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ABSTRACT 

In the emerging field of materials informatics, a fundamental task is to identify physicochemically mean­ 

ingful descriptors, or materials genes, which are engineered from primary features and a set of elemen­ 

tary algebraic operators through compositions. Standard practice directly analyzes the high-dimensional 

candidate predictor space in a linear model; statistical analyses are then substantially hampered by the 

daunting challenge posed by the astronomically large number of correlated predictors with limited sample 

size. We formulate this problem as variable selection with operator-induced structure (015) and propose 

a new method to achieve unconventional dimension reduction by using the geometry embedded in OIS. 

Although the model remains linear, we iterate nonparametric variable selection for effective dimension 

reduction. This enables variable selection based on ab initio primary features, leading to a method that is 

orders of magnitude faster than existing methods, with improved accuracy. To select the nonparametric 

module, we discuss a desired performance criterion that isuniquely induced by variable selection with OIS; 

in particular, we propose to employ a Bayesian Additive Regression Trees (BART)-based variable selection 

method. Numerical studies show superiority of the proposed method, which continues to exhibit robust 

performance when the input dimension is out of reach of existing methods. Our analysis of single-atom 

catalysis identifies physical descriptors that explain the binding energy of metal-support pairs with high 

explanatory power, leading to interpretable insights to guide the prevention of a notorious problem called 

sintering and aid catalysisdesign. Supplementary materials for thisarticle are available on line. 
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1. Introduction 

The Materials Genome Initiative set up by the White House is a 

large-scale effort concerning the utilization of computational 

tools to accelerate the pace of discovery and deployment of 

advanced material systems. Since its inception in 2011, there 

has been a surge of interest in data-driven materials design 

and understanding (Zhong et al. 2020; Hart et al. 2021; Keith 

et al. 2021; Lin et al. 2021; Liu et al. 2021). In this nascent 

area called materials informatics, computational methods that 

account for physical and chemical mechanisms of a material 

system play a central role in aiding, augmenting, or even 

replacing the time-consuming trial and error experimentation. 

A fundamental task is to identify physicochemically meaningful 

descriptors, or materials genes (Ghiringhelli et al. 2015; Poppa 

et al. 2021). These descriptors, for example, are key to modeling 

single-atom catalysis and finding or developing more efficient 

catalytically active materials. In statistical terms, descriptors are 

high-dimensional predictors but with strong structure in that 

they are functional transformations of a set of primary features 

X = (x1,... ,Xp)- For instance, a simple example of descriptors 

is f(X) = {exp(x1) -  exp(x2)}2, which can be constructed 

using exponential and squared functions in combination with 

subtraction. 

Suppose the response vector y measures the material 

property of interest, and the primary features matrix X  = 

(x1,... , xp) collects physical or chemical properties of the 

materials such as atomic radii, ionization energies, etc. Then 

the space of engineered predictors (or descriptors) up to order 

M is ('.)(M)(X), which consists of nonlinear predictors with 

explicit functional form resulting from M-order compositions 

of operators ('.)on X: 

o<M)(X) = ('.)0 o<M-l)(X) = ('.)0 • • • 0 C'.J(X). 
'-.-' 

Mtimes 

For example, some commonly used operators in materials 

genome are 

('.) = {+, -, x,/, 1-1,l,exp,log,I·l, ,-1 2 
,sin(rr•),cos(rr•)}, 

(1) 

andtheaforementioneddescriptorf(X) = {exp(x1)-exp(x2)}
2 

belongs to o<3>(X). We refer to this distinctive geometry 

encoded in ('.)(M)(X) as operator-induced structure {01S). The 

aforementioned descriptors in materials genome are thus the 

predictors in a linear model with 01S. Henceforth, we will use 

descriptor selection and variable selection in the presence of 01S 

interchangeably. Note that the specification of ('.) depends on 

domain knowledge, and we intentionally include the absolute 

difference operator I - I in ('.) because it is directly interpretable 

in materials science, and it often provides clear intuition on 

many physical phenomena, such as the metal-oxide binding 
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energy (Liu et al. 2022). Treating it as a single operator reduces 

the required number of iterations to generate related descriptors. 

A common practice in materials genome (O'Connor et al. 

2018; Ouyang et al. 2018; Liu et al. 2020) is to employ mod­ 

ern statistical variable selection developed for linear models. 

However, the geometry of OIS defined by operators O and 

high-order compositions induces high correlation and ultra­ 

high dimension to the feature space. As detailed in Section 2, 

the dimension of o<M)(X) increases double exponentially with 

Mand the number of binary operators in 0. For example, with 

p = 59 in our real data application, enumerating o<3\X) gives 

1.01 x 1017 predictors while only a handful of them are asso­ 

ciated with the response. Moreover, these predictors are highly 

correlated as a result of iteratively applying unary operators. 

This along with a small size such as n = 91 in our real data 

application substantially hurdles the performance of existing 

methods that rely on linear variable selection methods. Indeed, 

materials genomes are an analog concept to genomes, but the 

dimension of predictors and inherent strongcorrelation in mate­ 

rials genome-wide association studies, or materials GWAS,pose 

unprecedented challenges to statistical analysis. 

In this article, we aim to develop a powerful method for 

materials GWAS in which we effectively identify materials genes 

that are associated with the response of interest. To achieve 

dimension reduction in materials GWAS, we consider an iter­ 

ativeapproach by applying a small set of operators and immedi­ 

atelyidentifying the relevant descriptors,'D, before constructing 

more complex descriptors. This step is iterated in light of the 

composition structure in OIS, in striking contrast to existing 

literature that aims to exhaustively generate o<M)(X). In each 

iteration, O('D) is typically substantially smaller than o<M)(X), 

and suchsparsity achieves dimension reduction and tackles the 

daunting computational challenges posed by materials GWAS. 

Iterative dimension reduction, however, faces two inter­ 

twined challenges. First, the constructed descriptors in inter­ 

mediate steps, unlike the astronomically largeQ(M) (X),arenot 

necessarily linearly associated with the response. To address 

this, we propose to use nonparametric variable selection for 

dimension reduction to ensure selection accuracy under the 

geometry of OIS. That is, while the model is assumed to be 

linear, we employ nonparametric variable selection to achieve 

dimension reduction while maintaining highselection accuracy. 

We refer to this key novelty of our proposed method as 

"parametrics assisted by nonparametrics': or PAN. 

The second challenge pertains to the selection of the non­ 

parametric module. Unlike traditional nonparametric variable 

selection, OIS variable selection calls for new performance cri­ 

teria for the nonparametric module to ensure OIS selection 

accuracy (see Section 2.3 for more details). We introduce a PAN 

criterion to reassess nonparametric selection methods, which 

elucidates an asymmetric effect between false positives and false 

negatives and highlights a desired invariance property to unary 

transformations. In particular, we propose to use a Bayesian 

additive regression tree variable selection method, BART-G.SE 

(Bleich et al. 2014), as the nonparametric module, which we 

show is well suited to satisfy the PAN criterion. 

Coupling the PAN strategy with BART-G.SE, together with 

additional considerations to address the complexities of materi­ 

als GWAS,leads to a new method for materials GWAS, which we 

call iterative BART, or iBART. The iterative framework of iBART 

reduces the size of the effective descriptor space significantly, 

mitigating collinearity in the process, and the use of nonpara­ 

metric variable selection accounts for structural model misspec­ 

ification in intermediate variable selection steps. Our extensive 

experiments show that iBART gives excellent performance with 

accuracy and scalability that are not seen in existing methods. 

Note that iBART is not a new BART variant for nonparametric 

regression, but rather an iterative use of BART within the PAN 

framework specifically tailored for materials GWAS. 

The outline of the article is as follows. Section 1.1 reviews 

related work in materials genome. In Section 2, we introduce 

the OIS framework, describe the PAN selection procedure, and 

discuss how to choose the nonparametric module in PAN and 

somepracticalconsiderations regarding PAN.Section 3 contains 

a simulation study that shows superior performance of iBART 

relative to existing methods. In Section 4, we apply iBART to a 

single-atom catalysis dataset and it identifies physical descrip­ 

tors that explain the binding energy of metal-support pairs 

with high explanatory power, leading to interpretable insights to 

guide the prevention of a notorious problem called sintering. We 

closein Section 5 with a discussion. All proofs, detailsof variants 

of iBART, and additional simulation results and discussion are 

deferred to the supplementary material. 

 

1.1. Related Work 

Descriptor selection has attracted growingattention in materials 

science. Recent methods often build on a one-shot descriptor 

generation and selection scheme followed by modern statistical 

variable selection approaches (O'Connor et al. 2018; Ouyang 

et al. 2018; Liu et al. 2020). In particular, they first construct 

descriptors by applying of erators iteratively M times on the 

primary feature space x<0 = X = (xi, ... ,Xp) E R.nxp to 

construct an ultra-high dimensional descriptor space x<M) = 
Q(M) (X) of O(p2M) descriptors, assuming binary operators are 

used in each iteration. Then variants of generic statistical meth­ 

ods areadopted to select variables fromx<M). Alongthis line, the 

method SISSO (Sure Independence Screening and Sparsifying 

Operator) proposed by Ouyang et al. (2018) builds on Sure 

Independence Screening, or SIS (Fan and Lv 2008), O'Connor 

et al. (2018) uses LASSO (Tibshirani 1996), and Liu et al. (2020) 

adopts Bayesian variable selection methods. 

SISSO iswidely perceived as one of the mostpopular methods 

for materials genome. It uses SIS to screen out P descriptors, 

from which the single best descriptor is selected using an lo­ 

penalized regression. If a total of k descriptors are desired, 

this process will be iterated for k times yielding k sets of SIS­ 

selected descriptors, followed by an lo-penalized regression to 

select the best k descriptors from all the SIS-selected descriptors. 

Note that in each iteration, SIS is employed to screen out P 

descriptors from the remaining descriptor set with an updated 

response vector given by its least squares residuals projected 

onto the space spanned by previously SIS-selected descriptors. 

Users must define the composition complexity of the descriptors 

through M, that is, the order of compositions of operators. In a 

typical application of SISSO, the composition complexity M is 

no greater than 3, the number of candidate descriptors in each 

SIS iteration is less than 100, and the number of descriptors k 
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is no larger than 5 (Ouyang et al. 2018). Note that selecting five 

descriptors with 100 SIS-selected descriptors in each iteration 

amounts to fitting at most (5 0
) :::::: 2.6 x 1011 different regres­ 

sions, which is computationally intensive. 

A major drawback of these one-shot descriptor construction 

procedures is the introduction of a highly correlated and ultra­ 

high dimensional descriptor space x<M). High correlation often 
hampers the performance of a variable selection method, and 

this article, we assume that this seemingly ultra-dimensional 

descriptor space obeys an operator-induced structure (OIS). 

In particular, we assume that the predictors x1, ... , Xp• in (2), 

or descriptors, are generated by applying operators in O itera­ 

tively M times on a primary feature space X =  (xi, ... , Xp) 
E ]Rnxp, 

(x1,... , Xp•) = X(M) = o(M)(X) = 0 o o(M-I)(X) 

the ultra-high dimensional descriptor space with large p, as 

common in modern applications, can make it computationally 

prohibitive for such methods. In practice, these methods often 

= 0 o ••• o O(X), 
'-v-' 

Mtimes 

(3) 

resort to ad hoc adaptation or sacrifice the complexity level of 

candidate descriptors. 

Another thread of work is the well-developed automatic 

feature engineering in machine learning, aiming to gen­ 

erate complex features from given constructor functions 

adaptively (Markovitch and Rosenstein 2002; Feurer et al. 

2015; Khurana, Samulowitz, and Turaga 2018). However, the 

overwhelming focus of this literature is on increasing the 

predictive power of the primary features X. We instead focus on 

discovering the underlying functional relationship between the 

response and the predictors and revealing data-driven insights 

into the underlying physics of materials design. In addition, the 

sample size in materials genome is typically limited, hampering 

the use of machine learning methods that rely on large training 

data. 

In statistics, transformations have been commonly used to 

expand the predictor space, including polynomials, logarithmic, 

power transformations, and the previously noted interactions. 

The induced feature spaces from these elementary transforma­ 

tions are often overly simple to capture the intricate dynamics 

of the response in materials genome, particularly compared 

to high-order compositions of a larger operator set. There 

has been a rich literature on nonparametric variable selection, 

but descriptor selection relies on a linear model with feature 

engineering that favorably points to interpretable insights for 

domain experts as the functional forms of selected variables 

are explicitly given and the feature space could be composed 

usingdomain-relatedknowledge. The nonparametric module in 

PAN only serves as a dimension reduction tool, and the desired 

performance calls for new investigation under the context of 

OIS. Overall, materials GWAS may play an analogous role that 

GWAS have played in motivating new statistical methods and 

concepts, andto the best of our knowledge, the present article is 

the first statistical work on this topic. 

where x<M) = o<M)(X) denotes M-composition of O on X and 

can be defined iteratively as above. The operator set O is user­ 

defined; for concreteness, we focus on the common example 

given in (1), unless stated otherwise. 

We adopt the following convention. Evaluation of opera­ 

tors on vectors is defined to be entry-wise, for example, Xi = 

(Xi_p ... ,x .1)T and X1 + X2 = (X1,1 + X1,2, •.. ,Xn,I + Xn,2)T. 

Throughout this article, we assume that all descriptors in x<M) 

are uniquely defined in terms of their numerical values. For 

instance, onlyone of the descriptors in {xi,x1 x xii will be kept 

in x<M). This can be easily achieved in practice by identifying 

and removing perfectly correlated descriptors. 

We hereafter refer to the linear regression model in (2) along 

with the operator-induced structure (OIS) in (3) as the OIS 

model To facilitate a precise OIS model definition using predic­ 

tors with nonzero coefficients, we define M-composition descrip­ 

tor as follows. 

Definition 2.1 (M-composition descriptor). We defineJ<M)(X) to 

be an M-composition descriptor if it is constructed via M com­ 

positions of operators on some primary features X: J<M)(X) = 

o<M)(X) = OMOt<M-l)(X) = OMO OM-I O • • • 0 o, (X), where 

Om E O is the mth composition operator(s) for 1 ::=; m ::=; 

M, andf(l)(X),... ,J<M-l)(X) are the necessary intermediate 

descriptors for constructing the descriptorJ<M)(X). 

Note that if the mth composition operator is a binary opera­ 

tor, there mayexist two (m- l)th composition operators but we 

suppress the notation in the definition above for simplicity. Fur­ 

thermore, ifan M-composition descriptorJ<M)(X) only depends 

onasubsetofprimaryfeaturesXs,whereS s; [p] = {1,... ,p}, 

we also write it asJ<M)(Xs) and call it an (M,S)-descriptor. 

Definition 2.2 ((M,S)-composition OIS model). An (M,S)-OIS 

model assumes 

 

2. The 01S Framework 

2.1. Operator-Induced Structural Model 

K 

Y = f3o + L,fiMkl(Xsk)fh + s, 
k=I 

 
(4) 

We begin with a standard ultra-high dimensional linear regres­ 

sion model 

(2) 

wheres ~Nn(0,c;
2
I) isa Gaussian noise vector,and the regres­ 

sion coefficients f3 aresparse. The dimension of predictors p* is 
ultra-high, at the materials GWAS scale that typically exceeds 

the maximum size of matrices allowed by a modern personal 

computer, while the sample size n is on the order of tens. In 

where M = maxk=l,  K Mk denotes the highest order of opera­ 

tor compositions, K denotes the number of additive descriptors, 

Xsk is thesetof primaryfeatures used in the kthdescriptors, and 

S = Uf=i Sk is the set of all active primary feature indices. 

Throughout the article, we assume the data follows an 
(M,S)-OIS model in (4). We use Mo for the oracle highest 
composition complexity and S0 for the oracle set of active 

primary feature indices. Descriptors in the (M,S)-OIS model 

and their intermediate descriptors are called active. We next use 
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0) (:::::::J x <O )  O(p) 

exlp 

exp(x2) (:::::::J x<l) O(p2) 

 
 
 
 
 
 
 
 

 
2 

2.2. PAN Descriptor Selection for 01S Model 

We propose an iterative descriptor construction and selec­ 

tion procedure PAN for the OIS model, which generates 

descriptors by iteratively applying operators and selecting 

the potentially useful intermediate descriptors between each 

iteration of descriptors synthesis. The iterative descriptor 

selection procedure excludes irrelevant intermediate descriptors 

from the descriptor generating step, achieving a progressive 

variable selection and enabling variable selection based on 

ab initio primary features. This reduces the dimension of the 

subsequent descriptor space x<m) and mitigates collinearity 

among the descriptors in comparison to the one-shot descriptor 

construction approaches. 
To describe the method in its most general form, we allow 

Figure 1. A tree diagram for generating {exp(x1) - exp(x2)} . The dimension of 

descriptor space increases double exponentially with the composition complexity. 
different sets of operators Om S  O for each iteration m = 
1,...,M, leading to the descriptor space 

 

 

a toy example to illustrate the introduced concepts in OIS and 

the challenges posed by descriptor selection. Suppose that the 

data-generating model is 

 

 

where M1 = 3,M2 = 2,S1 = {1,2},S2 = {3,4},j1(Mt\X) = 

{exp(x1) -  exp(x2)}2, and J}M2
\X) = sin(rrx3x4). Here 

{exp(x1) - exp(x2)}2 is a 3-composition descriptor or a 

(3,{1, 2})-descriptor, andsin(rr x3x4) isa 2-composition descrip­ 

tor or a (2,{3, 4})-descriptor. Both descriptors arise from 
applying O iteratively three times on the primary features: 

x<3
) =0 o O o O(X). The composition ofoperators resembles a 

tree-like structure for generating descriptors; Figure 1 describes 

the tree-like workflow for generating{exp(x1) - exp(x2)}2. 
Tosee how the descriptor space dimension increases with the 

number of iterations, let Cu and Cb denote the number of unary 
and binary operators, respectively, and let pj denote the dimen­ 

sion of the jth descriptor space xm. Note that the dimension 

of x<1
) is p1 = cup + CbP(P - 1)/2, which is on the order 

of O(p
2
); the dimension of x<2

) is P2 = CuPI + CbP1(p1 - 

1)/2 ;:::: O(p2•2) = O(p2\ the dimension of x(3) is p3 = 

CuP2 + CbP2<P2 - 1)/2 ;:::: O(p2•
2•2) = O(p2\ The dimension 

of descriptor space will increase double exponentially with the 

number of binary operator compositions, for example, with M 
compositions of binary operators on X the resulting descriptor 

space has a dimension of order O(p2M). Similarly, the double 

exponential expansion applies to the number of binary opera­ 

tors Cb. Excluding redundant descriptors does not prevent this 

doubleexponential expansion.Asshown in Section 3.4, building 

x<2>from p = 59 primary features results in an astronomical 

descriptor space containing over 5.5 x 107 = 0(5922
) descrip­ 

tors evenafter removing redundant and nonphysical descriptors. 

In addition, the number of active (intermediate) descriptors 

will be nonincreasing with Mas shown in Figure 1: there are 

four active descriptors exp(x1), exp(x2), x3, x4 in x(I), but only 
two active descriptors exp(x1) - exp(x2) and x3x4 inx<2>,and 

two active descriptors {exp(x1) - exp(Xi)}2 and sin(rrx3x4) 
inX(3)_ 

(5) 

The framework ofour iterative descriptor selection procedure is 

as follows. 

PAN descriptor selection procedure: 

1.  Repeat the following until at least one descriptor exhibits a 

stronglinear association with the response variable y (i = 0): 

(a)  Use a nonparametric variable selection procedure to per­ 

form descriptor selection on x<Oand obtain the selected 

descriptors x(i)'; 

(b)  Apply the ith operator set O; on all of the previously 

selected descriptors, Umx<m)', yielding a newdescriptor 

space, x(i+l) =O;(LJm x<m)' ), where O;can bedifferent 

for each iteration i; 

2.  Once there exist descriptor(s) that exhibit a strong linear 

association with response variable y, use a linear parametric 
variable selection procedure to perform descriptor selection 

on x<O, and obtain the selected descriptors, X* S x<i). 

We keep all the selected descriptors in the main loop to 

facilitate the creation of high-order complexity descriptors with 

the help oflow-order complexity descriptors. For instance, con­ 

structingxf usingO defined in (1) requires us to keep x1 E x<0>' 
selected at the base iteration and XI E x<l)' selected at the first 

iteration. 

To see how this iterative procedure helps reduce the dimen­ 

sion of descriptor space significantly, let s; = IX(i)'I be the 

number ofdescriptorsselected in the ithiteration andp; = IX(i)I 
be the dimension of the ith descriptor space. Suppose that the 

number of selected descriptors is sparse ineach iteration, that is, 

s; « p;. Assuming binary operators were used, the dimension 

of the (i + l)th descriptor space in PAN is on the order of 

O(sf) « 0(pf ), and this holds for all iteration i ::::: 0. If we 
further assumes; ;:::: 0(p) for all i ::::: 0, where p = IXI is the 

number of primaryfeatures, then the dimension of the (i+ l)th 

descriptor space for PAN is on the order of O(p2), compared 

to O(p2 
1  

for the one-shot methods. Note these assumptions 

are reasonable according to the discussion in Section 2.1. In the 

simulation studyin Section 3.4with p = 10 primary features, we 

observed thats; ;::::0(101) and p; ;::::0(102) for all iterations of 
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the PAN procedure. On the contrary, a one-shot method, such 

as SISSO, generates a descriptor space containing 9.26 x 109 

descriptors in thesame setting. 

The use of a nonparametric variable selection procedure in 

Step l(a) is necessary because the intermediate descriptors may 

not have a strong linear association with the response variable. 

Thus, a method that accounts for model misspecification, such 

as a nonparametric method, is more suitable for preliminary 

screening of the intermediate descriptors. In addition, a suit­ 

able nonparametric module for PAN needs to account for the 

geometry embedded in OIS and the unconventional goal of 

selecting operators along with variables; the next section dis­ 

cusses performance requirements for this step and introduces 

an implementation of PAN, iBART, that is particularly suitable 

for OIS. In Step 2, the oracle descriptors are linearly associated 

with the response. Hence, we employ linear parametric variable 

selection methods, such as LASSO (Tibshirani 1996), to reduce 

false positives and select the final descriptors. 

 
2.3. Choosing Nonparametric Module in PAN and iBART 

In OIS, the ultimate goal is to recover or approximate the true 

functional relationship between the response and the primary 

features. This goal together with PAN entails new performance 

requirements for the nonparametric module in PAN. To illus­ 

trate such a need, let us consider a simple OIS model 

(6) 

 

In traditional nonparametric variable selection problems, the 

regression model only sees the primary features, X, and the 

desired performance is successful identification of the active 

index set, S0 = {l, 2}. The base iteration of PAN has a similar 

goal as we would want theselected index setS to be a superset of 
S0. However, the intermediate descriptor space x<m) in the mth 

iteration consists of nonlinear transformations of the selected 

primary features X8, and the active index set is no longer well­ 

defined. 

Due to the iterative structure of PAN, a good nonparametric 

selection method for PAN must be able to generate and identify 

the m-composition descriptorsft)(X) at the mth iteration (i.e., 

all active intermediate descriptors). To this end, a suitable non­ 

parametric module should satisfy the following PAN criterion: 

It selects all of them-composition descriptors that are 

necessary for constructing the true M-composition descriptor, 

for all O ::: m .:::: M iterations. 

Taking model (6) as an example, failingto select eitherf1(o) = x1 

or fio) = x2 in the base iteration will preclude the generation of 

f(I) = (x1 + x2) andj<2
) =x1 +x2 in subsequent iterations. 

The PAN criterion thus favors a "conservative'' nonparametric 

method, in which false positives during selection are allowed 

but false negatives must not occur in any iteration. Here false 

positives are defined within each intermediate descriptor space 
x<m)_ 

The literature has provided a rich menu of nonparamet­ 

ric selection methods; however, the asymmetric effect of false 

positives and false negatives on descriptor selection illustrated 

by the PAN criterion motivates our choice of tree-based non­ 

parametric approaches. To see this, suppose the true descriptor 

is f (x1)  = log(x1) and the design matrix O(X) consists of 

I-composition transformations of the primary features X = 
(x1, ... ,xp)- A typical nonparametric method aims to identify 

the oracle primary predictors (x1 in this case) that associate 

with y through an unknown function f (•), without considering 

transformations of x1 as possible candidate predictors. How­ 

ever, the goal in the presence of OIS is to identify the true 

primary predictors (xi) and the correct operator composition 

(log(-)). This goal, in the presence of many non-signal but 

highly correlated unarytransformationsof x1, namely,Jxi, Ix11, 
etc., is shown to be difficult for many nonparametric methods; 

see supplementary material Section A.2.1 for detailed analyses. 

Tree-based methods areinvariant to monotonic transformations 

and thus tend to be robust to related transformations that are 

often piecewise monotonic. Consequently, theymayselect unary 

transformationsof x1 inaddition to f (x1) = log(x1)-such false 

positives, although increasing the candidate search space, are 

favorably compatible with the PAN criterion. We next provide 

a review of BART (Chipman, George, and McCulloch 2010) and 

describe BART-G.SE (Bleich et al. 2014)-the default nonpara­ 

metric module in the PAN framework. 

BART isa Bayesian nonparametric ensemble tree method for 

modeling y = f(X) + e, the unknown relationship between 

a response vector y and a set of predictors xi, ... ,Xp- More 
specifically, BART models the regression function f bya sum of 

regression trees 

Y = Lg;(X1, •.. , Xp;Ti,/1,;) + 8,  

i=I 

Each binary regression tree g; consists of a tree structure Ti 
partitioning observations into B; terminal nodes, anda setofter­ 

minal parameters /1,; = {µii,... ,µ;B;} attached to these nodes. 

Observations within a given terminal node b are constrained to 

have the same terminal parameter µ;b- The prior distributions 

for (Ti, /1,;) constrain each tree to besmall so that each tree con­ 

tributes to approximatefin a small and distinctfashion. Readers 

are referred to Chipman, George, and McCulloch (2010) for the 

full details of BART and posterior sampling. 

The primary usage of BART is prediction, and the predicted 

values j, for y serve no purpose in variable selection. However, 

a variable inclusion rule can be defined based on the variable 

inclusion proportion q; of x;, which can be easilyestimated from 

the posterior samples. To this end, we adopt the permutation­ 

based selection threshold based on the permutation null distri­ 

bution of q =(qi, ... ,qp) proposed by Bleich et al. (2014). 

Specifically, B permutations of the response vectorYi, ... ,)1 
are generated, and a BART model is fitted for each of the per­ 

muted response vectors with the same predictors xi, ... ,Xp­ 

The variable inclusion proportions from the permuted BART 

models qt, ... , qi are then used to create a permutation null 

distribution for the non-permuted variable inclusion propor­ 

tion q. The predictor x; is selected if q; > m; + C" • s;, 
where m; and s; are the mean and standard deviation of the 

permuted variable inclusion proportion qf = (qt1, ... , qf,B), 

and C* = infcE!R+ {Vi, f1I=f=l H(qtb .:::: m; +C• s;) > I - a} 
is the smallest global standard error multiplier (G.SE) that gives 
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a simultaneous 1 - a coverage across the permutation null 

distributions of q; for all predictors. We refer to BART with 

the permutation-based selection procedure described above as 

BART-G.SE. 

Various BART-related methods have been recently devel­ 

oped (Linero 2018; Horiguchi, Pratola, and Santner 2021; Liu, 

Rockova, and Wang 2021). They often incorporate sparsity­ 

inducing priors into BART and prove to be highly effective 

in various tasks. However, it is unclear whether the excellent 

performance of them developed in traditional settings carries 

over to being compatible with the PAN criterion. Indeed, we 

have found that methods aiming at optimally choosing non­ 

parametric variables in traditional settings may incur fewer false 

positives but have a higher chance to miss the true descriptors in 

intermediate iterations-such false negatives are devastating in 

the context of PAN and OIS variable selection. The PAN crite­ 

rion provides a useful guide in choosing not only the regression 

method but also the selection rule, for which we recommend 

BART-G.SE. In our numerical experiments, we vary the non­ 

parametric module in PAN bycomparing several recent BART­ 

related methods and other nonparametric selection methods, 

and find that the proposed iBART, PAN with BART-G.SE as 

the nonparametric module, is particularly well suited for OIS 

variableselection andtends to give the best overall performance; 

see the supplementary material for numerical results and a 

comprehensive discussion. 

 

2.4. Practical Consideration and the Algorithm 

The operators in O in (1) can be classified into the unary 

operators Ou = {J,exp,log, j • J, ,-l ,
2 ,sin(rr-),cos(rr-)} and 

the binary operators Ob = {+,-,x,/,1 - j}, each posing 

different challenges to descriptor selection. The unary operators 

Ou inducestrongcollinearityamong the engineered descriptors; 

for instance, cor(xf, jx1j)  >  0.9 when x1 ~ Nn(0,I) with 

n = 200. The binary operators Ob increase the descriptor 

space dimension double exponentially and generate complex 

nonlinear descriptors. These two issues are compounded when 

the two operator sets are used together. Therefore, we propose 

to decouple the two operator sets and alternate them, leading to 

two special cases of (5): 

(7) 

Mtimes 

O;[; (X) = ···Ou o Ob o Ou o Ob(X) = ot-'>oOb(X). 

Mtimes 

(8) 

In addition to the binary operators identified earlier, we include 

an additional binary operator, rr1 : 
2 

-  . defined by 

rr1 ( a, b) = a,which allows intermediate descriptors to bepassed 

down unchanged. Note the two alternating descriptor spaces 

O;., (X) and  (X) are not equivalent to the full descriptor 

space o<M(>X) with thesame composition complexity M. How­ 

ever, one can show that O;., ")(X) and O;., b) (X) can recover 

o<M>(X) with some Mu > M and Mb > M, respectively. 

This is formally described in the theorem below and its proof 

isavailable in supplementary material Section D. 

Theorem2.1. LetX= (xi,... ,xp) E nxpbeaprimaryfeature 

space and O be a set of operators such that it can be partitioned 

into a unary operator set Ou and a binary operator set Ob. 

Suppose that I E Ou and rr1 E Ob. Then for any M E N, there 

exists Mu  M and Mb  M such that otu>(X) 2 o<M(>X) 

and otb)(X) 2 o<M>(X), respectively. 

 
For instance, the 2-composition descriptor space0<2>(X) 

generated using (3) contains descriptors such as /1 = (xf + 
xJ) and Ji  =  (x; + Xj)2. These two descriptors can be 

generated using O;.,;(X) in (8): f1 =  add(square o 

J!"J (x;,Xj), square Orr, (Xj,X;)) E or;<X) andfi = square0 

add(x;,Xj) E o;.,2;(X). Using(7),fi andfi can also begenerated 

as f1  =  add(square(x;)s, quare(xj))  E  O;i,2!(X) and 

h = square0  add(I(x;),I(Xj)) E or!(X). As such, under 
the M-composition OIS model in (4), one may consider using 

o<M>,ot·>(X), or otb)(X) as long as they contain the true 

descriptors. In what follows we will focus on O;.,  (X) and 

O;.,; (X) instead ofQ(M) for their aforementioned advantages. 

We adopt the descriptor generating strategies in (7) and (8) 

for different scenarios. In particular, ifthe primaryfeatures X are 

believed to generate the model through their intricate interac­ 

tionsthat will becaptured bybinary operators and compositions 

of such binary operators, we recommend (8). This is often the 

case in real-world applications, such as in Section 4, where the 

domain scientists have chosen a large set of potentially useful 

primary features, and unary transformations of these primary 

features are less interpretable and thus less desired. If such prior 

knowledge is not available and the relevant functional form of 

primary features is unknown, as in Section 3, we would rec­ 

ommend (7) to first identify such functional forms byselecting 

between unary descriptors. 

The stopping criterion in Step 1 can be easily modified 

depending on practical needs. For example, we can specify 

the maximum composition complexity Mmax, like SISSO, or 

implement a data-driven criterion that terminates Step 1 when 

there exists a descriptor such that its absolute correlation with 

response variable y exceeds a pre-specified threshold Pmax that 

isclose to 1. We note that iBART allows larger Mmax than SISSO 

as iBART does not rely on one-short feature engineering, and 

the use of Pmax allows early termination. 

It is also common in practice that one may only want to 

select k descriptors for easy interpretation, such as k ::: 5. If 

the cardinality of the selected descriptors X* is greater than k, 

then an £0-penalized regression may be used to choose the best 

k descriptors. 

We allow user-specified options for these considerations 

when implementing iBART, summarized in Algorithm 1. The 

following default settings will be used in our experiments. We 

use the BART-G.SE thresholding variable selection procedure 

implemented in the R package bartMachine to perform 

nonparametric variable selection for Step l(a) in PAN and use 

LASSO implemented in the R package glmnet to perform 

parametric variable selection for Step 2 in PAN. For BART­ 

G.SE, we set the number of trees to 20 that is recommended 

by Bleich et al. (2014), the number of burn-in samples to 
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10,000, the number of posterior samples to 5000, the number 

of permutations of the response to SO, and the rest of the 

parameters to the default values. With these values, our Markov 

chain Monte Carlo (MCMC) runs appear to have reached a 

sufficient number of iterations in our experiments. We choose 

the penalty term >.. in LASSO by minimizing the mean squared 

error loss through a 10-fold cross-validation procedure and set 

the other parameters to the default values. Unreported results 

using real data indicate that other tuning methods to debias 

LASSO yield similar performance. The algorithm terminates 

if the composition complexity M reaches Mmax = 4 or the 

maximum absolute correlation IPI reaches Pmax 0.95, 

whichever occurs first. Setting Mmax to 4 appears sufficient for 

the considered materials GWAS application as descriptors with 

more complexity become challenging to interpret. 

wise. Each simulation is replicated 100 times. We also compare 

variants of iBART by varyingthe nonparametric module;see the 

supplementary material for details. 

 

3.2. Unary Operators 

We consider all unary transformations of five primary features 

X = (xi, ... ,x5), that is, the descriptor space is Ou(X) = 

Ui=i{x;, x;-1, xf,.jxi,log(x;),exp(x;), lxd, sin(Jtx;), cos(:,rx;) }. 

For each unary operator Uj E Ou, we generate the response 

vector by 

(9) 

with sample size n = 200, yielding nine independent models in 

total. We draw the primary features X independently from the 

   standard normal distribution if the domain of Uj is IR, and the 
Algorithm 1: iBART 

 
 

Input: Pmax E (0, 1) = maximum absolute correlation 

with the response variable; 

Mmax = maximum composition complexity; 

Lzero = whether to perform fa-penalized regression; 

k = number of selected descriptors byfa-penalized 

regression. Only required when Lzero == TRUE. 

Output:.XZ:selected descriptors 

Data: X: primary features; Ou:set of unary operators; Ob: 

set of binary operators; y: response vector 

M=0 

p =maxxEX(M>cor(x,y) 

while M Mmax or IPI Pmax do 

x<M)' +- BART-G.SE selected descriptors on x<M) 

x<M+1> +- OM+1 ( u;x<;>') 

M+-M+l 

p +- maxxEx<M> cor(x,y) 

end 

X* +- LASSO selected descriptors on x<M) 

if Lzero == TRUE and IX*I > k then 

XZ +-  best k descriptors from fa-penalized regression 

end 

else 

+-X* 

end 
 

 

 

 

3. Simulation 

3.1. Outline 

In Sections3.2 and 3.3wedemonstrate that the employed BART­ 

G.SE tendsto satisfythe PAN criterion whenselecting unaryand 

binary operators, respectively, and evaluate its false positives. 

Section 3.4 assesses iBART relative to several existing descriptor 

selection methods in view of the PAN criterion and OIS vari­ 

able selection accuracy using a complex simulation setting. Sec­ 

tion 3.5 showcases the robustness of iBART in the initial input 

dimension p. Section 3.6 examines the performance of iBART 

when the operator set O can not generate the ground truth 

model. We use Algorithm 1 and the default settings described 

in Section 2.4 when implementing iBART, unless stated other- 

Lognormal(2, 0.5) distribution if the domain is IR a- 

The left plot in Figure 2 shows the number of true positives 

(TP) of BART-G.SE. For each of the nine models in (9), the 

true descriptor is selected 100/100 times. This suggests that 

BART-G.SE is capable of identifying the true descriptor with 

high probability when the descriptor space is populated with 

unary operators Ou. Other nonparametric methods did not 

select all TP 100/100 times for all ninescenarios, failing the PAN 

criterion; see the supplementary material for further results and 

discussion. 

The left plot in Figure 2 shows the number of FP of BART­ 

G.SE for each simulation setting. Although BART-G.SE is capa­ 

ble of capturing the true descriptor with high probability, it 

also selects some non-signal descriptors in some cases. The 

number of FP is especially high when the true descriptor is xi, 

lx1I, exp(x1),log(x1), x1,or ,jxi.This isdue to high collinearity 

among thesesixdescriptors. In particular, the empirical Pearson 

correlation between log(x1) and Fi is over 0.99 under sim­ 

ulation setting (9) and thus some false positives are expected. 

Selecting inactive descriptors in one iteration isless of a concern 

in variable selection with OIS as theydo not constitute misspec­ 

ified models, and can be further screened out during Step 2 of 

PAN. 

 

3.3. Binary Operators 

In this simulation study, we apply binary operators Ob 

{+,-,x,/,1 -  l,7ti} on the five primary features X 

(xi, ... ,X5).Thedescriptor space Ob(X) E IR2ooxss contains all 

binary transformations of all possible pairs of the five primary 

features. For each binary operator bj E Ob, we generate the 

response vector by 
 

with sample size n = 200, yielding a total of six indepen­ 

dent models. We generate the primary features X following 
iid 

X1, ... ,X5~Nn(O,l). 

Theright plot in Figure 2 shows the number of TP for each 

of the six models in (lo). BART-G.SE is able to identify the true 

binary descriptor 100/100 times in all sixsettings, similar to ear­ 

lier observations in Section 3.2. The right plot in Figure 2 shows 

that BART-G.SE mayalso select some irrelevant descriptors but 
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Figure 2. Boxplots ofTPandFPover100simulation replicatesunder (9) and(10). 

 

 

considerably fewer than in Section 3.2. In particular, when the 

truedescriptor is (x1 -xi), BART-G.SEcorrectly selects (x1-x2) 

butalso selects Ix,-xii100/100 times. Unlike in Section 3.2, the 

inclusion of Ix, -xi I is not due to highcorrelation between Ix, - 

x21and (x1 -  x2). In fact, their empirical Pearson correlation is 

merely 0.07. We suspect that Ix, - x21 was selected due to its 

piecewise monotonicity in (x1 -x2) that tendsto be invariant to 
tree-based methods.Similarly, BART-G.SE selects both (x1-x2) 

andIx, - Xi I with high probability when the true descriptor is 

Ix, - xi I- When the true descriptor is (x, + xi), x, x xi, xifx2, 

or rr1(x1, x2), the FP of BART-G.SE is nearly zero. This shows 

that BART-G.SE is not too conservative when high collinearity 

does not exist. 

Our investigation using unary and binary descriptors sug­ 

gests that the permutation threshold ofBART-G.SE tends to sat­ 

isfy the PAN criterion without being too conservative, making 

it a good candidate for PAN and OIS variable selection. We next 

use a more complex simulation to assess iBART in view of the 

PAN criterion and OISselection accuracy. 

 
3.4. Complex Descriptors with High-Order Compositions 

In this section, we compare iBART with existing approaches 

under a complex model and demonstrate superior performance 

of iBART. We use the following model 

y = 15{exp(x,) - exp(xi))i + 20sin(rrX3X4) + e, 

e ~ Nn(0,a2I), (11) 

with n = 250, p = 10, and a  = 0.5. Here the number 

of primary features p is set to a relatively small number since 

competing one-shot methods cannot complete the simulation 

when p::::: 20 due to the ultra-high dimension of their descriptor 

spaces. In Section 3.5, we demonstrate that iBART scales well 

in p and gives a robust performance. We use the operator set 

CJ defined in (1) with rr1, and the primary feature vectors x; 

aredrawn independently from a uniform distribution, namely, 

X1, ... , X p~i i d  
Un(-1, 1). Section B of supplementary material 

demonstrates the effect ofdependent primaryfeatureson iBART 

and other methods using the same functional relationship in 

(11). 

iBART is implemented in R based on Algorithm 1 in Sec­ 

tion 2.4 using the default settings. We chose the descriptor 

generating process (7) in Section 3 since the iid primary fea­ 

tures do not show strong collinearity. Two versions of iBART 

are considered: iBART without and with lo-penalized regres­ 

sion, labeled as "iBART" and "iBART+lo", respectively. The l0- 

penalization finds the best subset of k variables from the set of 

selected variables using the Akaike irlformation criterion (AIC) 

with k E {1, 2, 3, 4). Wecompare the performance of iBART and 

iBART+lo with SISSO and LASSO.SISSO is implemented using 

the Fortran 90 program published by Ouyang et al. (2018) on 

GitHub with the following settings: the descriptor magnitude 

allowed in the descriptor space is set to [I x 10-6
, 1 x 105

]; 

the size of the SIS-selected subspace is set to 20; the operator 

composition complexity M is set to 3; the maximum number of 

operators in a descriptor is set to 6; and the number of selected 

descriptors k E {1, 2, 3, 4) is tuned by AIC. The R package 

glmnet isused to implement LASSO and the penalty parame­ 

ter .11. is tuned via 10-fold cross-validation to minimize the mean 

squared error loss. Since the size of CJ(3)(X) exceeds the limit 

of an R matrix, we give LASSO an advantage by reducing the 

descriptor space to CJu o O o O (X) that aligns with the true data­ 

generating process. We also use the lo-penalized regression step 

as in SISSO and iBART+lo for LASSO, leading to LASSO+l0. 

For each method, we calculate the number of TP selections, 

FP selections, and false negative (FN) selections. We use the 

Unary Binary 
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Figure 3. Left: boxplots of F1 scores over 100 simulations for different methods under Model (11). Right Boxplots of iBART generated and selected descriptors in each 

iteration. 

 

F1 score as an overall metric to quantify the performance of 
each method: F 2 • Pred ion-Recall where Precision 

I Prec1s1on+ Recall' 

'I'P1J'FP and Recall = IPZFN. The value F1 = 1 means correct 
identification of the true model without having any FP and FN. 

In thissimulation, the two TPsare/1(X) = {exp(x1)-exp(x2)}
2 

andfi(X) = sin(rrx3x4). 

As shown in Figure 3A, both iBART-based methods achieve 

very high F1 scores, with a median F1 of 0.8 and 1 for iBART 

and iBART+£0, respectively. In particular, both iBART and 

iBART+fo have 2 TPs in all simulations while incurring an 

average FP of 0.93 and 0.3, respectively. This demonstrates that 

iBART satisfies the PAN criterion in all iterations as it is able to 

identify the 2 TPs 100/100 times in simulations. Furthermore, 

iBART+£0 gives a very low FP,scoring a perfect F1 score 75/100 

times. LASSO-based methods and SISSO have lower F1 scores 

than iBART and iBART+fo butfor different reasons. LASSO 

selects 37.65 descriptors on average, and the 2 TPs are always 

selected. This means that LASSO also enjoys the PAN criterion 

but its F1 score is hindered by the large number of FP. With 

the help of the £0-penalized regression, LASSO+fo reduces the 

average number of FP from 35.65 to 2 while maintaining 2 TPs 

100/100 times, substantially increasing the F1 score to 0.67, the 

third-highest score but still considerably lower than iBART and 

iBART+£0. SISSO, on the other hand, has only 1 TP but 3 FPs 

in all simulations, which unfortunately does not satisfy the PAN 

criterion. In particular, SISSO can identify sin(rrx3x4) 100/100 

times but always selects a false signal, Iexp(x1) -  exp(x2) I, a 

descriptor that has an absolute correlation over 0.9 with the 

TP,{exp(x1) - exp(x2))2. In summary, both iBART-based and 

LASSO-based methods satisfy the PAN criterion but LASSO­ 

based methods incur more FPs. SISSO, however, fails to identify 

one of the two descriptors 100/100 times but selects a highly 

correlated counterpart, indicating its relatively weakened ability 

to distinguish the true descriptor when there are descriptors 

highly correlated with the TP. Results not reported here show 

that replacing BART-G.SE with LASSO in the PAN framework 

missed TPs with high probability even at the base iteration, 

indicating the importance of nonparametric variable selection 

in PAN. 

To gain insight into the scalability of iBART, Figure 3(B) 

shows the boxplots of the number of iBART generated and 

selected descriptors in each iteration. Throughout the 100 

simulation replicates, iBART generates no more than 168 ::: 

2p2 descriptors, which is significantly less than the number 

of descriptors generated by SISSO (9.26 x 109
) and LASSO 

(1.2 x 106
). Such dimension reduction not only reduces runtime 

and memory usage but also enables iBART to tackle data with 

much larger p,as we show in Sections 3.5 and 4. 

 

 
3.5. Largep 

In thissection, wedemonstrate that the performance of iBART is 

robust to increase in input dimension p while one-shot descrip­ 

tor selection methods are not. Under Model (11) with p = 20, 

SISSO with the same parameter settings in the precedingsection 

generates more than3.8x1011 descriptors and failed to complete 

one simulation within 24 hr on a server with 1.3TB of memory 

and 40 CPUcoresavailable to SISSO. LASSO, on the other hand, 

failed at p = 20 since the glmnet function in the R package 

glmnet cannot handle a matrix of size 250 x (1.57 x 107). 

The proposed method iBART instead scales well in the input 

dimension p partly because of the efficient dimension reduction 

via the PAN strategy. In particular, when p = 20, iBART tookan 

average of 497 sec to finish, and its memory usage peaks out at 

10.85 GB in 100 simulation replicates. 

We implement iBART for p E { 10,20,50, 100,200} using 

the same simulation settings in Section 3.4. Figure 4 shows that 

iBART'sFi score is robust to the increase in p.In fact, benefiting 

from the ab initio mechanism through the PAN strategy, the 

performance of iBART would be identical for varying pas long 

as it selects xi, x2, x3, x4 in the first iteration, which is often the 

case based on Figure 4 at least under the current simulation 

setting. We acknowledge that the stability of the F1 scores across 

different values of p may be attributed, in part, to the relatively 

small noise standard deviation. In contrast, one-shot descriptor 

selection methods suffer significantly from just a small increase 

in the input dimension p since the descriptor space increases 

double exponentially in p. One way for one-shot description 

selection methods to circumvent the ultra-high dimension issue 

is to reduce the maximum composition complexity Mmax· How­ 

ever, this undesirably rules out descriptors with the correct com­ 

position complexity. For example, the descriptor in (11)/1(x) = 

4 8 - 
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Boxplot of iBART F1 scores 4. Application to Single-Atom Catalysis 

Weapply theproposed method to analyze a single-atom catalysis 

dataset (O'Connor et al. 2018) in which the goal is to identify 

physical descriptors that are associated with the binding energy 

of metal-support pairs calculated by density functional theory 

(DFf). Single-atom catalysts are popular in modern materials 

science and chemistry as they offer high reactivity and selectiv­ 

ity while maximizing utilization of the expensive active metal 

component (Yang et al. 2013; O'Connor et al. 2018; Wang, Li, 

and Zhang 2018). However, single-atom catalysts suffer from a 
0oo-  

 
10 20 50 too 

Input dimension p 

 

 
200 

lack ofstability caused by the tendency for single metal atoms to 

agglomerate in a process called sintering. To prevent sintering in 

single-atom catalysts, onecan tune thebindingstrength between 
Figure 4. Boxplot of F1 scores for iBART under Model (11) with 

p E (10,20,50,100,200}. 
 
 

 

{exp(x1) - exp(x2)}
2 requires at least three compositions of 

operators and reducing Mmax to2 means thatJi(x)  would never 

be generated and hence would never be selected. Thus, in a 
complexscenario, one-shot descriptor selection methodscannot 

generate and select the complex descriptors unless p is small. 

We considered a small p = 10 in the preceding section to 

accommodate such limitation of one-shot methods. 

 
3.6. Model Misspecification 

In this section, we examine the behavior of iBART when the 

operator set O is not sufficient to generate the data-generating 

function. We generate data from the model y =  xJ·7 + e with 

e ~ .Nn(O,I), n = 250, p = 10, use the same operator set(') 

asinSection 3.4, and draw the primary features from a uniform 

distribution, that is, X1, ... , Xp  Vn(0, 3). In this simulation, 

iBART iterates once after screening the primary features. Since 

iBART onlyselects xI in the first iteration,100/100times, it does 

not apply the binary operators in 0. 

In contrast to the preceding sections, the computation of 

true and false positives, as well as the F1 scores, is not feasible 

here due to the model specification by design. To evaluate the 

performance of our method, Figure 5(A) shows the frequency 

of unique descriptors selected by iBART and the average 

Pearson correlation between the selected descriptor and x:·7 

in parentheses. Note that multiple descriptors might be selected 

in one replication, and therefore the sum of frequencies exceeds 

100. We can see that, although the true descriptor xj-7is not in 

the candidate descriptor space, iBART selects highly correlated 

descriptors from the candidate space, including xy for 98% of 

the time and x1 for 87% of the time. Figure 5(B) shows that the 

RMSEof the iBARTselected modelsdoes not deviate much from 

the RMSE of the true model, indicating a similar explanatory 

power. These observations suggest that when the employed 

operator space is not sufficient to generate the ground truth, 

iBART iscapable of selecting a model that closely resembles the 

true model, at least in the considered simulation setting. This is 

reassuring as in manyapplications ofOIS,such as the oneinSec­ 

tion 4, the goal is precisely to find an accurate but interpretable 

model that well approximates complex real-world physical 

systems. 

single metal atoms and oxide supports. While first principle 

simulations can calculate the binding energy for given metal­ 

support pairs, modeling their association requires explicit sta­ 

tistical modeling and is key to aid the design of single-atom 

catalysts that are robust against sintering. Feature engineering 

leads to physical descriptors constructed using mathematical 

operators and physical properties of the supported metal and 

the support, and gains popularity in materials informatics as 

the obtained descriptors are interpretable and provide insights 

into the underlying physical relationship. The key challenge is 

to select the most relevant physical properties among large-scale 

candidate predictors that haveexplanatory and predictive power 

to the binding energy; often the sample size is small as first 

principle simulations are computationallyintensive. 

The data comprise bindingenergy of n = 91 metal-support 

pairs and p = 59 physical properties of these metal-support 
pairs, in which the bindingenergy serves as the response y while 

the 59 physical properties constitute the primary features X = 
(x1,..., x59). We use the operator set given in (1) but exclude 

sin(n •) and cos(n ·) because they are not physically meaningful 

in this data application. 

In this analysis, we compare the best k descriptors (k = 

1, ... , 5) of iBART+fo (referred to as iBART for brevity), 

SISSO, and the method proposed in O'Connor et al. (2018). 

The method proposed in O'Connor et al. (2018) combines 

LASSO with extensive domain knowledge; in particular, they 

rule out a substantial proportion of less promising descriptors 

using expert knowledge of single-atom catalysis. Such expert­ 

guided, tailored dimension reduction is not needed for SISSO 

or iBART, but is necessary for LASSO-type methods because the 

astronomical size of0<2
) (X) in this application far exceeds the 

maximum matrix size allowed in many modern programming 

languages. We refer to O'Connor et al. (2018) as LASSO" to 

distinguish it from LASSO+fo implemented in Section 3.4. To 

enhance interpretability, we eliminate nonphysical descriptors, 

such as volumn + speed, by automatically comparing the units 

of the constructed descriptors. Results without this constraint 

are reported in the supplementary material, showing that this 

constraint does not alter our conclusions when comparing 

methods but substantially improves the interpretability of the 

identified model. 

For iBART, wefollow thesettings described in Section 2.4 and 

use the descriptor generating process (8). The SISSO parame­ 

ters are set as followed. The maximum number of descriptors 
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allowed in a model is set to 5; the descriptor magnitude allowed 

in the descriptor space isset to [1 x 10-8, I x 108
]; the size of the 

SIS-selected subspace is set to 40; the composition complexity M 

Table 1. Performance comparison of threemethods:out-of-sample RMSE, runtime, 

and the number of generated descriptors, averaged over50 cross-validations. 
 

iBART LASSO* SISSO 

is cap at 2 because0<3) (X) and higher complexity space exceed 

the maximum number of elements allowed in a Fortran 90array. 

The LASSO* procedure is implemented using the MATLAB 

code published by O'Connor et al. (2018) with all parameters 

left as default. 

RMSE 

Runtime 

Number of generated descriptors 

0.41 

225 sec 

627 

0.471 

5511 sec x 20 

3.3 X 105 

0.486 

6943 sec 

5.5 X 107 

Each method's performance is assessed using out-of-sample 

RMSE, runtime, and the number of generated descriptors. To 

calculate out-of-sample RMSE, we randomly partition the n = 

91 observations into a 90% training set (82 samples) and a 10% 

testing set (9 samples) and repeat this process so times. For 

brevity, we herein refer to out-of-sample RMSE as RMSE. 

From Figure 6, the smallest average RMSE is attained at k = 3 

for iBART (0.41), k = 1 for LASSO* (0.471), and k = 2 for 

SISSO (0.486), that is, iBART reduces the RMSE by 13% relative 

to LASSO* and 16% relative to SISSO; also see the first row of 

Table 1. iBART outperforms LASSO* and SISSO with smaller 

average RMSE and reduced variability for k   2. The larger 

average RMSE of iBART at k = 1 may be partially due to its 

smaller descriptor space as a result of its alternating descriptor 

generation process, and our implementation details that give 

advantages to LASSO*. Multiple descriptors are often needed to 

approximate complex physical systems, and the predictive per­ 

formance ofiBART reassuringly improves with moredescriptors 

in the model. On the contrary, the RMSE of LASSO* increases 

with more descriptors in the model, indicating overfitting. For 

all k, we observe iBART does not report large deviations from 

the average performance, suggesting robustness to training sets 

compared to LASSO* and SISSO. 

In addition to the performance gain in RMSE, iBART 

also leads to a substantial reduction in computing time and 

memory usage. Table 1 shows that iBART leads to over 30- 

fold (6943/225 = 30.86) speedup compared to SISSO, and 

over 480-fold (5511 x 20/225  =  489) speedup compared 

81- 

• 4-0.57$58 
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Table 2. Selected linear modelsby iBART fork E {1,2,3,4, 5). Table 3. Descriptions of the selected primary featuresby iBART. 

k Selected descriptors Primary feature Physical meaning 

ti.H,ub 

ti.Htox bulk 
ti.fv c• 

EA' 

all.. 
(N'b lk 

Heat of sublimation 

Oxidation energy of the bulk metal 

Oxygen vacancy energy 

Electron affinity of support 

Number of valence electrons in metaladatom 

Coordination number of the surface metal atomin the 

bulk phase 

Discontinuity in electron density of metal adatom 

Chemical potential of the electrons in support 

Fourth ionizationenergy of support withthebulk metal in 

the 4+oxidation state 
 

 

 

to LASSO*, tested on an Intel Xeon Gold 6230 CPU @ 2.10 

GHz using either 1 or 20 CPU cores. We use the published 

code by authors for competing methods, and the runtime 

reported here does not isolate the effect of various programming 

languages (R for iBART, MATLAB for LASSO*, and Fortran 90 

for SISSO). We did not obtain an accurate single-core runtime 

of LASSO* because of its poor scalability, and instead multiplied 

its 20-core runtime by 20 for comparison (i.e., 5511 x 20 x 

50/3600 = 1530 hr); the exact speedup of iBART compared to 

the single-core runtime of LASSO* mayvary due to the reduced 

communication cost among multiple cores and other factors. 

We remark that the LASSO* method implemented here is given 

an advantage with an additional dimension reduction step, 

and an exploration of higher complexity descriptor space as in 

iBART is computationally prohibitive for LASSO*. The excellent 

scalability of iBART transforms into memory efficiency as the 

descriptor space in iBART is orders of magnitude smaller than 

that of competing methods. Table 1 shows that iBART generates 

a descriptor space of size 627 < O(p2) in the last iteration on 

average. Thanks to this significantly smaller descriptor space, 

we were able to run iBART on a laptop with only 16GB of 

memory; in contrast, LASSO* and SISSO failed at the descriptor 

generation stepowing to the enormous descriptor space theytry 

to generate, and require server-grade computing facilities. 

Table 2 reports the selected descriptors by iBART with var- 

ious k using the full dataset, and Table 3 reports the phys­ 

ical meanings of the selected primary features. We can see 

that some descriptors are recurrent in various models, such 

as ti.H,ub-t,.Hr,ox,bulk  This reassuringly suggests the stability of 
,',.Evac 

the proposed descriptor selection method across k. Readers are 

referred to Liu et al. (2022) for in depth analysis and physical 

interpretation of these selected descriptors from the perspective 

of catalyst design. 

Figure 7 demonstrates a clear advantage of the OIS model 

over the non-OIS model. The OIS model is the iBART model 

with k = 3, the optimum model suggested by RMSE. The non­ 

OIS model is a simple least squares model with X as the design 

matrixand no feature engineeringstep. For ease of comparison, 

the non-OIS model also has k = 3 predictors determined by 

best subset selection.The OIS modelyieldsan R2 of0.9534, indi­ 

cating high explanatory power. In contrast, the non-OIS model 

gives an R2 = 0.7945 and shows poor fitting performance as the 

scatterplot deviates from the diagonal line y = x considerably. 

Both the OIS and the non-OIS models have analytical forms, 

but the OIS model gains more explanatory power and gives an 

insightful description of the response through nonlinearity of 

its predictors. In particular, the non-OIS model is .Ynon-OIS = 

-4.7- 0.4 x t:.Hf,ox + 0.3 x N!a1 + 1.0 x t:.Evac, while the OIS 

model is 

.Yrns = -0.01 +0.4 x (EA5 •  t:.Hf,ox,bulk) 

f:.Hsub-   f:.Hf,ox,bulkI 
- 0.6 XI l:.Evac 

- 19.6 X 
(771/3r I 

.
 

I I· f:.Evac 

 

 

 

 
 

 
 

 
 



JOURNAL OFTHE AMERICAN STATISTICAL ASSOCIATION @ 93 

 

 

This O1S model pinpoints targeted descriptors to guide further 

investigation into the underlying physical discovery. 

 

 

5. Discussion 

In this article, we study variable selection in the presence of 

feature engineering that is widely applicable in many scientific 

fields to provide interpretable models. Unlike in classical vari­ 

able selection, candidate predictors are engineered from pri­ 

mary features and composite operators. While this problem has 

become increasingly important in science, such as the emerging 

field of materials informatics, the induced new geometry has 

not been studied in the statistical literature. We propose a new 

strategy "parametrics assisted by nonparametrics': or PAN, to 

efficiently explore the descriptor space and achieve nonparamet­ 

ric dimension reduction for linear models. Using BART-G.SE as 

the nonparametric module, the proposed method iBART itera­ 

tively constructs and selects complex descriptors. Compared to 

one-shot descriptor construction approaches, iBART does not 

operate on an ultra-high dimensional descriptor space and thus 

substantially mitigates the "curse of dimensionality" and high 

correlations among descriptors. We introduce the O1S frame­ 

work, define a PAN criterion, and assess iBART through the lens 

of this criterion. This sets a foundation for future research in 

interpretable model selection with feature engineering. 

Other than the methodological contributions, we use exten­ 

sive experiments to demonstrate appealing empirical features of 

iBART that may be crucial for practitioners. iBART automates 

the feature generating step; one-shot methods such as SISSO 

often require user intervention as otherwise they are not scal­ 

able to handle the overwhelminglylarge descriptor space-this 

descriptor space increases double exponentially in the number 

of primary features and binary operators as a result of compo­ 

sitions. iBART has excellent scalability and leads to robust per­ 

formance when the dimension of primary features increases to 

a level that renders existing methods computationally infeasible. 

Compared to SISSO, which is widely perceived as state-of-the­ 

art in the field of materials genomes, our data application shows 

that iBART reduces the out-of-sample RMSE by 16% with an 

over 30-fold speedup and a fraction of memory demand. Over­ 

all, the proposed method accomplishes traditionally "server­ 

required" tasks using a regular laptop or desktop with improved 

accuracy. Beyond materials genomes illustrated in Section 4, 

iBART can be applied to a vast domain where interpretable 

modeling is of interest. 

There are interesting next directions building on our iBART 

approach. First, O1S provides a useful perspective for structured 

variable selection by introducing operators and compositions. 

Certain operator sets may be particularly useful depending on 

the application; for example, the composite multiply operator 

leads to high-order interactions. It is interesting to examine the 

performance of iBART with a diverse choice of operators. Also, 

we have focused on finite sample performance when assessing 

selection accuracy through simulations partly in view of the 

limited sample size typically available in the motivating exam­ 

ple. It is nevertheless interesting to theoretically investigate the 

necessary conditions for the PAN criterion to hold for selected 

nonparametric variable selection methods such as BART when 

the sample size diverges. 

Supplementary Materials 

Code and data for replicating the study resultsare available at https://github. 

com/xylimeng/OIS. An R package that implements iBART is available at 

https:/ Igithub.com/mattshengliBART. The supplementary materials include 

additional simulations and proof. Supplementary A contains a detailed 

comparison of variants of iBART by varying the nonparametric module. 

Supplementary B contains additional simulation results using correlated 

primaryfeatures.Supplementary C presents additional real data application 

results without enforcing unit consistency. Supplementary D contains the 

proof of Theorem 2.1. 
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