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1 Introduction

One of the major challenges in string phenomenology is the construction of universes with
positive vacuum energy that explain the observed dark energy [1, 2]. Current cosmological
data is compatible both with a constant and a time dependent vacuum energy [3]. The
first possibility means our universe is described by either a stable or metastable de Sitter
(dS) vacuum. From the model building point of view this requires the stabilization of all
moduli in a non-supersymmetric vacuum. Without supersymmetry it is more difficult to
guarantee control over the low energy four-dimensional effective action governing the theory.
However, multiple efforts have been directed towards finding dS vacua in string theory,
starting with the seminal papers [4, 5]. These constructions stabilize moduli at finite values
and argue that the corrections that are neglected do not change the results. Given that
not all such corrections are explicitly known, there is an on-going discussion about the
validity of all the existing dS constructions in string theory, see for example [6–10]. The
second scenario consists in building a so-called quintessence model, where scalar fields are
allowed to roll slowly [11–18]. From a model building point of view this option needs to
meet additional requirements; for example, there are bounds on the size of the mass of the
quintessence fields.

Before aspiring to build realistic quintessence models from string theory, it is more
prudent to establish whether the latter allows for quintessence at all. Asymptotic limits in

– 1 –



J
H
E
P
0
9
(
2
0
2
3
)
0
7
5

moduli space have the advantage of providing more control due to suppressed corrections
and are easier to study. As a first step, it would therefore be useful to understand if scalar
potentials arising in string theory could asymptotically allow for quintessence. Such a
question fits perfectly into the theme of the swampland program [19–23], which aims to
gain insights into the validity of low-energy effective field theories (EFTs) using quantum
gravity. A common procedure within the swampland program is to collect sets of results
and ideas and bundle them together in a single statement in the form of a conjecture.
The asymptotic behavior of scalar potentials arising in string theory has been the subject
of several swampland investigations [24–30] resulting in the swampland dS Conjecture
discussed in detail in the next paragraph. In addition to this particular conjecture, there
exist several lower bounds on the slow-roll parameters which were obtained in the context
of searches for dS vacua and inflation in specific string theory setups [31–42]. These papers
provide no-go theorems that apply at any point in moduli space and usually forbid slow-roll
inflation by showing that the slow-roll parameter ϵV characterizing the slope of the potential
obeys ϵV ≥ 1. Hence they help narrow down the search for asymptotic accelerated expansion
from slowly rolling scalar fields by excluding large classes of models.

The scalar potentials arising from string compactifications in the asymptotic limits of
moduli space are expected to take the following form, V ∼ e−γϕ, where ϕ is a canonical
field and γ is an O(1) number. For accelerated expansion in four spacetime dimensions
we would require γ = ||∇V (ϕ)||

V (ϕ) <
√

2. It was shown in [43] that type IIA/B and heterotic
Calabi-Yau compactifications cannot have γ <

√
2 in the large volume, weak coupling limit.

The swampland dS Conjecture in the asymptotic limit [28, 29], which is a generalization
of the Dine-Seiberg problem [44], provides a rough bound of γ ≳ O(1) and hence provides
preliminary motivation for the potential absence of asymptotic quintessence. Using dimen-
sional reduction techniques [45–47], the bound was sharpened by Rudelius [48], see also [49].
This led to the so-called Strong Asymptotic dS Conjecture, which states that γ ≥

√
2

in four dimensions and more generically γ ≥ 2/
√

d − 2 in d dimensions. This forbids in
any asymptotic limit of string theory compactifications the existence of solutions that are
undergoing accelerated expansion (see also [50–54] for closely related work).1

The authors of [55] have pointed out a potential loophole that could then allow us to
realize quintessence asymptotically in string theory. In particular, they argue that having
two terms compete asymptotically in the scalar potential would provide a possible way out
of the conjecture of [48], and they identify several potential examples that could violate the
bound of [48]. As already noted by the authors, the examples of [55] do not account for
the stabilization of the volume modulus. If the latter is not stabilized then this runaway
direction is too steep to preserve accelerated expansion. The possible loophole suggested
in [55] is intriguing and we believe requires additional investigation.

In this work, we attempt to take the first steps towards a realization of the scenario
described above, in which two terms in the potential compete asymptotically. We will focus

1Accelerated expansion is forbidden for γ ≥
√

2, if the 4d spacetime has no curvature, which is the
case we focus on in this paper. For negative curvature it was shown in [50] that accelerated expansion is
actually possible.
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on non-geometric type IIB models whose moduli space includes only the dilaton and the
complex structure moduli. These models were first introduced in [56, 57] and were shown
to be a good testing ground for swampland conjectures in [58–60]. We show that in our
explicit model there is no violation of the Strong Asymptotic dS Conjecture. Thus, we are
showing the absence of accelerated expansion in asymptotic limits of moduli space in a
non-geometric and thus very stringy setup.

We also recall the previous observation that the minimal exponential prefactors in the
Strong Asymptotic dS Conjecture and the Sharpened Distance Conjecture [24, 47, 61] are
related by a factor of 2. As mentioned above, for the Strong Asymptotic dS Conjecture
we have γ ≥ γmin = 2/

√
d − 2 in a generic d-dimensional spacetime. For the Sharpened

Distance Conjecture a tower of massive states becomes light in the asymptotic limit ϕ → ∞,
with masses of the form m(ϕ) ∼ e−αϕ with α ≥ αmin = 1/

√
d − 2. Somewhat surprisingly

γmin = 2αmin. An argument was given in [47] for why the Sharpened Distance Conjecture,
together with the Emergent String Conjecture [62, 63], implies the Strong Asymptotic dS
Conjecture. In this paper, we provide a potential explanation for this factor of 2, which
is distinct from the argument given in [47]. If our argument can be generalized, then this
would mean that the Sharpened Distance Conjecture follows from the absence of asymptotic
accelerated expansion in string theory. Thus, this would be complementary to the argument
of [47], and provide an interesting new motivation for the Sharpened Distance Conjecture.

The outline of this paper is as follows. In section 2 we review previous results pertaining
to slow-roll inflation and quintessence in string compactifications. In section 3 we study the
possibility of violating the Strong Asymptotic dS Conjecture in non-geometric compactifi-
cations of type IIB string theory. In section 4 we spell out evidence for a potential direct
connection between the Strong Asymptotic dS Conjecture and the Sharpened Distance
Conjecture. We summarize our results and conclude in section 5. Two appendices contain
technical details.

2 Review of previous results

In this section, we review the status of obtaining accelerated expansion in asymptotic limits
of the moduli space. We focus here on the case of slow-roll type inflation/quintessence in
asymptotic limits of string theory compactifications to four dimensions. These setups are
the most studied in the literature and provide an interesting test bed for the conjecture that
accelerated expansion is forbidden in any asymptotic limit [48]. In particular, it was argued
in [55] that there could be counter-examples if one studies infinite distance limits in which
not a single but multiple terms in the scalar potential are dominant in the asymptotic limit.
The caveat in [55] was however that the authors studied only the complex structure sector of
F-theory compactifications and did not stabilize the Kähler moduli. In these setups, there
was thus always a steep direction associated with the overall volume of the CY4 manifold
that prevented any accelerated expansion. In the next section we study non-geometric
type IIB flux compactifications without Kähler moduli and in particular without a volume
modulus [56, 57] to see whether the counter-examples of [55] can be realized in such setups.
Before doing that we review in this section the previous related results in some detail.
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Usually, the scalar potential falls off exponentially when we approach an asymptotic
point in moduli space, i.e. V (ϕ) ∼ e−γϕ for very large ϕ (see for example [28, 29] for a
recent related discussion). While we find below cases where this is more subtle, it makes
sense to phrase this discussion in terms of the prefactor γ. The requirement for slow-roll
inflation, and a corresponding accelerated expansion, is that the two slow-roll parameters
are smaller than one

ϵV = 1
2

( |∇V |
V

)2
< 1 , ηV =

∣∣∣∣min
(∇i∇jV

V

)∣∣∣∣ < 1 . (2.1)

For a single scalar field with V (ϕ) ∼ e−γϕ this amounts to the bound γ <
√

2 in four
dimensions. On the other hand, the Strong Asymptotic dS Conjecture states that γ ≥

√
2

in asymptotic limits of the scalar field space, see [45–48].2 Thus, the question of whether or
not the Strong Asymptotic dS Conjecture is true is equivalent to the question of whether
accelerated expansion is possible in asymptotic limits of the moduli space. Recently, the
authors of [53, 54] pointed out that slow-roll inflation/quintessence is non-generic since it
requires ϵV = γ2/2 ≪ 1, which is usually not the case. For a single field with an exponential
potential ϵ = ϵV = γ2/2 even if the slow-roll approximation is not valid. However, for more
complicated trajectories in generic multifield potentials, one has to solve the full set of
equations to check whether accelerated expansion is possible. This difference will not be
important to us below since we will not find sufficiently shallow potentials.

Motivated by the observed accelerated expansion of our own universe [1, 2], string
theorists have been trying to construct corresponding models in string theory for more than
two decades. This has led to many interesting new insights and also excluded certain classes
of models that can never give rise to four dimensional spacetimes that undergo accelerated
expansion. Next we recall the for us relevant no-go theorems and their loopholes.

In [31] the authors proved the absence of dS vacua and slow-roll inflation in flux
compactifications of massive type IIA on CY3 manifolds. In order to do that they focused
only on two universal moduli, the 4d dilaton τ and the overall volume modulus ρ. These
scalar fields decouple from the other scalar fields in the sense that the slow-roll parameter
ϵV takes the form3

ϵV = 1
3

(
ρ∂ρV

V

)2
+ 1

4

(
τ∂τ V

V

)2
+ | . . . |2 ≥ 1

3

(
ρ∂ρV

V

)2
+ 1

4

(
τ∂τ V

V

)2
, (2.2)

where | . . . |2 denotes the positive or zero contribution from all the other scalar fields
in the theory. Given the scaling of the scalar potential in type IIA Calabi-Yau flux
compactifications, one can show that the two terms on the right-hand-side of equation (2.2)
are larger or equal to 27/13 [31]. This means that accelerated expansion is forbidden

2The related Trans-Planckian Censorship Conjecture (TCC) [49] imposes the weaker bound γ ≥
√

2/3.
However, notice that it was mentioned already in [49] that their bound can become stronger for exponentially
decreasing potentials, implying the Strong Asymptotic dS Conjecture. For consistency with the literature
we will reserve the name TCC for the weaker bound γ ≥

√
2/3.

3τ and ρ are the commonly used scalar fields that are however not canonically normalized, leading to the
additional factors in the expression for ϵV .

– 4 –



J
H
E
P
0
9
(
2
0
2
3
)
0
7
5

anywhere in moduli space. Therefore the Strong Asymptotic dS Conjecture is trivially
satisfied in massive type IIA flux compactifications on Calabi-Yau manifolds.

The above no-go theorem was extended to massless type IIA compactifications on
internal manifolds with curvature and many more refined no-go theorems were derived
in [32–35, 37, 39]. While these no-go theorems aimed to excluded dS extrema, they usually
prove a bound on ϵV that requires it to be larger than one anywhere in moduli space. This
means in all such cases the Strong Asymptotic dS Conjecture holds. In cases where the
no-goes allow for ϵV to be smaller than one or in cases where there is no no-go theorem at
all, one can then ask the question of whether it is possible to have accelerated expansion in
an asymptotic region.

The most important and easiest to study asymptotic regions would be a large volume
and weak coupling regime in which both α′ and string loop corrections are suppressed. This
limit corresponds to sending ρ and τ above to infinity and it ensures that one can fully
trust the low-energy supergravity approximation to the particular string theory in question.
Whether dS extrema could exist in this limit was studied in [26, 27], where it was shown
that this is actually not possible in large classes of type IIA string theory compactifications.
The authors of [43] then asked whether quintessence could be realized with parametric
control using the above form of ϵV . They found that in the asymptotic large ρ and τ limit of
heterotic and type II string theory the potential is always too steep to allow for accelerated
expansion from a slowly rolling scalar field [43]. This motivated the question of whether
any other asymptotic limit of string theory can give rise to an accelerating universe.

Rudelius [48] noted in many examples that any limit in which one sends a single
scalar field to zero leads to a scalar potential V (ϕ) ∼ e−γϕ that is so steep that slow-roll
inflation and therefore quintessence cannot arise. This then led to the Strong Asymptotic
dS Conjecture that forbids such accelerated expansion in any asymptotic region of moduli
space. However, as was noted in [55], it is possible that two (or more) fields become large
and approach an asymptotic limit such that two terms in the scalar potential compete with
each other. For example, one could consider the limit ϕ1 = c ϕ2 → ∞ for c ∈ R>0 with the
asymptotic scalar potential

V (ϕ1, ϕ2) = A1e−γ1,1ϕ1−γ1,2ϕ2 + A2e−γ2,1ϕ1−γ2,2ϕ2 + . . .

= A1e−(c γ1,1+γ1,2)ϕ2 + A2e−(c γ2,1+γ2,2)ϕ2 + . . . , (2.3)

where . . . represents subleading terms. The first two terms above can scale exactly in the
same way, i.e. c γ1,1 + γ1,2 = c γ2,1 + γ2,2, but the individual scalings with respect to the
moduli ϕ1, ϕ2 could be very different in the two terms. Such competing terms open up the
possibility of getting accelerated expansion along the trajectory ϕ1 = c ϕ2 → ∞, even if two
individual terms do not allow for this [55]. While this mechanism is extremely interesting,
the authors of [55] restricted themselves to the complex structure sector and did not study
the stabilization of the Kähler moduli. The explicit potential had an overall ρ−3 dependence,
i.e.,

V (ϕ1, ϕ2, ρ) = 1
ρ3

(
A1e−(c γ1,1+γ1,2)ϕ2 + A2e−(c γ2,1+γ2,2)ϕ2 + . . .

)
. (2.4)

– 5 –



J
H
E
P
0
9
(
2
0
2
3
)
0
7
5

From equation (2.2) above, we see that this leads to ϵV ≥ 3 and prohibits slow-roll inflation
even if ϕ1 and ϕ2 contribute less than 1 to ϵV . One could now delve into stabilizing the
Kähler moduli while trying to stay in the asymptotic limits of the complex structure moduli
space that were identified as potential counter-examples in [55]. However, given the lively
debate related to this topic, we refrain from doing so and rather focus on string theory
models without Kähler moduli [56, 57]. Using Landau-Ginzburg techniques it was shown
to be possible to study flux compactifications on generalized Calabi-Yau manifolds with
h1,1 = 0 that are the mirror dual of rigid Calabi-Yau manifolds [56]. This removes the
requirement of having to stabilize Kähler moduli in type IIB flux compactifications and
leads to a variety of interesting results [56–60]. In the next section we will review the
corresponding four-dimensional scalar field theories and try to exploit the loopholes pointed
out in [55]. Before we do that we quickly review the results and some notation from [55] in
the next subsection, so that we can build on these results in section 3.

2.1 A possible loophole

To find asymptotic trajectories that lead to accelerated expansion we must solve the Fried-
mann equations under the slow roll approximation. Consider the following 4-dimensional
action for scalar fields minimally coupled to gravity,

S =
∫

d4x
√
−g

(
R

2 − 1
2Mab∂µϕa∂µϕb − V (ϕ)

)
, (2.5)

where Mab is the real-valued metric on the scalar field space. The slow-roll Friedmann
equations then amount to

dϕa

dt
= − 1√

3V
Mab∂bV. (2.6)

Asymptotic trajectories can be parametrized as ϕa(σ) as σ → ∞. As pointed out in [55],
solving (2.6) asymptotically can be simplified by taking ratios of pairs of these equations.

In [55] the authors only study examples with two rolling fields and note that in order
to find a unique asymptotic trajectory it is necessary to have two terms that compete
asymptotically in the potential. For a simple diagonal field space metric, we note here that
a scalar potential with n moving fields requires n terms competing asymptotically to get a
unique trajectory. Let us exemplify this by considering the following potential

V = A1
U2

U1U3
+ A2

1
U2

. (2.7)

Such terms can arise in the scalar potential we discuss below in the next section. The
corresponding diagonal field space metric in that case is

M−1 =

2U2
1 0 0

0 2U2
2 0

0 0 2U2
3

 . (2.8)
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We parameterize the trajectory by U1 = α1σβ1 , U2 = α2σβ2 , U3 = σ, where σ → ∞. Then
from (2.6) we get,

α1β1σβ1−1 dσ

dt
= 2√

3V

(
A1α2σβ2−1

)
α2β2σβ2−1 dσ

dt
= 2√

3V

(
A2 − A1

α2
2

α1
σ2β2−β1−1

)
(2.9)

dσ

dt
= 2√

3V
A1

α2
α1

σβ2−β1 .

Next, following [55] we take ratios of pairs of the above equations and evaluate them in the
limit σ → ∞ to solve for α1, α2. The ratio of the first and the third equation gives β1 = 1.
The ratio of the second and third equations then gives,

β2 =
A2σ1−β2 − A1

α2
2

α1
σβ2−1

A1
α2

2
α1

σβ2−1
. (2.10)

For β2 < 1 and σ → ∞ the right-hand side evaluates to ∞, whereas for β2 > 1 and σ → ∞
it evaluates to −1. Thus, β2 = 1 is the only solution to this equation in the limit σ → ∞.
Plugging β1 = β2 = 1 into the equation (2.10) we see that we can only determine one of α1
and α2. So, the path to infinity in the (U1, U2, U3) moduli space is not uniquely fixed.

Another way of seeing this is to define Ũ = U1U3 and ŨT = U1
U3

. The field space metric
still remains diagonal and is given by,

M−1 =

4Ũ2 0 0
0 2U2

2 0
0 0 4Ũ2

T

 . (2.11)

The scalar potential in terms of the redefined fields is independent of ŨT ,

V = A1
U2

Ũ
+ A2

1
U2

. (2.12)

As a result of this and the diagonal field space metric, ŨT remains a flat direction and the
ratio of U1, U3 is undetermined. Hence, the asymptotic trajectory is not uniquely fixed.
This means in turn that all these trajectories have the same value of γ.

In [55] it was noted that situations where the trajectory is not uniquely determined do
not lead to γ <

√
2 when there are two rolling scalar fields. Although we do not find any

obstruction to obtaining γ <
√

2 when only two terms compete with three rolling scalar
fields, we find that in practice such scenarios do not arise in the model we study below.
This is because either it is not possible to stabilize the dilaton and the axions or because
it is not possible to make terms that blow up in the potential vanish without losing the
competing terms that give rise to γ <

√
2.

While for simple diagonal field space metrics one needs n competing terms for n rolling
scalar fields in order to have a unique trajectory, this is not the case anymore for (generic)
non-diagonal field space metrics. We do not encounter those examples in our simple model
below but it is not hard, for example, to write down a toy model that uniquely fixes the
trajectory for three rolling fields with only two terms in the scalar potential.
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3 Type IIB models with h1,1 = 0

In string theory it is possible to study compactifications on ‘non-geometric spaces’ that
have no Kähler moduli. In particular, in type IIB where it is not possible to stabilize
Kähler moduli with RR- or NSNS-fluxes this provides a very interesting playground for
studying truly stringy flux compactifications. A detailed description of the effective action
for these IIB flux vacua arising from orientifolds of Landau-Ginzburg models was presented
in [56, 57, 59]. Even though these models do not have Kähler moduli, they do have many
complex structure moduli. These could allow us to realize the loopholes pointed out in [55]
in full-fledged models, without having to worry about Kähler moduli stabilization. In this
section, we perform a systematic study of possible asymptotic limits and check whether
they allow for accelerated expansion.

3.1 Effective action

We focus here on a specific orientifold studied in [56] and restrict to those moduli which are
mirror to the untwisted sector of the Type IIA toroidal compactification. So, we restrict to
a subset consisting of three universal complex structure moduli.4

The flux superpotential is given by the standard Gukov-Vafa-Witten formula [65],

W =
∫

M
G3 ∧ Ω, (3.1)

where G3 ≡ F3 − τH3, with the axio-dilaton τ = C0 + i e−ϕ. When restricting to the
untwisted sector this amounts to

W = (f0 − τh0)U1U2U3 − (f1 − τh1)U2U3 − (f2 − τh2)U1U3 − (f3 − τh3)U1U2

+ (f1 − τh1)U1 + (f2 − τh2)U2 + (f3 − τh3)U3 + (f0 − τh0) , (3.2)

where U1, U2 and U3 are the complex structure moduli in the untwisted sector. The Kähler
potential is given by [57]

K = −4 log[−i(τ − τ̄)] − log
[
i
∫

M
Ω ∧ Ω̄

]
. (3.3)

In terms of only the untwisted sector, we have

K = −4 log[−i(τ − τ̄)] − log[i(U1 − Ū1)(U2 − Ū2)(U3 − Ū3)] . (3.4)

The factor of 4 does not arise in the dimensional reduction of 10-dimensional type IIB
supergravity but can be understood by using mirror symmetry [57].

The tadpole cancellation condition is given by

1
τ − τ̄

∫
M

G ∧ Ḡ + ND3 = 1
2NO3 . (3.5)

4In principle one would also have to include twisted sector fields. In the mirror dual type IIA compactifi-
cation these correspond to blow-up modes of orbifold singularities and it was argued in [64] that these can
in principle be stabilized at a different scale without disturbing the three untwisted moduli.
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For us, this translates to

Nflux + ND3 = −h0f0 +
3∑

i=1
f ihi −

3∑
i=1

fih
i + h0f0 + ND3 = 12 . (3.6)

Given all the above we can investigate if the scalar potential given by

V = eK
(
KIJ̄DIWDJW − 3|W |2

)
, (3.7)

can lead to trajectories that support asymptotic accelerated expansion.
The above model is mirror dual to a type IIA compatification with geometric and

non-geometric fluxes. A particular such model was studied already in subsection 3.3.2.
of [55]. That model corresponds in our notation to s = τ , u = U1 = U2 = U3 and it was
shown to not give rise to asymptotic accelerated expansion. We will see below from a slightly
different point of view that the case where all three Uj are equal cannot give accelerated
expansion. Thus, we will naturally be led to study the case where the Uj scale differently.5

In the following discussions, we will rescale the fluxes in the scalar potential such that
we are at a point in field space where the axions are vanishing and the saxions that are not
rolling are set equal to one. This can be achieved by temporarily giving up the quantization
of the fluxes. This has been employed before in the literature to make the analysis of scalar
potentials easier. One can calculate the scalar potential and its derivative at the point
where all non-rolling saxions are set equal to 1 and all axions are set equal to zero. Then via
rescaling of the fluxes, one can reach any other points in moduli space. However, generically
the tadpole cancellation conditions in equation (3.6) prevent one from reaching a point of
arbitrary weak coupling or arbitrary large complex structure. We show the details of this
rescaling for our model in appendix A.

We will break up our analysis into two subsections. First, we study the parametric
weak coupling limit, i.e. a running dilaton τI = e−ϕ → ∞, in the following subsection. After
that we will consider the case where the dilaton is stabilized. We will try to reproduce
settings from [55] that were argued to provide asymptotic accelerated expansion.

3.2 Asymptotically weak coupling

We first show that it is impossible to get accelerated expansion when the dilaton is rolling
in the scalar potential arising from (3.2) and (3.4) (see [53] for a more generic argument).
In terms of the real fields, τ = τR + iτI and Uj = UjR + iUjI , where j = 1, 2, 3, the potential
can be written as

V = Aτ2

τ2
I

− Aτ3

τ3
I

+ Aτ4

τ4
I

, (3.8)

where Aτ2 , Aτ3 and Aτ4 are functions of the fluxes, the axions (U1R, U2R, U3R, τR) and the
complex structure moduli (U1I , U2I , U3I). Here in the limit τI → ∞, the 1

τ2
I

term dominates
and leads to γ =

√
2 if all fields are stabilized and γ >

√
2 otherwise (see equation (2.2)

above). If Aτ2 is zero or other fields roll also in such a way that the Aτ2 term does not
5We thank Irene Valenzuela for pointing out this important duality to us.
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dominate, then the potential would be even steeper and accelerated expansion certainly
cannot happen.

If we are able to actually stabilize all the axions and the complex structure moduli such
that the Aτ2 term dominates, then one can examine how the subleading term −Aτ3/τ3

I

affects the total number of e-folds we can get. This term is arising from localized sources
and is negative for a net number of O3-planes. That means it would make the asymptotic
potential for the dilaton from the Aτ2/τ2

I flatter.
Unfortunately, one can show that one cannot stabilize the axions and all the complex

structure moduli while keeping the potential positive. To see this we employ the rescaling
discussed earlier and set U1 = U2 = U3 = i at the putative minimum. Since τI is a rolling
field, we rescale the fluxes so that τR = 0 only and do not rescale τI . The potential value at
the minimum is then given by

V =
∑3

a=0((ha)2+(ha)2)+6(h0(h1+h2+h3)−h0(h1+h2+h3)−h1h2−h1h3−h2h3−h1h2−h1h3−h2h3)
128τ2

I

−
∑3

a=0(faha−faha)
16τ3

I

+
∑3

a=0((fa)2+(fa)2)
32τ4

I

. (3.9)

The first derivatives with respect to UjI , UjR, τR for j = 1, 2, 3 must vanish. Since we are
interested in the limit τI → ∞ we can simplify the equations by expanding them around
large τI , keeping the first non-trivial order in τI . We find

∂τRV = −
∑3

a=0(faha + faha)
16τ4

I

,

∂UjR
V = 3

∑3
a=0 haha − 6hjhj + h0hj − hjh0 − hkhl − hlh

k

64τ2
I

+ O(τ−4
I ) , (3.10)

∂UjI
V =

∑3
a=0((ha)2− (ha)2)− 2(hj)2+ 2(hj)2+ 6(h0hj + hjh0 + hkhl − hkhl)

128τ2
I

+ O(τ−4
I ) ,

where k, l ∈ {1, 2, 3}, k ̸= l ̸= j ̸= k.
The derivative ∂τRV = 0 can be solved via the fa or fa fluxes that do not appear at

leading order in the scalar potential for large τI . Thus, we can neglect this equation. We
solve the three equations ∂UjR

V = 0 for j = 1, 2, 3 in terms of the three fluxes hj , finding a
unique solution. We then plug this solution into ∂U1I

V = 0 and solve it in terms of h0. There
are two solutions for h0. Both of these solutions actually ensure that ∂U2I

V = ∂U3I
V = 0

as well, so that we have no further equations to solve.
For both of the solutions, we find that the fluxes fixed by the solutions are real, iff

(−7h0 +h1 +h2 +h3)(h0−7h1 +h2 +h3)(h0 +h1−7h2 +h3)(h0 +h1 +h2−7h3) < 0 . (3.11)

We then calculate the value of V at the minimum and find the same flux-dependent
expression for both solutions. If the above constraint in equation (3.11) is imposed then it
follows that Vmin < 0. So, the putative minimum after stabilizing the complex structure
moduli is AdS. There are a few special cases to further be considered if the fluxes take
on special values or vanish. We discuss these in the appendix B and find that these are
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not viable either. Thus, there is no solution in this model that has a rolling dilaton with
τI = e−ϕ → ∞ and γ =

√
2.

If both the dilaton and some or all of the complex structure moduli are to roll, then we
cannot find γ ≤

√
2 as any direction that the fields would roll along would have to be as

steep or steeper than the τI direction. The reason is that τI appears in the denominators of
all terms of the scalar potential and in all of them the corresponding γ for τI is greater or
equal to

√
2. So in order to ever get γ ≤

√
2 we need to stabilize the dilaton and investigate

the scenario where the complex structure moduli roll, which is what we are doing in the
next subsection.

3.3 Finite coupling

The dependence of the scalar potential on the complex structure moduli is shown below

V = A1U1IU2IU3I + A2
U1IU2I

U3I
+ A3U1I + A4

U1IU3I

U2I
+ A5U2I + A6U3I

+ A7 + A8
U1I

U2IU3I
+ A9

U2IU3I

U1I
+ A10

U2I

U1IU3I
+ A11

U3I

U1IU2I
+ A12

1
U1IU2IU3I

+ A13
1

U1I
+ A14

1
U2I

+ A15
1

U3I
, (3.12)

where the Ai’s are functions of the dilaton, the axions, and the fluxes. We will stabilize the
axio-dilaton and due to the flux rescaling discussed above we assume that the minimum
is at τR = 0, τI = 1. Note that this does not mean that the solution is at strong coupling.
Neglecting flux quantization any solution can be shifted to this point and one can always
go to weak coupling by a flux rescaling (modulo constraints coming from flux quantization
and the tadpole cancellation condition). Similarly, we can set U1R = U2R = U3R = 0 by
shifting the fluxes.

There is a permutation symmetry between the three complex structure moduli in the
above scalar potential. Given this, we can assume without loss of generality the following
rates of growth of the fields U1I ≥ U2I ≥ U3I in any asymptotic limit. Such asymptotic
limits could have either U1I going to infinity or U1I , U2I going to infinity or all three UjI ’s
going to infinity. We see then that A1, A2, A3 have to be zero as these terms necessarily
blow up asymptotically. This can be achieved by setting f0 = h0 = f3 = h3 = 0 in W in
equation (3.2). This in turn actually implies that A5 = 0 as well and the scalar potential
reduces to

V = A4
U1IU3I

U2I
+ A6U3I + A7 + A8

U1I

U2IU3I
+ A9

U2IU3I

U1I
+ A10

U2I

U1IU3I

+ A11
U3I

U1IU2I
+ A12

1
U1IU2IU3I

+ A13
1

U1I
+ A14

1
U2I

+ A15
1

U3I
. (3.13)

The term A7 is the contribution from localized sources like O3-planes and D3-branes and
can be written in terms of the flux parameters using the tadpole cancellation condition in
equation (3.6) above. It is proportional to

A7 ∝ 2ND3 − NO3
τ3

I

. (3.14)
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One might be tempted to set it to zero to avoid having to deal with its constant asymptotic
value. However, it is the only term in the potential that scales like τ−3

I and it is crucial for
stabilizing the dilaton, which can be seen as follows: The scalar potential with contributions
from the NSNS-sector, localized sources, and the RR-sector take the schematic form as a
function of τI (cf. equation (3.9) above)

V = A

τ2
I

+ B

τ3
I

+ C

τ4
I

. (3.15)

Let us assume B ∝ A7 = 0 and assume we have rescaled A and C so that the extremum is
at τI = 1. Then ∂τI V = 0 implies that A = −2C. At this extremum, the potential and its
second derivative have opposite signs

V |A=−2C = −C ,

d2V

dτ2
I

|A=−2C = 8C . (3.16)

So, regardless of whether we can find an interesting asymptotic trajectory in the potential
in (3.13) or not, we cannot stabilize the dilaton and keep the potential positive asymptotically
if A7 = 0. So, we have to keep A7 in the potential.

Having established the importance of the A7 term, we now explore two different options
of canceling it asymptotically to ensure that we approach a Minkowski solution. Let us first
assume that all three UjI are rolling to infinity. This means that in the scalar potential
in equation (3.13) we have to also set A4 = A6 = 0, which can be achieved by setting
f2 = h2 = 0. This leaves us with

V = A7 + A8
U1I

U2IU3I
+ A9

U2IU3I

U1I
+ A10

U2I

U1IU3I
+ A11

U3I

U1IU2I
+ A12

1
U1IU2IU3I

+ A13
1

U1I
+ A14

1
U2I

+ A15
1

U3I
. (3.17)

Given our hierarchy U1I ≥ U2I ≥ U3I we see from the scalar potential above that only the
terms A8 and A9 could be asymptotically non-zero. If and only if U1I scales like U2IU3I ,
do they both approach a constant that can cancel A7. Let us assume the following generic
parameterization for σ → ∞: U1I = σ, U2I = α2σβ and U3I = α3σ1−β, with 1

2 ≤ β < 1,
α2, α3 > 0. Let us now calculate the derivatives of V in equation (3.13) with respect to the
complex structure moduli in this limit to leading order

∂U1I
V = A8

1
U2IU3I

− A9
U2IU3I

U2
1I

+ . . . =
(

A8
α2α3

− A9α2α3

)
σ−1 + . . .

∂U2I
V = −A8

U1I

U2
2IU3I

+ A9
U3I

U1I
+ . . . = − 1

α2

(
A8

α2α3
− A9α2α3

)
σ−β + . . . (3.18)

∂U3I
V = −A8

U1I

U2IU2
3I

+ A9
U2I

U1I
+ . . . = − 1

α3

(
A8

α2α2
3
− A9α2

)
σβ−1 + . . .
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Given the simple diagonal field space metric arising from the Kähler potential in equa-
tion (3.4) above, we have to demand that all derivatives are negative in order to ensure
that the three scalar fields actually do roll to infinity and not away from it. Since α2 > 0
and α3 > 0 we clearly have found a contradiction. It is not possible for all derivatives to be
negative. This means that all three complex structure moduli cannot roll asymptotically to
infinity and cancel the contribution from the localized sources, i.e. the A7 term.

As a result, we now focus on the scenario where two of the complex structure moduli are
rolling and the third one U3I along with the dilaton and the axions needs to be stabilized.
This allows us to use the terms A6U3I and A15/U3I in the scalar potential in equation (3.13)
to cancel the A7 term to find asymptotic Minkowski solutions. I.e. at the minimum for τ

and U3 we would have A6U3I + A7 + A15/U3I = 0. Assuming this, we can rewrite the scalar
potential above in equation (3.13) as follows

V = Â1
U1I

U2I
+ Â2

U2I

U1I
+ Â3

1
U1I

+ Â4
1

U2I
+ Â5

1
U1IU2I

, (3.19)

where Âi are now functions of the axions, τI and U3I . As before, without loss of generality,
we assume the rates of growth are ordered, U1I ≥ U2I . For the following parameterization
U1I = ασβ , U2I = σ with β ≥ 1 we get from equation (2.6) above that

αβσβ−1 dσ

dt
= 2√

3V
(Â1α2σ2β−1 − Â2σ − Â3 − Â5σ−1) , (3.20)

dσ

dt
= 2√

3V
(−Â1ασβ + Â2α−1σ2−β − Â4 − Â5α−1σ−β) .

Taking the ratio of these two equations we find

β = Â1ασβ − Â2α−1σ2−β − Â3α−1σ1−β − Â5α−1σ−β

−Â1ασβ + Â2α−1σ2−β − Â4 − Â5α−1σ−β
. (3.21)

For σ → ∞, we examine two cases. For β > 1, the right-hand side evaluates to −1 which is
a contradiction. And for β = 1, again the right-hand side evaluates to be −1. So, we return
to (3.19) and set Â1 = 0. This requires us to set the following fluxes in equation (3.2) for
W to zero f2 = h2 = f1 = h1 = 0. Following the same procedure as before we get

β = −Â2α−1σ2−β − Â3α−1σ1−β − Â5α−1σ−β

Â2α−1σ2−β − Â4 − Â5α−1σ−β
. (3.22)

For 1 ≤ β < 2, in the limit σ → ∞, the right-hand side evaluates to −1 which is a
contradiction to our initial assumption. For β > 2, the limit of the right-hand side evaluates
to 0 which is again a contradiction. For β = 2 we get,

2 = −Â2α−1

Â2α−1 − Â4
, (3.23)

which gives us α = 3Â2
2Â4

. This in turn uniquely fixes the trajectory to, U1I = 3Â2
2Â4

σ2, U2I = σ.

For this trajectory we find γ =
√

2
5 <

√
2. However, setting f2 = h2 = f1 = h1 = 0 sets

Â4 = 0 and hence this trajectory is not realisable.
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There are no further potential trajectories with two fields rolling to infinity. Similarly,
one cannot get accelerated expansion from a single monomial with a single field rolling to
infinity. Thus, we have proven that the loophole pointed out in [55] cannot be realized in
these simple non-geometric models with four moduli. We will now proceed and discuss
some asymptotic behaviors for the scalar potentials that can arise in asymptotic limits.

3.4 Asymptotic ridges and valleys

For exponential scalar potentials, it is natural to have a generalized weak coupling region in
which the scalar potential goes to zero if one sends a scalar field, not necessarily the dilaton,
to infinity. In a corresponding generalized strong coupling region, the scalar potential
grows exponentially. Above we have been studying generalized weak coupling limits in
which we send combinations of scalar fields to infinity, while the scalar potential approaches
zero. However, in some cases we encountered terms that did not vanish in our particular
asymptotic limit, leaving finite values for the scalar potential. One might ask the more
general question of the possible behaviors of scalar potentials in asymptotic limits. Clearly
in principle everything ranging from −∞ to +∞ could be a possible asymptotic value.
However, zero is being singled out as the value for which we can trust the scalar potential
even in the asymptotic limit. The reason is the Distance Conjecture [24], which states that
for any infinite distance limit in scalar moduli space, ϕ → ∞, there is a tower of states
which become light, with masses given by m(ϕ) ∼ e−αϕ. This leads to a decreasing species
scale, i.e. a decreasing UV cutoff of the low energy effective theory [29] (see also [42, 66–68]
for recent related work). Thus, in the asymptotic limit any scalar potential that does not
go to zero will describe an EFT that necessarily breaks down after a finite distance.6

Assuming that the Distance Conjecture is correct, finite values for the scalar potential
in asymptotic limits are not trustworthy since the low energy effective theory is breaking
down. However, one might still be able to study such a limit if the tower of states that are
becoming light can be integrated in. Even if that is not possible, it is also interesting to
have a finite range of scalar field space in which the scalar potential approaches a constant
value and therefore does not change much. For example, for models of inflation we need a
sufficiently flat scalar potential, and one that exponentially approaches a constant could
certainly be a viable candidate (see [69] for related work). Thus, in this section we study
asymptotic limits with finite scalar potential values for our scalar potential arising from
W and K in equations (3.2) and (3.4). Below we present two exemplary cases, one where
V approaches a finite positive value and one where it approaches a finite negative value.
While these two examples arise in our particular non-geometric model, we obtained similar
features in other geometric flux compactifications as well. Thus, we believe that these
asymptotic limits are generic and not specific to non-geometric models.

6While this should be obvious for V > 0, since the potential energy cannot be larger than the cutoff
of the theory, it should also apply to negative V < 0. Indeed, the energy scale associated with the scalar
potential should have a magnitude below the cutoff in order for the EFT to make sense in AdS.
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Consider the following choice of fluxes

h0 = h1 = h2 = h3 = f0 = f2 = f3 = 0 ,

h1 = 12
f1 , f2 = f1f1h2

12 , f3 = f1f1h3
12 . (3.24)

The tadpole cancellation condition is satisfied for the above choice without needing to add
any D3-branes, i.e. ND3 = 0 in equation (3.6).

We can solve the axionic first derivative equations ∂τRV = ∂UjR
= 0 and find that they

are solved for
τR = f1f1

12 , U1R = −f1h0
12 , U2R = U3R = 0 . (3.25)

Now let us look at an asymptotic limit, σ → ∞, with

U1I = σ2 , U2I = U3I = σ . (3.26)

In the large σ limit there are two solutions when stabilizing the dilaton, ∂τI V = 0, namely

τI =
(f1)2

(
3 ±

√
7
)

6 + O(σ−1) . (3.27)

The two solutions correspond to two different asymptotic constant values for the scalar
potential,

Vmin =
81
(
2
√

7 + 5
)

2
(√

7 + 3
)4

(f1)6
+ O(σ−1) for τI =

(f1)2
(
3 +

√
7
)

6 + O(σ−1) , (3.28)

Vmin = −
81
(
2
√

7 − 5
)

2
(
3 −

√
7
)4

(f1)6
+ O(σ−1) for τI =

(f1)2
(
3 −

√
7
)

6 + O(σ−1) .

Thus, this single scalar potential has two asymptotic limits in which the dilaton is extremized.
In one of them, the scalar potential takes on a positive constant value, and in the other a
negative one.

In figure 1 we show the ridge-like shape that appears for positive values of the scalar
potential. For the plot, we have set all the free fluxes equal to 1, i.e. f1 = f0 = f1 = h0 =
h2 = h3 = 1. The figure shows that the scalar potential approaches its asymptotic positive
value V (σ → ∞, τ = (3 +

√
7)/6) ≈ .41 from below. This means that the complex structure

moduli U1I = σ2, U2I = U3I = σ would actually not roll to σ = ∞ along this ridge but
rather to small σ values. Furthermore, we see that the dilaton direction τI is a maximum.
The ηV value for τI on this ridge is larger than one and one cannot use this ridge to obtain
slow-roll inflation. Nevertheless, it is interesting — and probably known — that such ridges
can arise in asymptotic limits of the scalar field space. For large values of σ one expects
that the species scale or the masses of some tower of states drop below the value of the
scalar potential and the effective low energy theory breaks down.

Let us now follow the scalar potential above to smaller τI values, where we encounter a
valley-like shape that is shown in figure 2. We see that the scalar potential asymptotes in
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Figure 1. Asymptotically for large σ a ridge emerges in the scalar potential.

Figure 2. Asymptotically for large σ a valley emerges in the scalar potential at smaller values of
the string coupling τI .
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the valley to a constant negative value for large σ. This time the dilaton τI is stabilized at
a minimum. Again, as before the complex structure moduli U1I = σ2, U2I = U3I = σ will
not asymptotically roll to large σ but rather away from it since the potential approaches its
asymptotic value from below. However, contrary to the positive asymptotic ridge, here all
axions and the dilaton have positive masses and are stabilized in a minimum.

This negative AdS valley seems at first sight in tension with the recently proposed
Anti-Trans-Planckian Censorship Conjecture (ATCC) [70], which states that negative scalar
potentials with positive slope should also go to zero exponentially in any asymptotic limit.
However, as in the case above with a positive asymptotic value for the scalar potential, we
expect here as well that the low energy effective theory breaks down at some finite value
for σ, when the species scale or the masses of light towers become of the same order as the
absolute value of the scalar potential. Thus, it seems plausible that this breakdown of the
EFT prevents a violation of the ATCC. This is an interesting point that deserves further
study in the future.

4 Relating the Distance and Strong Asymptotic dS Conjecture

It was discussed previously in [47] that γmin = 2/
√

d − 2, the minimal coefficient allowed by
the Strong Asymptotic dS Conjecture, is twice the minimal value allowed by the Sharpened
Distance Conjecture [24, 47, 61]. The (refined) Distance Conjecture [24, 61] states that for
any infinite distance limit in scalar moduli space, ϕ → ∞, there is a tower of states becoming
light, with m(ϕ) ∼ e−αϕ. The Sharpened Distance Conjecture [47] furthermore states that
α ≥ αmin = 1/

√
d − 2. The intriguing relationship γmin = 2αmin was also discussed

previously in [29, 71, 72]. It was shown in [47] that the Sharpened Distance Conjecture
together with the Emergent String Conjecture [62, 63] implied the Strong Asymptotic dS
Conjecture. Here we give an intuitive argument for the opposite direction. If this argument
is correct and can be generalized, then the Strong Asymptotic dS Conjecture would imply
the Sharpened Distance Conjecture with the precise relationship γmin = 2αmin above.

Let us quickly recall that for a free 5d scalar Φ(xµ, y) on R3,1 × S1 we can write the
action in 5d or in 4d via

S = −1
2

∫
d4x dy

√
−g5 ∂mΦ∂mΦ

= −1
2(2πR)

∫
d4x

√
−g4

∑
n≥0

(
∂µΦn∂µΦn + (2πn)2 Φ2

n

)

= −1
2

∫
d4x

√
−gE

4
∑
n≥0

(
∂µΦn∂µΦn +

(
n

R

)2
Φ2

n

)
. (4.1)

In compactifications to d dimensions, one usually drops the heavy state Φn for n ̸= 0
but this is not necessary or required.7 Having a lower dimensional d-dimensional theory

7String theory provides us with a UV complete theory. In simple toroidal orbifolds, one can calculate the
full mass spectrum and keep track of all fields. There is no reason to discard for example KK-modes or
higher string excitations. In more complicated compactifications we cannot calculate the complete mass
spectrum but our argument below is independent of the explicit knowledge of all the massive states.
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one could have likewise kept track of heavier states Φn like the KK-towers that arise
in the compactification and the massive string excitations. This would then modify the
d-dimensional scalar potential Vd by additional new terms as follows,8

V = Vd(ϕ) +
∑

t

∑
n≥0

(
m(t)

n (ϕ)
)2

(Φ(t)
n )2

 , (4.2)

where t labels the different towers. Recall that the logic of [24] states that for any infinite
distance limit ϕ → ∞ there is at least one tower that satisfies m(ϕ) ∼ e−αϕ.9 Keeping only
track of towers t̃ that become light for ϕ → ∞ we have

V = Vd(ϕ) +
∑

t̃

∑
n≥0

(
m(t̃)

n

)2
e−2α(t̃)ϕ(Φ(t̃)

n )2

 . (4.3)

Now the Sharpened Distance Conjecture states that the lightest tower in any infinite
distance limit ϕ → ∞ in d dimensions satisfies αmin ≥ 1√

d−2 [47]. In the above scalar
potential the masses appear quadratically, leading naturally to exponentially decaying terms
∼ e−γ(t̃)ϕ for ϕ → ∞, with γ(t̃) = 2α(t̃). From the Strong Asymptotic dS Conjecture we
can then constrain 2α(t̃) ≥ γmin = 2/

√
d − 2. While the Distance Conjecture is very well

established and tested, it is amusing to note that it actually could be implied by the absence
of asymptotic accelerated expansion via the above argument.

The attentive reader will of course object to the above reasoning because of the (Φ(t̃)
n )2

factor in the above terms. Asymptotically in the above example Φ(t̃)
n = 0 and the new

terms in the scalar potential all vanish. Thus, the above argument does not go through
that easily. However, when including massive fields from the tower we also need to include
their interactions and once those are included it is not clear at all that Φ(t̃)

n = 0 is the only
possible solution for the Φ(t̃)

n .
Thus a generic expectation for the d-dimensional scalar potential in the asymptotic

limit ϕ → ∞ would be

V = Vd(ϕ) +
∑

t̃

(∑
n

(
m(t̃)

n

)2
e−2α(t̃)ϕ (Φ(t̃)

n )2
)

+ Vint(ϕ, Φ(t̃)
n ) . (4.4)

From the above scalar potential, it seems more reasonable to assume that the Strong
Asymptotic dS Conjecture should apply also when including all massive towers and their in-
teractions.

Given that we are very much used to integrating out heavy states and setting the
above Φ(t)

n to zero, one might wonder how easy or hard it is to generate a non-trivial scalar
potential which has a minimum for Φ(t)

n away from zero. We will give here a simple toy
example as a proof of principle that it is indeed possible to do this. Let us return to the

8It is an interesting question at which energy scale the low energy EFT breaks down, see for example [48, 73].
Here we include all the fields in all the towers, sending the UV cutoff to infinity.

9It does not matter for our argument whether this direction corresponds to a massless modulus, i.e.
whether Vd(ϕ) = 0 or not. If Vd(ϕ) ̸= 0, we are dealing with the refined Distance Conjecture [61].
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above case of a real 5d scalar on R3,1 × S1 and add to the action in equation (4.1) two
exponential terms10

S =
∫

d4x dy

(
−1

2∂mΦ∂mΦ − Λ1e−γ1Φ − Λ2e−γ2Φ
)

. (4.5)

For a real scalar field we can make the following Ansatz

Φ(xµ, y) = Φ0(xµ) +
√

2
∞∑

n=1
Φn(xµ) cos(2πny) = Φ0(xµ) +

√
2Φ1(xµ) cos(2πy) + . . . (4.6)

For ease of presentation and because Φ1 is the lightest KK-mode, we set Φn≥2 = 0. We can
then perform the integral over the y-direction and find

S =
∫

d4xdy
√
−g5

[
− 1

2∂m

(
Φ0(xµ)+

√
2Φ1(xµ)cos(2πy)

)
∂m
(
Φ0(xµ)+

√
2Φ1(xµ)cos(2πy)

)
−Λ1 e−γ1(Φ0(xµ)+

√
2Φ1(xµ)cos(2πy))−Λ2 e−γ2(Φ0(xµ)+

√
2Φ1(xµ)cos(2πy))

]
=
∫

d4x
√
−gE

4

[
− 1

2

(
∂µΦ0∂µΦ0+∂µΦ1∂µΦ1+ 1

R2 (Φ1)2
)

− Λ1
4π2R2 e−γ1Φ0I0

(√
2γ1Φ1

)
− Λ2

4π2R2 e−γ2Φ0I0
(√

2γ2Φ1
))]

. (4.7)

Thus, we see that interaction terms for the KK-modes appear naturally (here via the
I-Bessel function). The Bessel function I0 has the following expansion around z = 0,

I0(z) = 1 + z2

4 + z4

64 + z6

2304 + O(z8) . (4.8)

We can thus easily choose the parameters γi ≥ 0 and the Λi with opposite signs to generate
more minima for Φ1 at which Φ1 ̸= 0. In a full model we would have to also stabilize Φ0
but that is the modulus that appears in the lower dimensional scalar potential anyways
through a variety of terms. Note, that 1/R2 = m(ϕ)2 ∼ e−2αϕ actually multiplies all terms
in the scalar potential for Φ1. Thus, if we choose the parameters Λi to generate a minimum
with Φ1 ̸= 0 then we can flow to ϕ → ∞ without disturbing this minimum.

While the above is only a toy model it supports the general idea that in a UV complete
theory like string theory it is natural to include all massive fields and their interactions in
the lower dimensional scalar potential. The absence of accelerated asymptotic expansion,
as demanded by the Strong Asymptotic dS Conjecture, is then related to the Sharpened
Distance Conjecture. Their prefactors naturally satisfy the same bound up to a factor
of 2. The authors of [47] argued that the Sharpened Distance Conjecture combined with
the Emergent String Conjecture [62, 63] implies the Strong Asymptotic dS Conjecture.
Together with our proposal this leads to an intriguing interconnection between these three
swampland conjectures.

We should note, however, that it is not clear to us at the moment how to extend our
argument to moduli spaces of more than one dimension.11 Since the Strong Asymptotic dS

10Similar actions arise in 10-dimensional supergravity for the dilaton.
11We thank Tom Rudelius for pointing this out to us.
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Conjecture only applies to gradient flows and the Sharpened Distance Conjecture to any
direction in field space, one would need to ensure that the direction of interest is a gradient
flow direction. Thus in the case where the massive tower of interest depends on several
scalar fields one would have to be able to stabilize directions transverse to the flow in order
for our argument to apply. We leave it to the future to check explicit examples and see
whether this is possible or not.

5 Conclusions

Given the fact that our own universe is in a phase of accelerated expansion it is of paramount
importance to understand how one can obtain similar cosmological histories from string
theory. Given the difficulty of constructing explicit dS vacua that are widely accepted, a
lot of work in the last several years has focused on the easier task of studying asymptotic
limits of moduli space in string theory. In this paper we have extended previous work by
studying asymptotic limits in a special non-geometric string compactification of type IIB
string theory without Kähler moduli.

Our study was motivated by potential counter-examples to the Strong Asymptotic dS
Conjecture [48, 49] put forth in the recent paper [55]. The authors of that paper found
counter-examples when neglecting the stabilization of the Kähler moduli and focusing only
on the axio-dilaton and the complex structure moduli. Thus, our setup without Kähler
moduli provides a natural way of realizing these counter-examples in full-fledged string
theory constructions. However, it turns out that we cannot get sufficiently flat asymptotic
regions in our scalar potential. It would be interesting to study this further in other
non-geometric models and to extend the work of [55] to include Kähler moduli stabilization.

While we find no asymptotic regions in the scalar potential that could give rise to
accelerated expansion, we do find limits in which the scalar potential takes on finite positive
or negative values. In the case of a positive scalar potential the corresponding ridges in the
scalar potential have large tachyonic directions. In the case of negative asymptotic values
this is not the case. However, in both cases we find that these limits cannot be obtained
dynamically since the scalar fields would want to roll away from these limits, towards the
interior of moduli space.

Lastly, we discussed how the Strong Asymptotic dS Conjecture could potentially imply
the Sharpened Distance Conjecture. We show that massive towers of states appear naturally
in the scalar potential and thus provide extra terms that are constrained by the Strong
Asymptotic dS Conjecture. This leads naturally to a previously observed factor of 2 between
the lower bounds on the exponential prefactors in these two conjectures. Our argument
relies on the potential existence of non-trivial extrema for the massive fields in the towers of
states that become light. While we provide a toy example that gives rise to such non-trivial
extrema, it would certainly be important to work out explicit examples to further check
the connection we observed between the two conjectures. We hope to return to this in the
near future.
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A Rescaling the fluxes

By giving up the quantization of fluxes temporarily and rescaling them, we can shift
the axions to 0 and the saxions to 1 such that the superpotential in equation (3.2) is
invariant. Such a rescaling would lead to the rescaling of the scalar potential arising from
equations (3.2) and (3.4), by an overall positive factor. Consider a minimum of the scalar
potential arising from (3.2) and (3.4) which is at τ = τ0R + iτ0I , Uj = U0jR + iU0jI , where
j = 1, 2, 3 . We first shift the minimum to the point τ ′ = iτ0I , U ′

j = iU0jI via the following
transformations of the fluxes,

h0′ = h0 , f0′ = f0 − h0τ0R ,

hj′ = hj − h0τ0R ,

f j′ = f j − U0jRτ0Rh0 − τ0Rhj′ − U0jRf0′
,

h
′
j = hj −

∑
k ,l

U0kRhl + U0kRU0lRh0 ,

f
′
j = fj − τ0Rh

′
j −

∑
k ,l

U0kRf l + U0kRU0lRf0 ,

h
′
0 = h0 +

3∑
j=1

U0jRhj −
1
2
∑
j,k,l

ρjklU0jRU0kRhl + U01RU02RU03Rh0 ,

f
′
0 = f0 +

∑
j

U0jRfj −
1
2
∑
j,k,l

ρjklU0jRU0kRf l + U01RU02RU03Rf0 − τ0Rh
′
0 , (A.1)

where j , k , l ∈ {1, 2, 3}, k ̸= l ̸= j ̸= k and ρjkl = 1 iff k ̸= j ̸= l ̸= k and is vanishing
otherwise. It can be easily checked that this leaves the superpotential in equation (3.2)
invariant,

W ′ = (f0′ − τ ′h0′)U ′
1U

′
2U

′
3 − (f1′ − τ ′h1′)U ′

2U
′
3 − (f2′ − τ ′h2′)U ′

1U
′
3 − (f3′ − τ ′h3′)U ′

1U
′
2

+ (f ′
1 − τ ′h

′
1)U ′

1 + (f ′
2 − τ

′
h

′
2)U ′

2 + (f ′
3 − τ ′h

′
3)U ′

3 + (f ′
0 − τ ′h

′
0) = W . (A.2)
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Now to shift the minimum from τ ′ = iτ0I , U ′
j = iU0jI to τ̂ = i , Ûj = i for j = 1 , 2 , 3 we

require the following transformations,

ĥ0 = h
′
0τ0I , f̂0 = f

′
0 ,

ĥj = h
′
jτ0IU0jI , f̂j = f

′
jU0jI ,

ĥj = hj′
τ0IU0kIU0lI , f̂ j = f j′

U0kIU0lI ,

ĥ0 = h0′
τ0IU01IU02IU03I , f̂0 = f0′

U01IU02IU03I , (A.3)

where j , k , l ∈ {1, 2, 3}, k ̸= l ̸= j ̸= k. Once again, it is easy to see that this leaves the
superpotential in equation (3.2) invariant

Ŵ = (f̂0 − τ̂ ĥ0)Û1Û2Û3 − (f̂1 − τ̂ ĥ1)Û2Û3 − (f̂2 − τ̂ ĥ2)Û1Û3 − (f̂3 − τ̂ ĥ3)Û1Û2

+ (f̂1 − τ̂ ĥ1)Û1 + (f̂2 − τ̂ ĥ2)Û2 + (f̂3 − τ̂ ĥ3)Û3 + (f̂0 − τ̂ ĥ0) = W . (A.4)

B Special cases at asymptotic weak coupling

Above in section 3.2 we described how a generic solution that extremizes the scalar potential
with respect to the axions and complex structure moduli necessarily leads to an AdS
minimum with Vmin < 0. However, there are a few special cases that need to be addressed
to close all loopholes in our generic argument.

Above we solved the three equations ∂UjR
V = 0 for j = 1, 2, 3 in terms of the three

fluxes hj . However, the hj appear in these equations with a certain prefactor, and one
needs to examine separately cases where, for example, one or all of these prefactors are zero.
This leads to several special cases that we discuss below step by step.

The three axionic equations are of the form (see equations (3.18) above)

0 = ∂U1R
V = 1

64τ2
I

(
h1(h0 − 3h1) + . . .

)
,

0 = ∂U2R
V = 1

64τ2
I

(
h2(h0 − 3h2) + . . .

)
,

0 = ∂U3R
V = 1

64τ2
I

(
h3(h0 − 3h3) + . . .

)
. (B.1)

If h0 = 3h1 = 3h2 = 3h3 we have a special case. Solving the equations ∂UjR
V = ∂UjI

V = 0
necessarily requires h0 = 0. For h0 = 0 we have ∂UjR

V = 0 but we still need to solve
∂UjI

V = 0. Up to permutations of the j = 1, 2, 3 index there are four different solutions.
For three of them the scalar potential at the minimum, Vmin, is negative so we can discard
them. The remaining case has

h0 = h1 = h2 = h3 = 0 , h1 = −h0 , h2 = h3 = h0 . (B.2)

The scalar potential at the minimum is given by

Vmin = (h0)2

8τ2
I

−O(τ−3
I ) . (B.3)
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This seems to be in principle interesting. We have a single leading term in the scalar
potential that gives exactly γ =

√
2 from the dilaton τI = e−ϕ running to infinity (see

equation (2.2), which gives ϵV = 1). This is a setting right at the boundary and leads to
a small number of e-folds. Now we however also have a subleading term that can further
flatten the potential if it is negative (see equation (3.14) above). One could then hope
to get a larger number of e-folds. However, if one calculates the Hessian of the scalar
potential above one finds that in this case U1I is a tachyonic direction with ηV = 1 along
this tachyonic direction. Thus, there is no stable asymptotic trajectory in which only the
dilaton τI = e−ϕ rolls.

Now let us assume without loss of generality that the first prefactor (h0 − 3h1) in
equation (B.1) above is non-zero. We can then solve ∂U1R

V = 0 for h1 and plug the result
into ∂U2R

V = 0 and ∂U3R
V = 0 to get

0 = ∂U2R
V = 1

64τ2
I

(
h2

(h0 − h3)(h0 − 3h1 − 3h2 + h3)
h0 − 3h1 + . . .

)
,

0 = ∂U3R
V = 1

64τ2
I

(
h3

(h0 − h2)(h0 − 3h1 − 3h3 + h2)
h0 − 3h1 + . . .

)
. (B.4)

If the prefactors (h0 − h3)(h0 − 3h1 − 3h2 + h3) and (h0 − h2)(h0 − 3h1 − 3h3 + h2) both
vanish then we have more special cases that we need to study in detail. We again find that
solving all equations either leads to Vmin < 0 or a tachyonic direction with large ηV value
among the extremized complex structure moduli.

If one of the prefactors is non-zero, we can assume without loss of generality that it is
(h0 − h3)(h0 − 3h1 − 3h2 + h3). Then we can solve ∂U2R

V = 0 for h2 and plug the answer
into ∂U3R

V = 0 to obtain

0 = ∂U3R
V = 1

64τ2
I

(
h3

(h0 − h3)(h0 − 3h1 − 3h2 + h3) · C + . . .

)
,

with

C = h3
0 + 3(h1)3 − 15(h1)2(h2 + h3) − 3h2

0(h1 + h2 + h3)

+ h1
(
−15(h2)2 + 106h2h3 − 15(h3)2

)
+ 3(h2 + h3)

(
(h2)2 − 6h2h3 + (h3)2

)
− h0

(
(h1)2 + (h2)2 − 6h2h3 + (h3)2 − 6h1(h2 + h3)

)
. (B.5)

Again, if the prefactor C of h3 vanishes then we have another special case. This case is the
hardest to analyze. In almost all subcases we find that Vmin < 0. There are a few cases
where a positive scalar potential is possible. In some of those cases we could not prove
in full generality that there is a tachyonic direction, because the resulting expressions are
extremely complicated functions of the flux parameters. However, whenever we plugged in
explicit values for the fluxes we always found that Vmin > 0 only arises in the presence of a
tachyonic direction among the complex structure moduli. Thus, we have not found any
interesting solutions with only the dilaton running to infinity in this special case either.
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If C ̸= 0 we can solve ∂U3R
V = 0 for h3. We then plug the three solutions for the hj

into ∂U1I
V and find

0 = ∂U1I
V = 1

128τ2
I

(
4(h0)2 A · B

C
+ . . .

)
, (B.6)

with no linear term in h0 and

A =(−7h0 + h1 + h2 + h3)(h0 − 7h1 + h2 + h3)(h0 + h1 − 7h2 + h3)(h0 + h1 + h2 − 7h3) ,

B = h2
0 − 6h0h1 + (h1)2 − (h2)2 + 6h2h3 − (h3)2 . (B.7)

Note that A is the expression that appeared above in equation (3.11). If A ·B ̸= 0, then we
have the generic case discussed above in subsection 3.2. So, let us address the special cases
A = 0 and/or B = 0.

We start out with the case where A = 0. Up to permutations of j = 1, 2, 3 there are
two possibilities

7h0 = h1 + h2 + h3 , or 7h1 = h0 + h2 + h3 . (B.8)

Solving all the remaining equations in terms of the fluxes leads to a variety of solutions, all
of which have Vmin < 0 and can therefore be discarded.

Lastly, we study the case B = 0. Again there are many different subcases, most of
which are leading to a negative scalar potential at the minimum. The ones that do lead
to Vmin > 0 all have a tachyonic direction along one of the complex structure moduli UjI

and thus do not allow for stable trajectories with only τI rolling. Thus, we have checked all
special cases and excluded them.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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