,55,62,69 – is consistent with the hypothesis that multiplicative gain of the P1 is tightly coupled 

with attention-induced changes in perceived contrast 22. 

 

In addition to changes in perceived contrast, attention is also thought to influence other aspects 

of behavioral performance. For example, prior work suggests that attention cues – particularly 
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the peripheral cues used in most comparative judgment tasks – can induce a bias such that 

subjects are more likely to select the cued stimulus as having a higher contrast, independent of 

the perceptual experience of the subject 22,31–35. We hypothesized that these attention-induced 

changes in response bias might be related to modulations in the amplitude of oscillatory activity 

in the alpha band. First, past studies have found that alpha amplitude at the time of stimulus 

onset predicts shifts in response bias (i.e., response criterion) but not shifts in perceptual 

sensitivity in some visual detection and discrimination tasks 74–79. Second, attention has been 

shown to reduce the amplitude of contralateral posterior occipital alpha band oscillations even in 

the absence of visual stimuli, suggesting that it may simply reflect top-down inputs from 

downstream areas in visual cortex onto early sensory areas and does not tract the interaction 

between attention and sensory inputs 49,80. Consistent with this idea, recent studies have found 

that attention shifts the baseline offset of CRFs based on the amplitude of alpha oscillations, 

reflecting a shift in general arousal or responsiveness that does not interact with the actual 

intensity of the stimulus  (Figure 2f 49,80. Based on these observations, we predicted that a shift in 

the baseline offset of alpha-based CRFs would be systematically linked with attention-induced 

response bias 22. Finally, even though a recent study has previously linked alpha band 

modulations to bias in subjective contrast perception 68, it did not examine response bias that 

prominently occurred with low contrast stimuli 11,18,22 and did not rule out the possibility that 

response bias could also occur even with near- and supra-theshold stimuli 18,31–35,49. 

 

Attention amplifies response gain of the P1 response 

 

To obtain the stimulus-specific P1 activity, we first subtracted the event-related potentials 

(ERPs) elicited in trials with a cue followed by 0%-contrast cued and uncued stimuli (termed as 

the cue-only trials) from the ERPs evoked by trials with a cue plus the stimulus in each attention 

condition and contrast level (Figure 4a in the top row; see refs 39,62 and Materials and Methods). 

After this procedure, we observed a clear P1 component that peaked ~60-90ms post-stimulus 

over posterior occipital electrodes that were contralateral to the stimulus of interest (Figure 4a in 

the bottom row). Next, we plotted the mean amplitude of the isolated P1 component as a function 

of stimulus contrast (i.e., test contrast) to obtain the P1-based CRFs for each attention condition 

and contrast level of the standard stimulus (Figure 4c). Then, we fit these P1-based CRFs with a 

Naka-Rushton equation (Equation 1) to examine changes in the baseline offset (B), response gain 

(Gr) and contrast gain (Gc) of the neural CRFs. Since the estimated Gr and Gc parameters can 

potentially go beyond the realistic range of stimulus contrast (>>100%), we reparameterized the 

response gain and contrast gain of neural CRFs as the maximal response (Rmax or the response at 

100% contrast minus the baseline offset) and the semi-saturation contrast (C50 or the contrast at 

which the response reached half maximum), respectively (see Materials and Methods, section  

Early Sensory Evoked Response).  
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Figure 4. The P1 component across cue and standard contrast conditions. (a: top row) The non-

subtracted ERPs from the contralateral posterior occipital electrodes (see the red circle on the 

right hemisphere of the head model in (b)). These non-subtracted ERPs contained both cue-

evoked and stimulus-evoked responses. Note that in these plots the cue onset and stimulus onsets 

were at -100 ms (vertical black dotted lines) and 0 ms, respectively (vertical black solid lines). 

The data were baseline-corrected from -200 to 0ms before the cue onset. (a: bottom row) The 

extracted stimulus-evoked potentials obtained after subtracting the cue-only condition (the 

leftmost panel from the top row of panel a) from all other stimulus contrast conditions. We 

observed a P1 component peaking ~60-90 ms with its amplitude increasing as a function of the 

contrast of the test stimulus. Moreover, attention increased the P1 amplitude at high test stimulus 

contrast levels. All shaded areas represent within-subject SEMs. (b) Topographical maps of the 

P1 amplitude averaged across ~60-90ms post-stimulus. The rings mark each of 5 electrodes over 

the contralateral/ipsilateral posterior occipital sites where the P1 (Figure 4) and alpha data were 

analyzed (Figure 5; red rings) and on the contralateral/ipsilateral central sites where the LRP data 

were analyzed (Figure 7; blue rings). (c) The P1-based contrast-response functions (CRFs) 

plotted separately for the cued and uncued conditions across different levels of standard contrast. 

Attention enhanced the multiplicative response gain of the P1 data. (d-f) The corresponding best-

fitting parameters from the NR function. (d) There were no differences in the baseline offset. (e) 

Attention selectively enhanced response gain indexed by an increase in the maximum response 

of the P1 component (Rmax), which were relatively more robust  at low-to-mid-level standard 

contrasts. (f) There were no differences in the semi-saturation contrast level or the level at which 

the P1 amplitude reached half maximum (C50). Error bars represent the within-subject SEMs 

where the mean values between attention conditions were removed before computing the 

standard errors.  Att* and Att x Ctt* represent the significant main effect of attention (p <0.05) 

and the trending interaction between attention and standard contrast, respectively (p = 0.053). 

n.s.= non-significant. 

 

Overall, we found that attention increased the maximum response (i.e., Rmax) of the P1-based 

CRF (main effect of attention: F(1, 19) = 6.26, p= 0.0217). In addition, there were larger 

attentional modulations at the low-to-mid-level standard contrasts (5%-20%) compared to when 

the standard was absent (0% contrast) and when the standard had a higher contrast (40%-100%) 

(Figure 4e). This gave rise to a trending interaction between attention and the contrast of the 

standard stimulus (F(6, 114) =2.16, p= 0.0586). Post-hoc paired t-tests showed significant and 

marginal attentional modulations at the low-to-mid-level standard contrasts (t(19)’s = 4.33, 2.04, 

and 2.00 with p’s = 0.0002,  0.0280, and 0.0297  for  5%, 10%, 20% contrasts, 1-tailed due to the 

predicted directions of the modulations with Holm-Bonferroni corrected threshold of 0.0071) but 

not at 0% contrast (t(19) = 0.37 with p = 0.3581, 1-tailed) or high standard contrast levels 

(t(19)’s = 1.26, 0.36, and 0.20 with p’s =0.1113, 0.3612, and 0.4215 for  40%, 80%, 100% 

contrasts, 1-tailed). 

 

Importantly, attention had a selective effect on the Rmax parameter of the P1 response, as there 

were no changes in any other parameters (Figures 4d and f; main effect of attention: F(1, 19) = 

2.17, p = 0.1572 for B, F(1, 19) = 0.99, p = 0.3329 for C50; main effect of standard contrast level: 

F(6, 114) = 1.25, p = 0.2856 for B, F(6, 114) = 1.53, p = 0.1741 for C50;  interaction between the 

attention and standard contrast: F(6, 114)  = 0.20, p = 0.9756 for B; F(6, 114) = 0.96, p= 0.4544 

for C50). The slightly elevated response gain of the P1-based CFRs at low-to-mid-level contrast 
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levels was consistent with the fact that changes in appearance, as indexed by changes in contrast 

gain (Gc), were observed most prominently at these contrast levels. 

 

Attention induces an additive shift in the amplitude of posterior occipital alpha oscillations 

  

Next, we examined the effects of attention on the contralateral posterior occipital alpha band 

activity (i.e., EEG oscillations at ~9 –12 Hz), another commonly-used neural index of 

visuospatial attention 49,81–95 . Past studies have found that alpha amplitude modulations track the 

relevance of visual stimuli in a topographically selective manner. For example, covert spatial 

attention induced by endogenous cues decreases alpha amplitude in the posterior occipital areas 

contralateral to the attended visual field and increases alpha amplitude in areas contralateral to 

the unattended visual field 81,82,84,86,88,89,96–98.  Recent studies using exogenous cues presented at 

the peripheral locations also observed similar cue-induced decreases in alpha band activity in the 

posterior occipital area to the cued locations, suggesting that lateralized alpha activity reflects 

visuocortical biasing across both exogenous and endogenous attention 98,99. Consistent with these 

previous observations, we found a significant cue-related reduction in the amplitude of alpha 

oscillations – compared to a pre-cue baseline period –  that was also modulated by the contrast of 

the test stimulus. These alpha amplitude modulations were most prominent over the posterior 

occipital electrodes that were contralateral to the stimulus of interest (Figures 5a-b).  

 

Figure 5c shows the alpha data plotted as a function of both test and standard contrast levels to 

form CRFs. In contrast to the P1 data, we found that attention cues modulated the baseline offset 

(B) of the neural CRFs based on the post-cue reduction of the posterior occipital alpha activity 

(main effect of attention; F(1, 19) = 45.07, p < 0.001). Note that these lateralized alpha changes 

likely reflect a mixture of low-level sensory-evoked activity elicited by the peripheral visual cues 

themselves as well as alpha changes due to attentional biases. This cue-induced reduction in 

alpha band activity occurred to a comparable degree across all standard contrast levels (no main 

effect of standard contrast level: F(6, 114) = 0.62, p = 0.7172; no interaction between attention 

and standard contrast: F(6, 114) = 0.60, p = 0.7334). Since the degree of cue-induced modulation 

of the alpha amplitude was relatively more robust at the lower compared to the higher test 

contrasts, the Rmax parameters describing the alpha-based CRFs became less negative with 

attention (i.e., the negative slope of the alpha-based CRFs became shallower, main effect of 

attention: F(1, 19) =1 9.73, p = 0.0003).  On the other hand,  Rmax became more negative with 

increasing standard contrast (main effect of standard contrast: F(6, 114) =3.87, p = 0.0015). 

However, there was no interaction between attentional cue and contrast on Rmax (F(6, 114) =0.99, 

p = 0.4361). For the semi-saturation contrast parameter (C50), there was no main effect of 

attention cue, no main effect of standard contrast, and no interaction between the two factors 

(F(1, 19) = 0.51, F(6, 114) = 0.49 and F(6, 114) = 0.99, respectively, p’s  0.4372). Overall, the 

shift in the baseline offset of the alpha-based CRFs was consistent with the robust baseline-offset 

response bias observed in the behavioral data (Figure 3). 
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Figure 5. Post-cue reduction in alpha band activity. (a) Attentional cues induced a reduction in 

alpha amplitude in posterior occipital electrodes that were contralateral to the stimulus of 

interest. Note that in these plots, the cue onset and stimulus onsets were at -100 ms (the vertical 

black dotted lines) and 0 ms (the vertical black solid lines), respectively. The alpha data were 

baseline-corrected from -600 to -200 ms before cue onset. (b) Topographical maps showing the 

difference in the alpha  amplitude between the cued and uncued conditions at different test 

contrast levels. (c) Alpha amplitude plotted as a function of test contrast separately for different 
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attention conditions and levels of standard contrast. Attention induced a shift in the baseline 

offset of alpha band oscillations, regardless of standard contrast. (d-f) The corresponding best-fit 

parameters from a Naka-Rushton function. (d) Overall, attention decreased the baseline offset 

(B) of the neural CRFs, consistent with a reduction in the amplitude of alpha oscillations. The 

degree of baseline modulation was comparable across standard contrasts. (e) Attention-related 

reductions in alpha amplitude became smaller as test contrast increased (e.g., pinching 

modularity patterns at 100% test contrast in panel a), leading to a smaller negative slope of 

alpha-based CRFs in the cued compared to the uncued condition (i.e., Rmax became less negative 

with attention). However, Rmax became more negative with increasing standard contrast. (f) 

There were no differences in the semi-saturation constant (C50) across test or standard contrast 

levels. Error bars represent within-subject SEMs where the mean values between attention 

conditions were removed before computing the standard errors. Att***and Ctt** represent the 

significant main effects of attention (p’s<0.001) and standard contrast, respectively (p<0.01). n.s. 

= non-significant.  

 

Quantitative linking models suggest that different attentional modulations of neural data relate 

to different modulations of behavioral data  

 

Next, we used a quantitative model to make a more formal link between the patterns of 

attentional modulations of the P1-based and alpha-based CRFs and the pattern of attentional 

modulations in the psychometric data (see Materials and Methods 23,37,38,53,55,62,100,101). The 

linking model used the patterns of attentional modulations of the observed P1-based and alpha-

based CRFs to predict changes in contrast appearance and response bias in the observed 

behavioral data. The model is based on the assumption derived from the signal detection theory 

where observers’ contrast discrimination accuracy relies on the difference in neural responses 

(∆R) related to the standard (R_standard(c)) and test stimuli (R_test(c)) divided by the trial-by-

trial variability of neural responses (termed as neuronal noise) 22,23,37–39,62,100. For a given pair of 

standard and test stimuli, the model computed the probability of a test stimulus being perceived 

as having a higher contrast than a standard stimulus ((p(test > standard)) using a maximum 

likelihood decision rule with neuronal noise equally distributed across the standard and test 

stimuli.  

 

We first stimulated the behavioral data using the normalized P1-based CRFs (termed here as the 

P1-based model) and compared the simulated results with those predicted using the normalized 

alpha-based CRFs (termed here as the alpha-based model; see details in Materials and Methods). 

Note that the amplitude of alpha band activity generally got smaller with attention and stimulus 

contrast (see Figure 5; also see refs 49,80). Therefore, we flipped the sign of the normalized alpha-

based CRFs before estimating contrast discrimination accuracy. Last, we compared the results 

with those predicted by a model that sums the normalized P1-based CRFs and the normalized 

alpha-based CRFs (with the flipped sign) to predict the behavioral data based on the sum of the 

normalized P1 and alpha responses. For each linking model, neuronal noise was one free 

parameter shared across all contrast levels and attention conditions. Thus, since each model had 

the same number of free parameters, we directly compared the goodness of fit of individual 

models (i.e., R2 values) to compare how well they predicted the psychophysical data. 
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Overall, the P1-based model accounted for the psychophysical data reasonably well (median R2 

of the resampling distribution = 0.71), especially at the  low-to-mid-level contrasts (median R2 

values = 0.77 and 0.79 for 10% and 20% contrast levels, respectively) (Figure 6). Since there 

was no baseline offset change in the P1-based CRFs, the P1-model could not capture changes in 

the baseline-offset in the behavioral data at lower standard contrast levels. This resulted in lower 

model fits at these contrast levels (median R2 values = 0.38 and  0.67 for 0% and 5% contrast 

levels, respectively). The P1-model also performed poorly at the higher standard contrast levels 

(median R2 values 0.54, 0.31, and -0.03 for 40%, 80% and 100% contrast levels, respectively). 

This poor fit occurred because attentional modulations of the P1-based Rmax parameter 

diminished with increasing standard contrast, even though the attentional modulations of the 

psychophysical data remained robust at these contrast levels (Figure 3). 

 

 

 



 17 

 
Figure 6. (a) Predicting the effects of attention on behavioral responses based on attentional 

modulations of neural data. (top row) Modeling based on attentional gain modulations of the 

early visual P1 component better captured the psychometric data overall, but did not predict 

changes in the baseline offset at low standard contrast levels (0-5%) and did not capture the 

attention effect on the behavioral data at the 100% standard contrast. (middle row) In contrast, 
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attention-induced changes in alpha band activity tracked large modulations in the baseline offsets 

of the psychometric functions across all standard contrast levels. (bottom row) Modeling that 

used both P1 and alpha data did the best at predicting the pattern of attentional modulations of 

the psychophysical data. (b) The violin plots showing the goodness of fit of the resampled 

modeling predictions based on the P1 data, the alpha data, and the combination of the P1 and 

alpha data (i.e., the combined model), respectively. (c) Same as (b) but data presented separately 

for individual standard contrast levels. 

 

Compared to the P1 model, the alpha-based model performed worse at predicting the pattern of 

the behavioral data in general (median R2 = 0.58 compared to 0.71; both models have only one 

free parameter which is trial-by-trial variability of the neural activity, i.e., neural noise; see 

Materials and Methods). This is because the alpha model could only capture attention-induced 

changes in the baseline-offset at the low standard contrast levels which only accounted for a 

small fraction of the variance in the overall psychometric data. That said, when we used the 

combination of the P1 and alpha data to predict the psychometric functions, we were able to 

predict the pattern of the behavioral responses better than using the P1 data or the alpha alone 

(median R2 = 0.79  for the combined model compared to median R2 values of 0.58 and 0.71 for 

the P1- and alpha- models, respectively). This improvement in modeling performance was due to 

the fact that the combined model better captured the baseline-offset response bias at the low 

standard contrast levels (median R2 values of the combined model vs. the P1 model =  0.72 vs. 

0.38 and 0.84 vs. 0.67 for 0% and 5% standard contrasts, respectively) as well as the attentional 

modulations of the psychometric data at high standard contrast levels (median R2 values of the 

combined model vs. the P1 model =  0.74 vs. 0.54 and 0.48 vs. 0.31 and 0.33 and -0.03 for 40%, 

80%, and 100% standard contrasts, respectively). Together, these modeling results suggest that 

the attentional modulations of the P1 component and alpha band activity underlie the different 

effects of attention on contrast appearance and response bias, respectively. Moreover, attentional 

modulations of the alpha baseline offset could account for cued-induced biases at both low and 

high standard contrast levels. 

 

Attention biases motor responses 

 

The P1-modeling data suggest that the multiplicative gain of early visually evoked responses 

could only account for attention-induced changes in contrast appearance when the standard 

stimuli were rendered at low-to-mid-level contrasts. While attentional modulations of the P1 data 

were not observed at 0% or at high standard contrasts, robust attentional modulations of the 

psychometric functions were still observed at 0% and high standard contrast levels. These results 

suggest that attention may bias motor responses without modulating early sensory processing 

under these stimulus conditions.  
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Figure 7. The lateralized readiness potential (LRP). (a) The LRP data from lateral central 

electrodes (see the blue ellipses in Figure 4b) time-locked to stimulus onset. Overall, the LRP 

was more negative in the electrodes contralateral to the cued hand (blue) compared to the 

electrodes ipsilateral to the cued hand (red), which is typically interpreted as more response bias 

towards the cue hand. The negative bias of the LRP toward the cued hand got smaller as the 

contrast of the uncued stimulus increased. This bias even became positive at high levels of 

uncued contrast, possibly reflecting response bias to the uncued hand (i.e., there was more 

overlap between the red and blue ERP traces with increased uncued contrast moving from the 

left to the right panels). (b) Topographical maps of the cued minus uncued conditions averaged 

from 500-1120 ms after stimulus onset. As the contrast of the uncued stimulus increased, the 

lateralization of the LRP towards the cued hand became smaller and the sign of the LRP 

modulation eventually flipped towards the uncued hand.  (c-d) The cued minus uncued data from 

the contralateral to the cued hand plotted as a function of the contrast of the cued and uncued 

stimuli. As the contrast of the cued stimulus increased, higher contrast levels of the uncued 

stimulus were needed to compete for motor-related activity. (e-f) The corresponding best-fitting 

parameters from a NR function. (e) The baseline offset (B) values of the LRP-based CRFs were 

negative across all levels of cued contrast, reflecting response bias towards the cued hand when 

the cued stimulus of any contrast was presented alone (i.e., paired with the uncued stimulus of 

0% contrast). (f) The maximal LRP response of the LRP-based CRFs (i.e., responses to the 

uncued contrast of 100% or uncued-LRPmax ) got smaller as a function of cued contrast, 

reflecting more influence of the cued stimulus competing with the uncued stimulus of 100% 

contrast. Here, the positive and negative values of uncued-LRPmax mean response bias towards 

the uncued and cued hand, respectively. When the cued contrasts were 0-20%, they were not 

strong enough to compete with the uncued stimulus of 100% contrast, thus producing the 

positive uncued-LRPmax values. However, the uncued-LRPmax values for 80% and 100% cued 

contrasts were negative, indicating that the cued stimuli of 80% and 100% contrasts could 
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compete with the uncued stimuli of 100% contrast for motor responses. At 40% cued contrast, 

there was no significant motor bias towards either cued or uncued hand (uncued-LRPmax was not 

significantly different from 0), showing comparable influence of the cued stimulus of 40% and 

the uncued stimulus of 100% at competing for motor responses. (g) The uncued contrast that 

produced no LRP modulations (C-intersect, where the LRP-based CRFs hit 0) increased as a 

function of cued contrast, suggesting that the uncued stimulus had to be higher contrast to 

effectively compete for motor-related responses associated with cued stimuli rendered at higher 

contrasts. Note that we could not estimate C-intersect for the cued contrasts of 80% and 100% 

because they were beyond the realistic range or responses (>>100%). All shaded areas and error 

bars represent the within-subject SEMs.  *, **, and *** showed significant differences from zero 

with p’s < 0.05, <0.01, and <0.001, respectively (2-tailed, Holm-Bonferroni-corrected). Ctt***’s 

represent the significant main effects of cued contrast with p’s <0.001. n.s. = non-significant.  

 

To test this hypothesis, we further examined the cue- and contrast-related modulations of the 

lateralized readiness potential (LRP), which is a common EEG index for motor preparation and 

response bias 41–45. Overall, we found a strong lateralization of the LRP toward the hand subjects 

used to respond to the cued location, presumably reflecting the influence of the attentional cue on 

response bias (main effect of laterality on the LRP amplitude: F(1, 19) = 100.17, p < 0.001) 

(Figure 7). However, as the contrast of the uncued stimulus increased, the lateralization of the 

LRP towards the cued hand became smaller and the sign of the LRP modulation eventually 

flipped towards the uncued hand, leading to a significant interaction between laterality and the 

contrast of the uncued stimulus  (F(6, 114) = 48.20, p < 0.001). We also observed a significant 

three-way interaction between laterality, the contrast of the cued stimulus, and the contrast of the 

uncued stimulus (F(36, 684) = 4.53, p < 0.001). This three-way interaction was driven by 

changes in the lateralization of the LRP as a function of the contrast of the cued stimulus, which 

occurred at different uncued contrasts.  

 

We then fit the LRP data as a function of the contrast of the uncued stimulus with a NR equation. 

We found that the baseline offset (B) parameters of the LRP-based CRFs started at negative 

values around -1 to -1.5 uV for all cued contrast conditions. Paired t-tests showed that B 

parameters were significantly below 0 for all levels of cued contrasts (t(19)’s = -10.12 to -5.49, 

p’s < 0.001, Holm-Bonferroni corrected) and they were comparable across conditions (a 

repeated-measures ANOVA showed no significant main effect of cued contrast: F(6, 114) =0.87, 

p = 0.5219). We speculate that these negative baseline values reflect response biases toward the 

cued stimuli specifically when there was no competing stimulus on the uncued side (i.e., 0% 

uncued contrast), consistent with the cue-induced shifts in the baseline offsets in the 

psychometric functions and the shifts in alpha band activity.  

 

Nonetheless, as the contrast of the uncued stimulus increased, the LRP became less negative and 

eventually flipped to positive values, reflecting motor bias towards the uncued side when the 

relative contrast of the uncued stimulus was high enough. As expected, the LRP reached its 

maximum when the contrast of the uncued stimulus was rendered at 100% contrast. 

Interestingly, we found that the maximal LRP response (i.e., the LRP amplitude when the uncued 

stimulus had 100% contrast or  uncued-LRPmax) was significantly above 0 only when the cued 

stimuli were rendered at 0%-20% contrast (t(19)’s = 2.39-4.86, p’s ≤ 0.0272, 2-tailed, Holm-

Bonferroni corrected) but were below 0 (negative) when the cued stimuli had higher contrast 
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values (t(19)’s = -2.8383 and -6.5806, p’s = 0.0105 and <0.001 for 80% and 100% contrasts, 

respectively, 2-tailed, Holm-Bonferroni corrected). This resulted in a significant reduction in 

uncued-LRPmax as a function of the contrast of the cued stimulus (F(6, 114) = 19.28, p < 0.001), 

which reflects the competitive interaction between the cued and uncued contrasts on response 

bias. In particular, an uncued stimulus of 100% contrast led to a larger LRP with a positive sign 

(showing bias towards the uncued stimulus) when the contrast of the cued stimulus was 0%, 5%, 

10% or 20%. However, an uncued stimulus of 100% contrast did not lead to a larger LRP when 

the contrast of the cued stimulus was 40%,  80% or 100% contrast. Moreover, the uncued-

LRPmax values for cued contrasts of 80% and 100% were still negative, suggesting that at these 

cued contrast levels, an uncued stimulus of 100% contrast did not effectively compete with the 

cue for response bias. This suggests that changes in psychometric functions at the highest 

standard contrasts could be due to response bias 22. Interestingly, these biases in the LRP 

occurred in the absence of attentional gain modulations of the P1 but in the presence of 

significant shifts in the amplitude of alpha band oscillations. Together, these data suggest that 

attention can bias motor responses and can impact behavioral responses at high contrasts without 

modulating early sensory processing as indexed by the P1 (see Figure 4). 

 

Finally, we obtained the contrast level of the uncued stimulus that produced no LRP modulations 

(termed here as C-intercept) for each contrast level of the cued stimulus. As expected, the C-

intercept increased as the cued contrast increased (main effect of cued contrast on C-intercept: 

F(4,76) = 11.09, p < 0.001), reflecting the fact that higher contrasts of the uncued stimulus were 

needed to compete with a cued stimulus of a given contrast (mean C-intercept values = 12.40, 

20.57, 33.34, 40.14, and 60.79% uncued contrast for 0%, 5%, 10%, 20%, and 40% cued 

contrasts, respectively). Note that we could not estimate the C-intercept values for cued contrast 

levels of 80%-100% because the uncued-LRPmax values were negative (i.e., the uncued stimuli of 

100% contrast could no longer compete with the cued stimuli). Note that the C-intercept values 

were much higher than the actual uncued contrasts, showing the additional influence of the 

presence of a cue on inducing motor bias.  

 

Discussion 

 

The present study investigated the relationship between the attentional modulations of two well-

known neural markers for visual information processing-- the P1 component and the alpha band 

activity – and changes in perceived contrast and response bias. While attention increased the 

multiplicative response gain (or the slope) of P1-based CRFs, it also shifted the baseline offset of 

the alpha-based CRFs. Quantitative linking models suggest that the multiplicative response gain 

of the P1-based CRFs could account for the increase in perceived contrast only when the cued 

stimuli were rendered at low-to-mid-level contrasts. Notably, the range of contrasts where P1 

modulations correspond to changes in perceived contrast fall in a similar range to previous 

demonstrations of a link between P1 amplitude and contrast appearance 75. In contrast, the 

baseline-offset of the alpha-based CRF tracked shifts in the baseline-offset of psychometric 

functions, consistent with a response bias in favor of the cued stimulus when contrast was very 

low or 0% 11,18. This shift in baseline offset of the alpha band activity could also explain response 

bias driven by high stimulus uncertainty specifically when both the cued and uncued stimuli 

were rendered at high contrasts 22. Importantly, the modulations of the LRP tracked both types of 
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response bias (at 0% and at the highest standard contrast levels), which occurred without any 

attentional gain modulation of the P1 amplitude.  

 

The current P1 data and the accompanying modeling results are consistent with a theory 

proposed in a previous study that the gain amplification of the early visual response can account 

for the effect of attention on the subjective appearance of visual stimuli 29,69 . In addition, we 

found that gain amplification of the P1 and its contribution to changes in contrast appearance 

were significant only across a specific range of contrasts values for the competing, uncued, 

stimulus. These observations are consistent with the idea that the gain amplification of sensory 

responses depends on the strength of bottom-up stimulus inputs (or the contrast of the competing 

stimulus in our case) 102–104.  

 

We found that attention selectively increased the response gain of the P1-based CRF. Response 

gain of early visually evoked signals, like the P1 component and the steady-state visually evoked 

potential (SSVEP), has been consistently observed across many studies where subjects 

performed visual detection and discrimination tasks 39,48,49,55,58,61–63,72,80,105–107. The consistency in 

the response gain modulations observed across these studies, as well as in the present study, 

suggests that the response gain of the early sensory response is a common neural mechanism that 

mediates the effects of attention on perceptual performance and on the appearance of visual 

stimuli. Interestingly, reductions in response gain of early sensory responses have been shown to 

underlie sensory and attention deficits in clinical populations, such as schizophrenia, 

neurofibromatosis, and amblyopia 108–112. Based on these results and our recent findings, it is 

possible that these patients perceive the world in a manner that is different from the healthy 

populations due to the reduced influence of attention on gain amplification of early sensory 

processing. 

 

We also observed different patterns of cue-induced modulations in posterior occipital alpha-band 

activity that was contralateral to the target of interest. This kind of alpha band modulation has 

been previously used to track the allocation of spatial attention following endogenous and 

exogenous cues 79,81–94,98,99. The reduction of alpha amplitude, which is thought to reflect 

increased cortical excitability, has also been associated with an increase in the intensity of 

stimulus inputs and selective attention, and behavioral performance in perceptual decision-

making tasks 49,79,81–94,98,99,113.  Moreover, the topographic patterns of alpha reduction contain 

information about the attended location even in the absence of visual stimuli 79,84,86,89–91,114–116. 

Consistent with these studies, recent studies have found that attention shifted the baseline offset 

of alpha-based CRFs where no visual stimuli were presented 22,74. That said, we found that the 

magnitude of baseline modulations of the alpha-based CRFs was unaffected by the contrast level 

of the paired stimuli.  

 

Interestingly, the overall pattern of the alpha band data observed here is highly similar to the 

pattern of blood oxygenation level dependent (BOLD) activity observed in similar tasks. This is 

consistent with the idea that alpha band activity is highly correlated with modulations of the 

BOLD response recorded in human visual cortex 117,118. Specifically, many previous studies 

using functional magnetic resonance imaging (fMRI) have shown that spatial attention induces 

an additive shift in the baseline response of the BOLD CRF in a manner similar to the attentional 

modulation of the alpha-based CRF 38,49,54,65–67, but see the effect of feature-based attention on 
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fMRI activity 126). Consistent with our present study, attentional modulations of BOLD CRFs 

were unaffected by the contrast level of the paired or non-target stimulus67. Previous fMRI 

studies have also shown that baseline shifts of BOLD CRFs failed to explain multiplicative 

response gain (the slope) of the hypothetical neural activity needed to account for attention-

induced perceptual benefits in variants of attentional-cueing contrast discrimination tasks 38,55. 

Note that most studies that reported the attention-induced baseline-offset shifts in the CRFs 

based on alpha band and fMRI activity used endogenous cues to guide attention. However, we 

used exogenous cues in the present study. Thus, changes in the baseline offsets in the alpha-

based CRFs in our study could also reflect bottom-up stimulus processing or visual priming 

associated with the peripheral cues. Related to this aspect, studies have argued that changes in 

visual appearance could be due to low-level sensory interactions between the cue and the 

stimulus, independent of an attention effect 32. In this respect, the observed changes in alpha 

band activity could in part reflect these low-level sensory interactions. That said, some of these 

alpha changes are likely of attentional nature given that recent studies have found similar 

lateralized alpha activity using auditory cues 98,119. 

 

Our modeling results of the alpha data suggest an alternative account in which shifts in the 

baseline offset of neural CRFs might instead mediate preparatory attention and the motor-related 

processes that give rise to response bias. In line with our modeling results, reductions in alpha 

amplitude have been associated with modulations of post-perceptual processing such as changes 

in decision criterion, confidence, and visual awareness, but not changes in perceptual sensitivity 
74–79,120,121. Counter to this perspective, a recent study argued that changes in alpha band activity 

do indeed account for changes in subjective contrast appearance 68. However, unlike the present 

and other studies that have used an exogenous cue to study changes in appearance, this recent 

study used an endogenous cue under the assumption that there should be relatively less 

attentional capture and response bias driven by an endogenous compared to an exogenous cue 68. 

That said, subjects might still have been more aware of the presence of the cue and the cued 

stimulus 22,31–34. Accordingly, this increase in visual awareness, which has also been linked to 

weak alpha amplitude, could result in response bias without changing visual appearance per se 
18,31–35,49,76–78. This recent study also did not systematically map out modulations of the alpha 

band activity with changes in appearance and response bias across a full range of stimulus 

contrast68. Therefore, it is difficult to assess if the reported modulations of alpha band activity 

were associated with changes in subjective contrast perception or cue-induced response bias.  

 

Taken together, our results suggest that the different types of neural computations that support 

visuospatial attention occur at different stages of visual information processing and they underlie 

different perceptual and behavioral effects of attention. While an increase in the multiplicative 

response gain modulations of the early visually evoked potential supports attention-induced 

changes in perceived contrast, additive shifts of alpha band activity correspond to biases driven 

by the attentional cue. Moreover, under circumstances where there is prominent response bias, 

attention can directly trigger a bias in motor responses without modulating the processing of 

early sensory inputs.  

 

Material and Methods  

 

Subjects 
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We recruited 22 neurologically healthy male and female human observers who had normal or 

corrected-to-normal vision from the University of California, San Diego (UCSD). In accord with 

the local institutional review board at UCSD, they provided written informed consent before 

participating in our study. Two subjects terminated their participation before completing the 

experiment, resulting in 20 subjects included in the final analysis (9 female, 18-25 years old, 2 

left-handed).The sample size was within the typical range used in these types of studies in which 

attentional modulations of EEG and psychophysical data are measured across different contrast 

levels 39,48,49,55,58,62,63,80,122. 

 

Stimuli and task  

 

We presented stimuli using the Psychophysics Toolbox 123,124 and MATLAB (MathWorks, 

Natick, MA) run on the personal computer with the Windows XP operating system. Participants 

were seated 60 cm from the gray background CRT monitor (34.51 cd/m2, 120 Hz refresh rate) in 

a dimly lit sound-attenuated room where they performed the comparative contrast judgment task 

(Figure 1; see ref22). In this task, they were asked to judge the relative apparent contrast of two 

Gabor stimuli (spatial frequency = 3 c/°, standard deviation of the Gaussian envelope = 2.18°, 

stimulus radius = 6.53°) that were presented on the left and right of the central fixation point in 

the left and right lower quadrants (eccentricity = 13.74°). They reported whether the stimulus 

with the higher contrast was tilted 45° clockwise (CW) or counterclockwise (CCW) from 

vertical. They responded by pressing one of four buttons on the keyboard, which corresponded to 

a CCW left stimulus, a CW left stimulus, a CCW right stimulus, and a CW right stimulus with 

their left middle, left index, right index, and right middle fingers, respectively. To examine the 

impact of covert spatial attention on subjective reports about the perceived stimulus contrasts, we 

presented an exogenous cue, which was a horizontal black bar (0.36° × 3.63° length × thickness) 

located to the left or right of fixation 2.04° above the outer edge of the cued stimulus. The cue 

was presented for 50 ms followed by a 50-ms blank screen and the two oriented Gabor stimuli, 

which were presented for 40ms (50% left-cued and 50% right-cued trials). The contrast values of 

the two stimuli were fully-crossed and independently drawn from seven contrast levels (0%, 5%, 

10%, 20%, 40%, 80%, 100% Michelson contrasts). There was no response deadline. Following a 

button press, there was an intertrial interval (ITI) of 300-800 ms. Trial order was pseudo-

randomized so that subjects were unable to predict the cued side or the contrast of each stimulus. 

Each subject completed 2940 trials in total. There were 30 trials for each combination of cue 

locations (left or right), left stimulus contrasts (7 levels from 0%-100%), and right stimulus 

contrasts (7 levels from 0%-100%). 

 

Analysis of behavioral data 

 

Based on the level of stimulus contrast and the cued location, the probability that each stimulus 

of interest was reported as having a higher contrast was evaluated based on the contrast level of 

that stimulus, the contrast level of stimulus contrast on the opposite side (i.e., the paired 

stimulus), and the cued location (Figures 2-3). We labeled the stimulus of interest as the ‘test’ 

stimulus and the paired stimulus as the ‘standard’ stimulus. Then, we computed the probability 

that the test stimulus was reported as having a higher contrast, termed here as p(test > standard). 

We computed this probability separately for cued and uncued test stimuli, as well as when the 
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test stimulus was paired with different contrast levels of the standard stimulus. We used the 

number of trials in which the reported orientation of the stimulus of interest was ‘correct’ as a 

numerator while using the number of all trials as a denominator. For the test stimulus of 0% 

contrast, we randomly labeled the direction of the orientation offset (CW or CCW) prior to the 

start of the experiment. This was done because no physical stimulus was actually presented in the 

0% contrast stimulus condition. The “correct” responses in this condition were then determined 

based on a match to these randomly assigned labels.  The effect of exogenous cues on guessing 

and baseline-offset response bias was then determined by the difference between the probability 

of choosing a cued versus an uncued test stimulus on these 0% contrast stimulus conditions. 

 

Next, we fitted the probability values across different test contrasts separately for each standard 

contrast and each attention condition (cued/uncued), separately for each subject, with a variant of 

the Naka–Rushton equation using a maximum likelihood estimation method:  

 

P(c)= Gr * Cq / (Cq+Gc
q) + B,    (Equation 1) 

 

where P(c) is p(test > standard) for a given test contrast value. Here, B is the baseline offset 

(indexing response bias), Gc is the contrast gain factor that controls the horizontal shift of the 

curve (indexing perceived appearance), Gr is the response gain factor that controls the vertical 

shift of the psychometric function, and q is the exponent fixed at 2 133. In addition, we 

constrained the fit so that 0 ≥ Gr ≤ 1, 0 > Gc < 100, P(100) ≤ 1, and P(0) ≥ 0. We did not use 

another version of the Naka–Rushton function, termed a baseline-input model 23, because our 

past work using this formula showed that it yielded worse fits compared to the baseline-input 

model predicted B values, which were out of the realistic range (that were ≫1), making it 

difficult to interpret the results.  

 

Next, we used two-way repeated-measures ANOVAs to test the main effects of attention and 

contrast values of standard stimuli as well as interactions between these factors on the parameters 

B, Gr, and Gc. Then, we used post-hoc pairwise t-tests to examine differences between attention 

conditions (test cued/standard cued) for each standard contrast (two-tailed) and corrected for 

multiple comparisons using the Holm-Bonferroni method.  

 

EEG recording and reprocessing  

 

EEG data were recorded with a 64 + 8 channel Biosemi ActiveTwo system at a 512 Hz sampling 

rate. We kept signal offsets below 20 uV relatively to the CMS-DRL reference. While their EEG 

signals were being recorded, subjects were asked to minimize blinks, eye movements, and head 

movements. EEGLAB v2019.1 and in-house MATLAB (R2020a) scripts were used to 

preprocess the EEG data offline. First, the continuous EEG data were re-referenced to the mean 

of the left and right mastoid electrodes, followed by the application of 0.25-Hz high-pass and 55-

Hz low-pass Butterworth filters (third order). Then, we segmented the continuous EEG data into 

epochs extending from -1000 ms before to 2,000 ms after the cue onset. Next, we used 

independent component analysis 125,126 to reject prominent eye blink and muscle artifacts and 

then discarded epochs contaminated by residual eye blinks and saccades (more than ±50-200 μV 

deviation from zero, with thresholds chosen for each individual subject), horizontal eye 
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movements (more than ±50-75 μV deviation from zero), muscle activity, or drifts using threshold 

rejection and visual inspection (8.8946% of trials were rejected, ± 9.2797% SEM).  

 

Early sensory evoked response  

 

Following the EEG preprocessing steps described above, we baseline-corrected the artifact-

corrected EEG data to their mean EEG response from -200 to 0 ms relative to the cue onset. We 

then realigned the epoched EEG data to the onset of the stimulus. The baselined EEG data were 

then sorted into the following 98 conditions: left vs. right cued stimuli (2 conditions) x 7 cued 

contrast levels (0%-100%) x 7 uncued contrast levels. Next, we averaged the stimulus-locked 

EEG data in each of these conditions to obtain the event-related potentials. Note that at this step, 

the event-related potentials (ERPs) contained both cue-evoked and stimulus-evoked responses. 

In order to isolate the stimulus-evoked responses related to the cued stimuli from the cue-evoked 

responses, we subtracted the ERPs from the cue-only trials (0% contrast) from the ERPs related 

to the cued stimuli of all contrast levels (0%-100%) as shown in Figure 4a (top row). We also 

extracted the stimulus evoked responses related to the uncued stimuli of different contrast levels 

by subtracting the ERPs in trials where the uncued stimulus was rendered at 0% contrast. These 

steps allowed us to isolate a P1 component peaking ~60-90ms after the stimulus onset at 

contralateral posterior occipital electrodes (Figures 4a-b; O1, PO3, PO4, P1, and P3 for left 

channels and O2, PO4, PO8, P2, and P4 for right channels). Next, we computed the mean 

amplitude of the P1 component over 60-90ms across contralateral posterior occipital electrodes 

in each cue and contrast condition from individual subjects and then plotted them as a function of 

test contrast. This resulted in a P1-based CRFs for each attention condition and standard contrast 

level (Figure 4), which were then fit with the Naka–Rushton equation (Equation 1) to determine 

if these P1-based CRFs underwent contrast gain, multiplicative response gain, or changes in 

baseline offset (Figures 2d-f). For individual attention conditions and standard contrast levels, 

this fitting procedure was performed using MATLAB’s “fmincon” function to minimize the root 

mean squared error between the data and the fit function with 3 free parameters including the 

contrast gain (Gc),  response gain (Gr), baseline-offset parameters (B). Here the exponent q of the 

Naka–Rushton equation was fixed at 2 127. The guess values for Gr, Gc, and B were 1% contrast, 

the difference between the maximum and minimum values of the P1 amplitudes across all test 

contrast levels, and the minimum value of the P1 amplitude, respectively. Note that the Gc and 

Gr parameters could in principle exceed the realistic range of stimulus contrast (0 –100% 

contrast), making it difficult to interpret the results. Therefore, instead of directly comparing 

these two parameters, we obtained parameters that indicated the contrast at which neural 

responses reached half their maximum (the semi-saturation constant; C50) and the maximum 

neural responses relative to baseline (Rmax) to track changes in contrast gain and response gain, 

respectively. Finally, we used two-way repeated measures ANOVAs to test the main effect of 

attention (cued vs. uncued), the main effect of standard contrasts (0%-100%), and their 

interaction on the B, C50, and Rmax. 

 

Alpha band activity 

 

In order to assess cue-induced changes in in posterior alpha band activity, we wavelet-filtered the 

artifact-corrected and epoched EEG data using a Gaussian filter centered at 9-12 Hz with a 

fractional bandwidth of 0.2 Hz and computed the absolute value of the wavelet coefficients to 
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obtain a measure of amplitude 128–130. Next, we sorted the data into each of the 98 experimental 

bins. For each of these experimental bins, we then computed the mean percent change in alpha 

amplitude relative to baseline activity from 200-600 ms before the cue onset (or 300-700 ms 

before the stimulus onset) using the following equation: 

 

Percent signal change =  

(alpha amplitude - baseline activity) x 100% / baseline activity    (Equation 2) 

 

To obtain alpha-based CRFs, we then took the averaged values of the alpha data from 100-

700ms after the cue onset (0-600ms after the stimulus onset) across 5 contralateral posterior 

occipital electrodes (O1, PO3, PO4, P1, and P3 for left channels and O2, PO4, PO8, P2, and P4 

for right channels) and plotted them as a function of test contrast for each attention condition and 

each standard contrast level in individual subjects (Figure 5). The alpha-based CRFs were then 

fit with a Naka–Rushton equation (Equation 2). The fitting routine was similar to that conducted 

in the P1 data analysis except that the guessing value for Gr was determined based on the 

difference between the minimum and maximum values of the post-cue alpha activity across all 

test contrast levels due to the fact that the alpha band activity got smaller as a function of test 

contrast. Finally, we used two-way repeated measures ANOVAs to test the main effect of 

attention (cued vs. uncued), the main effect of standard contrasts (0%-100%), and their 

interaction on the B, C50, and Rmax. 

 

Lateralized readiness potential  

 

In addition to examining the effects of attention on the P1 component and alpha band activity, 

we also monitored changes in the LRP, which has been used as an index for motor preparation 
41–45. First, we obtained the mean ERPs from the central posterior electrodes (C1, C3, C5, CP1, 

CP3 for left channels and C2, C4, C6, CP2, and CP4 for right channels) (Figure 7). Then, we 

subtracted the ERPs from the electrodes ipsilateral to the cue from the ERPs from the 

contralateral electrodes to obtain the LRP which emerged from ~500-1120 ms after the stimulus 

onset. The negative differences in the LRP are usually interpreted to indicate motor bias toward 

the cue location, whereas a positive difference reflects motor-related responses toward the 

uncued location. To examine the effects of cued and uncued contrast as well as their interaction 

on the LRP data, we performed a two-way repeated measures ANOVA on the LRP differences 

averaged across a window extending from ~500-1120ms window. In addition, we performed 

post-hoc pairwise t-tests for individual cued and uncued contrast conditions to test if the mean 

LRP differences were significantly above or below zero to determine the direction of motor bias 

toward either the cued or uncued location.  We corrected for multiple comparisons using the 

Holm-Bonferroni method. 

 

We also plotted the LRP differences as a function of uncued contrast for individual cued contrast 

levels to examine how motor bias to cued stimuli of different contrast levels were mediated by 

the contrast of the competing stimulus (i.e. the uncued stimulus on each trial). We then fit the 

LRP-based CRFs for individual cued contrast levels using a Naka–Rushton equation (Equation 

1) and MATLAB’s “fmincon” function. Then, we estimated the baseline parameter (B) – or the 

degree of bias toward the cued location when there was no competing stimulus – and the 

maximal LRP response at the 100% uncued contrast level  (uncued-LRPmax ), and the uncued 
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contrast that produced no LRP modulations (C-intersect).  Note that we could not estimate C-

intersect for cued contrasts of 80% and 100% because they were beyond the realistic range of 

responses (>>100%). Next, we used one-way repeated measures ANOVAs to examine the main 

effect of uncued contrast on B, uncued-LRPmax , and C-intersect. In addition, we performed 

paired t-tests to determine if the B and uncued-LRPmax parameters were below or above zero to 

determine the direction of response bias towards cued vs. uncued locations. Multiple 

comparisons were corrected using the Holm-Bonferroni method. 

 

Modeling behavioral data using EEG data 

 

We examined how different patterns of attentional modulations, specifically the multiplicative 

response gain of the P1-based CRFs and the contrast gain of the alpha-based CRFs could be 

linked to the attentional effects in our psychometric data. We recently demonstrated that 

quantitative models assuming changes in the response gain of hypothetical neural CRFs can 

capture attention-induced changes in contrast appearance via modulations in the contrast gain 

factor (Gr) of the psychometric data. However, this did not account for the baseline-offset in 

response biases 22. On the other hand, models assuming shifts in the baseline offset of the 

hypothetical neural CRFs could better account for cue-induced changes in the baseline-offset 

response bias in the behavioral data 22. Based on these results, we hypothesized that the 

multiplicative gain of the P1-based CRFs should account for the leftward shifts of the 

psychometric functions which occurred predominantly when the standard stimuli were rendered 

at  low-to-mid-level contrasts. On the other hands, modulations of baseline offsets in the alpha-

based CRFs should better account for changes in the baseline-offset response bias in the 

behavioral data 22. 

 

To test these predictions, we adopted a quantitative modeling method based on signal detection 

theory (SDT (Cutrone et al., 2014; Itthipuripat et al., 2019a)). Here, we estimated p(test > 

standard) based on the amplitude difference between neural responses (either the P1 data, the 

alpha data, or both) evoked by test and standard stimuli that can be drawn from the measured 

neural CRFs given a certain level of hypothetical neuronal noise (or trial-by-trial variability) 

(Figure 6). To do this, we first obtained the best fit parameters of the Naka–Rushton equation, 

including Gr, Gc, and B, which described the P1-based and the alpha-based CRFs of individual 

subjects. Next, we resampled subject labels with replacement 10,000 times and obtained the Gr, 

Gc, and, B parameters averaged across these resampled subjects labels and in each iteration, we 

used these average values to generate a hypothetical P1-based and alpha-based CRF in order to 

predict the patterns of the behavioral data. 

 

For the P1-based model, we collapsed the Gc and B values across different attention and standard 

contrast levels so that the same Gc and B values were shared across all of these conditions and 

could not contribute to changes in the predicted behavioral results. On the other hand, different 

Gr values obtained from the original fitting routine were assigned to different attention and 

standard contrast conditions. These steps ensured that the pattern of attentional modulations in 

the predicted behavioral results were selectively due to changes in response gain of the P1-based 

CRFs and were not influenced by spurious differences in other factors (B or Gc) that may occur 

in single-subjects. In each resampled iteration, the simulated P1-based CRFs were normalized 

using the following formula:  
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Normalized Data = Data - min(Data) / max(Data) - min(Data),   (Equation 3) 

 

where min(Data) and max(Data) were the minimum and the maximum values of the simulated 

P1-based CRFs across all attention and standard contrast conditions.  

 

For the alpha-based model, we only collapsed the Gc parameters across the different attention 

conditions and standard contrast levels since there were neither main effects of these factors nor 

their interaction on Gc. That said, different B and Gr values were directly obtained from the 

original fitting routine and assigned to different attention and standard contrast conditions. Here, 

both B and Gr were allowed to be different across experimental conditions because the baseline 

shifts in the alpha-based CRFs were the results of the baseline offset (B) becoming more 

negative with attention and the response again (Gr) becoming smaller with attention (i.e. Gr 

became less negative so the negative slope was less steep). Since the amplitude of the alpha band 

activity was generally reduced as a function of attention and stimulus contrast, we flipped the 

sign of the simulated alpha-based CRFs and normalized the data using Equation 3. This sign-

flipping step allowed us to perform the linking model in the similar way as the P1-based model 

and to combine the P1 and alpha data to examine the joint contribution of the attentional 

modulations of these two different electrophysiological signals to predict the effects of attention 

on the behavioral data. Finally, for the combined P1 and alpha model, we computed the sum of 

the normalized P1-based and alpha-based CRFs separately for individual attention conditions 

and standard contrast levels. 

 

For all of these models, in each of the 10,000 iterations we simulated 1,000 trials in which 

responses to the standard and test stimuli of individual contrasts and attention conditions were 

randomly drawn from a normal distribution with means obtained from the P1-based CRFs, the 

alpha-based CRFs, or the combined data. Neuronal noise, or the standard deviation of the normal 

distribution, was assumed to be the same across all standard and test contrast levels as well as 

across the different attention conditions. Assuming a maximum likelihood decision rule, p(test > 

standard) was estimated based on the probability at which the test stimulus–related neural 

response was higher than the standard stimulus–related response in the 1,000 stimulated trials. 

For each of 10,000 subject-label resampling iterations, we computed the goodness of fit (R2) for 

each model and plotted the median R2 values and the resampling distributions of these different 

models using the violin plot function 131  to compare their performance (Figure 6). Note that we 

could directly compare R2 values of different models because all of these models only had 1 free 

parameter, which was the neuronal noise shared across all standard and test contrast levels as 

well as across the different attention conditions.  
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Figure Legends 

 

Figure 1. Task and stimuli. (a) The attention-cueing comparative contrast judgment task. 

Subjects were tasked with reporting the orientation of the stimulus they perceived as having a 

higher contrast. (b) Depiction of all contrast pairs in the cue-left condition. Note that the same 

fully crossed contrast manipulation was also used in the cue-right condition.  

 

Figure 2. Predictions. (a-c) Alternative predictions for the behavioral results. (a) Attention 

increases the perceived contrast of visual stimuli via a leftward shift in the behavioral contrast 

response functions. In this scenario, attention should only decrease the contrast gain factor (Gc) 

and there should not be any changes in the baseline offset (B) or response gain (Gr). (b) Attention 

induces baseline-offset response bias (B; additive upward shift) without changes in a leftward 

shift of the CRFs (i.e. no change in Gc). This corresponds to a response bias for the cued stimulus 

without a change in perceived contrast. (c) Attention could induce changes in both subjective 

appearance and response bias as indexed by changes in both Gc and B, respectively. (d-e) 

Different patterns of attentional modulations in the neural contrast response functions (CRFs) 

measured over visual cortex. Since the estimated Gr and Gc parameters could extend beyond the 

realistic range of stimulus contrast (>100%),  the response gain and contrast gain of neural CRFs 

were reparameterized as the maximal response (Rmax or the response at 100% contrast minus the 

baseline offset) and the semi-saturation contrast (C50 or the contrast at which the response 

reached half maximum), respectively. (d) Attention increases neural contrast sensitivity or 

contrast gain as indexed by changes in the semi-saturation contrast factor (C50). Alternatively, 

attention could increase the multiplicative response gain or the slope of the neural CRFs as 

indexed by the maximum neural response (Rmax). Lastly, attention could shift the baseline offset 

of the neural CRFs so that overall responses to the cued stimulus are enhanced in a manner that 

is independent of stimulus contrast. One past modeling study from our group suggests that the 

response gain mechanism (panel e) is sufficient to account for psychophysical changes in 

contrast appearance (panel a). However, a change in the baseline of neural CRFs (panel f) is 

required to explain changes in the behavioral baseline-offset response bias (panel b) 22. That said, 

there is still no neural evidence that validates these modeling predictions. 

 

Figure 3. Behavioral data. (a) The probability that subjects reported the test stimulus (i.e., the 

stimulus of interest, either cued or uncued) as having a higher contrast than the standard stimulus 

(i.e., the paired cued or uncued stimulus) plotted as a function of test contrast for all possible 

standard contrast levels. We used the parameter B to index the baseline-offset response bias that 

the cued stimulus had a higher contrast than the uncued stimulus even when the cued stimulus 

was not physically present (i.e., presented at 0% contrast, as in 18,22 ). (b) Overall, we found a 

significant attention-induced increase in response bias when the contrast of the standard was 

relatively low, with a decreasing effect of response bias as the contrast of the standard increased. 

(c) The contrast gain parameter (Gc) controls the horizontal position of the psychometric 

function, which we used to index changes in contrast appearance. Attention reduced Gc, as 

indexed by a leftward shift in the psychometric functions, which should correspond to an 

increase in perceived contrast, predominantly at low-to-mid-levels of standard contrast. (d) The 

response gain parameter (Gr) controls the slope of the psychometric function. Note that Gr and B 

are conflated because behavioral response probabilities could not exceed 1. At low-to-mid level 

standard contrasts, there were large attentional effects on B (panel b). Thus, this increase in B 
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must also lead to a decrease in slope, or Gr, given the fixed ceiling of the psychometric response 

functions. Instead, attention increased Gr without changing B at higher contrasts (ie., 80%-

100%). Error bars represent the within-subject standard errors of the mean (±1 SEMs). Att***, 

Ctt**, and Att x Ctt*** represent the significant main effects of attention, standard contrast, and 

the interaction between the two factors, respectively (all p’s <0.001). 
 

Figure 4. The P1 component across cue and standard contrast conditions. (a: top row) The non-

subtracted ERPs from the contralateral posterior occipital electrodes (see the red circle on the 

right hemisphere of the head model in (b)). These non-subtracted ERPs contained both cue-

evoked and stimulus-evoked responses. Note that in these plots the cue onset and stimulus onsets 

were at -100 ms (vertical black dotted lines) and 0 ms, respectively (vertical black solid lines). 

The data were baseline-corrected from -200 to 0ms before the cue onset. (a: bottom row) The 

extracted stimulus-evoked potentials obtained after subtracting the cue-only condition (the 

leftmost panel from the top row of panel a) from all other stimulus contrast conditions. We 

observed a P1 component peaking ~60-90 ms with its amplitude increasing as a function of the 

contrast of the test stimulus. Moreover, attention increased the P1 amplitude at high test stimulus 

contrast levels. All shaded areas represent within-subject SEMs. (b) Topographical maps of the 

P1 amplitude averaged across ~60-90ms post-stimulus. The rings mark each of 5 electrodes over 

the contralateral/ipsilateral posterior occipital sites where the P1 (Figure 4) and alpha data were 

analyzed (Figure 5; red rings) and on the contralateral/ipsilateral central sites where the LRP data 

were analyzed (Figure 8; blue rings). (c) The P1-based contrast-response functions (CRFs) 

plotted separately for the cued and uncued conditions across different levels of standard contrast. 

Attention enhanced the multiplicative response gain of the P1 data. (d-f) The corresponding best-

fitting parameters from the NR function. (d) There were no differences in the baseline offset. (e) 

Attention selectively enhanced response gain indexed by an increase in the maximum response 

of the P1 component (Rmax), which were relatively more robust  at low-to-mid-level standard 

contrasts. (f) There were no differences in the semi-saturation contrast level or the level at which 

the P1 amplitude reached half maximum (C50). Error bars represent the within-subject SEMs 

where the mean values between attention conditions were removed before computing the 

standard errors.  Att* and Att x Ctt* represent the significant main effect of attention (p <0.05) 

and the trending interaction between attention and standard contrast, respectively (p = 0.053). 

n.s.= non-significant. 

 

Figure 5. Post-cue reduction in alpha band activity. (a) Attentional cues induced a reduction in 

alpha amplitude in posterior occipital electrodes that were contralateral to the stimulus of 

interest. Note that in these plots, the cue onset and stimulus onsets were at -100 ms (the vertical 

black dotted lines) and 0 ms (the vertical black solid lines), respectively. The alpha data were 

baseline-corrected from -600 to -200 ms before cue onset. (b) Topographical maps showing the 

difference in the alpha  amplitude between the cued and uncued conditions at different test 

contrast levels. (c) Alpha amplitude plotted as a function of test contrast separately for different 

attention conditions and levels of standard contrast. Attention induced a shift in the baseline 

offset of alpha band oscillations, regardless of standard contrast. (d-f) The corresponding best-fit 

parameters from a Naka-Rushton function. (d) Overall, attention decreased the baseline offset 

(B) of the neural CRFs, consistent with a reduction in the amplitude of alpha oscillations. The 

degree of baseline modulation was comparable across standard contrasts. (e) Attention-related 

reductions in alpha amplitude became smaller as test contrast increased (e.g., pinching 

modularity patterns at 100% test contrast in panel a), leading to a smaller negative slope of 
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alpha-based CRFs in the cued compared to the uncued condition (i.e., Rmax became less negative 

with attention). However, Rmax became more negative with increasing standard contrast. (f) 

There were no differences in the semi-saturation constant (C50) across test or standard contrast 

levels. Error bars represent within-subject SEMs where the mean values between attention 

conditions were removed before computing the standard errors. Att***and Ctt** represent the 

significant main effects of attention (p’s<0.001) and standard contrast, respectively (p<0.01). n.s. 

= non-significant.  

 

Figure 6. (a) Predicting the effects of attention on behavioral responses based on attentional 

modulations of neural data. (top row) Modeling based on attentional gain modulations of the 

early visual P1 component better captured the psychometric data overall, but did not predict 

changes in the baseline offset at low standard contrast levels (0-5%) and did not capture the 

attention effect on the behavioral data at the 100% standard contrast. (middle row) In contrast, 

attention-induced changes in alpha band activity tracked large modulations in the baseline offsets 

of the psychometric functions across all standard contrast levels. (bottom row) Modeling that 

used both P1 and alpha data did the best at predicting the pattern of attentional modulations of 

the psychophysical data. (b) The violin plots showing the goodness of fit of the resampled 

modeling predictions based on the P1 data, the alpha data, and the combination of the P1 and 

alpha data (i.e., the combined model), respectively. (c) Same as (b) but data presented separately 

for individual standard contrast levels. 

 

Figure 7. The lateralized readiness potential (LRP). (a) The LRP data from lateral central 

electrodes (see the blue ellipses in Figure 4b) time-locked to stimulus onset. Overall, the LRP 

was more negative in the electrodes contralateral to the cued hand (blue) compared to the 

electrodes ipsilateral to the cued hand (red), which is typically interpreted as more response bias 

towards the cue hand. The negative bias of the LRP toward the cued hand got smaller as the 

contrast of the uncued stimulus increased. This bias even became positive at high levels of 

uncued contrast, possibly reflecting response bias to the uncued hand (i.e., there was more 

overlap between the red and blue ERP traces with increased uncued contrast moving from the 

left to the right panels). (b) Topographical maps of the cued minus uncued conditions averaged 

from 500-1120 ms after stimulus onset. As the contrast of the uncued stimulus increased, the 

lateralization of the LRP towards the cued hand became smaller and the sign of the LRP 

modulation eventually flipped towards the uncued hand.  (c-d) The cued minus uncued data from 

the contralateral to the cued hand plotted as a function of the contrast of the cued and uncued 

stimuli. As the contrast of the cued stimulus increased, higher contrast levels of the uncued 

stimulus were needed to compete for motor-related activity. (e-f) The corresponding best-fitting 

parameters from a NR function. (e) The baseline offset (B) values of the LRP-based CRFs were 

negative across all levels of cued contrast, reflecting response bias towards the cued hand when 

the cued stimulus of any contrast was presented alone (i.e., paired with the uncued stimulus of 

0% contrast). (f) The maximal LRP response of the LRP-based CRFs (i.e., responses to the 

uncued contrast of 100% or uncued-LRPmax ) got smaller as a function of cued contrast, 

reflecting more influence of the cued stimulus competing with the uncued stimulus of 100% 

contrast. Here, the positive and negative values of uncued-LRPmax mean response bias towards 

the uncued and cued hand, respectively. When the cued contrasts were 0-20%, they were not 

strong enough to compete with the uncued stimulus of 100% contrast, thus producing the 

positive uncued-LRPmax values. However, the uncued-LRPmax values for 80% and 100% cued 
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contrasts were negative, indicating that the cued stimuli of 80% and 100% contrasts could 

compete with the uncued stimuli of 100% contrast for motor responses. At 40% cued contrast, 

there was no significant motor bias towards either cued or uncued hand (uncued-LRPmax was not 

significantly different from 0), showing comparable influence of the cued stimulus of 40% and 

the uncued stimulus of 100% at competing for motor responses. (g) The uncued contrast that 

produced no LRP modulations (C-intersect, where the LRP-based CRFs hit 0) increased as a 

function of cued contrast, suggesting that the uncued stimulus had to be higher contrast to 

effectively compete for motor-related responses associated with cued stimuli rendered at higher 

contrasts. Note that we could not estimate C-intersect for the cued contrasts of 80% and 100% 

because they were beyond the realistic range or responses (>>100%). All shaded areas and error 

bars represent the within-subject SEMs.  *, **, and *** showed significant differences from zero 

with p’s < 0.05, <0.01, and <0.001, respectively (2-tailed, Holm-Bonferroni-corrected). Ctt***’s 

represent the significant main effects of cued contrast with p’s <0.001. n.s. = non-significant.  
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