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Abstract
Motivated by cutting-edge applications like cryo-electron microscopy (cryo-EM), the
Multi-Reference Alignment (MRA) model entails the learning of an unknown signal
from repeated measurements of its images under the latent action of a group of isome-
tries and additive noise of magnitude σ . Despite significant interest, a clear picture
for understanding rates of estimation in this model has emerged only recently, partic-
ularly in the high-noise regime σ ≫ 1 that is highly relevant in applications. Recent
investigations have revealed a remarkable asymptotic sample complexity of order σ 6

for certain signals whose Fourier transforms have full support, in stark contrast to the
traditional σ 2 that arise in regular models. Often prohibitively large in practice, these
results have prompted the investigation of variations around the MRA model where
better sample complexity may be achieved. In this paper, we show that sparse signals
exhibit an intermediate σ 4 sample complexity even in the classical MRA model. Fur-
ther, we characterize the dependence of the estimation rate on the support size s as
Op(1) and Op(s3.5) in the dilute and moderate regimes of sparsity respectively. Our
techniques have implications for the problem of crystallographic phase retrieval, indi-
cating a certain local uniqueness for the recovery of sparse signals from their power
spectrum. Our results explore and exploit connections of theMRA estimation problem
with two classical topics in applied mathematics: the beltway problem from combina-
torial optimization, and uniform uncertainty principles from harmonic analysis. Our
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techniques include a certain enhanced form of the probabilistic method, which might
be of general interest in its own right.

Keywords Multi reference alignment · Cryo electron microscopy · Phase retrieval ·
Uncertainty principles · Fourier analysis · Beltway problem · Combinatorial
optimization · Sparse signal processing · Sample complexity · Probabilistic method
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1 Introduction

1.1 TheMRA Problem

The Multi-Reference Alignment (MRA) problem is a simple model that captures fun-
damental characteristics of various statisticalmodelswith latent group actions. It arises
in various questions across science and engineering such as structural biology [22, 38,
39, 49, 50, 56], image recognition [17, 23, 30, 45], robotics [47] and signal processing
[31, 59]. This problem also serves as a simplification for more complex ones that
feature repeated observations of a signal subject to latent group actions and addi-
tive measurement noise. Such problems include, for example, the three-dimensional
reconstruction of molecules using cryo-electron microscopy (cryo-EM) [6, 40, 53].
Such models have gained salience in recent years with the remarkable growth in the
scope and capabilities of data-intensive procedures in science and technology.

The MRA problem [3, 40, 44] consists in a signal θ : ZL "→ R (equivalently, a
vector θ ∈ RL ), and n independent noisy observations y1, . . . , yn that satisfy

yi = Riθ + σξi , (1.1)

where the Ri -s are isometries of RL , and the random variables ξi are i.i.d. L-
dimensional standard Gaussians N (0, IL), and σ > 0 is the scale of the noise. The
Ri -s are taken random, sampled from the group of cyclic shifts G on RL , and are
independent as random variables from the noise {ξi }i .

The group of cyclic co-ordinate shifts is given by (Rℓθ)k = θk+ℓ (modL), where
(v)k denotes the kth co-ordinate for a vector v ∈ RL . The canonical distribution for
the isometries Ri is uniform on the group G, although other distributions have been
considered [1].

Of course, due to the latent group actions, it is not possible to recover θ exactly.
Instead, our goal is to obtain an estimator θ̃ whose distance to the orbit of θ under the
action of the group G, as defined by

ϱ(θ̃ , θ) := min
G∈G

1√
L
∥θ̃ − Gθ∥2 (1.2)

is typically small with growing number of samples n.
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On a related note, we also define the distance ρ below, which will enable us to
invoke results from the literature on the MRA model.

ρ(θ,ϕ) := min
G∈G
∥θ − Gϕ∥2 (1.3)

Observe that ϱ(θ,ϕ) = 1√
L
ρ(θ,ϕ); so results in the two metrics are simple scalings

of each other by a factor of
√
L .

In this work, we focus on the statistical performance achievable in theMRAmodel.
Of key interest is the dependence on the typical behaviour of ϱ on the quantities n
and σ for the asymptotics n, σ →∞ which are well justified by applications such as
molecular spectroscopy [40, 52]. In this regime, statistical rates of convergence are of
the form

Eϱ(θ̃ , θ) ≤ C(L, s)
σα

√
n

where α is an exponent that critically controls the performance of θ̃ in the regime of
interest [4, 40]. We also keep track of other important quantities such as the dimension
L or the sparsity s of the signal θ but only insofar as they appear in leading terms.
Dual to the above rate, one may consider the sample complexity of θ̃ , which is the
number n of samples required to achieve accuracy ε. Equating the right-hand side of
the above display with ε and solving for n yields a sample complexity of σ 2α/ε2. In
this work, we always achieve parametric rates where the dependence on n is n−1/2

and hence, the sample complexity thus scales as ε−2 in ε. As a result, we refer to σ 2α

as the sample complexity of θ̃ .
While the MRA problem has been mostly attacked using the synchronization

approach [3], it is only recently that it was recognized as a Gaussian mixture model
[4] which has enabled the use of various methods such as the method of moments
[16, 40] and expectation-maximization [11] to recover the signal of interest f . For a
detailed discussion on the likelihood landscape of such models, we refer the reader to
[18, 25, 26, 34].

Using the Gaussian structure of the noise, it is straightforward to write down an
expression for the likelihood function for given observations {y1, . . . , yn}, where the
likelihood function is parametrized by the signal parameter θ . If the density corre-
sponding to θ for an observation y is given by pθ , then we can write

pθ (y) =
1
|G|

∑

R∈G

1

(
√
2πσ )L

exp

(

−∥y − Rθ∥22
2σ 2

)

(1.4)

and the log likelihood corresponding to the data {y1, . . . , yn} as

L(θ) =
n∑

i=1

log pθ (yi ). (1.5)

123



1854 Foundations of Computational Mathematics (2023) 23:1851–1898

The perspective of Gaussianmixturemodels has enabled the discovery of a singular
statistical phenomenon due to the presence of the latent isometries [4, 40]. To recall
this result, we introduce some notation.

We consider vectors in RL as functions mapping ZL to R, and consider ZL in the
standard parametrization 1.7. Let θ̂ ∈ RL denote the (discrete) Fourier transform of
θ , also considered as a function θ̂ : ZL "→ R, where ZL is viewed in the standard
parametrization. Since the signal θ is real, θ̂ is symmetric about the origin. We define
the positive support of θ̂ by

psupp(θ̂) = { j | j ∈ {1, . . . , ⌊(L − 1)/2⌋}, θ̂ j ̸= 0} .

To prohibit θ̂ to scale with the sample size n, it is reasonable to assume that there
exists two positive constants c and c0, such that c−1 ≤ ∥θ∥ ≤ c and |θ̂ j | ≥ c0 for all
j ∈ psupp(θ̂). The group action under consideration is the group of shifts ZL .
We now discuss the minimax lower bound proved in [4], which is also shown to

give the optimal rate. To be precise, the results in [4] are stated in the setting of the
closely related phase-shift model (essentially, a continuous version of the MRA), but
the broad implications of the result are understood to also capture the behaviour of
the MRA model. [4] gives us the following minimax lower bound on the estimation
error.

Theorem 1 [4, Theorem 1] Let 2 ≤ s ≤ L/2. Let Ts be the set of vectors θ ∈ T
satisfying psupp(θ̂) ⊂ [s]. For any σ ≥ maxθ∈Ts ∥θ∥, the phase shift model satisfies

inf
Tn

sup
θ∈Ts

E[ϱ(Tn, θ)] ! σ 2s−1
√
n
∧ 1 , (1.6)

where the infimum is taken over all estimators Tn of θ .

A careful inspection of the proof of this lower bound indicates that it is in fact driven
by specific cancellations of the Fourier coefficients of θ . Indeed, if psupp(θ̂) ⊂ [(L −
1)/2], there exists specific sparsity patterns for the Fourier transform of θ that make
it hard to estimate: in this case, Theorem 1 indicates a worst-case lower bound with a
terrible sample complexity: σ 2L−2. This result is mitigated in [40] where it is proved
that if psupp(θ̂) = [L/2], that is if θ̂ has full support—recall thatwe assumed |θ̂ j | ≥ c0
for all j ∈ supp(θ̂)—then a sample complexity of σ 6 may be achieved. The unusual
exponent 6 = 2 ·3 comes from the fact that in this case, the orbit of θ may be identified
from the first three moments of Y .

While σ 6 is a significant improvement over σ 2L−2, this scaling is still inauspicious
in applications where σ is large [notice that the dependence of sample complexity on
σ scales like the square of that of the estimation rate as in (1.6)]. This situation has
prompted the investigation of settings where the orbit of θ could be recovered robustly
only from its first two moments, thus leading to the a sample complexity σ 4. This is
the case for example if θ̂ has full support and the distribution of the isometries on the
group G is not uniform but follows some specific distribution instead [1].

In this paper, we unveil generic conditions on the signal θ under which a sample
complexity of σ 4 can be achieved in the original MRA model, where the distribution
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of isometries from the group G is uniform. Interestingly, these results are built on
connectionswith other well-studied questions in appliedmathematics, in particular the
beltway problem from combinatorial optimization and uniform uncertainty principles
from harmonic analysis.

In methodological terms, obtaining a σ 2/
√
n rate will be found to be related to

our ability to recover a signal from the second moment tensor, and in turn, from the
modulus of the Fourier coefficients of its observations in the MRA model. This will
eventually be made possible by the sparsity of the signal. In a related vein, we note
that the well-known problem of phase retrieval, albeit in a different context, examines
signal recovery from the modulus of its random linear measurements. However, it may
be noted that our observational setting in the MRAmodel with the latent group action
has a very different and more complicated structural setup than the existing literature
on phase retrieval, which largely focuses on a specific setting akin to compressed
sensing with limited information. Nonetheless, there are natural connections to phase
retrieval, especially to the so-called crystallographic phase retrieval problem [12];
this is discussed in detail in Sect. 1.4.

1.2 Estimation Rates for Generic Sparse Signals

In the present work, we focus attention on the class of sparse signals in the context of
the MRA problem, and explore rates if estimation for such signals. Our investigations
naturally demarcate the set of sparse signals into two regimes, marked by results of
differing nature.

On the one hand, we have the dilute regime of sparsity (roughly, of the order L1/3),
where a randomly chosen subset of ZL of that size does not have any multiplicities
in its mutual differences. This condition is referred to as the collision-free property
of the subset. In the dilute regime of sparsity, we establish O(σ 4) sample complexity.
This is complemented by the moderate regime of sparsity, which extends all the way
up to order L/ log5 L where we show that the improved sample complexity may also
be achieved.

We also unveil the dependence structure of the estimation rate asymptotics on the
sparsity s of the signal. In the dilute regime, there is an Op(1) dependency, whereas
in the moderate regime of sparsity, the dependency is Op(s3.5). Observe that we
are considering asymptotic rates of estimation which are by nature local to the true
signal; this is different from non-asymptotic rates which usually involve additional
logarithmic dependence on L .

The relative difficulty in obtaining O(σ 4) sample complexity with increasing size
of the signal support is reflected in the dependence structure of the asymptotics on the
sparsity, as well as in the additional assumptions required in the moderate regimes.
Such behaviour is perhaps well anticipated in view of the fact that, in the regime of full
signal support, sample complexity of order better than σ 6 generically not possible, a
result which we also establish in this work.

In the dilute regime, our methodological ingredients include exploiting collision-
freeness, whereas in the moderate regime they include repeated, nested applications
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of the probabilistic method in order to find frequency sets conducive to our analysis
in the Fourier space, aided by the tool of uniform uncertainty principles.

In order to discuss our results in detail, we first introduce a few notations and
concepts.

1.2.1 Some Notations and Concepts

In this work, we will set G to be the group of rotations by the elements of ZL , that
is, for each g ∈ G and v : ZL "→ C, we define the action [g · v] as [g · v](i) =
v(i + g) ∀i ∈ ZL .

We note in passing that the results of this paper would also hold under the action
of a richer group of isometries G where the rotations of ZL are augmented with a
reflection or “flip”, that is, the operation α acting on ZL that sends x "→ x̌ = −x ; in
other words, the group G = ZL ! Z2. In fact, there has been recent interest focussed
on dihedral multi-reference alignment [13]. However, for purposes of presentation,
we will adhere to the isometry group G given by the rotations of ZL .

We view the signal θ as a function on the discretized circle ZL , where the elements
of the latter are enumerated as

ZL = {⌊−(L − 1)/2⌋, ⌊−(L − 1)/2⌋+ 1, . . . , ⌊(L − 1)/2⌋ − 1, ⌊(L − 1)/2⌋}
(1.7)

We call this parametrization the standard parametrization of ZL . The positive part of
ZL may then be defined as

Z+
L = {0, 1, . . . , ⌊(L − 1)/2⌋ − 1, ⌊(L − 1)/2⌋}. (1.8)

We include here a discussion on restricted MLEs, which will constitute the main
estimators in describing our statistical results. For a deterministic set of signals T
(where the true signal is known to belong), it is natural to maximize the log likelihood
(1.5) over θ ∈ T. We refer to such MLEs as restricted MLE. In the setting where
the signal is sampled from generative models, we consider MLEs restricted to signal
classes T that are events of high probability under the respective generative model
(as relevant model parameters tend to ∞). For more on the relationship between
deterministic classes of good signals and generative models, we direct the reader to
Remark 11.

Further notations and concepts used in this paper that are of a more generic nature
can be found in the Appendix A.

1.2.2 The Dilute Regime: Sparse Collision-Free signals

We first define the notion of collision-free property of the support of a signal, and
subsequently use it for introducing the appropriate signal class for the dilute regime,
which, roughly speaking, consists of signals that can at best be of size O(L1/2) and
typically of size O(L1/3).

123



Foundations of Computational Mathematics (2023) 23:1851–1898 1857

Definition 2 For a vector v ∈ RL , wewill denote byD(v) the (multi-)set of differences
{v(i)− v( j) : 1 ≤ i, j ≤ d}. In general, this is a set of differences with multiplicities.
In case the multiplicity is exactly 1 for each difference appearing inD(v), we call the
vector v collision-free, that is there are no repeated differences in its support.

Notice that being collision-free is really a property of the support supp(v) of the vector
v.

We are now ready to define the signal class that we will investigate in the dilute
regime.

Definition 3 We consider the set T ⊂ RL to consist of the signals θ : ZL "→ R that
satisfy the conditions outlined below.

(i) θ is collision free
(ii) There exist positive numbers m,M, ε > 0 (uniform for the set T) such that m ≤

|θ(i)| ≤ M on supp(θ), and s := | supp(θ)| ≥ (2+ ε)M2/m2.

We can then state the following theorem.

Theorem 4 Let T be the set of signals as in Definition 3. Then for σ bigger than a
threshold σ0(L), for any signal θ0 ∈ T, the restricted MLE θ̃n for the MRA problem
satisfies

√
nϱ(θ̃n, θ0) = Op(σ

2) as n→∞.

A crucial ingredient in the proof of Theorem 4 is the following curvature lower
bound on the second moment tensor, which we state below as a result of independent
interest.

Lemma 5 Let T be the set of vectors θ ∈ RL as in Definition 3. Then, for any θ, θ0 ∈ T,
we have

∥EG [(Gθ)⊗2]− EG[(Gθ0)
⊗2]∥F ≥

√
2ε

2+ ε
· 1√

L
·√s · ρ(θ, θ0)

for some universal constant c.

The collision-free property of the support of the signal, as enunciated in this section,
is typically associatedwith the signal being considerably sparse; hence the name dilute
regime. In fact, it may be shown that for the signal support to be collision-free, the size
s of the support cannot exceed O(L1/2). On the other hand, it can also be shown that
typical subsets (e.g., chosen uniformly at random from the co-ordinates) the collision
free property holds with high probability if s = o(L1/3). We refer the reader to
Appendix D for further on these size bounds.

1.2.3 TheModerate Regime: Generic Sparse Symmetric Signals

In this section, we demonstrate that we can extend far beyond the dilute regime and
obtain a sample complexity of σ 4 for generic symmetric signals in the so-called mod-
erate regime of sparsity, extending all the way up to support size s = O(L/ log5 L).
In doing so, we invoke uncertainty principles from Fourier analysis as an effective
technique for the studying MRA problem.

123



1858 Foundations of Computational Mathematics (2023) 23:1851–1898

To this end, we define the notion of the Bernoulli–Gaussian distribution, and the
symmetric version thereof. The Bernoulli–Gaussian distribution is a popular model
for modelling generic or typical sparse signals in statistics and signal processing [35,
54]. In this work, we use the symmetric Bernoulli–Gaussian distribution in order to
model sparse symmetric signals for investigating estimation rates under the MRA
model. Such symmetry hypothesis is well-motivated by the fact that many natural
objects of interest, such as molecules, exhibit symmetries that are of significance in
spectroscopy [20, 43, 58]; this includes reflection symmetries that are related to the
important notion of chirality [5, 19].

A signal following the Bernoulli–Gaussian distribution with variance ζ 2 and spar-
sity s consists in generating the signal support via independent random sampling of
points in ZL with probability s/L each, and then independently generating the sig-
nal values on the support via a N (0, ζ 2) distribution for each point. The symmetric
Bernoulli–Gaussian distribution differs from the general case defined above only in
the fact that its support is constrained to be symmetric. To obtain this, we consider ZL
in its standard parametrization (1.7), and pick the positive part A+ of the support by
independent random sampling from Z+

L with probability s/L , and then obtain the full
symmetric support A via reflection about the origin, i.e. A = A+ ∪ (−A+).

While the Bernoulli–Gaussian distribution is standard for modelling sparse signals,
our results apply to far more general signal classes. This includes the N symm

[−s,s](0, ζ
2 I )

distribution, which entails that the support is [−s, s] and the signal values are inde-
pendent N (0, ζ 2) random variable. In fact, other than independent Gaussian values,
our results only require that the signal support be sparse and sufficiently generic, in a
precise arithmetic sense that we call cosine genericity.

We call such signals generic sparse symmetric signals. Our main estimation rate
results will be stated below in terms of this signal class; the precise and detailed
definitions for it are provided in Appendix C.

Theorem 6 Let log9 L ≤ s ≤ L/ log5 L. Consider a generic s-sparse symmetric
signal θ0 : ZL "→ R, with dispersion ζ 2, sparsity constants (α,β) and index τ > 0.
Then for σ bigger than a threshold σ0(L), with high probability in θ0, the restricted
MLE θ̃n for the MRA problem satisfies

√
nϱ(θ̃n, θ0) = Op(σ

2) as n→∞.

Theorem 6 enables us to deduce an improved sample complexity of order σ 4 for
signals sampled from the symmetric Bernoulli–Gaussian distribution.

Corollary 7 Let log9 L ≤ s ≤ L/ log5 L. Consider a signal θ0 sampled from either of:

(i) The symmetrized Bernoulli–Gaussian distribution onZL with mean zero, variance
ζ 2 and sparsity s, or

(ii) The N symm
[−s,s](0, ζ

2 I ) distribution.

Then, for σ bigger than a threshold σ0(L), with high probability in θ0, the restricted
MLE θ̃n for the MRA problem satisfies

√
nϱ(θ̃n, θ0) = Op(σ

2) as n→∞.

1.2.4 Dependence on Sparsity and Ambient Dimension

In important signal classes, we can obtain the dependence of asymptotic estimation
rates on the parameters (s, L). We record them in the following result.
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Theorem 8 Let θ0 be the signal in the MRA model, and σ bigger than a threshold
σ0(L).

(i) If θ0 is as in Definition 3 with | supp(θ0)| = s, then we have the limn→∞
√
nϱ

(θ̃n, θ0)/σ
2 = Op(1) as a function of s, L.

(ii) If θ0 is sampled from the symmetric Bernoulli–Gaussian distribution with mean 0,
variance ζ 2 and sparsity parameter s with log9 L ≤ s ≤ L/ log5 L, thenwith high
probability in θ0, we have limn→∞

√
nϱ(θ̃n, θ0)/σ

2 = Op(s3.5) as a function of
s, L.

We emphasize here that our rate bounds are asymptotic in n, and therefore necessar-
ily local in character, focusing on a small enough neighbourhood of the signal (thatwill
generally depend on L). In contrast, non-asymptotic bounds that are generally global
over the set of allowable signals, and therefore will usually exhibit an L dependence,
such as the standard

√
log L dependence in much of the signal processing literature.

On a related note, in this work we concern ourselves with the leading, dominant term
in an asymptotic expansion of

√
nϱ(θ̃n, θ0)/σ

2 in the regime of large L; higher order
terms in this expansion will generically depend on L .

We observe that the asymptotic upper bound in the dilute regime is Op(1), but in
the regime of moderate sparsity it is growing as s3.5. This is perhaps to be expected, in
tune with the fact that a σ 2 dependence of the estimation rate eventually breaks down
for signals with full support.

It is of interest to make explicit the role of the ambient dimension L as a quantifier
in the main results of this paper. The main results, such as Theorems 6, 8 and 4 and
Corollary 7, entail statements regarding generic signals. This genericity refers to the
fact that the statements of these results hold for a set of signals that, under suitable
distributions on the signal space (whose specifics are clarified for each result), has
probability at least 1− p(L), where p(L)→ 0 as L tends to infinity. While a precise
bookkeepingof our argumentswould indeedyield explicit formulae for such sequences
p(L) for the relevant distributions considered in this paper, we prefer not to pursue
that route so as to maintain brevity, given that the statements in their present forms
already capture the main qualitative phenomena and key dependencies.

Thus, our results are in particular not asymptotic in L: indeed, the results hold for
each L (bigger than some threshold L0) for a class of signals S(L) that depends on
L . As L grows, the probability measure of S under a natural distribution converges to
1. However, the results do have a clear interpretation even without letting L → ∞,
which is the point of view we take in this paper. In the recent work [46], the authors
undertake an examination of theMRA problem in the high dimensional regime, where
L, σ → ∞ jointly with the special parametric dependence σ = L/α log L for a
parameter α > 0. In such a situation, the order of the limits n, L → ∞ becomes
important. In the present work, we interpret the results as above—with fixed L and
n → ∞. Thus, the results in this paper are of a different flavour and indeed not
comparable to the high dimensional scenario as in [46]. A synthesis of these two
points of views, however, remains an interesting question for future work.
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1.2.5 A Technical Lemma

Auseful ingredient in the proof of Theorem 6 is a deterministic technical lemmawhich
we state below.

Lemma 9 Consider the set of signals T on ZL in the standard enumeration (1.7),
defined as follows. For each θ ∈ T, we have

(i) θ is symmetric, i.e. θ(i) = θ(−i)∀i ∈ ZL .
(ii) There exist mT,MT > 0, uniform in θ , such that mT ≤ |θ(i)| ≤ MT on supp(θ).
(iii) There exists . ⊂ ZL , possibly depending on θ , such that:

(a)

c1 ·
1
L
∥h∥22 ≤

1
|.|

∑

ξ∈.
|ĥ(ξ)|2 ≤ c2 ·

1
L
∥h∥22

for all h with supp(h) ⊆ supp(θ), with positive constants c1, c2 uniform in
h, θ .

(b) minξ∈. |θ̂(ξ)| ≥ m(T), for some m(T) > 0 that is uniform in θ .

Then, for σ bigger than a threshold σ0(L) and any signal θ0 ∈ T, the restricted MLE
θ̃n satisfies

√
nϱ(θ̂n, θ0) = Op(σ

2) as n→∞.

Remark 10 A significant setting in the context of the conditions (i)–(iii) above is when
the signal class T is sparse with typical support size s, and mT,MT,m(T) as well as
the constants c1, c2 all depend only on the sparsity s and not on L . This is, in fact, true
for both the sparse symmetric Bernoulli–Gaussian distribution and the N symm

[−s,s](0, ζ
2 I )

distributions that we consider in this paper, and lead to estimation rates that depend
asymptotically only on the sparsity and not on the ambient dimension.

Remark 11 We observe that T in Lemma 9 is a deterministic subset of the space of
signals, whereas Theorem 6 and Corollary 7 consider a typical signal from certain
generative models. We can, however, easily reconcile the two by considering a large,
compact set T of signals that carries a high probability measure under the respective
generative distribution and satisfies the conditions of Lemma 9. This allows us to
deduce improved rates of estimation for typical signals under generative distributions
by making use of the deterministic Lemma 9.

1.2.6 Estimation Rates Beyond Sparsity

Theorems 4 and 6 establishes a sample complexity of order σ 4 for signals with sparse
support. Complementary to Theorem 4, in this section we examine classes of signals
with very different structural properties compared to sparse support, and show that in
such settings, σ 2/

√
n rates of estimation is generically impossible.

Theorem 12 Let T be the set of vectors θ ∈ RL is such that its support supp(θ) is all
of ZL and m ≤ |θ(i)| ≤ M on supp(θ). Then, for any signal θ0 ∈ T the restricted
MLE θ̂n satisfies

√
nϱ(θ̂n, θ0) = /p(σ

3) as n→∞.
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This will follow from the following Lemma, to state which we need to introduce the
following notation. For a signal ϕ = (ϕ(1), . . . ,ϕ(L)) ∈ RL , we define the average

ϕ := 1
L

L∑

i=1

ϕ(i)

Lemma 13 Let T be the set of vectors θ ∈ RL is such that its support supp(θ) is all of
ZL and m ≤ |θ(i)| ≤ M on supp(θ). Then, there exist a sequence {θk}k>0 ⊂ T such
that ρ(θk, θ0)→ 0 as k →∞, θk = θ0, and we have

∥EG [(Gθk)
⊗2]− EG[(Gθ0)

⊗2]∥F ≤ Cϱ(θk, θ0)
2. (1.9)

We may compare the statement of Lemma 13 with that of Lemma 5, and notice that
the lower bound in Lemma 5 is linear in ϱ(θ, θ0); whereas the upper bound in Lemma
13 is quadratic in ϱ(θ, θ0).

In summary, attaining improved rates of estimation via the second moment is not
possible when the signal has full support.

1.3 Main Ideas and Ingredients

Our investigation of the asymptotic estimation rates for the MRA model connects to
several classical topics in applied mathematics, including the beltway problem related
to combinatorial optimization and uniform uncertainty principles from harmonic anal-
ysis.

1.3.1 The Beltway Problem

The beltway problem consists in recovering a set S of numbers from their pairwise
differences D, up to the trivial symmetry of translating all the numbers in the set by
the same amount. It is closely related the so-called turnpike problem or the partial
digest problem, and is of interest in computational biology, where it arises naturally
in DNA restriction site analysis among other problems. A set of integers is said to be
collision-free if all the pairwise distances obtained from that set are distinct. In 1939,
Piccard [41] conjectured that, if two sets S1 and S2 of integers have the same set of
pairwise differences D, and the pairwise differences are known to be unique (i.e., S1
and S2 are collision-free), then the sets S1 and S2 must be translates of each other.

Following major advances by Bloom [14], a description of the complete landscape
of Piccard’s conjecture was obtained by Bekir and Golomb [8, 9], who demonstrated
in particular that the conjecture is true for all sets of cardinality greater than 6.

The upshot of these developments is that if S is a set of integers with |S| ≥ 7 and
such that the pairwise distances of the numbers in S are distinct (in other words, S is
collision-free), then the setS is uniquely determined (up to translations) by its pairwise
distances. This will be exploited in our investigations of the MRA estimation rates.
In particular, the beltway problem motivates our definition of the “collision-free”
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condition on the support of the signal, which will be used for obtaining improved
estimation rates in the dilute regime of sparsity.

1.3.2 Uniform Uncertainty Principles

Uncertainty principles have a long history in harmonic analysis and in applied math-
ematics, starting from Heisenberg’s celebrated Uncertainty Principle in quantum
mechanics [27, 29]. Roughly speaking, these entail that a function cannot both be
simultaneously localized (i.e., have a ‘small support’ in an appropriate sense) both in
the physical space and the Fourier space. This would imply that for a function with
a small support in the physical space (e.g., a sparse signal), the Fourier transform
would be overwhelmingly non-vanishing, and therefore we would need almost all of
the Fourier coefficients in order to fully capture the ‘energy’ (i.e. the L2 norm) of the
function, by the Parseval–Plancherel Theorem.

However, if our goal is to approximate the function (up to a limited multiplicative
error in the total energy), it may actually suffice to work with a relatively small subset
of Fourier coefficients. In fact, such an appropriate set of Fourier coefficients may
be obtained via random sampling, and furthermore, such a ‘good’ set of frequencies
may be shown to provide a good approximation simultaneously for all sparse signals.
Results in this vein are referred to as uniform uncertainty principles; for an expository
account we refer the reader to [55] (Chap. 3.2). These are also closely related to
the so-called Restricted Isometry Property (RIP) for random sub-sampling of Fourier
matrices (c.f., [48]).

1.4 Connection to Phase Retrieval

1.4.1 Generalities

Phase retrieval is a central and long-standing question in applied mathematics that
find applications in a variety of domains such as astronomy, electron microscopy and
optical imaging, and has emerged in recent years as a widely studied question in the
field of signal processing [21, 28, 51].

A key connection between the MRA model and the phase retrieval problem arises
via second moment tensors. Theorem 16 (Theorem 9, [4]), as well as the related
work [40], establishes a clear connection between the O(σ 4) sample complexity in
the MRA problem and being able to recover the true signal from (estimates of) its
second moment tensor, via an expansion of the Kullback–Leibler divergence in terms
of moment tensors. The second moment tensor of a signal θ is a circulant matrix
related to the convolution θ⋆θ̌ , whose Fourier transform θ̂⋆θ̌ = |θ̂ |2 as functions.

The problem of (Fourier) phase retrieval entails signal recovery from the modulus
of its random linear measurements. This problem has been well-investigated in recent
years, as indicated by a substantial literature [7, 10, 32, 33, 37, 42].

The recent work [12] examines the question of recovering a sparse signal from its
power spectrum in the context of crystallographic phase retrieval in a non-randomized
setting. The connection of such questions to the turnpike problem was considered in
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the earlier work [42]. The paper [46] considers the sample complexity of MRA in high
dimensions (under a Gaussian prior), exploring in particular the interplay between the
dimension and the noise level.

However, as noted earlier, our observational setting in the MRA model with the
latent group action has a very different and more complicated structural setup than the
existing literature on phase retrieval, which largely focuses on a specific setting akin
to compressed sensing with limited information.

The present work focusses on statistical rates of estimation, leaving aside the ques-
tion of algorithmic implementation for future work. The elaborate literature on phase
retrieval, on the other hand, makes a detailed exploration of algorithmic issues, which
might be of natural interest in this regard.

1.4.2 Crystallographic Phase Retrieval

The results and methods in the present work have applications to phase retrieval,
in particular the problem of crystallographic phase retrieval. The latter problem is
believed to be perhaps the most important phase retrieval setup, where the interest is
in recovering a sparse signal from its power spectrum, i.e., the magnitude of its Fourier
transform at various frequencies [12, 24]. This is equivalent to recovering a signal from
its periodic auto-correlation. The problem is motivated by X-ray crystallography, a
technique for determining molecular structure [36].

Formally, let θ0 be an s-sparse signal in ambient dimension L . In crystallographic
phase retrieval, we are interested in recovering θ0 from the magnitude of its discrete
Fourier transform, namely {|θ̂0( j)|2} at measurement frequency j . Equivalently, the
interest is in recovering θ0 from its periodic auto correlations, which are given by

Aθ0(l) =
∑

i∈ZL

θ0(i)θ0(i + l modL) for i ∈ ZL .

Clearly, the power spectrum of a signal remains invariant under rotations and reflec-
tions, and objective is to recover the signal up to these intrinsic symmetries.

The theoretical understanding of crystallographic phase retrieval is rather limited
(c.f. [12, 42]). In particular, even the fundamental question of uniqueness is poorly
understood. In [12], conjectures were laid out regarding the uniqueness of sparse
signal recovery from its power spectrum, that predicted in particular that under general
conditions unique recovery should be possible when s/L ≤ 1/2.

Our investigations in this paper have implications for the crystallographic phase
retrieval problem, indicating local uniqueness of signal recovery from power spectrum
for sparse collision-free signals (i.e., in the dilute regime of sparsity) and for generic
sparse symmetric signals with s = O(L/ log5 L) (i.e., in the moderate regime of
sparsity).

This follows from the fact that our
√
nϱ(θ̃n, θ0) = OP (σ

2) estimation rates for
such signals are a consequence of lower bounds on the second moment difference
tensors, such as in Lemma 5 and (5.6). The second moment tensor EG[(g · θ)⊗2] is a
matrix whose entries are precisely the periodic auto correlationsAθ , so lower bounds
such as Lemma 5 and (5.6) indeed demonstrate unique recovery of θ from Aθ . The
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uniqueness is local, because our estimation rates are local in character, which entails
that lower bounds such as (5.6) hold in a neighbourhood of the true signal θ0. Further,
the uniqueness is among a class of signals that share similar sparsity features as the
true signal, e.g. the signal class T in Lemma 5. Application of the techniques of the
present work to obtain more extensive uniqueness guarantees for the crystallographic
phase retrieval problem is an interesting problem for future research.

2 Rates of Estimation and Curvature of the KL Divergence

2.1 Estimation Rates and Curvature

In this work, we establish, under very general conditions, quadratic rates of estimation
(i.e., scaling as σ 2) in the MRA problem, in the context of Theorem 1 (and (1.6) in
particular).

Our point of departure is the population risk of the MRA model, given by

R(θ) = −Epθ0
[log pθ (Y )] + C, (2.1)

where C is a universal constant. Clearly, we have

R(θ) = −
∫

log pθ (y)pθ0(y)dy + C

=
∫

log
(
pθ0(y)
pθ (y)

· 1
pθ0(y)

)
pθ0(y)dy + C

= DKL(pθ0 ||pθ )−
(∫

pθ0(y) log pθ0(y)dy
)
+ C

where DKL(pθ0 ||pθ ) is the Kullback–Leibler divergence between pθ0 and pθ . Since
θ0 is fixed, as a function of θ , the population risk R(θ) equals

R(θ) = DKL(pθ0 ||pθ )+ C(θ0), (2.2)

where C(θ0) is a function of θ0.
The Fisher information matrix of the MRA model is given by

I (θ0) = −E[∇2
θ log pθ (Y )

∣∣
θ=θ0

] = ∇2
θ R(θ0), (2.3)

where ∇2
θ denotes the Hessian with respect to the variable θ . It has been demonstrated

[2] that theMLE θ̃n is an asymptotically consistent estimate for the true signal θ0 in the
MRA model. This immediately enables us to invoke standard asymptotic normality
theory for maximum likelihood estimators and conclude that:

√
n(θ̃ − θ0) is asymptotically normal with mean 0 and variance I (θ0)−1. (2.4)
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From the considerations above, we may conclude that the asymptotic covariance is
given by

(
∇2

θ DKL(pθ0 ||pθ )
)−1. For a detailed discussion on such asymptotic normal-

ity, we refer the reader to [57], in particular Sects. 5.3 and 5.5 therein.
We observe that the probability distribution pθ aswell as DKL(pθ∥pϕ) are invariant

under the action of G, i.e., invariant under the transformations θ "→ G · θ for G ∈ G.
As a result, for ϱ(θ, θ0) small enough (equivalently, ∥θ−θ0∥2 small enough), we may
assume without loss of generality that ϱ(θ, θ0) = 1√

L
∥θ − θ0∥2 (c.f., [4]; esp. the

proof of Theorem 4 therein). Since ∥θ̃n − θ0∥2 → 0 as n →∞, this will be true for
ϱ(θ̃n, θ0) with high probability.

The upshot of the asymptotic normality discussed above is that, as n → ∞, the
quantity ρ(θ̃n, θ0) (which equals 1√

L
∥θ̃n− θ0∥2 with high probability), is of the order

n−1/2
√

Tr
[
1
L
· I (θ)−1

]
= n−1/2

√

Tr
[
1
L
· ∇2

θ DKL(pθ0 ||pθ )−1
]
,

where Tr[·] denotes the trace. This is related to the fact that if X ∼ N (0,1), then
E[∥X∥22] = E[Tr(X∗X)] = Tr(1).

Thus, the estimation rate for theMRAproblem asymptotically depends on σ via the

dependence of
√
Tr[ 1L · ∇2

θ DKL(pθ0 ||pθ )−1] on σ . In view of this, curvature bounds
on DKL(pθ0 ||pθ ) assume significance. We record this in the following proposition.

To this end, we recall the metric ρ(·, ·) (1.3), which is essentially a scaling of ϱ:
indeed, ρ(·, ·) =

√
Lϱ(·, ·).

Proposition 14 We have the following relations between curvature bounds on DKL
and the asymptotic behaviour of ϱ(θ̃n, θ0):

(i) If DK L(pθ0 ||pθ ) ≥ K1(σ )ρ(θ, θ0)
2 for θ in a neighbourhood U of θ0, then√

nϱ(θ̃n, θ0) = Op

(
K1(σ )

−1/2
√
L

)
.

(ii) If DK L(pθ0 ||pθ ) ≤ K2(σ )ρ(θ, θ0)
2 for θ in a neighbourhood U of θ0, then√

nϱ(θ̃n, θ0) = /p

(
K2(σ )

−1/2
√
L

)
.

We defer the proof of Proposition 14 to Sect. 6.
Curvature bounds as in Proposition 14 would, in particular, be implied by upper

and lower bounds on DKL(pθ0 ||pθ ) in the form of K (σ )∥θ − θ0∥2 (valid on some
neighbourhood U of θ0)—in which case, the asymptotic estimation rate in the MRA
problem would scale as K (σ )−1/2√

L
· 1√

n
.

We introduce the difference of themthmoment tensors corresponding to two signals
θ,ϕ:

2m(θ,ϕ) := E[(Gθ)⊗m]− E[(Gϕ)⊗m].

Furthermore, by the (Frobenius) norm ∥ · ∥ for a tensor, we will denote its Hilbert
Schmidt norm. In what follows, we will invoke two results from [4], in which we will
make use of the distance ρ (c.f. 1.3).

This allows us to state the following results from [4].
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Lemma 15 [4][Lemma 8] If θ̃ = θ − EG[Gθ ] and ϕ̃ = ϕ − EG[Gϕ], then

DK L(pθ ||pϕ) = DKL(pθ̃ ||pϕ̃)+
1

2σ 2 ∥21(θ,ϕ)∥2.

Theorem 16 [4][Theorem9]Let θ,ϕ ∈ RL satisfy 3ρ(θ,ϕ) ≤ ∥θ∥ ≤ σ andE[Gθ ] =
E[Gϕ] = 0. Let 2m = 2m(θ,ϕ) = E[(Gθ)⊗m]− E[(Gϕ)⊗m]. For any k ≥ 1, there
exist universal constants C and C such that

C
∞∑

m=1

∥2m∥2
(
√
3σ )2mm!

≤ DKL(pθ ||pϕ) ≤ 2
k−1∑

m=1

∥2m∥2
σ 2mm! + C

∥θ∥2k−2ρ(θ,ϕ)2
σ 2k .

We now use Lemma 15 and Theorem 16 in order to obtain bounds on DKL(pθ∥pϕ)

that are tailored to our specific requirements in the present paper, focussing mostly on
the second moment difference tensor in the context of Theorem 16.

To this end, we consider the following results. For notational simplicity, we
will use the notation DKL(θ1∥θ2) to denote DKL(pθ1∥pθ2). Further, for any θ =
(θ (1), . . . , θ (L)) ∈ RL , we denote θ = 1

L

∑L
i=1 θ (i).

Proposition 17 Let θ,ϕ ∈ T ⊂ RL belong to a bounded set T of signals. Then for σ

bigger than a threshold σ0(L), and ϱ(θ,ϕ) small enough, we have

DK L(θ ||ϕ) ≥ Cσ−4 · ∥22(θ,ϕ)∥2F .

Proposition 18 Let θ,ϕ ∈ T ⊂ RL belong to a bounded set T of signals, such that
θ = ϕ and ∥22(θ,ϕ)∥F ≤ cρ(θ,ϕ)2. Then, for ϱ(θ,ϕ) small enough we have

DK L(θ ||ϕ) ≤ C
∥θ∥42
σ 6 · ρ(θ,ϕ)2

for some positive number C.

We defer the proof of Propositions 17 and 18 to Sect. 6.

3 The Dilute Regime of Sparsity and the Beltway Problem

3.1 Proof of Theorem 4

In this section, we will establish Theorem 4 and Lemma 5.

Proof of Theorem 4 We combine Lemma 5 with Proposition 17 to deduce that, for
σ ≥ σ0(L) and any θ, θ0 ∈ T such that ϱ(θ, θ0) is small enough, the Kullback–Leibler
divergence

DKL(θ ||θ0) ≥ cσ−4
s
L
· ρ(θ,ϕ)2
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for some positive number c. This enables us to invoke Proposition 14 part (i) and
deduce the desired asymptotic rate of estimation. This completes the proof. ⊓⊔

As is evident from the proof of Theorem 4, the key phenomenon to understand
in the setting of the present section is the curvature lower bound as encapsulated in
Lemma 5. We now proceed to the proof of this important result.

Proof of Lemma 5 As in the statement of the lemma, we focus on the situation where
ϱ(θ, θ0) is small, andwe recall that, for ϱ(θ, θ0) small enough, wemay take ϱ(θ, θ0) =
∥θ − θ0∥2 because of the G invariance of DKL and the moment tensors 2m . This is
the setting in which we will work.

Notice that in this setting, θ and θ0 have the same support. This follows from the
assumption on our signal classT that for anyu ∈ T, we have |u(i)| ≥ m ∀i ∈ supp(u).
As a result, if i ∈ supp(θ)2 supp(θ0), then |θ(i) − θ0(i)| ≥ m, which implies that
ϱ(θ, θ0) = ∥θ − θ0∥2 ≥ m, which contradicts the smallness of ϱ(θ, θ0).

We set h = θ − θ0, to be thought of has having small L2-norm. Notice that the
above discussion implies supp(h) ⊆ supp(θ0). We consider

∥EG[Gθ⊗2G∗]− EG[Gθ⊗20 G∗]∥F = ∥EG[G(θ0 + h)⊗2G∗]− EG[Gθ⊗20 G∗]∥F .

To the leading order in h, this is ∥EG[θ0h∗+hθ∗0 ]∥F , where ∗ denotes transpose. Since
∥h∥2 is small, it suffices to consider this leading order term, and demonstrate that this
is ≥ c

√
s∥h∥2. Henceforth, we focus on this objective.

We then have

(
EG[G(θ0h∗ + hθ∗0 )G

∗]
)

i, j
= 1

L

∑

g∈ZL

[θ0(i + g)h( j + g)+ h(i + g)θ0( j + g)].

In our subsequent considerations, we will use the symbol J to denote the matrix
EG[G(θ0h∗ + hθ∗0 )G

∗]. Observe that J is a Toeplitz matrix. We can therefore denote
the entries of J as Ji, j = J j−i . Furthermore, for each i, j we have Ji, j = Ji+k, j+k ,
for any k ∈ ZL and the sums i + k, j + k in the indices being interpreted to be sums
in ZL . In view of this, we can write ∥J∥2F = L

∑L−1
k=0 |Jk |2. From here on, we will

focus on estimating from below the sum
∑L−1

k=0 |Jk |2.
Note that θ0(i + g)h( j + g) or h(i + g)θ0( j + g) is non-zero only if both i + g

and j + g belong to the support of θ0 (which contains the support of h). But since
all non-zero differences occur exactly once (collision-free property), there exists a
unique g = g(i, j) such that [θ0(i + g)h( j + g)+ h(i + g)θ0( j + g)] can possibly
be non-zero. In particular, this means that, for Jk to be non-zero, k has to belong to
D(θ0).

Suppose 0 ̸= k ∈ D(θ0) and let i, j ∈ supp(θ0) be such that j − i = k. By the
collision-free property, there is exactly one such pair (i, j). Therefore

|Jk |2 =
1
L2 [θ0(i)h( j)+ h(i)θ0( j)]2.
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Conversely, if i ̸= j are such that j − i ∈ D(θ0), then there is a (unique) contribution

to the sum
∑

k |Jk |2 by an amount
1
L2 [θ0(i)h( j)+ h(i)θ0( j)]2.

Finally, note that in case either i or j does not belong to supp(θ0), we have

1
L2 [θ0(i)h( j)+ h(i)θ0( j)]2 = 0.

Putting together all of the above, and denoting s := | supp(θ0)| we have

∥J∥2F = L
L−1∑

k=0

|Jk |2

≥ L
L−1∑

k=1

|Jk |2 ≥ 1
L
·
∑

i ̸= j

[θ0(i)h( j)+ h(i)θ0( j)]2

= 1
L
·
∑

i ̸= j

[θ0(i)2h( j)2 + h(i)2θ0( j)2 + 2θ0(i)h(i)θ0( j)h( j)].

= 1
L
·

⎡

⎣2

(
∑

i

θ0(i)2
)⎛

⎝
∑

j

h( j)2

⎞

⎠− 2
∑

i

θ0(i)2h(i)2 + 2

(
∑

i

θ0(i)h(i)

)2

−2
∑

i

θ0(i)2h(i)2
]

≥ 2
L
·
[

∥θ0∥2∥h∥2 − 2
∑

i

θ0(i)2h(i)2
]

≥ 2
L
·
[

∥θ0∥2∥h∥2 − 2M2
∑

i

h(i)2
]

≥ 2
L
·
(
∥θ0∥2 − 2M2) ∥h∥2 ≥ 2

L
·
(
sm2 − 2M2) ∥h∥2

= 2s
L
(m2 − 2M2

s
)∥h∥2, (3.1)

where, in the last few steps, we have used the fact thatm ≤ |θ0(i)| ≤ M ∀i ∈ supp(θ0).
For s ≥ (2+ε)M2/m2 with ε > 0, the lower bound in (3.1) can be further bounded

below by 2ε
2+ε · s

L · ∥h∥2, as desired. ⊓⊔

4 Curvature of KL Divergence and the Fourier Transform

In this section, we will show that, without additional structural assumptions on the
signal (such as sparsity), the second moment is generically insufficient to achieve
O(σ 4) sample complexity, as indicated in Theorem 12. In doing so, we will study the
MRA problem in general, and the second moment tensor in particular, from the point
of view of the Fourier transform of the signal θ .

Proof of Theorem 12 We begin with the fact that and that DKL(pθ0∥pθ ) has a local
minimum at θ = θ0, and on a related note, we have

DKL(pθ0∥pθ )
∣∣
θ=θ0

=0, ∇θ DKL(pθ0∥pθ )
∣∣
θ=θ0

=0, ∇2
θ DKL(pθ0∥pθ )

∣∣
θ=θ0

= I (θ0).
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We can consider a second order Taylor series expansion of DKL(pθ0∥pθ ) in the vari-
able θ in a small enough neighbourhood of θ0, and obtain

DKL(pθ0∥pθ ) ≥ cσmin(I (θ0))ϱ(θ, θ0)2, (4.1)

where σmin(I (θ0)) is the smallest singular value of I (θ0).
We combine the above observation with Lemma 13 and Proposition 18. For θk as

in Lemma 13, we may deduce via Proposition 18 that

DKL(pθ0∥pθ ) ≤ c∥θ0∥42σ−6ϱ(θ, θ0)2 ≤ c(L)σ−6ϱ(θ, θ0)2, (4.2)

where we have used the fact that the boundedness of the signal class T implies that
∥θ∥2 ≤ C(L) uniformly for θ ∈ T for some positive number C(L).

Combining (4.1) and (4.2), we obtain

σmin(I (θ0)) ≤ c(L)σ−6. (4.3)

We recall from Sect. 2.1, in particular (2.4), that
√
n(θ̃n − θ0)→ N (0, I (θ0)−1) as

n→∞. Let Z denote a standard Gaussian vector of the same dimension as θ0. Then
we may write

√
n(θ̃n − θ0) → I (θ0)−1/2Z. Write I (θ0) = U∗1U as the spectral

decomposition of I (θ0) with the eigenvalues {σi (I (θ0))}i . Notice that, by rotational
invariance, Z′ := UZ is also a standard Gaussian of the same dimension (with co-
ordinates {Z′i }i being distributed as a standard N (0, 1) variable z).Wemay then deduce
that

√
n∥θ − θ0∥2 → ∥I (θ0)−1/2Z∥2
= ∥U∗1−1/2UZ∥2 = ∥1−1/2Z′∥2

=
√∑

i

σ (I (θ0))−1|Z′i |2 ≥
√
[σmin(I (θ0))]−1|z|

≥ c1(L)σ 3|z| = /p(σ
3),

where in the last inequality we have used (4.3).
Finally, in a small enough neighbourhood of θ0 wemay identify ϱ(θ, θ0) as 1√

L
∥θ−

θ0∥2, and conclude that
√
nϱ(θ̃n, θ0) = /p(σ

3) as n→∞, as desired. ⊓⊔

We henceforth focus our attention on proving Lemma 13.
In order to carry out our investigations, wewill utilize the Fourier transform as a key

tool, and make repeated use of the renowned Parseval–Plancherel Theorem regarding
the isometry properties of the Fourier transform. For convenience, we recall below
these notions relevant for our analysis on ZL .
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Definition 19 For θ = (θ1, . . . , θL) ∈ RL , i.e. θ : ZL "→ R, we define the Fourier
transform θ̂ : ZL "→ C as

θ̂ j =
L∑

k=1

θk exp
(
−2π i jk

L

)
.

The inverse Fourier transform of θ , denoted θ̌ : ZL "→ C is defined as

θ̌ j =
1
L

L∑

k=1

θk exp
(
2π i jk
L

)
.

Theorem 20 (Parseval–Plancherel Theorem) For θ = (θ1, . . . , θL) ∈ RL , i.e. θ :
ZL "→ R, we have

∥θ∥22 =
L∑

k=1

|θk |2 =
1
L

L∑

k=1

|θ̂k |2 =
1
L
∥θ̂∥22.

Equivalently, for θ,ψ ∈ RL , we may write

L∑

k=1

θkψk =
1
L

L∑

k=1

θ̂kψ̂k =
1
L
· ⟨θ̂ , ψ̂⟩.

We begin with a result that obtains a succinct expression for the second moment
tensor that is valid for any signal in RL , and therefore of general interest. For stating
our result, we introduce the following notation: for any vector v ∈ RL , we denote by
M(v) the matrix

[M(v)]i j := v(i − j).

This identifies the matrix M(v) as the Toeplitz matrix with symbol v̂, the Fourier
transform of v. Furthermore, as is common in our context, we will view any vectors
u, v ∈ RL to be functions mapping ZL "→ R, and by the convolution u ∗ v we will
denote the convolution of these two functions (under the action of the rotation group
ZL ). Namely,

[u ∗ v](k) =
∑

g∈ZL

u(g)v(k − g).

We recall that for any v : ZL "→ R, the vector v̌ is given by [v̌](i) = v(−i).
Lemma 21 For any v1, v2 ∈ RL , we have

EG[G(v1 ⊗ v2)G∗] =
1
L
·M(v1 ∗ v̌2).

123



Foundations of Computational Mathematics (2023) 23:1851–1898 1871

Proof Observe that

EG[G(v1 ⊗ v2)G∗]i j =
1
L
·

⎛

⎝
∑

g∈ZL

v1(i + g)v2( j + g)

⎞

⎠ ,

where as is usual in this context, the indices i + g, j + g for the co-ordinates of the
vectors are interpreted in the cyclic group ZL . Setting i ′ = i + g, we can re-write

EG[G(v1 ⊗ v2)G∗]i j

= 1
L
·

⎛

⎝
∑

i ′∈ZL

v1(i ′)v2( j − i + i ′)

⎞

⎠

= 1
L
·

⎛

⎝
∑

i ′∈ZL

v1(i ′)v̌2(i − j − i ′)

⎞

⎠

= 1
L
·
[
M(v1 ∗ v̌2)

]
i j ,

as desired. ⊓⊔

Another result which would be useful for us subsequently is the following lemma.

Lemma 22 For any v ∈ RL , we have

∥M(v)∥F =
√
L∥v∥2 = ∥v̂∥22. (4.4)

More generally,

Tr[M(v)M(w)∗] = L⟨v,w⟩ = ⟨v̂, ŵ⟩. (4.5)

Proof We have,

∥M(v)∥2F

=
L∑

i=1

L∑

j=1

|v(i − j)|2

=
∑

k∈ZL

L|v(k)|2

= L∥v∥22
= ∥v̂∥22 [by the Parseval–Plancherel Theorem]

which completes the proof of (4.4).
The equality (4.5) follows from (4.4) via polarization, wherein we make use of the

fact that ∥M(v)∥2F = Tr[M(v)M(v)∗] and that the mapping v "→M(v) is linear. ⊓⊔
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We are now ready to state the following lemma.

Lemma 23 For any θ,ϕ ∈ RL such that h = ϕ − θ , we have

EG[(Gϕ)⊗2]− EG[(Gθ)⊗2] = 1
L
·
(
M(θ ∗ ȟ)+M(θ̌ ∗ h)+M(h ∗ ȟ)

)
.

Proof We have,

EG[(Gϕ)⊗2]− EG[(Gθ)⊗2]
= EG[(G(θ + h))⊗2]− EG[(Gθ)⊗2]
= EG[(Gθ)⊗2] + EG[(Gh)⊗2] + EG[G(θ ⊗ h)G∗] + EG[G(h ⊗ θ)G∗]− EG[(Gθ)⊗2]
= EG[G(θ ⊗ h)G∗] + EG[G(h ⊗ θ)G∗] + EG[(Gh)⊗2]

= 1
L
·
[
M(θ ∗ ȟ)+M(h ∗ θ̌)+M(h ∗ ȟ)

]

(using Lemma 21)

as desired. ⊓⊔
Lemma 23 shows, in particular, that in the regime of small h, the lineariza-
tion (in h) of the second moment difference tensor is given by J (θ, h) := 1

L ·(
M(θ ∗ ȟ)+M(θ̌ ∗ h)

)
, which we will focus on in the proof of Lemma 13 that

follows.

Proof of Lemma 13 In order to construct a sequence {θk}k as in the statement of the
present Lemma, it would suffice to demonstrate the existence of θ arbitrarily close to
θ0 such that θ = θ0 and (1.9) is satisfied . We recall that, for ϱ(θ, θ0) small enough,
we may take ϱ(θ, θ0) = ∥θ − θ0∥2.

In what follows, we will set h := θ − θ0.
We begin with

∥M(θ0 ∗ ȟ)+M(θ̌0 ∗ h)∥2F
= ∥M(θ0 ∗ ȟ)∥2F + ∥M(θ̌0 ∗ h)∥2F + Tr[M(θ0 ∗ ȟ)M(θ̌0 ∗ h)∗]
+ Tr[M(θ0 ∗ ȟ)∗M(θ̌0 ∗ h)]

= ∥M(θ0 ∗ ȟ)∥2F + ∥M(θ̌0 ∗ h)∥2F + 2ℜ
(
Tr[M(θ0 ∗ ȟ)M(θ̌0 ∗ h)∗]

)
(4.6)

Using Lemma 22, we deduce that ∥M(θ0 ∗ ȟ)∥F =
√
L∥θ0 ∗ ȟ∥2. Using Parseval–

Plancherel’s Theorem, we deduce that

∥θ0 ∗ ȟ∥2 =
1√
L
∥θ̂0 ∗ ȟ∥2 =

1√
L
∥θ̂ · ˆ̌h∥2,

where for two vectors u, v ∈ RL , the quantity u · v denotes their co-ordinate wise
product. We further introduce the notations that, for any vector v ∈ RL , we denote
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by |v| the vector given by |v|(i) = |v(i)| ∀i ∈ ZL , and by v2 we denote the vector
given by v2(i) = v(i)2 ∀i ∈ ZL . We may deduce from definition that, for any vector
v ∈ RL , we have ˆ̌v = v̂, which further leads to

∥M(θ0 ∗ ȟ)∥2F = L · 1
L
∥θ̂ · ĥ∥22 = ⟨|θ̂ |2, |ĥ|2⟩. (4.7)

Similarly, we can deduce that

∥M(θ̌0 ∗ h)∥2F = ∥ ˆ̌θ · ĥ∥22 = ⟨|θ̂ |2, |ĥ|2⟩. (4.8)

and

ℜ
(
Tr[M(θ0 ∗ ȟ)M(θ̌0 ∗ h)∗]

)

= L · ℜ⟨θ0 ∗ ȟ, θ̌0 ∗ h⟩ [Using Lemma 22]

= L · 1
L
ℜ⟨θ̂0 ∗ ȟ,̂̌

θ0 ∗ h⟩ [Using the Parseval–Plancherel Theorem]

= ℜ⟨θ̂0 · ˆ̌h, ˆ̌θ0 · ĥ⟩
= ℜ⟨θ̂0 · ĥ, θ̂0 · ĥ⟩. (4.9)

Combining (4.6)–(4.9), we may deduce that

∥M(θ0 ∗ ȟ)+M(θ̌0 ∗ h)∥2F
= 2⟨|θ̂ |2, |ĥ|2⟩+ 2ℜ⟨θ̂0 · ĥ, θ̂0 · ĥ⟩

=

⎡

⎣
∑

ξ∈ZL

2
(
|θ̂(ξ)|2|ĥ(ξ)|2 + ℜ

(
θ̂(ξ)2[ĥ(ξ)]2

))
⎤

⎦ (4.10)

For θ0 ∈ T as in the statement of the Theorem, we propose to choose h such that

(
|θ̂(ξ)|2|ĥ(ξ)|2 + θ̂(ξ)2[ĥ(ξ)]2

)
= 0 ∀ξ ∈ ZL . (4.11)

This would be possible because of the following reasons; using the fact that the Fourier
transform is a bijection, we will determine the choice of h in the Fourier domain..

First, we set ĥ(0) = 0, which will come in handy later. To set the coordinates ĥ(ξ)
for ξ ̸= 0, we proceed as follows. Recall that the only restriction on vectors in the
signal class T is that they have full support and their co-ordinates assume real values
betweenm andM . This translates into the fact that the only restriction on the difference
h of two such signals in the interior of T is that h has real co-ordinates (as long as
∥h∥2 is small enough). This implies that the only restriction on the Fourier transform
ĥ is that ĥ is symmetric (the essential reason for which is that the Fourier transform is
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surjective from RL to symmetric vectors in CL ). So, for any given θ0 ∈ T , we choose
ĥ(ξ) (for ξ ̸= 0) such that |ĥ(ξ)| is small enough and

2Arg(ĥ(ξ)) = π − 2Arg(θ̂0(ξ)), (4.12)

which ensures that
(
|θ̂(ξ)|2|ĥ(ξ)|2 + θ̂(ξ)2[ĥ(ξ)]2

)
= 0. The symmetry condition

on ĥ can be satisfied because, θ0 ∈ T implies that θ̂0 is symmetric, which allows us
to choose ĥ as in (4.12) so that the vector ĥ is indeed symmetric.

The upshot of the (4.11) is that ∥M(θ0 ∗ ȟ) +M(θ̌0 ∗ h)∥F = 0, which implies
that M(θ0 ∗ ȟ)+M(θ̌0 ∗ h) = 0. Thus, Lemma 23 implies that

∥EG[(Gϕ)⊗2]− EG[(Gθ)⊗2]∥F = ∥M(h ∗ ȟ)∥F .

But then we have

∥M(h ∗ ȟ)∥2F = L∥h ∗ ȟ∥22 [Using Lemma 22]

= L · 1
L
∥ĥ ∗ ȟ∥22 = ∥ĥ · ĥ∥22 [By Parseval–Plancherel Theorem]

=

⎛

⎝
∑

ξ∈ZL

|ĥ(ξ)|4
⎞

⎠ (4.13)

≤

⎛

⎝
∑

ξ∈ZL

|ĥ(ξ)|2
⎞

⎠
2

[By Cauchy–Schwarz]

= ∥ĥ∥42 = L2∥h∥42. [By Parseval–Plancherel] (4.14)

The upshot of this is that ∥EG[(Gϕ)⊗2] − EG[(Gθ)⊗2]∥F ≤ CL∥h∥22, thereby
verifying the condition (1.9).

It remains to verify the condition θ = θ0; equivalently, h = 0. Observe that
ĥ(0) = ∑

x∈ZL
h(x) = Lh. However, we have already set ĥ(0) = 0, which therefore

implies that h = 0. This entails that θ = θ0, thereby completing the proof.
⊓⊔

5 The Regime of Moderate Sparsity and Uncertainty Principles

In this section,we establishTheorems 6 andLemma9, in the process invokingUniform
Uncertainty Principles from the discrete Fourier analysis of sparse vectors. We will
proceed as follows. First, wewill establish the technical Lemma 9. Next, wewill verify
that the generic signals considered in Theorem 6 satisfy the conditions of Lemma 9,
thereby completing the proof of Theorem6. Finally, wewill demonstrate the genericity
of support for the symmetric Bernoulli–Gaussian and N symm

[−s,s](0, ζ
2 I ) distributions.
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5.1 Proof of Theorem 6 and Lemma 9

Proof of Lemma 9 Our strategy would involve demonstrating a lower bound on the
norm of the secondmoment difference tensor22(ϕ, θ) = EG[(Gϕ)⊗2]−EG[(Gθ)⊗2]
that is linear in the distance ρ(ϕ, θ). That is, ∥22(ϕ, θ)∥F ≥ C(L) · ρ(ϕ, θ). We will
do so for ϕ ∈ T lying in a neighbourhood of θ . Once such a lower bound is obtained,
the theorem will follow from Proposition 17 and Proposition 14 part (i).

We will work in the local neighbourhood of θ , so that ϱ(ϕ, θ) ≤ r(L); the precise
size of r(L) will be specified later. If r(L) is small enough, then without loss of
generality, we may write ρ(ϕ, θ) = ∥ϕ − θ∥2 = ∥h∥2, which is the formulation that
we will work with.

Notice that, because of the lower bound in part (ii) of the statement of this Lemma,
we have bothmin{ i ∈ supp(ϕ)}|ϕ(i)|,min{ i ∈ supp(θ)}|θ(i)| ≥ mT. As such, if r(L)
is small enough such that r(L) < mT, we have ∥ϕ − θ∥2 = ∥h∥2 < mT. This implies
that, for r(L) small enough, the supports of ϕ and θ must coincide. In particular, the
difference h = ϕ − θ must satisfy supp(h) ⊆ supp(θ). This enables us to invoke
condition (iii-a) in the statement of the Lemma for such h, which we shall use below.

Since θ,ϕ are symmetric, h = ϕ − θ are also symmetric. This implies that θ = θ̌

and h = ȟ, and both Fourier transforms θ̂ and ĥ are real-valued. From Lemma 23 we
may deduce that

∥EG[(Gϕ)⊗2]− EG[(Gθ)⊗2]∥F ≥
2
L
· ∥M(θ ∗ h)∥F −

1
L
∥M(h ∗ h)∥F . (5.1)

Using (4.10) and (4.13), we may further simplify this to

∥2(ϕ, θ)∥F = ∥EG[(Gϕ)⊗2]− EG[(Gθ)⊗2]∥F

≥ 1
L

⎛

⎝4 ·
∑

ξ∈ZL

|θ̂(ξ)|2|ĥ(ξ)|2
⎞

⎠
1/2

− 1
L

⎛

⎝
∑

ξ∈ZL

|ĥ(ξ)|4
⎞

⎠
1/2

. (5.2)

The second term on the right-hand side will be controlled using the fact that ∥h∥2 ≤
r(L), a consequence of the fact that ϱ(ϕ, θ) ≤ r(L). To demonstrate this, we con-
sider ∥h∥∞ = supξ∈ZL

|ĥ(ξ)|. For any ξ ∈ ZL , we observe via the Cauchy Schwarz
inequality that

|ĥ(ξ)| =

∣∣∣∣∣∣

∑

k∈ZL

h(k) exp
(
2π ik
L

)∣∣∣∣∣∣
≤ | supp(h)| · ∥h∥2 ≤ L · ∥h∥2. (5.3)

Using the Parseval–Plancherel Theorem, we may proceed as
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⎛

⎝
∑

ξ∈ZL

|ĥ(ξ)|4
⎞

⎠
1/2

≤ ∥h∥∞

⎛

⎝
∑

ξ∈ZL

|ĥ(ξ)|2
⎞

⎠
1/2

≤ L ∥h∥2∥ĥ∥2 [using (5.3)]

≤ L
√
L ∥h∥22 [via Parseval–Plancherel Theorem]

≤ L
√
L r(L) · ∥h∥2. [Since ∥h∥2 ≤ r(L)] (5.4)

Thus, if we are able to show in the context of (5.2) that
(
4
∑

ξ∈ZL
|θ̂(ξ)|2|ĥ(ξ)|2

)1/2

is bounded below by c(L)∥h∥2, then as soon as r(L) is chosen to be small enough
such that L

√
L r(L) ≤ 1

2c(L), we will be done [via (5.2)] with an overall lower bound
on ∥2(ϕ, θ)∥F by 1

2L · c(L) · ∥h∥2.
In view of this, we will henceforth focus attention to lower-bounding(

4 ·∑ξ∈ZL
|θ̂(ξ)|2|ĥ(ξ)|2

)1/2
.

To this end, we recall the set . and the quantity m(T) from the defining criteria of
T, and proceed as

1
L
·
∑

ξ∈ZL

|θ̂(ξ)|2|ĥ(ξ)|2 = 1
L
·
∑

ξ∈ZL

|θ̂ ∗ h(ξ)|2

≥ c−12
1
|.| ·

∑

ξ∈.
|θ̂ ∗ h(ξ)|2 (since θ ∗ h is 4s-sparse)

= c−12 · 1
|.| ·

∑

ξ∈.
|θ̂(ξ)|2|ĥ(ξ)|2 ≥ c−12 · 1

|.| ·
∑

ξ∈.
m(T)2|ĥ(ξ)|2

= c−12 m(T)2 · 1
|.| ·

∑

ξ∈.
|ĥ(ξ)|2 ≥ c1c−12 m(T)2 · 1

L
·
∑

ξ∈ZL

|ĥ(ξ)|2

= c23 ·m(T)2∥h∥22, (5.5)

where c3 =
√
c1c−12 .

We consider (5.5) in the context of (5.4) and the discussion immediately following

it.With c(L) = 2c3 ·
√
L ·m(T), wemay conclude that

(
4
∑

ξ∈ZL
|θ̂(ξ)|2|ĥ(ξ)|2

)1/2
≥

c(L)∥h∥2, and therefore ∥2(ϕ, θ)∥F ≥ 1
2L ·c(L)·∥h∥2 ≥ c4 ·m(T)√

L
·∥h∥2 for a suitable

positive constant c4. Recalling that ρ(ϕ, θ) = ∥h∥2, we obtain the desired lower bound
on the second moment tensor difference in a neighbourhood of θ :

∥2(ϕ, θ)∥F = ∥EG[(Gϕ)⊗2]− EG[(Gθ)⊗2]∥F ≥ c4 ·
m(T)√

L
· ρ(ϕ, θ). (5.6)
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Combined with the discussion at the beginning of this proof, this completes the argu-
ment. ⊓⊔

We now discuss the proof of Theorem 6.

Proof of Theorem 6 Our approach to this proof will involve demonstrating that the set
of signals T = Ts , as in the statement of Lemma 9, has high probability under the
generative model for the signal in the present theorem. We will do this by showing
below that each of the criteria (i)–(iii) in Lemma 9 has high probability under the
conditions of our current theorem.

(i): This condition is trivially satisfied by the present generativemodel, by definition.
(ii): We now consider the upper and lower bounds on the signal θ on supp(θ) = 4.

In doing so, we will use the fact that the support 4 is typically s-sparse with sparsity
constants (α,β), which implies that αs ≤ |4| ≤ βs with high probability.

But maxk∈supp(θ) |θ(k)| ≤ max{ξk : k ∈ supp(θ)}, where the ξk-s are i.i.d. cen-
tred Gaussians with variance ζ 2, is given by Op(ζ

√
2 log |4|) = Op(ζ

√
log s). This

enables us to set MTs = cζ log s in order to ensure that the maximum condition is
satisfied with high probability.

Similarly, mink∈supp(θ) |θ(k)| ≤ min{ξk : k ∈ supp(θ)} will decay (in |4|) as x
such that x |4|/ζ = Op(1); this follows from the functional form of the Gaussian
density N (0, ζ 2). Thus, it suffices to take mTs = cmin4 (ζ/|4| log |4|) = cζ/s log s
in order to ensure that the minimum condition is satisfied with high probability.

(iii): We now come to the consideration of the desirable set of frequencies .. We
will demonstrate the existence of such a frequency set by an enhanced version of the
probabilistic method. While we will use randomness for finding the desirable set ., it
maybeobserved that the typical randomfrequency set of the right sizewouldnot satisfy
the stipulated conditions on .. Instead, we will require additional considerations in
order to show the existence of one such (atypical) set. To this end, we would require
certain auxiliary technical results, which are encapsulated in Lemmas 26, 27 and 28.

To begin with, we

Draw a random subset . ⊂ ZL having expected size a, that is

each element of ZL can be in . independently with probability a/L, (5.7)

wherea is a positive number slightly larger than the sparsity parameter s, to be specified
in detail later. ByLemma26, such a set.will satisfy the condition (iii)(a) in the present
Lemma for all s-sparse vectors h with probability

P[. satisfies (iii)(a) for all s − sparse vectors h] ≥ 1− 5 exp(−ca(s log4 L)−1),
(5.8)

the probability in question being in the randomness of.. We say that a subset A ⊂ ZL
satisfies the Uniform Uncertainty Principle for s-sparse vectors (abbrv. s-UUP), if it
satisfies (5.12). Observe that a, being equal to |.| and . ⊆ ZL , needs to satisfy
a ≤ L . In view of this, to ensure that . satisfies (iii)(a) with high probability (as
s, L grow large), we need to have a(s log4 L)−1 → ∞ in (5.8), which is equivalent
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to s ≪ L/(log4 L), which in turn is ensured by the condition L ≤ L/(log5 L) for L
large enough.

We now work towards showing that with positive, albeit vanishingly small proba-
bility, the condition (iii)(b) is also satisfied. To that end, we notice that while (iii)(a)
is valid for all s-sparse vectors h, we need to verify (iii)(b) only for the signal class of
our interest - fact that we will crucially exploit in our considerations.

We begin with the observation that, since 4 is (sτ )-cosine generic, with high
probability in the set 4 we have the inequality minξ∈ZL |V(4, ξ)| ≥ sτ . For
such a set 4, and any η ∈ (0, 1), we invoke the quantity a(4, η, ζ ) = C(1 −
η)−1ζ−η

(
minξ∈ZL V(4, ξ)

)− 1
2 η [c.f. (5.14)], which immediately leads to the bound

a(4, η, ζ ) ≤ C(1− η)−1ζ−ηs−
1
2 τη.

For κ > 0 to be specified later, notice that this implies, with high probability in the
signal θ , that

a(4, η, ζ )|4|− 1
2 κη ≤ Cηζ

−ηs−
1
2 (κ+τ )η

withCη = C(1−η)−1, which is small in the regime of large s (and fixed ζ ) as soon as
κ + τ > 0. In light of Lemma 27 and the defining equation (5.13), we may therefore
conclude that,with high probability in the signal θ , we have the inequality |θ̂(ξ)| ≥ s−κ

for a set S(κ) of frequencies ξ satisfying |S(κ)| ≥ L(1− Cηζ
−ηs−

1
2 (κ+τ )η).

For a given τ , we now select κ = max{4 − τ, 0}, which implies in particular that
1
2 (κ + τ ) ≥ 2 and automatically κ + τ > 0. We then choose η = 3/4, leading to the
bound |S(κ)| ≥ L(1 − cζ−1/2s−3/2). On this set S(κ), with high probability in the
signal θ , we have |θ̂(ξ)| ≥ cmin{sτ−4, 1}.

We now examine carefully a randomly sampled subset . ⊂ ZL with average size
a, as in (5.7). We want to understand P[. ⊂ S(κ)], equivalently, P[S(κ)! ⊂ .!].
Observe from the discussion above that |S(κ)!| ≤ cLζ−1/2s−3/2, and note that the
probability of a particular frequency ξ to belong to .! is (1 − a/L). Since each
frequency in ZL is chosen to belong to. independently of each other, we may deduce
that, as long as a/L remains bounded away from 1, we have

P[. ⊂ S(κ)] = P[S(κ)! ⊂ .!]
= (1− a/L)|S(κ)!|

≥ exp(−c′ a
L
· cLζ−1/2s−3/2)

= exp(−c′′ζ−1/2as−3/2). (5.9)

We may then proceed as

P[{. is s-UUP } ∩ {. ⊂ S(κ)}]
= P[{. ⊂ S(κ)} \ {. is s-UUP }!]
≥ P[. ⊂ S(κ)]− P[{. is s-UUP }!]
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≥ exp(−c′′ζ−1/2as−3/2)− 5 exp(−c3as−1 log−4 L))[c.f. (5.9) and Lemma 26]
(5.10)

The last expression in (5.10) is positive as soon as ζ−1/2s−3/2 ≪ s−1 log−4 L , equiva-
lently s ≫ log8 L/ζ in the regime of large L . The latter condition, in turn, is guaranteed
by s ≥ log9 L , as soon as L is large enough.

In this regime, i.e. when s ≫ log8 L/ζ , we have

P[{. is s-UUP } ∩ {. ⊂ S(κ)}] > 0,

implying that there exists a realization of the subset . such that:

(i) . satisfies (5.12) for all s-sparse signals.
(ii) minξ∈. |θ̂(ξ)| ≥ cmin{sτ−4, 1}.
These two facts together establish the existence of a frequency set . as required in
condition (iii) of Lemma 9, with

m(Ts) = cmin{sτ−4, 1} (5.11)

as above. This completes the argument for (iii), and therefore completes the proof of
the present theorem. ⊓⊔
Remark 24 We observe that in (5.11) the lower bound m(Ts) = cmin{sτ−4, 1}, in
fact, depends only on s (and not on L).

Remark 25 In view of (5.8) and the discussion immediately thereafter, we note that
it suffices to have s ≤ L/(log5 L) for L large enough. On the other hand, in view of
(5.10) and the ensuing discussion, it suffices to have s ≥ log9 L . Combining these two
observations, we work in the regime of L such that

log9 L ≤ s ≤ L/(log5 L).

It remains to establish Lemmas 27 – 29, which we take up in the next section.

5.2 Proofs of Lemmas 27, 28 and 29

To begin with, we invoke the following Uniform Uncertainty Principle from [48].

Lemma 26 ([48]) Let F be a random set of frequencies in ZL having expected size
a, that is each element of ZL can be in F independently with probability a/L. Then
there are fixed numbers c1, c2, c3 such that, simultaneously for all f : ZL "→ R that
is s − sparse, the event

c1 ·
1
L

∑

ξ∈ZL

| f̂ (ξ)|2 ≤ 1
|F|

∑

ξ∈F
| f̂ (ξ)|2 ≤ c2 ·

1
L

∑

ξ∈ZL

| f̂ (ξ)|2 (5.12)

holds with probability ≥ 1− 5 exp(−c3a(s log4 L)−1).
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Next, for κ > 0 and a function f : ZL → R with supp( f ) = 4, we define the set
of frequencies S f (κ) as

S f (κ) = {ξ ∈ ZL : | f̂ (ξ)| ≥ |4|−κ}. (5.13)

Then we are ready to state the following lemma.

Lemma 27 Let 4 ⊂ ZL , let

a(4, η, ζ ) = C(1− η)−1ζ−η

(
min
ξ∈ZL

V(4, ξ)

)− 1
2 η

(5.14)

for C > 0 as in Lemma 28 and any 0 < η < 1, and let f ∼ N4(0, ζ 2I). Then, for
κ > 0, we have

|S f (κ)| ≥ L
(
1− a(4, η, ζ )|4|− 1

2 κη

)

with probability ≥ 1− a(4, η, ζ )|4|− 1
2 κη.

Proof We will approach this result by upper bounding the size of the set S(κ)!.
Observe that, ξ ∈ S(κ)! implies that | f̂ (ξ)| ≤ |4|−κ ; equivalently, | f̂ (ξ)|−η ≥
|4|κη.

This implies that,

|4|κη|S(κ)!| =
∑

ξ∈S(κ)!
|4|κη

≤
∑

ξ∈S(κ)!
| f̂ (ξ)|−η

≤
∑

ξ∈ZL

| f̂ (ξ)|−η.

Therefore, we may proceed as

|4|κηE[|S(κ)!|] ≤ E[
∑

ξ∈ZL

| f̂ (ξ)|−η] ≤
∑

ξ∈ZL

E[| f̂ (ξ)|−η] ≤ La(4, η, ζ ),

(5.15)

where, in the last step, we make use of the definition (5.14) and of Lemma 28; in
particular choosing C to be as in that Lemma.

We may restate this as

E[|S(κ)!|] ≤ La(4, η, ζ )|4|−κη. (5.16)
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We may then proceed via Markov’s inequality as

P[|S(κ)| ≤ L(1− |4|− 1
2 κη)]

= P[|S(κ)!| ≥ L|4|− 1
2 κη]

≤ E[|S(κ)!|]/L|4|− 1
2 κη

≤ L−1|4| 12 κη · La(4, η, ζ )|4|−κη [using (5.16)]

= a(4, η, ζ )|4|− 1
2 κη,

as desired. ⊓⊔
For 4 ⊂ ZL and a ∈ ZL , we recall (C.1):

V(4, a) = 1{0∈4} + 2
∑

k∈4\{0}
cos2(2πak/L),

where 1A denotes the indicator function of the event A.

Lemma 28 Consider two subsets 4, A ⊂ ZL . Let f ∼ N4(0, ζ 2I). Then there is a
positive number C such that for any 0 < η < 1, we have

E[| f̂ (ξ)|−η] ≤ C(1− η)−1ζ−η

(
min
ξ∈A

V(4, ξ)

)− 1
2 η

for all ξ ∈ A.

Proof We invoke Lemma 29 in order to conclude that, for any ξ ∈ ZL , we have
f̂ (ξ) ∼ N (0, ζ 2V(4, ξ)). In other words, f̂ (ξ) is a 1D Gaussian random variable
with varianceV(4, ξ). Now, it follows from the 1D standard Gaussian density formula
that for any η < 1, a 1D standard Gaussian Z has a finite negative moment E[|X |−η]
by C(1 − η)−1 for some positive number C . It follows that, if Y ∼ N (0, a2), then
E[|Y |−η] = a−ηE[|X |−η] ≤ C(1− η)−1a−η. This completes the proof. ⊓⊔

We can then state

Lemma 29 Let f ∼ N4(0, ζ 2I). Then, for any ξ ∈ ZL , we have f̂ (ξ) ∼
N (0, ζ 2V(4, ξ)).

Proof For any ξ ∈ ZL , we can write

f̂ (ξ) =
∑

κ∈4
f (k) exp(2π iξk/L);

using the fact that 4 is symmetric about the origin and denoting 4+ = 4 ∩
{1, . . . , L/2}, this may be rewritten as

f̂ (ξ) = f (0)1{0∈4} + 2
∑

κ∈4+

f (k) cos(2πξk/L). (5.17)
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Since { f (k)}k∈4 is a collection of i.i.d. N (0, ζ 2) random variables (and 0 for
k /∈ 4), we deduce that f̂ (ξ) is Gaussian with mean 0 and variance ζ 21{0∈4} +
4
∑

k∈4+ ζ 2 cos2(2πξk/L) = ζ 2V(4, ξ), as desired. ⊓⊔

5.3 Genericity of Support for Symmetric Bernoulli–Gaussian and Nsymm
[−s,s](0, !2I)

Distributions

In this section, we demonstrate that two major classes of distributions in the regime
of moderate sparsity—namely, the sparse symmetric Bernoulli–Gaussian distribution
and the N symm

[−s,s](0, ζ
2 I ) distribution—exhibit cosine-genericity of support.

To begin with, we recall the definitions of support sets of signals being typically
s-sparse (Definition 42) and 7-cosine generic (Definition 43). We would also need to
make use of Bernstein’s inequality, which we state below.

Lemma 30 (Bernstein’s Inequality) [15] Let X1, . . . , Xn be mean zero random vari-
ables, and let |Xi | ≤ M for all 1 ≤ i ≤ n. Then, for any t > 0, we have

P
(

n∑

i=1

Xi ≥ t

)

≤ exp

(

−
1
2 t

2

∑n
i=1 E[X2

i ] + 1
3Mt

)

.

We first take up the support properties of the symmetric Bernoulli–Gaussian dis-
tribution.

Lemma 31 For L large enough and log9 L ≤ s ≤ L/ log5 L, the sparse symmetric
Bernoulli distribution with mean 0, variance ζ 2 and sparsity parameter s is typically
s-sparse with sparsity constants (1/2, 2), and is s/32-cosine generic.

Proof We first show that the sparse symmetric Bernoulli distribution is typically s-
sparse, which amounts to showing that |4| is of order s with high probability. But
we observe that |4| = Y0 + 2

∑⌊(L−1)/2⌋
i=1 Yi , where each Yi is a Bernoulli(s/L)

random variable.We immediately conclude thatE[|4|] = s+1. Applying Bernstein’s
inequality (c.f. Lemma 30) to the centred random variables Xi = 2(Yi − E[Yi ]) (for
i ≥ 1) and X0 = Y0 − E[Y0] with t = 1

2 s and M = 2, we obtain

P
(∣∣|4|−E[|4|]

∣∣ ≥ t
)
≤exp

(

−
1
8 s

2

4( L2 + 1) sL (1− s
L )+ 1

3 s

)

= exp(−cs(1+ oL(1)))

for some positive number c. Since E[4] = s + 1, we deduce that 1
2 s ≤ |4| ≤ 2s

with probability 1− oL(1), implying that the sparse symmetric Bernoulli distribution
is typically s-sparse, with sparsity constants (1/2, 2).

To demonstrate that the symmetric Bernoulli distribution is cosine generic with the
parameters as claimed in the statement of this lemma, we first compute, for a fixed

123



Foundations of Computational Mathematics (2023) 23:1851–1898 1883

ξ ∈ ZL , the expectation E[V(4, ξ)]. To this end, we may write

V(4, ξ) = Y0 + 4
⌊(L−1)/2⌋∑

k=1

cos2(2πξk/L)Yi , (5.18)

where the random variables Yi are defined as above. Then

E[V(4, ξ)] = s
L
+ 4s

L

⌊(L−1)/2⌋∑

k=1

cos2(2πξk/L). (5.19)

Setting µ = exp(2π iξ/L), this reduces to

E[V(4, ξ)] = s
L
+ s

L

⌊(L−1)/2⌋∑

k=1

|µk + µ−k |2 = s
L
+ s

L

⌊(L−1)/2⌋∑

k=1

(2+ 2ℜ(µ2k))

= s(1+ oL(1))+ s · 1
L
ℜ

⎛

⎝
⌊(L−1)/2⌋∑

k=1

µ2k

⎞

⎠

= s ·
[
1+ 2

L
ℜ
(
µ2 · 1− µL−α

1− µ2

)
+ oL(1)

]
, (5.20)

where α = 1 or 2, depending on whether L is odd or even.
By considering the magnitude of the quantity

(
µ2 · 1−µL−α

1−µ2

)
, we deduce from

(5.20) that for large s, L the expectation

E[V(4, ξ)] ≥ s/2

unless |1− µ2| < 8/L ⇐⇒ |2ξ/L − δ| < 8/L for δ = 0,±1

⇐⇒ |ξ − δ · L
2
| < 4 for δ = 0,±1. (5.21)

It remains to deal with the frequencies ξ that satisfy (5.21).Wewill demonstrate the
details for the case δ = 0; the computations for δ = ±1 are similar, and indeed can be
reduced to the consideration of δ = 0 by making a change of variables ξ̂ = ξ − δ · L

2
and observing that cos2(2πξ̂k/L) = cos2(2πξk/L).

Therefore, we reduce ourselves to considering the frequencies ξ [in the context of
(5.21)] such that |ξ | < 4. We then invoke (5.19) and lower bound

E[V(4, ξ)] ≥ 4s
L

L/32∑

k=1

cos2(2πξk/L) ≥ 4s
L

L/32∑

k=1

cos2(2π/8) = 4s
L

· L
32

· 1
2
= s/16.

(5.22)
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We combine our analyses of the two classes of frequencies, summarize it as:

E[V(4, ξ)] ≥ s/16 ∀ξ ∈ ZL . (5.23)

We centre the Yi -s in (5.18) by their expectations, and define the centered random
variables X0 = Y0−E[Y0] and for 1 ≤ i ≤ ⌊(L − 1)/2⌋, Xi = 4 cos2(2πξk/L)(Yi−
E[Yi ]). Then we may write

V(4, ξ)− E[V(4, ξ)] =
⌊(L−1)/2⌋∑

i=0

Xi .

Notice that, for any i ≥ 0, Var[Xi ] ≤ 4s/L(1− s/L), so that

⌊(L−1)/2⌋∑

i=0

E[X2
i ] ≤ 2s(1− s/L)(1+ oL(1)).

Applying Bernstein’s inequality (c.f. Lemma 30) with t = s/32 and M = 4, we
proceed as

P
(∣∣V(4, ξ)− E[|V(4, ξ)]

∣∣ ≥ s/32
)

≤ exp

(

−
1
2 t

2

∑⌊(L−1)/2⌋
i=0 E[X2

i ] + 1
3Mt

)

≤ exp

(

−
1

2048 s
2

2s(1− s/L)(1+ oL(1))+ 1
24 s

)

.

≤ exp(−s/104(1+ oL(1))).

By a union bound, we may further deduce that

P
(
∃ξ ∈ZL such that

∣∣V(4, ξ)−E[V(4, ξ)]
∣∣ ≥ s/32

)
≤ L exp(−s/104(1+ oL(1))).

(5.24)

The right-hand side is oL(1) as soon as s ≫ 104 log L .
On the complement of the event in (5.24), that is, when {

∣∣V(4, ξ)−E[V(4, ξ)]
∣∣ <

s/32 ∀ξ ∈ ZL}, we may deduce from (5.21) that for all ξ ∈ ZL

V(4, ξ)

≥ E[V(4, ξ)]−
∣∣V(4, ξ)− E[V(4, ξ)]

∣∣

≥ s/16− s/32

= s/32.
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This shows that minξ∈ZL V(4, ξ) ≥ s/32 with probability 1−oL(1) (in the random
subset 4), thereby establishing the claim that for s ≥ c log L and L large enough, the
random subset 4 is s/32-cosine generic. ⊓⊔

Finally, we end this section with a study of the support properties of the
N symm
[−s,s](0, ζ

2 I ) distribution.

Lemma 32 For s, L large enough, the deterministic subset {[−s, s]∩ZL} is typically
s-sparse and is s/16-cosine generic.

Proof The (deterministic) subset 4 has size exactly 2s + 1, therefore 4 is trivially
typically s-sparse. It remains to show the cosine genericity of 4.

For any ξ ∈ ZL , we have

V(4, ξ)

= 1+ 2
∑

k∈[−s,s]\{0}
cos2(2πξk/L)

= −1+ 2
s∑

k=−s
cos2(2πξk/L)

= −3+
s∑

k=0

| exp(2π iξk/L)+ exp(−2π iξk/L)|2. (5.25)

Setting ω = exp(2π iξ/L), we may proceed as

V(4, ξ) = −3+
s∑

k=0

|ωk + ω−k |2 = −3+
s∑

k=0

(2+ 2ℜ(ω2k))

= 2s − 1+ 2ℜ
(

s∑

k=0

ω2k

)

= 2s − 1+ 2ℜ
(
1− ω2s+2

1− ω2

)
.

The last equation implies that

V(4, ξ) ≥ s(1+ o(1)) (5.26)

unless
∣∣ℜ

(
1−ωs+2

1−ω2

) ∣∣ > s/4, which would in particular imply that

∣∣1− ωs+2

1− ω2

∣∣ > s/4. (5.27)

Recalling the definition of ω, and observing that |1− ωs+2| ≤ 2 we may deduce that
(5.27) is true only if |1 − ω2| < 8/s. Recalling that ω = exp(2π iξ/L) , we deduce
that for large enough s, the inequality holds |1− ω2| < 8/s only if |2ξ/L − δ · L

2 | ≤
8/s(1+ os(1)), where δ = 0,±1. As in the proof of Lemma 31, we focus on the case
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δ = 0, noting in passing that the cases δ = ±1 are similar and are easily dealt with
using a simple change of variables from ξ .

When δ = 0, we are considering frequencies ξ such that ξ/L < 4/s. This in
particular implies that for all |k| ≤ s/32, we have |2πξk/L| < π/4, implying
cos2(2πξk/L) ≥ 1/2.

We now proceed to lower bound V(4, ξ) for ξ ∈ ZL . If ξ ∈ ZL is such that
ω = exp(2π iξ/L) does not satisfy (5.27), then by (5.26) we conclude that V(4, ξ) ≥
s(1+ o(1)).

If ξ ∈ ZL is such that ω = exp(2π iξ/L) satisfies (5.27), then we proceed as
follows. Using (5.25), we may lower bound V(4, ξ) as

V(4, ξ)

= −1+ 2
s∑

k=−s
cos2(2πξk/L)

≥ 1+ 2
∑

1≤|k|≤s/32
cos2(2πξk/L)

≥ s/16. (5.28)

Combining (5.26) and (5.28), we deduce that V(4, ξ) ≥ s/16 ∀ξ ∈ ZL , thereby
showing that 4 is s/16-cosine generic and completing the proof of the lemma. ⊓⊔

6 Results on the Curvature ofDKL

In this section, we provide the proofs of several propositions pertaining to the curvature
of the KL divergence for the MRA model.

6.1 Moment Difference Tensors and DKL

Proof of Proposition 14 We discuss (i); the case of (ii) would be similar. We recall that
the probability distribution pθ as well as DKL(pθ∥pϕ) are invariant under the action
of G, i.e., invariant under the transformations θ "→ G · θ for G ∈ G. As a result, for
ϱ(θ, θ0) small enough (equivalently, ∥θ−θ0∥2 small enough), wemay assumewithout
loss of generality that ϱ(θ, θ0) = 1√

L
∥θ − θ0∥2 (c.f., [4]; esp. the proof of Theorem 4

therein).
The dimension of the Hessian of DKL(pθ0 ||pθ ) depends on the local dimension of

the parameter space at the point θ0, which is the same as k = | supp(θ0)|. The lower
bound on DKL in (i) implies that

K1(σ )
1/2Idk ≼ I (θ0) ⇐⇒ I (θ0)−1 ≼ K1(σ )

−1/2Idk,

where Idk is the k × k identity matrix, and ≼ denotes domination in the sense of
non-negative definite matrices. Since

√
n(θ̃n − θ0) → N (0, I (θ0)−1), setting Zk ∼
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N (0, Idk), we may deduce that as n→∞ we have the distributional convergence

√
n∥θ̃n − θ0∥2 =

√
n∥θ̃n − θ0∥22 → ∥I (θ0)−1/2Zk∥2. (6.1)

On the other hand, we have

∥I (θ0)−1/2Zk∥2 =
√
⟨Zk, I (θ0)−1Zk⟩ ≤ K1(σ )

−1/2∥Zk∥2. (6.2)

Thus,
√
nϱθ, θ0 =

√
n 1√

L
· ∥θ̃n − θ0∥2 = Op(K1(σ )

−1/2/
√
L), as desired.

We note in passing that ∥Zk∥2 is a
√

χ2(k) distribution. ⊓⊔

Recall that for any θ = (θ1, . . . , θL) ∈ RL , we denote θ = 1
L

∑L
i=1 θi . This leads

us to the fact that θ∗ := EG[Gθ ] = θ · 1, where 1 = (1, 1, . . . , 1) ∈ RL is the all
ones vector in L dimensions. Finally, we denote by θ̃ the centred version of θ , that is,
θ̃ = θ − θ∗ = θ − EG[Gθ ]. We observe that

EG[Gθ̃] = EG[θ − θ∗] = EG[θ ]− EG[θ∗] = θ∗ − θ∗ = 0. (6.3)

Notice further that, with the above notations, we may write

21(θ,ϕ) = (θ − ϕ)1. (6.4)

Towards the proofs of Propositions 17 and 18, we will now present a comparison
between the second moment difference tensors for the centred and uncentred versions
of two vectors θ and ϕ. To this end, we state the following Proposition.

Proposition 33 We have,

22(θ,ϕ) = 22(θ̃ , ϕ̃)+ (θ
2 − ϕ2) · 1⊗ 1.

Proof We have,

EG[(Gθ)⊗2]
= EG[(G(θ̃ + θ∗))⊗2]
= EG[(Gθ̃ + Gθ∗))⊗2]
= EG[(Gθ̃ + θ∗))⊗2] [since θ∗ is G-invariant]
= EG[(Gθ̃)⊗2] + EG[Gθ̃ ⊗ θ∗] + EG[θ∗ ⊗ Gθ̃ ] + θ∗ ⊗ θ∗

= EG[(Gθ̃)⊗2] + EG[Gθ̃ ]⊗ θ∗ + θ∗ ⊗ EG[Gθ̃ ] + θ∗ ⊗ θ∗

= EG[(Gθ̃)⊗2] + θ∗ ⊗ θ∗ [using (6.3)]

= EG[(Gθ̃)⊗2] + θ
2
1⊗ 1. (6.5)
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In view of (6.5), we may write

22(θ,ϕ) = EG[(Gθ)⊗2]− EG[(Gϕ)⊗2] = 22(θ̃, ϕ̃)+ (θ
2 − ϕ2) · 1⊗ 1, (6.6)

as desired. ⊓⊔

We now proceed to establish Proposition 17.

Proof of Proposition 17 Observe that, |θ2−ϕ2| = |θ+ϕ| · |θ−ϕ| ≤ (∥θ∥∞+∥ϕ∥∞) ·
|θ − ϕ|. This implies, in particular, that

∥22(θ̃ , ϕ̃)∥F ≥ ∥22(θ,ϕ)∥F − (∥θ∥∞ + ∥ϕ∥∞) · |θ − ϕ| · ∥1⊗ 1∥F . (6.7)

Now, Theorem 16 implies that

DKL(θ̃ ||ϕ̃)
≥ C · ∥22(θ̃ , ϕ̃)∥2F/σ 4

≥ C ·
(
∥22(θ,ϕ)∥F − (∥θ∥∞ + ∥ϕ∥∞) · |θ − ϕ| · ∥1⊗ 1∥F

)2
/σ 4

≥ C ·
(
3
4
∥22(θ,ϕ)∥2F − 3(∥θ∥∞ + ∥ϕ∥∞)2 · |θ − ϕ|2 · ∥1⊗ 1∥2F

)
/σ 4

for a positive number C , where in the last step we use Proposition 35.
Combining the above with Lemma 15 we obtain

DKL (θ ||ϕ)

≥ 1
2
|θ − ϕ|2∥1∥22 · σ−2 + C

(
3
4
∥22(θ,ϕ)∥2F − 3(∥θ∥∞ + ∥ϕ∥∞)2|θ − ϕ|2∥1⊗ 1∥2F

)

≥ σ−4
3C
4
∥22(θ,ϕ)∥2F + |θ − ϕ|2

(
1
2
σ−2∥1∥22 − 3Cσ−4(∥θ∥∞ + ∥ϕ∥∞)2∥1⊗ 1∥2F

)
.

(6.8)

We now make use of the fact that the signal class T is bounded (in the deterministic
setting), and in the case of generative models, the random signal is bounded with high
probability.

We then consider the term
(
1
2
σ−2∥1∥22 − 3Cσ−4(∥θ∥∞ + ∥ϕ∥∞)2∥1⊗ 1∥2F

)

on the right-hand side of (6.8), and observe that when σ is large enough—that is,
σ ≥ σ0(L) for some threshold σ0(L), we have

(
σ−2∥1∥22 − 3σ−4(∥θ∥∞ + ∥ϕ∥∞)2∥1⊗ 1∥2F

)
≥ 1

4
σ−2∥1∥22. (6.9)
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Combining (6.8) and (6.9), we obtain

DKL(θ ||ϕ)

≥ σ−4 · 3C
4
∥22(θ,ϕ)∥2F + σ−2 · 1

4
|θ − ϕ|2∥1∥22

≥ σ−4 · 3C
4
∥22(θ,ϕ)∥2F . (6.10)

⊓⊔

Remark 34 We observe that equality can hold in (6.10), whenever θ = ϕ. This is
indeed possible for specific directions of approach of ϕ to the signal θ when θ lies in
the interior of the signal class. The standard signal classes considered in MRA, in this
paper as well as otherwise, and also the generative models considered in this paper,
have their interiors account for their full Lebesgue measure, so nearly all signals θ do
in fact have such a bad direction of approach where equality in (6.10) holds.

We continue on to the proof of Proposition 18.

Proof of Proposition 18 When, for some θ,ϕ, we have ∥22(θ,ϕ)∥F ≤ cρ(θ,ϕ)2, then
we may proceed to analyse the order of DKL(θ∥ϕ) as follows. Combining Lemma 15
and Theorem 16 applied with k = 3, and noting that 21(θ̃∥ϕ̃) = 0, we may proceed
as

DKL(θ ||ϕ)

= DKL(pθ̃ ||pϕ̃)+
1

2σ 2 ∥21(θ,ϕ)∥2

≤ 2
2∑

m=1

∥2m(θ̃, ϕ̃)∥2
σ 2mm! + C

∥θ̃∥42ρ(θ̃, ϕ̃)2
σ 6 + 1

2σ 2 ∥21(θ,ϕ)∥2

= 1
2σ 2 · |θ − ϕ|2∥1∥22 +

1
σ 4 · ∥22(θ̃, ϕ̃)∥2F + C

∥θ̃∥42ρ(θ̃, ϕ̃)2
σ 6 [using (6.4)]

= 1
2σ 2 · |θ − ϕ|2∥1∥22

(

1+ C1∥θ∥42
σ 4

)

+ 1
σ 4 · ∥22(θ̃ , ϕ̃)∥2F + 2C∥θ∥42

σ 6 ρ(θ,ϕ)2,

(6.11)

where, in the last step, we have used Proposition 36.
Therefore, if θ,ϕ are such that θ = ϕ and ∥22(θ,ϕ)∥F ≤ cρ(θ,ϕ)2, we may

conclude from (6.11) that

DKL(θ ||ϕ) ≤
1
σ 4 · C · ρ(θ,ϕ)4 + 2C

∥θ∥42
σ 6 · ρ(θ,ϕ)2.
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For small enough ρ(θ,ϕ), the quadratic term involving ρ(θ,ϕ)2 dominates in the
above, and we have

DKL(θ ||ϕ) ≤ 4C
∥θ∥42
σ 6 · ρ(θ,ϕ)2 (6.12)

for some positive number C and small enough ρ(θ,ϕ). ⊓⊔

We complete this section with the auxiliary Propositions 35 and 36.

Proposition 35 Let a, b > 0. Then we have

(a − b)2 ≥ 3
4
a2 − 3b2.

Proof We observe that

2ab = 2 · 1
2
a · 2b ≤ 1

4
a2 + 4b2. (6.13)

We may then expand (a − b)2 = a2 + b2 − 2ab and use (6.13) to lower bound the
−2ab term. This completes the proof. ⊓⊔

Proposition 36 We have,

ρ(θ̃ , ϕ̃)2 ≤ 2ρ(θ,ϕ)2 + 2|θ − ϕ|2∥1∥22.

Proof Recall that θ∗ = EG[Gθ ] is G-invariant, i.e., Gθ∗ = θ∗∀G ∈ G; the same holds
true for ϕ∗. For any G ∈ G, we may write

∥θ̃ − Gϕ̃∥22
= ∥(θ − θ∗)− G(ϕ − ϕ∗)∥22
= ∥(θ − Gϕ)− (θ∗ − ϕ∗)∥22 [Since θ∗,ϕ∗ are G-invariant]
≤ 2∥θ − Gϕ∥22 + 2∥θ∗ − ϕ∗∥22.

We summarize the above computations as

∥θ̃ − Gϕ̃∥22 ≤ 2∥θ − Gϕ∥22 + 2∥θ∗ − ϕ∗∥22 ∀G ∈ G. (6.14)

This implies that, for any G ∈ G we have

ρ(θ̃, ϕ̃)2 = min
g∈G
∥θ̃ − gϕ̃∥22 ≤ ∥θ̃ − Gϕ̃∥22 ≤ 2∥θ − Gϕ∥22 + 2∥θ∗ − ϕ∗∥22.

(6.15)

123



Foundations of Computational Mathematics (2023) 23:1851–1898 1891

Taking minimum over G ∈ G on the right-hand side of (6.15) and noting that θ∗ = θ1
(and similarly for ϕ∗), we obtain

ρ(θ̃ , ϕ̃)2 ≤ 2ρ(θ,ϕ)2 + 2|θ − ϕ|2∥1∥22,

as desired. ⊓⊔

6.2 L, sDependence of Estimation Rates

It may be noted that, in the context of Proposition 14 part (i), if we have additional
information on the dependence of K1(σ ) on L and/or s, then we can have informative
asymptotic upper bounds on ϱ(θ̃n, θ) vis-a-vis its dependence on L and/or s.

Proof of Theorem 8 We begin by recalling that by the G-invariance of DKL(pθ∥pϕ),
for ϱ(θ, θ0) (equivalently, ∥θ − θ0∥2) small enough, we may assume without loss of
generality that ϱ(θ, θ0) = 1√

L
∥θ − θ0∥2. Since ∥θ̃n − θ0∥2 → 0 as n→∞, This will

be true for ϱ(θ̃n, θ0) with high probability.
The Dilute Regime. In view of Lemma 5 and Proposition 17, we obtain a local

curvature estimate on DKL(pθ∥pθ0) as

DKL(pθ∥pθ0) ≥ C · s
Lσ 4 · ∥θ − θ0∥22.

Thus, we are in the setting of Proposition 14 part (i) with K1(σ ) = C · s
Lσ 4 . In view

of (6.1) and (6.2), we conclude that the limiting distribution of
√
nϱ(θ̃, θ0)/σ

2 is
stochastically dominated by a C1

√
χ2(s)/s random variable, for a constant C1 > 0.

We conclude by noting that the latter random variable is Op(1).
The Regime of Moderate Sparsity. In the case of generic sparse symmetric signals,

it may be seen from (5.6) and Remark 24 that if the support typically s-sparse and is
sτ cosine-generic, then for ϱ(θ, θ0) small we have

∥22(θ, θ0)∥F ≥
sτ−4
√
L
∥θ − θ0∥2.

Hence, by Theorem 16, for such signals we have

DKL(pθ∥pθ0) ≥ C · s
2(τ−4)

Lσ 4 · ∥θ − θ0∥22.

Once again, this places us in the context of Proposition 14 part (i), with

K1(σ ) = C · s
2(τ−4)

Lσ 4 .

Furthermore, in view of (6.1) and (6.2), we may conclude that the limiting distribution
of
√
nϱ(θ̃, θ0)/σ

2 is stochastically dominated by a C2s4−τ
√

χ2(s) random variable,
for a constant C2 > 0. The latter random variable is Op(s4.5−τ ).

123



1892 Foundations of Computational Mathematics (2023) 23:1851–1898

We finally observe that two significant examples of generic sparse symmetric
signals—namely, the Bernoulli–Gaussian distribution and the N symm

[−s,s](0, ζ
2 I ) have

supports that are typically s-sparse and constant times s-cosine generic. We provide
the details in the case of the Bernoulli–Gaussian; the case of the N symm

[−s,s](0, ζ
2 I ) is

similar. We invoke Lemma 31 to conclude that the symmetric Bernoulli–Gaussian
distribution with sparsity s and variance ζ 2 is typically s-sparse (with sparsity con-
stants (1/2, 2)) and s/32 cosine generic. The analogous Lemma to be applied for the
N symm
[−s,s](0, ζ

2 I ) distribution is Lemma 32.
Thus, for these two signal distributions, τ = 1 in these settings in the context of

the discussion immediately above.
In view of this fact, and the discussion above, the Bernoulli–Gaussian signal ensem-

ble and the N symm
[−s,s](0, ζ

2 I ) entail estimation rates that, upon scaling by σ 2/
√
n, are

Op(s3.5). ⊓⊔
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Appendix

A Appendix: Additional Notations

Definition 37 Let {Xn}n≥1 be a sequence of non-negative random variables, and
{an}n≥1 is a sequence of positive numbers (deterministic or random). Then:

• By the statement Xn = Op(an) we mean that, for every ε > 0, there exists
0 < C(ε) <∞ such that

lim inf
n→∞ P [Xn/an ≤ C(ε)] ≥ 1− ε.

• By the statement Xn = /p(an) we mean that, for every ε > 0, there exists
0 < c(ε) <∞ such that

lim inf
n→∞ P [Xn/an ≥ c(ε)] ≥ 1− ε.

• By the statement Xn = ;p(an) we mean that for every ε > 0, there exist 0 <

c(ε) < C(ε) <∞ such that

lim inf
n→∞ P [c(ε) ≤ Xn/an ≤ C(ε)] ≥ 1− ε.

Further, ∥ · ∥F will denote the Frobenius norm of a matrix, and the expectation EG
will be taken with respect to G chosen uniformly from the group of isometries G.
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For any positive integer m, by the symbol [m] we denote the set {1, . . . ,m}.
For two sequences of positive numbers (ak)k>0 and (bk)k>0, we write ak ≪ bk

when we have bk/ak →∞ as k →∞.
A sequence of events {Em}m≥1, defined with respect to probability measures Pm ,

is said to occur with high probability if Pm[Em]→ 1 as m →∞.
For any θ = (θ1, . . . , θL) ∈ RL , we denote θ = 1

L

∑L
i=1 θi .

B Appendix: Bernoulli–Gaussian Distributions

Wedefine the notion of theBernoulli–Gaussian distribution, and the symmetric version
thereof. For that, we first define the notion of a Gaussian distribution indexed by a
subset of ZL .

Definition 38 (Subset-indexed Gaussian distributions) Let A ⊂ ZL , µ : ZL → R
a function supported on A and 1 be a positive definite |A| × |A| matrix. Then the
Gaussian distribution indexed by Awithmeanµ and covariance1, denoted NA(0,1),
is the random vector (ηk)k∈ZL , with ηk = 0 for k ∈ A!, and (ηk)k∈A is the |A|-
dimensional Gaussian random vector with mean µ and covariance 1.

This allowsus to define theBernoulli–Gaussiandistribution, a keyproperty ofwhich
is that the support is chosen at random according to a Bernoulli sampling scheme.

Definition 39 (Bernoulli–Gaussian distribution) Let s ∈ [L] and 4 ⊂ ZL be a ran-
dom subset obtained by selecting each member of ZL independently with probability
s/L . The Bernoulli–Gaussian distribution on ZL with variance ζ 2 and sparsity s is
then defined as the Gaussian distribution indexed by 4 with mean 0 and covariance
ζ 2 I ; in other words the random variable N4(0, ζ 2 I ), with the Gaussian entries being
statistically independent of the support 4.

Next, we introduce the concept of a standard symmetric Gaussian random variable
indexed by a subset of ZL . To introduce the notion of a symmetric signal, we first
recall the notion of the standard parametrization of ZL (1.7).

We are now ready to define

Definition 40 (Symmetric subset-indexed Gaussian distributions) Let ZL be in the
standard enumeration (1.7), let A ⊂ ZL be symmetric, i.e. A = −A and let ρ > 0.
Let A+ := {0, . . . , ⌊(L − 1)/2⌋} ∩ A, and let (Xk)k∈ZL denote the random variable
NA+(0, ζ

2 I ). Then the symmetricGaussian distribution indexed by Awithmean 0 and
variance ζ 2, denoted N symm

A (0, ζ 2 I ), is the random vector (ηk)k∈ZL with ηk = X |k|.

Finally, all of the above taken together allows us to define

Definition 41 (Symmetric Bernoulli–Gaussian distribution) LetZL be in the standard
enumeration (1.7). Let40 ⊂ Z+

L = {0, . . . , ⌊(L−1)/2⌋} be a random subset obtained
by selecting each member of Z+

L independently with probability s/L , and consider
the symmetric subset 4 := 40 ∪ (−40). Then the symmetric Bernoulli–Gaussian
distribution with mean zero, variance ζ 2 and sparsity parameter s is the distribution
N symm

4 (0, ζ 2 I ), with theGaussian entries being statistically independent of the support
4.
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Heuristically, the symmetric Bernoulli–Gaussian distribution is obtained by taking a
Bernoulli–Gaussian random variable on the positive part of ZL and extending it to all
of ZL by making it symmetric about the origin.

C Appendix: Generic Sparse Signals

We introduce the notions of signal support sets that are typically s-sparse and7-cosine
generic.

Definition 42 Let α,β > 0 be fixed numbers and s ∈ [L] be a parameter that possibly
depends on L . A probability distribution over subsets 4 ⊂ ZL is said to be typically
s-sparse with sparsity constants (α,β) if we have α · s ≤ |4| ≤ β · s with probability
1− oL(1).

To introduce the concept of cosine-genericity of a set, we first define the cosine
functional of a set 4 ⊂ ZL for an element a ∈ ZL .

For 4 ⊂ ZL and a ∈ ZL , define

V(4, a) = 1{0∈4} + 2
∑

k∈4\{0}
cos2(2πak/L), (C.1)

where 1A denotes the indicator function of the event A.
Then we are ready to introduce

Definition 43 Let 7 > 0 be a parameter, possibly depending on L . A probability
distribution over subsets 4 ⊂ ZL is said to be 7-cosine generic if, with probability
1− oL(1), we have mina∈ZL V(4, a) ≥ 7(1− oL(1)).

Equivalently, we say that the random variable 4 is cosine generic with parameter 7.
Cosine genericity of a (random) set is a condition that aims to ensure that, with high
probability, the set under consideration is sufficiently generic, in the sense that there
are no specialized algebraic or arithmetic relations satisfied by the elements of the set
which would make mina∈ZL V(4, a) small.

Putting all of the above together, we may introduce the generic s-sparse symmetric
signals.

Definition 44 Let s ∈ [L] be a parameter, possibly depending on L , and α,β, ζ, τ > 0
be fixed. We call a random signal θ : ZL → R to be a generic s-sparse symmetric
signal with dispersion ζ 2, sparsity constants α,β and index τ if the following hold:
• The support4 of θ is typically s-sparsewith sparsity constants (α,β)and sτ -cosine
generic.

• θ ∼ N symm
4 (0, ζ 2 I ), with the non-zero entries of θ being statistically independent

of 4.

D Appendix: On the Size of Collision Free Sets

In this section, we provide detailed arguments for the assertions that the size of a
collision-free subset A ⊂ ZL is maximally O(L1/2) and typically O(L1/3).
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To this end, we let 1 ≤ k ≤ L , and we consider a subset B ⊂ ZL of size |B| = k. If
B is collision-free, then B entails k(k − 1) distinct differences between its points; we
call this set of differences D. For x ∈ ZL \ B, we want to understand size restrictions
on |B| that enable B ∪ {x} to be a collision-free set. If B ∪ {x} has to be collision-free,
we note that for any fixed u ∈ B, the difference x − u needs to be /∈ D. This rules out
k(k − 1) choices for x . Thus, such a point x can be found only if k(k − 1) < L − k,
which gives us an upper bound of k = O(L1/2), as desired.

We note in passing that the probability of a randomly selected x in the above setting
to yield a collision-free subset B ∪ {x} is bounded above by (L − k − k(k − 1))/L ,
for any set B.

Now we examine the largest value ofm for which a random subset drawn of sizem
drawn from ZL collision free with positive probability. For concreteness, we consider
m samples without replacement from ZL .

For 1 ≤ k ≤ m, we denote by Sk the set of first k random samples without
replacement. Then we may write

P[Sm is collision-free]
= P[Sm is collision-free | Sm−1 is collision-free] · P[Sm−1 is collision-free]

=
m−1∏

k=1

P[Sk+1 is collision-free | Sk is collision-free]

=
m−1∏

k=1

Px∼Unif(ZL\Sk )

[
Sk ∪ {x} is collision-free | Sk is collision-free

]

≤
m−1∏

k=1

L − k − k(k − 1)
L

[using the analysis for the set B above]

=
m−1∏

k=1

(
1− k2

L

)
≤

m−1∏

k=1

exp(−k2

L
) ≤ exp(−cm3/L).

Thus, if m3/L →∞,P[Sk is collision-free]→ 0. Therefore, for a random subset
of size m to be collision-free with positive probability, we must have m = O(L1/3),
and to have the same property with high probability, we must have m = o(L1/3).
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