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ABSTRACT

In the emerging field of materials informatics, a fundamental task is to identify physicochemically mean-
ingful descriptors, or materials genes, which are engineered from primary features and a set of elemen-
tary algebraic operators through compositions. Standard practice directly analyzes the high-dimensional
candidate predictor space in a linear model; statistical analyses are then substantially hampered by the
daunting challenge posed by the astronomically large number of correlated predictors with limited sample
size. We formulate this problem as variable selection with operator-induced structure (015) and propose
a new method to achieve unconventional dimension reduction by using the geometry embedded in OIS.
Although the model remains linear, we iterate nonparametric variable selection for effective dimension
reduction. This enables variable selection based on ab initio primary features, leading to a method that is
orders of magnitude faster than existing methods, with improved accuracy. To select the nonparametric
module, we discuss a desired performance criterion that isuniquely induced by variable selection with OIS;
in particular, we propose to employ a Bayesian Additive Regression Trees (BART)-based variable selection
method. Numerical studies show superiority of the proposed method, which continues to exhibit robust
performance when the input dimension is out of reach of existing methods. Our analysis of single-atom
catalysis identifies physical descriptors that explain the binding energy of metal-support pairs with high
explanatory power, leading to interpretable insights to guide the prevention of a notorious problem called
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sintering and aid catalysisdesign. Supplementary materials for thisarticle are available on line.

1. Introduction

The Materials Genome Initiative set up by the White House is a
large-scale effort concerning the utilization of computational
tools to accelerate the pace of discovery and deployment of
advanced material systems. Since its inception in 2011, there
has been a surge of interest in data-driven materials design
and understanding (Zhong et al. 2020; Hart et al. 2021; Keith
et al. 2021; Lin et al. 2021; Liu et al. 2021). In this nascent
area called materials informatics, computational methods that
account for physical and chemical mechanisms of a material
system play a central role in aiding, augmenting, or even
replacing the time-consuming trial and error experimentation.
A fundamental task is to identify physicochemically meaningful
descriptors, or materials genes (Ghiringhelli et al. 2015; Poppa
et al. 2021). These descriptors, for example, are key to modeling
single-atom catalysis and finding or developing more efficient
catalytically active materials. In statistical terms, descriptors are
high-dimensional predictors but with strong structure in that
they are functional transformations of a set of primary features
X= (x1,...,Xp)- For instance, a simple example of descriptors
is f{X) = {exp(x1) - exp(x2)}2, which can be constructed
using exponential and squared functions in combination with
subtraction.

Suppose the response vector y measures the material
property of interest, and the primary features matrix X =

(x1,... , xp) collects physical or chemical properties of the
materials such as atomic radii, ionization energies, etc. Then
the space of engineered predictors (or descriptors) up to order
M is (.)(M)(X), which consists of nonlinear predictors with
explicit functional form resulting from M-order compositions
of operators (" )on X:

o<M)(X) = ()0 0<M-I)(X) = ()o ---0 C'.J(X).
Mti;les

For example, some commonly used operators in materials
genome are

(") = {+ -, X/, 1—1,1,exp,log,|'|, ,-1 2 ,sin(rre),cos(rre)},

1)

andtheaforementioneddescriptorf(X) = {exp(xi)-exp(x2);’
belongs to 0<®>(X). We refer to this distinctive geometry
encoded in (".)(M)(X) as operator-induced structure {01S). The
aforementioned descriptors in materials genome are thus the
predictors in a linear model with 01S. Henceforth, we will use
descriptor selection and variable selection in the presence of 01S
interchangeably. Note that the specification of (") depends on
domain knowledge, and we intentionally include the absolute

difference operator | - | in (") because it is directly interpretable

in materials science, and it often provides clear intuition on
many physical phenomena, such as the metal-oxide binding
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energy (Liu et al. 2022). Treating it as a single operator reduces
the required number of iterations to generate related descriptors.

A common practice in materials genome (O'Connor et al.
2018; Ouyang et al. 2018; Liu et al. 2020) is to employ mod-
ern statistical variable selection developed for linear models.
However, the geometry of OIS defined by operators O and
high-order compositions induces high correlation and ultra-
high dimension to the feature space. As detailed in Section 2,
the dimension of 0<M)(X) increases double exponentially with
Mand the number of binary operators in (. For example, with
= 59 in our real data application, enumerating 0<3\X) gives
1.01 x 10" predictors while only a handful of them are asso-
ciated with the response. Moreover, these predictors are highly
correlated as a result of iteratively applying unary operators.
This along with a small size such as n = 91 in our real data
application substantially hurdles the performance of existing
methods that rely on linear variable selection methods. Indeed,
materials genomes are an analog concept to genomes, but the
dimension of predictors and inherent strongcorrelation in mate-
rials genome-wide association studies, or materials GWAS,pose
unprecedented challenges to statistical analysis.

In this article, we aim to develop a powerful method for
materials GWAS in which we effectively identify materials genes
that are associated with the response of interest. To achieve
dimension reduction in materials GWAS, we consider an iter-
ativeapproach by applying a small set of operators and immedi-
atelyidentifying the relevant descriptors,’D, before constructing
more complex descriptors. This step is iterated in light of the
composition structure in OIS, in striking contrast to existing
literature that aims to exhaustively generate o<M)(X). In each
iteration, O('D) is typically substantially smaller than o<M)(X),
and suchsparsity achieves dimension reduction and tackles the
daunting computational challenges posed by materials GWAS.

Iterative dimension reduction, however, faces two inter-
twined challenges. First, the constructed descriptors in inter-
mediate steps, unlike the astronomically largeom) (X),arenot
necessarily linearly associated with the response. To address
this, we propose to use nonparametric variable selection for
dimension reduction to ensure selection accuracy under the
geometry of OIS. That is, while the model is assumed to be
linear, we employ nonparametric variable selection to achieve
dimension reduction while maintaining highselection accuracy.
We refer to this key novelty of our proposed method as
"parametrics assisted by nonparametrics': or PAN.

The second challenge pertains to the selection of the non-
parametric module. Unlike traditional nonparametric variable
selection, OIS variable selection calls for new performance cri-
teria for the nonparametric module to ensure OIS selection
accuracy (see Section 2.3 for more details). We introduce a PAN
criterion to reassess nonparametric selection methods, which
elucidates an asymmetric effect between false positives and false
negatives and highlights a desired invariance property to unary
transformations. In particular, we propose to use a Bayesian
additive regression tree variable selection method, BART-G.SE
(Bleich et al. 2014), as the nonparametric module, which we
show is well suited to satisfy the PAN criterion.

Coupling the PAN strategy with BART-G.SE, together with
additional considerations to address the complexities of materi-
als GWAS, leads to a new method for materials GWAS, which we

call iterative BART, or iBART. The iterative framework of iBART
reduces the size of the effective descriptor space significantly,
mitigating collinearity in the process, and the use of nonpara-
metric variable selection accounts for structural model misspec-
ification in intermediate variable selection steps. Our extensive
experiments show that iBART gives excellent performance with
accuracy and scalability that are not seen in existing methods.
Note that iBART is not a new BART variant for nonparametric
regression, but rather an iterative use of BART within the PAN
framework specifically tailored for materials GWAS.

The outline of the article is as follows. Section 1.1 reviews
related work in materials genome. In Section 2, we introduce
the OIS framework, describe the PAN selection procedure, and
discuss how to choose the nonparametric module in PAN and
somepracticalconsiderations regarding PAN.Section 3 contains
a simulation study that shows superior performance of iBART
relative to existing methods. In Section 4, we apply iBART to a
single-atom catalysis dataset and it identifies physical descrip-
tors that explain the binding energy of metal-support pairs
with high explanatory power, leading to interpretable insights to
guide the prevention of a notorious problem called sintering. We
closein Section 5 with a discussion. All proofs, detailsof variants
of iBART, and additional simulation results and discussion are
deferred to the supplementary material.

1.1. Related Work

Descriptor selection has attracted growingattention in materials
science. Recent methods often build on a one-shot descriptor
generation and selection scheme followed by modern statistical
variable selection approaches (O'Connor et al. 2018; Ouyang
et al. 2018; Liu et al. 2020). In particular, they first construct
descriptors by applying of erators iteratively M times on the
primary feature space X<’ = x = (xi, ... ,Xp) E Rnxp to
construct an ultra-high dimensional descriptor space x<M) =
om) (X) of O(p2m) descriptors, assuming binary operators are
used in each iteration. Then variants of generic statistical meth-
ods areadopted to select variables fromx<M). Alongthis line, the
method SISSO (Sure Independence Screening and Sparsifying
Operator) proposed by Ouyang et al. (2018) builds on Sure
Independence Screening, or SIS (Fan and Lv 2008), O'Connor
et al. (2018) uses LASSO (Tibshirani 1996), and Liu et al. (2020)
adopts Bayesian variable selection methods.

SISSO iswidely perceived as one of the mostpopular methods
for materials genome. It uses SIS to screen out P descriptors,
from which the single best descriptor is selected using an /lo-
penalized regression. If a total of & descriptors are desired,
this process will be iterated for & times yielding & sets of SIS-
selected descriptors, followed by an lo-penalized regression to
select the best k descriptors from all the SIS-selected descriptors.
Note that in each iteration, SIS is employed to screen out P
descriptors from the remaining descriptor set with an updated
response vector given by its least squares residuals projected
onto the space spanned by previously SIS-selected descriptors.
Users must define the composition complexity of the descriptors
through M, that is, the order of compositions of operators. In a
typical application of SISSO, the composition complexity M is
no greater than 3, the number of candidate descriptors in each
SIS iteration is less than 100, and the number of descriptors &



is no larger than 5 (Ouyang et al. 2018). Note that selecting five
descriptors with 100 SIS-selected descriptors in each iteration
amounts to fitting at most (° % ::: 2.6 x 10! different regres-
sions, which is computationally intensive.

A major drawback of these one-shot descriptor construction
procedures is the introduction of a highly correlated and ultra-

high dimensional descriptor space x<M). High correlation often
hampers the performance of a variable selection method, and

the ultra-high dimensional descriptor space with large p, as
common in modern applications, can make it computationally
prohibitive for such methods. In practice, these methods often

resort to ad hoc adaptation or sacrifice the complexity level of
candidate descriptors.

Another thread of work is the well-developed automatic
feature engineering in machine learning, aiming to gen-
erate complex features from given constructor functions
adaptively (Markovitch and Rosenstein 2002; Feurer et al.
2015; Khurana, Samulowitz, and Turaga 2018). However, the
overwhelming focus of this literature is on increasing the
predictive power of the primary features X. We instead focus on
discovering the underlying functional relationship between the
response and the predictors and revealing data-driven insights
into the underlying physics of materials design. In addition, the
sample size in materials genome is typically limited, hampering
the use of machine learning methods that rely on large training
data.

In statistics, transformations have been commonly used to
expand the predictor space, including polynomials, logarithmic,
power transformations, and the previously noted interactions.
The induced feature spaces from these elementary transforma-
tions are often overly simple to capture the intricate dynamics
of the response in materials genome, particularly compared
to high-order compositions of a larger operator set. There
has been a rich literature on nonparametric variable selection,
but descriptor selection relies on a linear model with feature
engineering that favorably points to interpretable insights for
domain experts as the functional forms of selected variables
are explicitly given and the feature space could be composed
usingdomain-relatedknowledge. The nonparametric module in
PAN only serves as a dimension reduction tool, and the desired
performance calls for new investigation under the context of
OIS. Overall, materials GWAS may play an analogous role that
GWAS have played in motivating new statistical methods and
concepts, andto the best of our knowledge, the present article is
the first statistical work on this topic.

2. The 01S Framework
2.1. Operator-Induced Structural Model

We begin with a standard ultra-high dimensional linear regres-
sion model

@

wheres ~Nn(0,c;’I) isa Gaussian noise vector,and the regres-
sion coefficients 73 aresparse. The dimension of predictors p* is
ultra-high, at the materials GWAS scale that typically exceeds
the maximum size of matrices allowed by a modern personal
computer, while the sample size n is on the order of tens. In

y=PBo+pix1+--- + Bprxpr + 8,
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this article, we assume that this seemingly ultra-dimensional
descriptor space obeys an operator-induced structure (OIS).
In particular, we assume that the predictors x/, ... , Xpe® in (2),
or descriptors, are generated by applying operators in O itera-

tively M times on a primary feature space X = (xi, ... , Xp)
E JRnxp,

(xL,... ,Xpe) = X(M)= o(M)(X)=0 o o(M-I)(X)
=0' 0+ 0 O'(X),

~—
Mtimes

3

where x<M) = 0<M)(X) denotes M-composition of O on X and
can be defined iteratively as above. The operator set O is user-
defined; for concreteness, we focus on the common example
given in (1), unless stated otherwise.

We adopt the following convention. Evaluation of opera-
tors on vectors is defined to be entry-wise, for example, Xi =
Xip.. ,x.)TandXI + X2 = x1.1+ X1,2,~. Xnl+ Xn2)T.
Throughout this article, we assume that all descriptors in x<M)
are uniquely defined in terms of their numerical values. For
instance, onlyone of the descriptors in {xi,x; x xii will be kept
in x<M). This can be easily achieved in practice by identifying
and removing perfectly correlated descriptors.

We hereafter refer to the linear regression model in (2) along
with the operator-induced structure (OIS) in (3) as the OIS
model To facilitate a precise OIS model definition using predic-
tors with nonzero coefficients, we define M-composition descrip-
tor as follows.

Definition 2.1 (M-composition descriptor). We defineJ<M)(X) to
be an M-composition descriptor if it is constructed via M com-
positions of operators on some primary features X: J<M)(X) =
o<M)(X) = OMOt<M-1)(X) = OMOOM-Ilo --.0 0, (X), where
om E O is the mth composition operator(s) for 1 ==, m =
M, andf(1)(X),... ,J<M-I)(X) are the necessary intermediate
descriptors for constructing the descriptord<M)(X).

Note that if the mth composition operator is a binary opera-
tor, there mayexist two (m- 1)th composition operators but we
suppress the notation in the definition above for simplicity. Fur-
thermore, ifan M-composition descriptorJ<M)(X) only depends
onasubsetofprimaryfeaturesXs,whereS S; [p] = {1,... ,p},
we also write it asJ<M)(Xs) and call it an (M,S)-descriptor.

Definition 2.2 (M,S)-composition OIS model). An (M,S)-OIS
model assumes
K
Y= f3o+ LfiMkl(Xsk)fh +s,
k=l

“)

where M = maxk=l, KMk denotesthe highest order of opera-
tor compositions, K denotes the number of additive descriptors,
Xsk is thesetof primaryfeatures used in the kthdescriptors, and
S = Uf=i Skis the set of all active primary feature indices.

Throughout the article, we assume the data follows an
(M,S)-OIS model in (4). We use Mo for the oracle highest
composition complexity and Sp for the oracle set of active
primary feature indices. Descriptors in the (M,S)-OIS model
and their intermediate descriptors are called active. We next use
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xs) O(p)
exp exp
exp(x;) exp(x2) x<)  O(p?

minus

X® : 0 (p%)

exp(x)) —exp(xa)
square

X® .0 (p23)

2
Figure 1. Atree diagram for generating {exp(x1) - exp(x2)} . The dimension of
descriptor space increases double exponentially with the composition complexity.

g{exp(xl ) — exp(x2)}?

atoy example to illustrate the introduced concepts in OIS and
the challenges posed by descriptor selection. Suppose that the
data-generating model is

y=Bo + BifM X)) + Bf M (X5, + &,

where M1 = 3M2 = 2,S1 = {1,2},S2 = {3,4},j1(Mt\X) =
{exp(x1l) - exp(x2)}2, and J}Mz \X) = sin(rrx3x4). Here
{exp(x1) - exp(x2)}2 is a 3-composition descriptor or a
(3,{1, 2})-descriptor, andsin(rr x3x4 isa 2-composition descrip-
tor or a (2,{3, 4})-descriptor. Both descriptors arise from
applying O iteratively three times on the primary features:
X<3 =0 o0 o0 O(X). The composition ofoperators resembles a
tree-like structure for generating descriptors; Figure 1 describes
the tree-like workflow for generating {exp(x1) - exp(xz)}z.
Tosee how the descriptor space dimension increases with the
number of iterations, let Cu and Cb denote the number of unary
and binary operators, respectively, and let pj denote the dimen-
sion of the jth descriptor space XIT1. Note that the dimension
of X<') is p1 = cup + CbPP - 1)/2, which is on the order
ofO(pz); the dimension of X<?) isP2 = cupl + CbPi(p! -
1)/2 ;i O(p2°2) = O(pz\ the dimension of x(3) is p3 =

of descriptor space will increase double exponentially with the
number of binary operator compositions, for example, with M
compositions of binary operators on X the resulting descriptor

space has a dimension of order O(pzM). Similarly, the double
exponential expansion applies to the number of binary opera-
tors Ch. Excluding redundant descriptors does not prevent this

doubleexponential expansion.Asshown in Section 3.4, building
X<?>from p = 59 primary features results in an astronomical
descriptor space containing over 5.5 x 107 = 0(59?% descrip-
tors evenafter removing redundant and nonphysical descriptors.

In addition, the number of active (intermediate) descriptors
will be nonincreasing with Mas shown in Figure 1: there are
four active descriptors exp(x1),exp(x2), X3, X4 in x(1), but only
two active descriptors exp(x1) - exp(x2) and x3x; inX<2>,and

two active descriptors {exp(Xi) - exp(Xi)}2 and sin(rrx3x4)
inX(3)_

2.2. PAN Descriptor Selection for 01S Model

We propose an iterative descriptor construction and selec-
tion procedure PAN for the OIS model, which generates
descriptors by iteratively applying operators and selecting
the potentially useful intermediate descriptors between each
iteration of descriptors synthesis. The iterative descriptor
selection procedure excludes irrelevant intermediate descriptors
from the descriptor generating step, achieving a progressive
variable selection and enabling variable selection based on
ab initio primary features. This reduces the dimension of the
subsequent descriptor space x<m) and mitigates collinearity
among the descriptors in comparison to the one-shot descriptor
construction approaches.

To describe the method in its most general form, we allow
different sets of operators Om S O for each iteration m =
1,...,M, leading to the descriptor space

OpmoOp_10---00; 0 O1(X). (5)

The framework ofour iterative descriptor selection procedure is
as follows.

PAN descriptor selection procedure:

1. Repeat the following until at least one descriptor exhibits a
stronglinear association with the response variable y (i = 0):

(a) Use a nonparametric variable selection procedure to per-
form descriptor selection on x<Oand obtain the selected
descriptors x(i)’;

(b) Apply the ith operator set O; on all of the previously
selected descriptors, Umx<m)', yielding a newdescriptor

space,x(i+l) =0;(LJImx<m)'), where O, can bedifferent
for each iteration i,

2. Once there exist descriptor(s) that exhibit a strong linear
association with response variable y, use a linear parametric
variable selection procedure to perform descriptor selection

on x<O, and obtain the selected descriptors, X* S X<I).

We keep all the selected descriptors in the main loop to
facilitate the creation of high-order complexity descriptors with
the help oflow-order complexity descriptors. For instance, con-
structingxf usingO defined in (1) requires us to keep x; E X<°>'
selected at the base iteration and X7 E x<l)' selected at the first
iteration.

To see how this iterative procedure helps reduce the dimen-
sion of descriptor space significantly, let s; = IX(i)'l be the
number ofdescriptorsselected in the ithiteration andp; = [X(i)l
be the dimension of the ith descriptor space. Suppose that the
number of selected descriptors is sparse ineach iteration, that is,
s; « p;. Assuming binary operators were used, the dimension
of the (i + D)th descriptor space in PAN is on the order of
O(sf) « o(pf), and this holds for all iteration i :::: 0. If we
further assumes; ;:::: O(p) for all i:::: 0, where p = IXI is the
number of primaryfeatures, then the dimension of the (it I)th
descriptor space for PAN is on the order of O(pz), compared
to O(p?i+ ) for the one-shot methods. Note these assumptions
are reasonable according to the discussion in Section 2.1. In the
simulation studyin Section 3.4with p = 10 primary features, we
observed thats; ;::::0(101) and p; ;::::0(102) for all iterations of



the PAN procedure. On the contrary, a one-shot method, such
as SISSO, generates a descriptor space containing 9.26 x 10°
descriptors in thesame setting.

The use of a nonparametric variable selection procedure in
Step 1(a) is necessary because the intermediate descriptors may
not have a strong linear association with the response variable.
Thus, a method that accounts for model misspecification, such
as a nonparametric method, is more suitable for preliminary
screening of the intermediate descriptors. In addition, a suit-
able nonparametric module for PAN needs to account for the
geometry embedded in OIS and the unconventional goal of
selecting operators along with variables; the next section dis-
cusses performance requirements for this step and introduces
an implementation of PAN, iBART, that is particularly suitable
for OIS. In Step 2, the oracle descriptors are linearly associated
with the response. Hence, we employ linear parametric variable
selection methods, such as LASSO (Tibshirani 1996), to reduce
false positives and select the final descriptors.

2.3. Choosing Nonparametric Module in PAN and iBART

In OIS, the ultimate goal is to recover or approximate the true
functional relationship between the response and the primary
features. This goal together with PAN entails new performance
requirements for the nonparametric module in PAN. To illus-
trate such a need, let us consider a simple OIS model
y=MX) +e=Vxi+x+e ©)
In traditional nonparametric variable selection problems, the
regression model only sees the primary features, X, and the
desired performance is successful identification of the active
index set, So = {l, 2}. The base iteration of PAN has a similar
goal as we would want theselected index setS to bea superset of
So. However, the intermediate descriptor space x<m) in the mth
iteration consists of nonlinear transformations of the selected
primary features Xg, and the active index set is no longer well-
defined.
Due to the iterative structure of PAN, a good nonparametric
selection method for PAN must be able to generate and identify

the m-composition descriptorsft )(X) at the mth iteration (i.e.,
all active intermediate descriptors). To this end, a suitable non-
parametric module should satisfy the following PAN criterion:

It selects all of them-composition descriptors that are
necessary for constructing the true M-composition descriptor,
forallO::: m ;i M iterations.

Taking model (6) as an example, failingto select eitherf o) = x1

or fio) = x2 in the base jiteration will preclude the generation of
f(D) = (x1 + x2) andj<?) =x 7 —&2in subsequent iterations.
The PAN criterion thus favors a "conservative" nonparametric
method, in which false positives during selection are allowed
but false negatives must not occur in any iteration. Here false
positives are defined within each intermediate descriptor space
x<m)_

The literature has provided a rich menu of nonparamet-
ric selection methods; however, the asymmetric effect of false
positives and false negatives on descriptor selection illustrated
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by the PAN criterion motivates our choice of tree-based non-
parametric approaches. To see this, suppose the true descriptor
is f(x1) = log(x1 and the design matrix O(X) consists of
I-composition transformations of the primary features X =
(X1... ,xp)- A typical nonparametric method aims to identify
the oracle primary predictors (xs in this case) that associate
with y through an unknown function f'(*), without considering
transformations of x; as possible candidate predictors. How-
ever, the goal in the presence of OIS is to identify the true
primary predictors (xi) and the correct operator composition
(log(-)). This goal, in the presence of many non-signal but
highly correlated unarytransformationsof xi, namely,JXi, Ix 1,
etc., is shown to be difficult for many nonparametric methods;
see supplementary material Section A.2.1 for detailed analyses.
Tree-based methods areinvariant to monotonic transformations
and thus tend to be robust to related transformations that are
often piecewise monotonic. Consequently, theymayselect unary
transformationsof x7inaddition to f/(x1) = log(xi)-such false
positives, although increasing the candidate search space, are
favorably compatible with the PAN criterion. We next provide
areview of BART (Chipman, George, and McCulloch 2010) and
describe BART-G.SE (Bleich et al. 2014)-the default nonpara-
metric module in the PAN framework.

BART isa Bayesian nonparametric ensemble tree method for
modeling y = f(X) + e, the unknown relationship between
a response vector y and a set of predictors xi, ... ,Xp- More
specifically, BART models the regression function /" bya sum of
regression trees

Y= Zg;(X1, e xp: 10,1, +8 e ~ Ny(0,0°1,).

i=l
Each binary regression tree g; consists of a tree structure 71
partitioning observations into B, terminal nodes, anda setofter-
minal parameters /1,; = {ii,... ,u;B;} attached to these nodes.
Observations within a given terminal node b are constrained to
have the same terminal parameter u, b- The prior distributions
for (Ti, /1,;)) constrain each tree to besmall so that each tree con-
tributes to approximatefin a small and distinctfashion. Readers
are referred to Chipman, George, and McCulloch (2010) for the
full details of BART and posterior sampling.

The primary usage of BART is prediction, and the predicted
values j, for y serve no purpose in variable selection. However,
a variable inclusion rule can be defined based on the variable
inclusion proportion q; of x;, which can be easilyestimated from
the posterior samples. To this end, we adopt the permutation-
based selection threshold based on the permutation null distri-
bution of ¢ =(qi, ... ,qp) proposed by Bleich et al. (2014).

Specifically, B permutations of the response vectorYi, ... ,)1
are generated, and a BART model is fitted for each of the per-
muted response vectors with the same predictors xi, ... ,Xp-
The variable inclusion proportions from the permuted BART
models ¢t ... ,qi are then used to create a permutation null
distribution for the non-permuted variable inclusion propor-
tion q. The predictor x, is selected if q; > m; + C" ¢ s,
where m; and s; are the mean and standard deviation of the
permuted variable inclusion proportion qf = (qts,... , qf,B),

isthe smallest global standard error multiplier (G.SE) that gives
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a simultaneous 1 - a coverage across the permutation null
distributions of ¢; for all predictors. We refer to BART with
the permutation-based selection procedure described above as
BART-G.SE.

Various BART-related methods have been recently devel-
oped (Linero 2018; Horiguchi, Pratola, and Santner 2021; Liu,
Rockova, and Wang 2021). They often incorporate sparsity-
inducing priors into BART and prove to be highly effective
in various tasks. However, it is unclear whether the excellent
performance of them developed in traditional settings carries
over to being compatible with the PAN criterion. Indeed, we
have found that methods aiming at optimally choosing non-
parametric variables in traditional settings may incur fewer false
positives but have a higher chance to miss the true descriptors in
intermediate iterations-such false negatives are devastating in
the context of PAN and OIS variable selection. The PAN crite-
rion provides a useful guide in choosing not only the regression
method but also the selection rule, for which we recommend
BART-G.SE. In our numerical experiments, we vary the non-
parametric module in PAN bycomparing several recent BART-
related methods and other nonparametric selection methods,
and find that the proposed iBART, PAN with BART-G.SE as
the nonparametric module, is particularly well suited for OIS
variableselection andtends to give the best overall performance;
see the supplementary material for numerical results and a
comprehensive discussion.

2.4. Practical Consideration and the Algorithm

The operators in O in (1) can be classified into the unary
operators Ou = {J,exp,log, j* J, 1.2 sin(rr-),cos(rr-)} and
the binary operators Ob = {+,-,x,/,1 - j}, each posing
different challenges to descriptor selection. The unary operators
Ou inducestrongcollinearityamong the engineered descriptors;
for instance, cor(xf, jxij) > 0.9 when x; =~ Nn(0,I) with
n = 200. The binary operators Ob increase the descriptor
space dimension double exponentially and generate complex
nonlinear descriptors. These two issues are compounded when
the two operator sets are used together. Therefore, we propose
to decouple the two operator sets and alternate them, leading to
two special cases of (5):

OMX) = --- 040 040 O 0 OLX), @)
Mtimes
O;[; (X)= :Ou00boOuoOb(X) = ot->00bh(X).
Mtimes
®
In addition to the binary operators identified earlier, we include
an additional binary operator, rr; : — —  _ defined by

1y (@, b) = a,which allows intermediate descriptors to bepassed
down unchanged. Note the two alternating descriptor spaces

O, (X) andO,'..,'(X) are not equivalent to the full descriptor
space O<M(>X) with thesame composition complexity M. How-
ever, one can show that O;., ")(X) and o0;., » (X) can recover
o<M>(X) with some Mu > M and Mb > M, respectively.

This is formally described in the theorem below and its proof
isavailable in supplementary material Section D.

Theorem2.1. LetX= (xi,... ,xp) E nxpbeaprimaryfeature
space and O be a set of operators such that it can be partitioned
into a unary operator set Ou and a binary operator set Ob.
Suppose that / E Ou and rr; E Ob. Then for any M E N, there

exists Mu M andMb M such that OtU>(X) 2 O<M(>X)
and otb)(X) 2 o<M>(X), respectively.

For instance, the 2-composition descriptor space0<?>(X)
generated using (3) contains descriptors such as /; = (xf +
xJ) andJi = (x;+ Xj)Z. These two descriptors can be

generated using O;.,;(X) in (8): f7 =
i (x;,Xj), square Orr, (Xj,X;)) E or;<X) andfi = squareo
add(x;,Xj) E 0;.,2;(X). Using(7),fi andfi can also begenerated
as f1 = add(square(x;)s,quare(xj)) E 0;1,2!(X) and
h = square0 add(I(x;),I(Xj)) E or!(X). As such, under
the M-composition OIS model in (4), one may consider using
O<M>,0t->(X), or Otb) (X) as long as they contain the true
(X) and

add(square o

descriptors. In what follows we will focus on O;.,

,.. y ,. (X) instead ofom) for their aforementioned advantages.

We adopt the descriptor generating strategies in (7) and (8)
for different scenarios. In particular, ifthe primaryfeatures X are
believed to generate the model through their intricate interac-
tionsthat will becaptured bybinary operators and compositions
of such binary operators, we recommend (8). This is often the
case in real-world applications, such as in Section 4, where the
domain scientists have chosen a large set of potentially useful
primary features, and unary transformations of these primary
features are less interpretable and thus less desired. If such prior
knowledge is not available and the relevant functional form of
primary features is unknown, as in Section 3, we would rec-
ommend (7) to first identify such functional forms byselecting
between unary descriptors.

The stopping criterion in Step 1 can be easily modified
depending on practical needs. For example, we can specify
the maximum composition complexity Mmax, like SISSO, or
implement a data-driven criterion that terminates Step 1 when
there exists a descriptor such that its absolute correlation with
response variable y exceeds a pre-specified threshold Pmax that
isclose to 1. We note that iBART allows larger Mmax than SISSO
as iBART does not rely on one-short feature engineering, and
the use of Pmax allows early termination.

It is also common in practice that one may only want to
select k descriptors for easy interpretation, such as k ::: 5. If
the cardinality of the selected descriptors X™ is greater than K,
then an £o-penalized regression may be used to choose the best
k descriptors.

We allow user-specified options for these considerations
when implementing iBART, summarized in Algorithm 1. The
following default settings will be used in our experiments. We
use the BART-G.SE thresholding variable selection procedure
implemented in the R package bartMachine to perform
nonparametric variable selection for Step 1(a) in PAN and use
LASSO implemented in the R package glmnet to perform
parametric variable selection for Step 2 in PAN. For BART-
G.SE, we set the number of trees to 20 that is recommended
by Bleich et al. (2014), the number of burn-in samples to



10,000, the number of posterior samples to 5000, the number
of permutations of the response to SO, and the rest of the
parameters to the default values. With these values, our Markov
chain Monte Carlo (MCMC) runs appear to have reached a
sufficient number of iterations in our experiments. We choose
the penalty term >.. in LASSO by minimizing the mean squared
error loss through a 10-fold cross-validation procedure and set
the other parameters to the default values. Unreported results
using real data indicate that other tuning methods to debias
LASSO yield similar performance. The algorithm terminates
if the composition complexity M reaches Mmax = 4 or the
maximum absolute correlation |P| reaches Pmax 0.95,
whichever occurs first. Setting Mmax to 4 appears sufficient for
the considered materials GWAS application as descriptors with
more complexity become challenging to interpret.

Algorithm 1: iBART

Input: Pmaxe (0, 1) = maximum absolute correlation
with the response variable;
Mmax = maximum composition complexity;
Lzero =whether to perform fa-penalized regression;
k = number of selected descriptors byfa-penalized
regression. Only required when Lzero == TRUE.
Output:.XZ2selected descriptors
Data: X: primary features; Ou:set of unary operators; Ob:
set of binary operators; y: response vector
M=0
P —maxxEX(M>cor(X,y)
while M Mmax orIPl  Pmax do
x<M)' +- BART-G.SE selected descriptors on x<M)
X<M+1>+ OM+1 (u;x<;>")
M+-M-+1
P +- maxxEx<M> cor(X,y)
end
X* +- LASSO selected descriptors on x<M)
if Lzero == TRUE and |X*| > k then
+- best k descriptors from fa-penalized regression
end
else

| XZ +-x+

end

3. Simulation
3.1. Outline

In Sections3.2 and 3.3wedemonstrate that the employed BART-
G.SE tendsto satisfythe PAN criterion whenselecting unaryand
binary operators, respectively, and evaluate its false positives.
Section 3.4 assesses iBART relative to several existing descriptor
selection methods in view of the PAN criterion and OIS vari-
able selection accuracy using a complex simulation setting. Sec-

tion 3.5 showcases the robustness of iBART in the initial input
dimension p. Section 3.6 examines the performance of iBART
when the operator set O can not generate the ground truth
model. We use Algorithm 1 and the default settings described
in Section 2.4 when implementing iBART, unless stated other-
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wise. Each simulation is replicated 100 times. We also compare
variants of iBART by varyingthe nonparametric module;see the
supplementary material for details.

3.2. Unary Operators

We consider all unary transformations of five primary features

X = (xi,...,x5), that is, the descriptor space is Ou(X) =

Ui:i{x;, x;-1, xf,.jxi, log(x;),exp(x;), 1xd, sin(Jtx;), cos(:,rx;) }.
For each unary operator uj E Ou, we generate the response
vector by

e ~ N, (0,1), €))

with sample size n = 200, yielding nine independent models in
total. We draw the primary features X independently from the
standard normal distribution if the domain of yj is IR, and the
Lognormal(2, 0.5) distribution ifthe domain is IR a-

The left plot in Figure 2 shows the number of true positives
(TP) of BART-G.SE. For each of the nine models in (9), the
true descriptor is selected 100/100 times. This suggests that
BART-G.SE is capable of identifying the true descriptor with
high probability when the descriptor space is populated with
unary operators Ou. Other nonparametric methods did not
select all TP 100/100 times for all ninescenarios, failing the PAN
criterion; see the supplementary material for further results and
discussion.

The left plot in Figure 2 shows the number of FP of BART-
G.SE for each simulation setting. Although BART-G.SE is capa-
ble of capturing the true descriptor with high probability, it
also selects some non-signal descriptors in some cases. The
number of FP is especially high when the true descriptor is Xi,
Ix11, exp(x1),log(x1), X I, or ,JXI.This isdue to high collinearity
among thesesixdescriptors. In particular, the empirical Pearson
correlation between log(x;) and F7 is over 0.99 under sim-
ulation setting (9) and thus some false positives are expected.
Selecting inactive descriptors in one iteration isless of a concern
in variable selection with OIS as theydo not constitute misspec-
ified models, and can be further screened out during Step 2 of
PAN.

y = 10uj(x)) + &,

3.3. Binary Operators

In this simulation study, we apply binary operators Ob
{+,-,x,/,1 - 1,7ti} on the five primary features X

(xi, ... ,x35). Thedescriptor space Ob(X) E IR?00xss contains all
binary transformations of all possible pairs of the five primary
features. For each binary operator bj E Ob, we generate the
response vector by

y = 10bj(x1,x2) + &, e ~ Nu(0,D),
with sample size n = 200, yielding a total of six indepen-
dent models. We generate the primary features X following

X1, ... ,X5ENI1(O,I).

Theright plot in Figure 2 shows the number of TP for each
of the six models in (lo). BART-G.SE is able to identify the true
binary descriptor 100/100 times in all sixsettings, similar to ear-
lier observations in Section 3.2. The right plot in Figure 2 shows
that BART-G.SE mayalsoselect some irrelevant descriptors but
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Figure2. Boxplots of TPandFPover100simulation replicatesunder (9) and(10).

considerably fewer than in Section 3.2. In particular, when the
truedescriptor is (x; -xi), BART-G.SEcorrectly selects (x;-x2)
butalso selects /X, -X/i100/100 times. Unlike in Section 3.2, the
inclusion of Ix, -x7 [ is not due to highcorrelation between Ix, -
x21and (x; - x2). In fact, their empirical Pearson correlation is
merely 0.07. We suspect that /X, - x21 was selected due to its

piecewise monotonicity in (x; -x2) that tendsto be invariant to
tree-based methods.Similarly, BART-G.SE selects both (x;-x2)

and/X, - xi I with high probability when the true descriptor is
Ix, - xi I- When the true descriptor is (x, + xi), x, X xi, xifx2,
or 111(X1, x2), the FP of BART-G.SE is nearly zero. This shows
that BART-G.SE is not too conservative when high collinearity
does not exist.

Our investigation using unary and binary descriptors sug-
gests that the permutation threshold ofBART-G.SE tends to sat-
isfy the PAN criterion without being too conservative, making
it a good candidate for PAN and OIS variable selection. We next
use a more complex simulation to assess iBART in view of the
PAN criterion and OISselection accuracy.

3.4. Complex Descriptors with High-Order Compositions

In this section, we compare iBART with existing approaches
under a complex model and demonstrate superior performance
of iBART. We use the following model

y=15{exp(x,) - exp(xi))i + 20sin(rrX3X4) + e,

e ~ Nn(0,a%), (11)

with » = 250, p = 10, and ¢ = 0.5. Here the number
of primary features P is set to a relatively small number since
competing one-shot methods cannot complete the simulation
when p.l 20 due to the ultra-high dimension of their descriptor

spaces. In Section 3.5, we demonstrate that iBART scales well

in p and gives a robust performance. We use the operator set
CJ defined in (1) with rrl, and the primary feature vectors x;
aredrawn independently from a uniform distribution, namely,
X1, ... ,Xpu'd Un(-1, 1). Section B of supplementary material
demonstrates the effect ofdependent primaryfeatureson iBART
and other methods using the same functional relationship in
(11).

iBART is implemented in R based on Algorithm 1 in Sec-
tion 2.4 using the default settings. We chose the descriptor
generating process (7) in Section 3 since the iid primary fea-
tures do not show strong collinearity. Two versions of iBART
are considered: iBART without and with lo-penalized regres-
sion, labeled as "iBART" and "iBART+lo", respectively. The /y-
penalization finds the best subset of k variables from the set of
selected variables using the Akaike irlformation criterion (AIC)
with K E {1, 2, 3, 4). Wecompare the performance of iBART and
iBART+/o with SISSO and LASSO.SISSO is implemented using
the Fortran 90 program published by Ouyang et al. (2018) on
GitHub with the following settings: the descriptor magnitude
allowed in the descriptor space is set to [I x 10-% 1 x 107
the size of the SIS-selected subspace is set to 20; the operator
composition complexity M is set to 3; the maximum number of
operators in a descriptor is set to 6; and the number of selected
descriptors £ E {1, 2, 3, 4) is tuned by AIC. The R package
glmnet isused to implement LASSO and the penalty parame-
ter.11.1s tunedvia 10-fold cross-validation to minimize the mean
squared error loss. Since the size 0fCJ(3)(X) exceeds the limit
of an R matrix, we give LASSO an advantage by reducing the
descriptor space to CJuo O o O (X) that aligns with the true data-
generating process. We also use the lo-penalized regression step
asin SISSO and iBART+/o for LASSO, leading to LASSO-+lo.

For each method, we calculate the number of TP selections,
FP selections, and false negative (FN) selections. We use the
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Figure 3. Left: boxplots of F1 scores over 100 simulations for different methods under Model (11). Right Boxplots of iBART generated and selected descriptors in each

iteration.

F, score as an overall metric to quantify the performance of
each method: F . 2 . % where Precision =
TPI1J'EP and Recall = [PZEN. The value F1= 1 means correct
identification of the true model without having any FP and FN.
In thissimulation, the two TPsare/(X) = { exp(xl)—exp(xz)}2
andfi(X) = sin(rrx3xa).

As shown in Figure 3A, both iBART-based methods achieve
very high F; scores, with a median F; of 0.8 and 1 for iBART
and iBART+£,, respectively. In particular, both iBART and
iBART+fo have 2 TPs in all simulations while incurring an
average FP 0f 0.93 and 0.3, respectively. This demonstrates that
iBART satisfies the PAN criterion in all iterations as it is able to
identify the 2 TPs 100/100 times in simulations. Furthermore,
iBARTH+E, gives a very low FP,scoring a perfect F; score 75/100
times. LASSO-based methods and SISSO have lower F; scores
than iBART and iBART+fo butfor different reasons. LASSO
selects 37.65 descriptors on average, and the 2 TPs are always
selected. This means that LASSO also enjoys the PAN criterion
but its F, score is hindered by the large number of FP. With
the help of the £5-penalized regression, LASSO+fo reduces the
average number of FP from 35.65 to 2 while maintaining 2 TPs
100/100 times, substantially increasing the F, score to 0.67, the
third-highest score but still considerably lower than iBART and
iBART+£,. SISSO, on the other hand, has only 1 TP but 3 FPs
in all simulations, which unfortunately does not satisfy the PAN
criterion. In particular, SISSO can identify sin(rrx3x4) 100/100
times but always selects a false signal, lexp(x) - exp(xyl, a
descriptor that has an absolute correlation over 0.9 with the
TP, {exp(x1) - exp(x2))2. In summary, both iBART-based and
LASSO-based methods satisfy the PAN criterion but LASSO-
based methods incur more FPs. SISSO, however, fails to identify
one of the two descriptors 100/100 times but selects a highly
correlated counterpart, indicating its relatively weakened ability
to distinguish the true descriptor when there are descriptors
highly correlated with the TP. Results not reported here show
that replacing BART-G.SE with LASSO in the PAN framework
missed TPs with high probability even at the base iteration,
indicating the importance of nonparametric variable selection
in PAN.

To gain insight into the scalability of iBART, Figure 3(B)
shows the boxplots of the number of iBART generated and

selected descriptors in each iteration. Throughout the 100
simulation replicates, iBART generates no more than 168 :::
2p? descriptors, which is significantly less than the number

of descriptors generated by SISSO (9.26 x 10% and LASSO
(1.2 x 10%. Such dimension reduction not only reduces runtime
and memory usage but also enables iBART to tackle data with

much larger p,as weshow in Sections 3.5 and 4.

3.5. Largep

In thissection, wedemonstrate that the performance of iBART is
robust to increase in input dimension p while one-shot descrip-
tor selection methods are not. Under Model (11) with p = 20,
SISSO with the same parameter settings in the precedingsection
generates more than3.8x10'" descriptors and failed to complete
one simulation within 24 hr on a server with 1.3TB of memory
and 40 CPUcoresavailable to SISSO. LASSO, on the other hand,
failed at p = 20 since the glmnet function in the R package
glmnet cannot handle a matrix of size 250 x (1.57 x 107).
The proposed method iBART instead scales well in the input
dimension p partly because of the efficient dimension reduction
via the PAN strategy. In particular, when p = 20, iBART tookan
average of 497 sec to finish, and its memory usage peaks out at
10.85 GB in 100 simulation replicates.

We implement iBART for p £ {10,20,50, 100,200} using
the same simulation settings in Section 3.4. Figure 4 shows that
iBART'sFi score is robust to the increase in p.In fact, benefiting
from the ab initio mechanism through the PAN strategy, the
performance of iBART would be identical for varying pas long
as it selects xi, X2, x3, X4 in the first iteration, which is often the
case based on Figure 4 at least under the current simulation
setting. We acknowledge that the stability of the F; scores across
different values of p may be attributed, in part, to the relatively
small noise standard deviation. In contrast, one-shot descriptor
selection methods suffer significantly from just a small increase
in the input dimension p since the descriptor space increases
double exponentially in p. One way for one-shot description
selection methods to circumvent the ultra-high dimension issue
isto reduce the maximum composition complexity Mmax- How-
ever, this undesirably rules out descriptors with the correct com-
position complexity. For example, the descriptor in (11)/,(x) =
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Figure 4. Boxplot of F1 scores for iBART under Model (11) with
pE (10,20,50,100,200}.

{exp(x1) - exp(xp}> requires at least three compositions of
operators and reducing Mmax t02 means thatJi(x) would never
be generated and hence would never be selected. Thus, in a
complexscenario, one-shot descriptor selection methodscannot
generate and select the complex descriptors unless p is small.
We considered a small p = 10 in the preceding section to
accommodate such limitation of one-shot methods.

3.6. Model Misspecification

In this section, we examine the behavior of iBART when the
operator set O is not sufficient to generate the data-generating
function. We generate data from the model y = xJ-7 + e with
e =7 Nn(O,I), n = 250, p = 10, use the same operator set(')

asinSection 3.4, and draw the primary features from a uniform

distribution, that is, x7, .. , xp Vn(0, 3). In this simulation,
iBART iterates once after screening the primary features. Since
iBART onlyselects x in the first iteration,100/100times, it does
not apply the binary operators in 0.

In contrast to the preceding sections, the computation of
true and false positives, as well as the F1 scores, is not feasible
here due to the model specification by design. To evaluate the
performance of our method, Figure 5(A) shows the frequency
of unique descriptors selected by iBART and the average
Pearson correlation between the selected descriptor and x:-7
in parentheses. Note that multiple descriptors might be selected
in one replication, and therefore the sum of frequencies exceeds
100. We can see that, although the true descriptor Xj-7is not in
the candidate descriptor space, iBART selects highly correlated
descriptors from the candidate space, including X/ for 98% of
the time and x1 for 87% of the time. Figure 5(B) shows that the
RMSEof the iBARTselected modelsdoes not deviate much from
the RMSE of the true model, indicating a similar explanatory
power. These observations suggest that when the employed
operator space is not sufficient to generate the ground truth,
iBART iscapable of selecting a model that closely resembles the
true model, at least in the considered simulation setting. This is
reassuring as in manyapplications ofOIS,such as the oneinSec-
tion 4, the goal is precisely to find an accurate but interpretable
model that well approximates complex real-world physical
systems.

4. Application to Single-Atom Catalysis

Weapply theproposed method to analyze a single-atom catalysis
dataset (O'Connor et al. 2018) in which the goal is to identify
physical descriptors that are associated with the binding energy
of metal-support pairs calculated by density functional theory
(DFf). Single-atom catalysts are popular in modern materials
science and chemistry as they offer high reactivity and selectiv-
ity while maximizing utilization of the expensive active metal
component (Yang et al. 2013; O'Connor et al. 2018; Wang, Li,
and Zhang 2018). However, single-atom catalysts suffer from a

lack ofstability caused by the tendency for single metal atoms to
agglomerate in a process called sintering. To prevent sintering in
single-atom catalysts, onecan tune thebindingstrength between

single metal atoms and oxide supports. While first principle
simulations can calculate the binding energy for given metal-
support pairs, modeling their association requires explicit sta-
tistical modeling and is key to aid the design of single-atom
catalysts that are robust against sintering. Feature engineering
leads to physical descriptors constructed using mathematical
operators and physical properties of the supported metal and
the support, and gains popularity in materials informatics as
the obtained descriptors are interpretable and provide insights
into the underlying physical relationship. The key challenge is
to select the most relevant physical properties among large-scale
candidate predictors that haveexplanatory and predictive power
to the binding energy; often the sample size is small as first
principle simulations are computationallyintensive.

The data comprise bindingenergy of # = 91 metal-support
pairs and p = 59 physical properties of these metal-support
pairs, in which the bindingenergy serves as the response y while
the 59 physical properties constitute the primary features X =
(x1,..., xs59. We use the operator set given in (1) but exclude
sin(n ¢) and cos(n -) because they are not physically meaningful
in this data application.

In this analysis, we compare the best k descriptors (k =
1, ..., 5) of iBART+fo (referred to as iBART for brevity),
SISSO, and the method proposed in O'Connor et al. (2018).
The method proposed in O'Connor et al. (2018) combines
LASSO with extensive domain knowledge; in particular, they
rule out a substantial proportion of less promising descriptors
using expert knowledge of single-atom catalysis. Such expert-
guided, tailored dimension reduction is not needed for SISSO
or iBART, but is necessary for LASSO-type methods because the
astronomical size 0f0<?)(X) in this application far exceeds the
maximum matrix size allowed in many modern programming
languages. We refer to O'Connor et al. (2018) as LASSO" to
distinguish it from LASSO+fo implemented in Section 3.4. To
enhance interpretability, we eliminate nonphysical descriptors,
such as volumn + speed, by automatically comparing the units
of the constructed descriptors. Results without this constraint
are reported in the supplementary material, showing that this
constraint does not alter our conclusions when comparing
methods but substantially improves the interpretability of the
identified model.

For iBART, wefollow thesettings described in Section 2.4 and
use the descriptor generating process (8). The SISSO parame-
ters are set as followed. The maximum number of descriptors
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rhombusesindicate the average out-of-sample RMSE.

allowed in a model is set to 5; the descriptor magnitude allowed
in the descriptor space isset to [1 x 10-8, I x 10%); the size of the
SIS-selected subspace is set to 40; the composition complexity M
is cap at 2 because0<3)(X) and higher complexity space exceed
the maximum number of elements allowed in a Fortran 90array.
The LASSO* procedure is implemented using the MATLAB
code published by O'Connor et al. (2018) with all parameters
left as default.

Each method's performance is assessed using out-of-sample
RMSE, runtime, and the number of generated descriptors. To
calculate out-of-sample RMSE, we randomly partition the n =
91 observations into a 90% training set (82 samples) and a 10%
testing set (9 samples) and repeat this process SO times. For
brevity, we herein refer to out-of-sample RMSE as RMSE.

From Figure 6, the smallest average RMSE is attained at k = 3
for iBART (0.41), k = 1 for LASSO* (0.471), and k = 2 for
SISSO (0.486), that is, iBART reduces the RMSE by 13% relative
to LASSO* and 16% relative to SISSO; also see the first row of
Table 1. iBART outperforms LASSO* and SISSO with smaller
average RMSE and reduced variability for k& 2. The larger
average RMSE of iBART at k£ = 1 may be partially due to its
smaller descriptor space as a result of its alternating descriptor

5 (leftto right in each plot). The blue numbers and the red

Table 1. Performance comparison of threemethods:out-of-sample RMSE, runtime,
and the number of generated descriptors, averaged over50 cross-validations.

iBART LASSO* SISSO
RMSE 0.41 0.471 0.486
Runtime 225 sec 5511sec x 20 6943 sec
Number of generated descriptors 627 33x 10° 55X 107

generation process, and our implementation details that give
advantages to LASSO*. Multiple descriptors are often needed to
approximate complex physical systems, and the predictive per-
formance ofiBART reassuringly improves with moredescriptors
in the model. On the contrary, the RMSE of LASSO* increases
with more descriptors in the model, indicating overfitting. For
all k, we observe iBART does not report large deviations from
the average performance, suggesting robustness to training sets
compared to LASSO* and SISSO.

In addition to the performance gain in RMSE, iBART
also leads to a substantial reduction in computing time and
memory usage. Table 1 shows that iBART leads to over 30-
fold (6943/225 = 30.86) speedup compared to SISSO, and
over 480-fold (5511 x 20/225 = 489) speedup compared
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Table 2. Selected linear modelsby iBART fork E {1,2,3,4, 5).

Table 3. Descriptions of the selected primary featuresby iBART.

k Selected descriptors Primary feature Physical meaning
‘ AHgyp—AHg o bulk ‘ ti.H,ub Heatof sublimation
vac ti.Htox bulk Oxidation energy of the bulk metal
2 M‘bu_"i)' Mﬂ‘_t,_?m{f.ﬂ.ﬂ ti.fv ce Oxygen vacancy energy
Nt/ NG vac EA’ Electron affinity of support
3 EAS . AHgox bulle AHg b —AH oy bulk " i Ii,)g\: | all.. Numb(larof valence electrons in metaladatom .
vac val . (N'b Ik Coordination number of the surface metal atomin the

1/3ym  (y1/3ym. e
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vac

val
1/3ym AH, EX-(AHgp—AHeoxbuk) (1'3)1E] | AHgp—AH
5 (U fox bulk sub o bulk 4 sub f.ox bulk
F " Bhec vt/ N LG vac

to LASSO#*, tested on an Intel Xeon Gold 6230 CPU @ 2.10
GHz using either 1 or 20 CPU cores. We use the published
code by authors for competing methods, and the runtime
reported here does not isolate the effect of various programming
languages (R for iBART, MATLAB for LASSO¥*, and Fortran 90
for SISSO). We did not obtain an accurate single-core runtime
of LASSO* because of its poor scalability, and instead multiplied
its 20-core runtime by 20 for comparison (i.e., 5511 x 20 x
50/3600 = 1530 hr); the exact speedup of iBART compared to
the single-core runtime of LASSO* mayvary due to the reduced
communication cost among multiple cores and other factors.
We remark that the LASSO* method implemented here is given
an advantage with an additional dimension reduction step,
and an exploration of higher complexity descriptor space as in
iBART is computationally prohibitive for LASSO*. The excellent
scalability of iBART transforms into memory efficiency as the
descriptor space in iBART is orders of magnitude smaller than
that of competing methods. Table 1 shows that iBART generates
a descriptor space of size 627 < O(p?) in the last iteration on
average. Thanks to this significantly smaller descriptor space,
we were able to run iBART on a laptop with only 16GB of
memory; in contrast, LASSO* and SISSO failed at the descriptor
generation stepowing to the enormous descriptor space theytry
to generate, and require server-grade computing facilities.
Table 2 reports the selected descriptors by iBART with var-

ious k using the full dataset, and Table 3 reports the phys-
ical meanings of the selected primary features. We can see
that some descriptors are recurrent in various models, such

bulk phase
Discontinuity in electron density of metal adatom
Chemical potential of the electrons in support
Fourth ionizationenergy of support withthebulk metal in
the 4+oxidation state

as IM&MI_J " This reassuringly suggests the stability of

,',.Evac
the proposed descriptor selection method across k. Readers are
referred to Liu et al. (2022) for in depth analysis and physical
interpretation of these selected descriptors from the perspective
of catalyst design.

Figure 7 demonstrates a clear advantage of the OIS model
over the non-OIS model. The OIS model is the iBART model
with k = 3, the optimum model suggested by RMSE. The non-
OIS model is a simple least squares model with X as the design
matrixand no feature engineeringstep. For ease of comparison,
the non-OIS model also has k£ = 3 predictors determined by
best subset selection.The OIS modelyieldsan R? 0f0.9534, indi-
cating high explanatory power. In contrast, the non-OIS model
gives an R? = 0.7945 and shows poor fitting performance as the
scatterplot deviates from the diagonal line y = x considerably.
Both the OIS and the non-OIS models have analytical forms,
but the OIS model gains more explanatory power and gives an
insightful description of the response through nonlinearity of
its predictors. In particular, the non-OIS model is .ynon-ols =
-4.7- 0.4 X t.Hf,ox T 0.3 X Nlal + 1.0 X t..Evac, while the OIS
model is

Yms = -0.011+0.4 x (EA5- t:.Hf,ox,bulk)

f.Hsub- fiHfox bulL
0.6 X| l:.Evac
S 196 x - TTB
; I - f..Evac



This O1S model pinpoints targeted descriptors to guide further
investigation into the underlying physical discovery.

5. Discussion

In this article, we study variable selection in the presence of
feature engineering that is widely applicable in many scientific
fields to provide interpretable models. Unlike in classical vari-
able selection, candidate predictors are engineered from pri-
mary features and composite operators. While this problem has
become increasingly important in science, such as the emerging
field of materials informatics, the induced new geometry has
not been studied in the statistical literature. We propose a new
strategy "parametrics assisted by nonparametrics': or PAN, to
efficiently explore the descriptor space and achieve nonparamet-
ric dimension reduction for linear models. Using BART-G.SE as
the nonparametric module, the proposed method iBART itera-
tively constructs and selects complex descriptors. Compared to
one-shot descriptor construction approaches, iBART does not
operate on an ultra-high dimensional descriptor space and thus
substantially mitigates the "curse of dimensionality" and high
correlations among descriptors. We introduce the O1S frame-
work, define a PAN criterion, and assess iBART through the lens
of this criterion. This sets a foundation for future research in
interpretable model selection with feature engineering.

Other than the methodological contributions, we use exten-
sive experiments to demonstrate appealing empirical features of
iBART that may be crucial for practitioners. iBART automates
the feature generating step; one-shot methods such as SISSO
often require user intervention as otherwise they are not scal-
able to handle the overwhelminglylarge descriptor space-this
descriptor space increases double exponentially in the number
of primary features and binary operators as a result of compo-
sitions. iBART has excellent scalability and leads to robust per-
formance when the dimension of primary features increases to
alevel that renders existing methods computationally infeasible.
Compared to SISSO, which is widely perceived as state-of-the-
art in the field of materials genomes, our data application shows
that iBART reduces the out-of-sample RMSE by 16% with an
over 30-fold speedup and a fraction of memory demand. Over-
all, the proposed method accomplishes traditionally "server-
required" tasks using a regular laptop or desktop with improved
accuracy. Beyond materials genomes illustrated in Section 4,
iBART can be applied to a vast domain where interpretable
modeling is of interest.

There are interesting next directions building on our iBART
approach. First, O1S provides a useful perspective for structured
variable selection by introducing operators and compositions.
Certain operator sets may be particularly useful depending on
the application; for example, the composite multiply operator
leads to high-order interactions. It is interesting to examine the
performance of iBART with a diverse choice of operators. Also,
we have focused on finite sample performance when assessing
selection accuracy through simulations partly in view of the
limited sample size typically available in the motivating exam-
ple. It is nevertheless interesting to theoretically investigate the
necessary conditions for the PAN criterion to hold for selected
nonparametric variable selection methods such as BART when
the sample size diverges.
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Supplementary Materials

Code and data for replicating the study resultsare available at Attps.//github.
com/xylimeng/OIS. An R package that implements iBART is available at
https:/ Igithub.com/mattshengliBART. The supplementary materials include
additional simulations and proof. Supplementary A contains a detailed
comparison of variants of iBART by varying the nonparametric module.
Supplementary B contains additional simulation results using correlated
primaryfeatures.Supplementary C presents additional real data application
results without enforcing unit consistency. Supplementary D contains the
proof of Theorem 2.1.
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