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Bayesian Nonparametric Generative Modeling
of Large Multivariate Non-Gaussian Spatial
Fields

Paul F. V. WIEMANN and Matthias KATZFUSS

Multivariate spatial fields are of interest in many applications, including climate model
emulation. Not only can the marginal spatial fields be subject to nonstationarity, but the
dependence structure among the marginal fields and between the fields might also differ
substantially. Extending a recently proposed Bayesian approach to describe the distribu-
tion of a nonstationary univariate spatial field using a triangular transport map, we cast
the inference problem for a multivariate spatial field for a small number of replicates
into a series of independent Gaussian process (GP) regression tasks with Gaussian errors.
Due to the potential nonlinearity in the conditional means, the joint distribution modeled
can be non-Gaussian. The resulting nonparametric Bayesian methodology scales well to
high-dimensional spatial fields. It is especially useful when only a few training samples
are available, because it employs regularization priors and quantifies uncertainty. Infer-
ence is conducted in an empirical Bayes setting by a highly scalable stochastic gradient
approach. The implementation benefits from mini-batching and could be accelerated
with parallel computing. We illustrate the extended transport-map model by studying
hydrological variables from non-Gaussian climate-model output.

Key Words: Climate-model emulation; Gaussian process; Generative modeling; Mul-
tivariate spatial field; Non-stationarity.

1. INTRODUCTION

Multivariate spatial fields play a significant role in various scientific disciplines, including
environmental modeling and climate science, where multiple spatially referenced variables
are observed. To highlight the need for statistical models to effectively capture the intri-
cate relationships among multiple variables in spatial fields, consider measures for apparent
temperature. The heat index, for instance, relies on temperature and humidity to assess the
apparent temperature. More comprehensive measures of apparent temperature, such as the
wet-bulb globe temperature, which incorporates the additional factors of wind speed and

P. F. V. Wiemann - M. Katzfuss (B<) Department of Statistics, Texas A & M University, College Station, TX,
USA (E-mail: katzfuss @ gmail.com).

© 2023 International Biometric Society

Journal of Agricultural, Biological, and Environmental Statistics, Volume 28, Number 4, Pages 597-617
https://doi.org/10.1007/s13253-023-00580-z

597


mailto:katzfuss@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s13253-023-00580-z&domain=pdf

598 P. F. V. WIEMANN, M. KATZFUSS

radiation, have been proposed to better assess the stress of exposure to high temperatures
on the human body. Consequently, in the context of statistical climate-model emulators,
capturing the inter-variable dependence is crucial for reliable predictions, conditional pre-
dictions, and accurate uncertainty quantification. Accurately inferring the joint distribution
and understanding the conditional relationships among these variables is challenging, espe-
cially when dealing with complex dependencies and non-Gaussian characteristics.

Most existing methods for univariate or multivariate spatial analysis were developed for
inference based on a single training sample and assume Gaussian processes (GPs) with
simple parametric covariance functions (e.g., Cressie 1993; Banerjee et al. 2004). Exten-
sions to nonparametric covariances (e.g., Huang et al. 2011; Choi et al. 2013; Porcu et al.
2021) or multivariate fields (e.g., Genton and Kleiber 2015) typically still rely on implicit
or explicit assumptions of Gaussianity. For emulation of univariate spatial climate-model
output, one can combine locally fit anisotropic Matérn covariances into a global Gaussian
model (Nychka et al. 2018; Wiens et al. 2020). Generative machine-learning approaches
(e.g., Kobyzev et al. 2020; Goodfellow et al. 2016; Kovachki et al. 2020) often require many
training samples and may be sensitive to tuning-parameter and network-architecture choices
(e.g., Arjovsky and Bottou 2017; Hestness et al. 2017; Mescheder et al. 2018).

Spatial-temporal dependencies of multivariate global fields were captured by Jun (2011).
Nonstationarities in latitude are supported by Castruccio and Stein (2013) for the univariate
field describing annually averaged surface temperature. Edwards et al. (2019) extend this
method to multivariate fields relying on a parametric approach and assuming a Gaussian dis-
tribution. Relying on a stationary assumption while allowing for arbitrary missingness pat-
terns, Guinness (2022) estimates the spectral form of gridded multivariate spatio-temporal
data. In contrast to the method we propose, these multivariate models required all variables
to be observed at the same spatial locations.

Triangular transport maps (e.g., Marzouk et al. 2016) can be used to characterize con-
tinuous multivariate distributions. A transport map transforms the target distribution into a
reference distribution, such as the standard Gaussian. Non-Gaussian target distributions can
be obtained by introducing nonlinearities into the map. With an invertible transport map, one
can sample from the target distribution and its conditionals or convert non-Gaussian data
to the reference space, where linear regression or interpolation can be applied. Transport
maps are often estimated from training data by iteratively expanding a finite-dimensional
parameterization of the transport map (e.g., El Moselhy and Marzouk 2012; Bigoni et al.
2016; Marzouk et al. 2016; Parno et al. 2016).

Katzfuss and Schifer (2023) instead proposed a Bayesian nonparametric approach, in
which the components of the transport map are modeled as GPs. This results in closed-
form inference that quantifies uncertainty and avoids under- and over-fitting even when
the number of training samples is small. For target distributions corresponding to spatial
fields, Katzfuss and Schifer (2023) proposed specific priors that exploit the screening effect
via suitable conditional-independence assumptions that guarantee computational scalability
for very large datasets. The resulting sparse nonlinear transport maps can be seen as a
nonparametric and non-Gaussian generalization of Vecchia approximations (e.g., Vecchia
1988; Stein et al. 2004; Datta et al. 2016; Katzfuss and Guinness 2021; Schifer et al. 2021a),
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which implicitly utilize linear transport map given by a sparse inverse Cholesky factor. Kidd
and Katzfuss (2022) proposed a Bayesian nonparametric inference on the Cholesky factor.

Our contribution is a novel extension of the scalable Bayesian transport map (BTM)
approach developed by Katzfuss and Schifer (2023), tailored explicitly for learning the dis-
tribution of multivariate spatial fields from a few replicates. The essential contribution lies in
the introduction of an augmented input space that incorporates both the spatial locations and
latent locations referencing the component from the multivariate response (see Apanasovich
and Genton 2010, for a similar concept used with a stationary parametric covariance func-
tion). By leveraging the augmented input space, we expand the scope of BTM to encompass
multivariate spatial fields without fundamentally altering the core principles and estimation
algorithms. Consequently, the extension benefits from the good approximation properties,
making the method scale well to very large spatial data sets while being trainable from a
small number of replicates.

The remainder of the paper is organized as follows. In Sect.2, we provide an overview
of the methodology, including a review of Bayesian transport maps, the proposed extension
estimation procedures, and computational considerations. Section3.1 presents numerical
comparisons in a simulation study. In Sect.3.2, we discuss the results of an application
to climate-model output. Finally, we conclude in Sect.4, summarizing the contributions,
discussing future directions, and emphasizing the importance of our findings. An imple-
mentation of the method described in this manuscript can be found on GitHub (https://
github.com/katzfuss-group/batram).

2. METHODOLOGY

Consider a P-variate spatial field, where the locations at which the observations are
available might differ among the marginal fields. Let y(p, s) denote the random variable
associated with the p-th marginal field at location s € S, where S is the spatial domain

and p=1,..., P. Moreover, let y,, = (y(p, Sﬁp)), . Ly(p, sgf;))T be the random vector

associated with the p-th spatial field observed at locations sgp ), ...,sg\l,’p) € §S. Finally,

y = yf, ceey y%)T combines the marginal fields by concatenating y;, ..., yp.

We would like to infer the distribution of y from R independent replicates denoted as
Y =y, ..., y® drawn from the same distribution as y. The scalable Bayesian transport
map method, proposed by Katzfuss and Schifer (2023), provides an approach to infer the
distribution of a univariate field. The method focuses on modeling the dependence structure
using a nonparametric approach assuming y to be a field with zero expectation. In this
section, we review the existing methodology and propose an extension to multivariate fields.

2.1. REVIEW OF THE SCALABLE BAYESIAN TRANSPORT MAP

Throughout this subsection, we assume P = 1 and drop the corresponding index for
simplicity. A transport map 7 : RY — R" is a map that characterizes the distribution
of y by providing a transformation of y to a simple reference distribution, e.g., 7 (y) ~
N (0, Iy). Without loss of generality, the map can have a lower triangular form (Rosenblatt
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1952; Carlier et al. 2009) such that

Ti(y)

T(y1, y2)
T(y) = )

TN, -5 YN)

with 7, being strictly monotone in the n-th argument. Katzfuss and Schéfer (2023) model
L) = On = faWr—))dy ', where y;.; = (yiv...,y)" andd = (..., dn)",
and f = (fy,..., fy)T are random vectors. This facilitates the factorization of the joint
distribution of y as

N N
P =pOD [ pOulyis - yas1) = H/N(yufn(yl;nq),d%)p(fn,dn)ddndfn, (1)
n=1

n=2

to which we refer as the integrated likelihood.

2.1.1. Priors

An independent Gaussian-process inverse-Gamma prior is placed on each pair ( f;, d,%)
forn=1,...,N:

d,% ~ZG(an, Bn), withe, > 1, B, >0
faldy ~ GP(0, d2Ky) with covariance function K,.

The priors’ parameters, including parameters determining K, here referred to as k,,
¥ = {oy,...,an,B1,-..,BN,K1, ..., kn} may depend on a hyperparameter vector 6.
In the spatial case described by Katzfuss and Schifer (2023) as well as in our multivariate
extension, ¥ deterministically depends on §. Moreover, the dimensionality of 6 is much
smaller than that of ¥, as the number of hyperparameters does not increase with N.

Given the substantial number of random variables involved, it becomes imperative to
select the prior parameters judiciously. These priors are formulated based on the principles
of shrinkage and theoretical considerations pertinent to Gaussian processes with specific
covariance functions.

To provide more clarity, we introduce some additional notations. We denote o(n) as a
sequence that orders the values preceding y, by increasing the distance of their associated
locations to s,. Formally, o(n) is the sequence such that for | <i < j < n, it holds that
Isn —Som) | < lISn —So@m); . Additionally, we define £, as the minimum distance from s, to
any of its preceding neighbors, specifically as £, = min;e1,.. n—1 ISy —Sill = ISy —So@m), Il

Based on the reasoning of Schifer et al. (2021b), Katzfuss and Schifer (2023) observe
a roughly power-functional decay of the conditional variance Var[y,|f, y;.,] = d,%
with respect to the distance to the nearest neighbor ¢,. The prior on d,% captures
this relationship by incorporating hyperparameter values «, and S, derived from the
condition that the prior expectation and prior standard deviation of d,% should satisfy
E[d?] = exp(® + exp(6¢)log(¢,)) and SD[d?] = gE[d?] with constant g > O,
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respectively. A relatively weak prior is constructed by setting g = 4. The number
of hyperparameters in the priors of d,f that need to be estimated reduces from 2N to
2.

The inference of f,, becomes feasible through the application of two key principles.
Firstly, as the distance to the nearest neighbor, denoted as ¢,,, decreases, the prior exerts
a stronger tendency to push f, toward linearity. Secondly, drawing motivation from the
“screening effect” (Stein 2011) and the work by Schifer et al. (2021b), the inputs to f,
are regularized such that the relevance of each input diminishes exponentially according to
its position in the ordered input sequence, namely, ¥,y = (Yo(u);» - - - » Yo(n)n_ ). These
principles lead to the covariance function

Kn (y()(n) 5 _Y;,(n))

T
\/(yo(n) - y;(n)) Qn (yo(n) - y:)(n))
14

= Ed2D) " | ¥l Qa0

Here, 0, = diag;(exp(—jexp(67))) encodes the decreasing relevance of more distant
inputs, p represents the Matérn correlation function with three-halves smoothness, and
y = exp(6") serves as a range parameter. The parameter o, governs the nonlinearity of
fn and, a priori, decays in a manner similar to E(d,%), specifically as 0,12 = exp(6f +

exp(65)log(£,)). The hyperparameters that determine the values of ¥ are encompassed
within the hyperparameter vector § = (69, 67, Gf , 951 , 07,67 )T.

2.1.2. Vecchia Approximation and Hyperparameter Estimation

To enable inference for small training sizes R and to ensure scalability to large
spatial fields N, f, is assumed to depend only on a conditioning set of restricted
size. Concretely, f,(yi.,—1) is replaced by fu(yc@)), where c(n) < {1,...,n — 1}
with [¢(n)| = min(m,n — 1) and y, is the subvector of y;,,_; with the indices
found in c(n). The good approximation properties of the reduced conditioning set are
achieved by ordering the vector y according to the maximum-minimum (maxmin) order-
ing and then selecting the nearest neighbors for the reduced conditioning set c¢(n). For
a comprehensive discussion of different orderings, refer to Guinness (2018). In the
case of the scalable Bayesian transport map, the computational complexity to deter-
mine the n-th element of the posterior map reduces from OR® + nR? to O(R? +
mR?).

The size of the conditioning set is driven by the relevance decay incorporated into the
prior for f,. This decay follows an exponential pattern based on the position within the
conditioning set. Consequently, we limit the conditioning set size such that the condition-
ing set only comprises neighbors whose contributions are still considered relevant, e.g.,
m = max{j > 1 : exp(—jexp(69)) > €}. In our analysis, we set ¢ = 0.01 and estimate
the value of 69. Thus, the size of the conditioning set is automatically determined.

Katzfuss and Schifer (2023) suggest employing an empirical Bayes (EB) approach for
inference. Due to conjugacy, the integrated likelihood (with f and d integrated out) in
Eq. (1) is available in closed form and can be maximized using numerical methods, leading
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toh = argmax, p(Y[0). For the spatial case, the authors discuss details that motivate the
prior choice, the relationship between 6 and ¥, as well as closed-form expressions for the
integrated likelihood and predictive posterior distribution of y|Y, 6.

2.2. EXTENSION TO MULTIVARIATE SPATIAL FIELDS

As in the univariate case, we aim to estimate the joint distribution of y, allowing for non-
Gaussian dependence. We propose employing the BTM approach in a higher-dimensional
input space S. We construct the new input space by combining the spatial domain S with a
latent process space S = R”~! in which the marginal spatial fields are positioned relative to
each other. These process positions § » € S ,p=1,..., P, serve to position the univariate
spatial fields relative to one another. In the latent process space, smaller distances between
§p and § , indicate stronger associations between fields y pandy,.

‘We combine the process space with the spatial domain, resulting in the augmented input
space S = 8 x 8. Now, each element vy, of y is associated with a location in the augmented
input space, represented by §,, € S. Figure 1 provides a visual representation of this concept
using a toy example consisting of a two-variate field on a one-dimensional spatial domain.
The figure displays the spatial domain along the x-axis and the process space along the
y-axis. Each point in the plot represents a location in the augmented input space, combining
the spatial domain and the process space. The top row of the figure depicts less-correlated
processes with a greater distance between them, while the lower row illustrates strongly
dependent processes with a smaller distance. In the figure, two situations for the position in
the ordering are considered, one early (n = 7) and one late (n = 23) in the ordering. The
locations are ordered according to maxmin ordering and the reduced conditioning sets are
indicated by the red circles, showcasing how reduced conditioning sets early in the ordering
consist of observations from both processes while later in the ordering observations from
the other process enter the conditioning sets only if the processes are close. The latter part
is explained with more detail below.

2.2.1. Vecchia Approximation in the Augmented Input Space

The transport map formulation casts the problem of inferring the distribution of y into
the task of solving N independent regression problems of the form

Yal fas dns Yime1 ~ N (s (Piop_1), d2) 2)
faldn, Ky ~ GP(0,d>K ) 3)
d2|a, By ~ TG (n, Bn).- 4)

As described above, the estimation is computationally infeasible for larger dataset sets.
Similar to Katzfuss and Schifer (2023), we address the problem by conditioning y, only
on the sub-vector Yem)s c(n) < {1,...,n — 1} of yy.,_, rendering y, independent of
Y{1,...n—1\c(n) given Yen) Jn, and d,.

Our method uses the Euclidean distance within the augmented input space for computing
the maxmin ordering and the conditioning sets. Following the maxmin ordering, we define
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Figure 1. Stylized illustration of the augmented input space for two one-dimensional spatial fields (P = 2 and
dim(S) = 1). The top row corresponds to weakly associated fields, while the bottom row represents strongly
associated fields. The dots in the figure represent locations within the augmented input space. The colors of the dot
correspond to the position relative to n in the maxmin ordering. The n-th ordered location is colored red, while the
locations previously ordered are colored blue and the locations subsequent in the ordering are colored gray. Here,
the situation for n equals 7 (left column) and n equals 23 (right column) are considered. The circles in the figure
depict the radius of the largest distance from the n-th location to locations included in the reduced conditioning set
c(n) of size m = 3. The conditioning sets are constructed using the three nearest neighbors. It is important to note
that only observations preceding the n-th location in the maxmin ordering, these are the blue colored dots, can be
included in the conditioning set. Consequently, blue dots within the circle form the conditioning set for the red
dot. Analyzing the illustration, we can observe that the conditioning set comprises observations from both fields
in the early stages of the ordering. However, as the index progresses in the ordering, the conditioning set primarily
includes spatial neighbors from the same field. This effect is more pronounced for weakly associated fields.

the n-th index in the sequence €2 that orders y such that it maximizes the minimum distance
to all previously ordered locations. In mathematical terms,

Q, = arg max; o 18085l
n g ie{l,...N\Q1.p-1 jE€Q1n-1 l !

Notably, the first index in €2 can be selected arbitrarily, and in our implementation, we opt
for the most central point as the initial choice. This ordering concept exhibits parallels with
the space-filling maxmin-distance design (Johnson et al. 1990; Pronzato and Miiller 2012),
although it operates within the spatial constraints of available locations. Furthermore, it
applies the maxmin criterion sequentially in each step, as opposed to global optimization.
We view this ordering as space-filling on different resolutions, initially filling the space on
a coarse scale and subsequently decreasing the distance to the nearest location.

Following the literature, we define reduced conditioning sets c(n) as the min(n — 1, m)
nearest (with respect to Euclidean distance) previously ordered neighbors. More precisely,
the i-th element is given as c(n); = argminjc(; 1y ey, IS — 8. This choice is
motivated by the so-called screening effect (Stein 2011), which states that for many popular
covariance functions, such as the Matérn covariance function, random variables in a spatial
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field are (almost) independent of distant random variables conditioned on the values in-
between.

In a stylized example shown in Fig. 1, we demonstrate this approach. Consider two rel-
atively smooth spatial fields with a weak association between them. In this scenario, the
distance to the nearest spatial neighbor is smaller than the distance to the next process.
As we employ the maxmin ordering, locations chosen almost alternate between processes
early in the ordering. Consequently, the first conditioning sets are likely to contain informa-
tion from both processes. However, as the ordering progresses, the conditioning sets will
predominantly include information about the spatial neighbors. On the other hand, when
dealing with fields that exhibit a strong association, the conditioning sets will encompass a
larger number of values from the other process even later in the ordering.

Using this Vecchia-type approximation introduces dependence of y’s modeled distribu-
tion on its order, and the choice of the conditioning sets c(,). The combination of employing
the maxmin ordering and selecting nearest neighbors for the conditioning set has been
widely recognized in the literature as an effective approach (Datta et al. 2016; Heaton et al.
2019; Huang et al. 2021; Katzfuss and Guinness 2021).

2.2.2. Distance Metric

Besides their direct involvement in the prior construction, the input locations, or, more
strictly speaking, the distances, also determine the ordering and are used to find the nearest
neighbors. Both are essential to the quality of the Vecchia approximations. The involvement
of distances in the posterior density allows gradient computations for the distances and,
consequently, the process positions, thus, enabling a gradient-based update of the process
positions.

Conversely, choosing an adequate distance metric is crucial for the model’s quality. Using
the Euclidean distance may be a natural choice when applied to spatial locations. In other
scenarios, including the multivariate case discussed in this article, the Euclidean distance is
not necessarily meaningful, and other distance measures can be used. For example, Kang and
Katzfuss (2023) explore a correlation-based distance metric for GP regression. In contrast,
we propose employing the Euclidean distance in the augmented input space. We argue that
the Euclidean distance is meaningful in the higher-dimensional augmented input space since
the distance between each input pair 5, § v is composed of both the distance between the
spatial locations and the distance between the process locations. By appropriately scaling
the latent process space, the distances between the processes can be interpreted similarly to
distances in the spatial domain.

2.2.3. Parameterization of the Process Positions

We aim to include the process positions in the hyperparameter vector . However, the
model depends only on the relative process positions, because the model depends on the
input locations only through the distances. For any two indices n and n’ within the range
of 1, ..., N, the squared Euclidean distance between the augmented input locations §,, and
§, can be decomposed as [|§, — 5,12 = lIsp — s lI> + 150 — 5112
the spatial location and §,, represents the process position associated with y,,; analogous for

. Here, s,, represents
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symbols with index n’. As the model depends on the process positions only through their
distances, we can fix rotation and the first location. For this purpose, we define §; = 0 and
decrease the degrees of freedom for each subsequent process position from P — 1 to 1 by
one at a time. Jointly, the process positions S are parameterized as

T
5]

( o )

. = , (5)
: R

a) e

P

¢
I

where the columns of @ form an orthonormal basis of R ~! and R is an upper triangular
matrix with positive entries on the diagonal. Only the P(P — 1)/2 nonzero entries of R are
included as hyperparameters in the model.

2.3. ESTIMATION

The estimation procedure consists of two stages. In the first stage, we fit a parametric
and separable GP model to obtain initial values for the process positions S. These initial
values serve as a starting point for the subsequent estimation of the transport map hyperpa-
rameters. For the estimation of the hyperparameters, we explore three different approaches,
which are detailed below. Finally, using the estimated hyperparameters, the transport map
can be employed as a generative model to simulate new samples that capture the spatial
dependencies as learned from the data. The transport map can also be used for uncertainty
quantification. The multivariate extension allows us to study the conditional distribution of
the spatial fields corresponding to one or more variables given the observed spatial fields of
other variables.

2.3.1. Obtaining the Initial Process Positions

To determine the initial process positions, specifically §; € S, referring to the second
part of the augmented input locations, we fit a separable parametric model. In this model, we
evaluate a separable covariance function parameterized with ¢ at the locations §1, ..., Sy
to obtain the covariance matrix K. For the two elements y,, y,» with the associated spatial
locations sy, §,» and processes p, p’, the covariance between y, and y,/ is given by

Covlyn, yw|§1 = r§C1 (Isn — s 11E)Ca2(p, P'18) + Uf]lsn:s;Ap:p/-

Here, ‘L'g, acz is are variance parameters, C| corresponds to a parametric isotropic correlation
function, and C; corresponds to an unstructured P x P correlation matrix K ¢- Moreover, 1
is the indicator function. To map (12) ) unrestricted elements to K ¢» we employ the mapping
described in Stan Development Team (2023, Section 10.12).

To estimate ¢, we maximize the likelihood of y ~ A(0, K) by considering all avail-
able samples of y. Considering the availability of multiple observations of y, we have found
that thinning the spatial density can effectively manage computational time constraints. By
randomly choosing a subset of locations, we can alleviate the computational burden asso-
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ciated with factorizing the covariance matrix K. This approach strikes a balance between
computational efficiency and ensuring reliable parameter estimation for £ .
Retrieving the hyperparameter values Using the estimated parameter ¢, a distance
between two marginal spatial fields can be computed by applying the inverse of the corre-
lation function Cy on the value of C;. For instance, the estimated distance between the p-th
and p’-th marginal spatial fields is 3[,,,/ = C1_1(|C2(p, p/|2)| |2). Arranging the estimated
set of process positions that give rise to D (Young and Householder 1938; Torgerson 1952).
Given a distance matrix D = (d;j)1<i<P,1<j<pP, it is possible to determine a set of
locations that generate this matrix up to Euclidean transformations. Let the elements of the
matrix E = (e;j)1<i<p,1<j<p be ¢;j = dlz’j + di20 - dlzj Then, the matrix representing the
process locations is § = #A'/? where u and A are obtained by performing the eigenvalue
decomposition E = uA u~" and defining A'/? as the element-wise square root. Subse-
quently, a QR decomposition can be performed on the bottom P — 1 rows of S to calculate
0 and R. (see Equation (5)). Should the values on the diagonal of R not be positive, use
QY and YR instead of Q and R where Y is a square diagonal matrix with the entries 1 or
-1 corresponding to the sign of the diagonal elements of R.

2.3.2. Estimation of the Multivariate Transport Map

We extend the empirical Bayes approach used by Katzfuss and Schifer (2023) to esti-
mate the hyperparameters #. The nonzero elements of R are included in @, and suitable
transformations are applied to ensure that # remains unrestricted.

To estimate the hyperparameters €, we employ a gradient-based optimization algorithm
to maximize the integrated likelihood

N
p010) = [T [ POl dos S0 1) dd d,. ©)
n=1

The presented method focuses on inferring the distribution of y rather than on conducting
inference for f and d, providing a significant computational advantage, especially since the
formulation with f and d integrated out permits the utilization of mini-batching, allowing
for efficient computations on data subsets. We utilize the Adam optimizer (Kingma and
Ba 2014), which adapts the learning rate during optimization, and implement early stop-
ping as a regularization technique. The early stopping criterion is based on monitoring the
improvement of the integrated log-likelihood on a separate validation dataset. We define a
patience parameter, typically set to 5% or 10% of the maximum number of iterations. If
no improvement in the integrated log-likelihood is observed within the last patience steps,
the optimization process is terminated. Upon completion of the optimization, we select
the parameter set that achieved the highest integrated log-likelihood on the test data. This
parameter set represents the optimal configuration based on the performance of the model
on unseen data.
However, in terms of estimating the process positions, we consider three strategies:
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(i) Constant process positions (CPP): In this strategy, the process positions, esti-
mated using the parametric model, are assumed to be known and remain fixed
during the hyperparameter estimation process. No updates to the process posi-
tions are made.

(i1) Frozen Ordering (FO): With this approach, the process positions are updated
during the hyperparameter estimation via a gradient-based update. Recall, the
process positions enter the integrated likelihood through the integration of
the distance to the nearest neighbor ¢, in the prior on d,%. The ordering and
conditioning sets, however, are determined using the initial process positions
and remain unchanged throughout the optimization.

(iii) Occasional Re-ordering (OR): Here, the process positions are updated during
the hyperparameter estimation via a gradient-based update. Following the idea
of Kang and Katzfuss (2023), we recompute the ordering and conditioning sets
after a pre-specified number of iterations (e.g., after 4, 8, 16, 32, . .. iterations).
As the integrated likelihood is based on a Vecchia approximation (using Equa-
tion (6) instead of Equation (1)), reordering may produce distinct likelihood
values. Furthermore, the reordering procedure does not necessarily lead to
an improvement in the integrated likelihood. Hence, we reset the patience
counter and update the best encountered integrated likelihood to the current
value. This ensures that the algorithm will continue in searching for a better
parameter value for at least the specified number of epochs and considers only
the integrated likelihood values encountered in the current ordering. Addi-
tionally, determining these updates can be computationally expensive as one
has to consider the entire data set. However, Schéfer et al. (2021b) presented
an algorithm to compute ordering and conditioning sets in quasi-linear time
complexity, i.e., O(N log?(N)).

For ease of comprehension, we provide the estimation algorithm in pseudo-code in
Appendix 4.

3. NUMERICAL COMPARISON
3.1. SIMULATION STUDY

Our study focuses on two objectives: (1) learning the distribution of y and (2) learn-
ing the conditional distribution of one variable given the others, i.e., the distribution of
y'ly?, ..., yP. Additionally, we aim to compare the performance of the different estima-
tion strategies: Constant process positions (CPP), Frozen Ordering (FO), and Occasional
Re-ordering (OR). To assess the of the MVTM, we compare it with a parametric model. We
refrain from a comparison to VAE (Kingma and Welling 2014) and a GAN designed for
climate-model output (Besombes et al. 2021) as those deep-learning methods have turned
out as not competitive in an application similar to ours (see the supplementary materials in
Katzfuss and Schifer 2023 for details).

To evaluate the performance, we assess the average log-density of the learned distribu-
tion at 20 test samples. This evaluation metric provides an approximation, up to an additive
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constant, of the negative Kullback—Leibler (KL) divergence D(p||p) between the true dis-
tribution p and the estimated distribution p. The log-density serves as a positively oriented
measure, allowing us to compare the accuracy and goodness-of-fit of the learned distribution
to the true distribution.

3.1.1. Experimental Setup

We vary two key factors in our simulation study: the training size and the number of
variables. Specifically, we consider training sizes R € {10, 20, 30, 40, 60, 80}, and explore
scenarios with P € {2, 3, 4, 5} variables. By varying these factors, we aim to examine the
behavior and performance of the estimation procedures under different data settings.

For the data-generating process, we adopt Scenario NR90O in Katzfuss and Schifer
(2023). This data-generating process can be characterized by a transport map. Using the
hierarchical formulation in Sect.2.2.1, we specify the functions f; as additively composed
from a linear and nonlinear part

[inioD) = by + 2sin(@Bi 1 yew), + bi2Yein))

with b; = (bi1, ..., bi,|c(i)|)T, where the b; ; are based on the exponential covariance
function with range 0.3 and the distance between §; and §.(;),. The P-variate spatial field
is observed on a regular grid of size 32 x 32 on the unit-square and we use the augmented
input space with the process positions §; = 0, § = (0.2,0,0)T, §3 = (0.0,0.3,0)T,
§4 = (0.0,0,0.4)T, and §5 = (0.3,0.3,0)T. Thus, the P-variate spatial field is observed
in 1,024 locations per process, which gives 5,120 locations for a five-variate spatial field in
the augmented input space. In total, roughly 400,000 datapoints must be considered in the
scenario with 80 replicates of the five-variate field.

For fast estimation of the 6+ (5 ) hyperparameters @, we utilize mini-batching with a batch
size of 256, resulting in 4 P gradient updates per epoch. Convergence monitoring is con-
ducted by evaluating the integrated log-likelihood on an independently generated validation
dataset with 20 replicates. We employ early stopping with a patience of 25 and a maxi-
mum of 500 iterations. Remarkably, all estimations terminate early, indicating successful
convergence. To optimize the model, we utilize the Adam optimizer with an initial learning
rate of 0.01 and apply cosine annealing to mitigate the variance induced by mini-batching.
For estimating the initial process positions, we randomly select 256 of the 1,024 spatial
locations. Importantly, we observe no adverse effects on the estimated parameters due to
the subsampling. In our evaluation, we also include as a competitor procedure a mean zero
Gaussian model with isotropic Matérn covariance function combined with an unstructured
P x P correlation matrix as described in Sect.2.3.1, whose 3 + (123) hyperparameters are
estimated via maximum likelihood. We refer to this model as the parametric model.

3.1.2. Results and Analysis

The results indicate that the transport map outperforms the parametric model when the
ensemble size exceeds approximately 20-25 (refer to Fig.2). Interestingly, incorporating
the process positions into the hyperparameter estimation of the transport map (OR) did not
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test data sets for different ensemble sizes R (x-axis) and different dimensions P of the multivariate spatial field.
“Parametric” refers to the parametric approach, “MVTM CPP” and “MVTM FO” refer to the Bayesian transport
map with the estimation strategies described in Sect.2.3.2.

lead to an improvement in model fit. However, it is worth noting that this might be attributed
to the limited nonlinearity in the data-generating process.

In addition to estimating the joint distribution of y, we also investigate the conditional
distribution of y; given y,, ..., yp. To account for the conditional distribution, we use a
modified maxmin-ordering in which we order the indices corresponding to y; subsequent to
all other indices. Based on the findings from the initial study, we exclude the OR estimation
strategy from this analysis as it did not yield improved results. Again, the approximated
KL-divergences suggest that the MVTM is superior given enough training data. See Fig.3
for a visual presentation of the estimated log densities.

In summary, the findings from our simulation study indicate that the MVTM approach
performs better when a sufficient amount of training data is available. We observe that
the MVTM approach outperforms the alternative methods in capturing the underlying spa-
tial and inter-process dependencies given enough available training data. Interestingly, the
choice of estimation strategies seems to have no significant impact on the performance.
This lack of impact could be due to the limited nonlinearity present in the data generating
process. Specifically, only the two nearest neighbors in the conditioning set, which belong to
the same process for a large portion of the data, contribute to the conditional expected value
in a nonlinear manner. Consequently, the parametric approach is able to effectively capture
the dependence between the spatial fields. We also explored an alternative configuration,
involving the scaling of weights b; | and b; » based on the process affiliations of both y;
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and its corresponding neighbors y.(;), and y(),. This leads to a scaling of the nonlinear
functions based on process affiliations. We omit a detailed presentation, as the results are
comparable, with MVTM outperforming the parametric GP with only R = 20 training
replicates. Note that our study does not explore spatial data sparsity or density, as previous
results by Katzfuss and Schifer (2023) suggests that the performance differences among
the methods are similar under such conditions. Therefore, in the context of our simulation
study, the focus is primarily on the performance of the MVTM approach in relation to the
availability of training data.

3.2. APPLICATION: CLIMATE MODEL OUTPUT

Climate models serve as computational tools essential for simulating and comprehending
the Earth’s climate system, playing a vital role in climate research and policy-making. In
essence, climate models are computer programs that describe the Earth’s climate system
through sets of differential equations. Developing as well as running these models demands
a lot of resources, time, and specialized high-performance computers. Each run takes a
considerable amount of time and consumes significant energy. For instance, 17 million
core hours were spent on the computation of large ensemble of the Community Earth
System Model (CESM) using the Yellowstone supercomputer (Kay et al. 2015). It takes
approximately three weeks to produce each ensemble member.

Nevertheless, conducting multiple runs is typically imperative due to the potential impact
of even slight perturbations in the initial conditions, which can result in larger variations at
the end of a model run. Therefore, it is crucial to perform multiple runs of climate models
to account for the uncertainty arising from these initial conditions. Due to this nature, a
climate model can be interpreted as encoding a distribution of climate rather than predicting
an exact Earth-system state, rendering the analysis of climate model even more challenging.
Statistical emulators, which replicate this distribution, can be employed to summarize the
distribution and generate additional samples at much lower computational costs.

Climate models produce numerous variables with high temporal and spatial resolution,
often exhibiting significant non-stationarity. In this study, we specifically examine data
obtained from the large ensemble project (LENS) of the CESM developed by the National
Center for Atmospheric Research. The LENS consists of 42 ensemble members with vari-
ations due to slightly different initial atmospheric state.

Our focus centers on four hydrological variables generated by the land-surface-model
(LSM) component.! We restrict our focus further to the conterminous United States and con-
sider the yearly average of the variables SNOW, RAIN, SOILWATER _10CM, and QRUNOFF
in the year 2001. The data is available on a roughly 1° longitude-latitude grid yielding
690 values per variable and ensemble member. In a prepossessing step, we combine the first
two variables to a new variable representing the combined precipitation (PRECIP). As we
aim to model anomalies, all raw observations are transformed by subtracting the pixel-wise
mean and dividing by the pixel-wise standard deviation.

IData is available at https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.html.
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We fit the MVTM using estimation strategy CPP and compare it to the parametric model
employing the log-density evaluated for holdout data. Since the other estimation strategies
produce similar results, we omit their presentation. In a cross-validation (CV) setting, we
select 4 ensemble members as holdout data. From the remaining 38 members, we use 10, 20,
30 and 38 for training to investigate the effect of sample size. The process is repeated until
all but the last two data sets are once used as holdout, giving us ten values for the estimated
log-density. The left panel in Fig. 4 visualizes the results, strengthening the impression from
the simulation study. The MVTM’s performance improves with increasing samples size. In
comparison, it adapts better to the underlying dependence in the anomalies. The estimated
latent locations are illustrated in Fig. 5. Notably, these estimated locations exhibit relatively
little variation across CV splits as the training size increases. Nevertheless, it is worth noting
a discernible trend of increased point concentration among replications as the sample size
Srows.

On an Apple M1 Pro equipped with eight performance cores and 32GB of RAM, the
estimation process takes an average of 91 seconds of CPU time for ten replications and 194
seconds for 38 replications. This estimation time is distributed between two tasks: estimat-
ing the initial latent locations and the hyperparameters of the transport map. Specifically,
estimating the initial latent locations consumes 12, 22, 33, and 44 seconds for 10, 20, 30,
and 38 replications, respectively. Meanwhile, the estimation of hyperparameters requires
between 79, 98, 122, and 150seconds for 10, 20, 30, and 38 replications, respectively.
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The standard deviation of these estimations is roughly 1%, indicating a relatively stable
performance across CV-replications.

In addition to studying the joint distribution of the variables, we also investigate the condi-
tional distribution of QRUNOFF given the other two variables. This analysis is particularly
valuable as runoff in an area cannot be directly measured but must be modeled. Having
a statistical model that describes the conditional distribution of runoff can be immensely
beneficial for practitioners. For example, it enables the study of the conditional distribution
of catchment runoff within the drainage basin of a river, which represents the water from
sources like rain, snow, and soil moisture flowing into the river. Thus, a model that character-
izes the conditional distribution of runoff in an area based on observable quantities can assist
in estimating the amount of water a river system needs to handle and evaluating whether
infrastructure, such as dams, is adequately designed. From the right panel in Fig. 4, we see
that the MVTM describes the conditional distribution already for the smallest training size
better than the parametric model. Judging from visual impression of samples drawn from
the estimated distribution, the parametric model cannot capture the anisotropy present in
the data and seems overall too smooth (see Fig.6).

4. CONCLUSIONS

We have presented a Bayesian approach for learning the distribution of multivariate spa-
tial fields based on a relatively small number of training samples by estimating a transport
map. Our method can capture the potential nonlinearity in the conditional dependencies,
enabling the learning of non-Gaussian distributions and mapping them to the standard nor-
mal. The scalability of the approach is enhanced by the mini-batching capability of the
estimation algorithm, allowing for efficient analysis of large datasets. From our numerical
demonstrations, we can confidently recommend the multivariate transport map approach,
particularly when dealing with non-stationarity in the data and an ample number of repli-
cations.

‘We do not account for uncertainty in the estimation of the hyperparameters #. While fully
Bayesian approaches like Markov chain Monte Carlo (MCMC) can in principle address this,
we opt for using empirical Bayes (EB) estimation due to computational constraints. This
decision is supported by insights from Katzfuss and Schéfer (2023), which indicate minimal
impact on the estimated posterior distribution of y when contrasting EB results with a full
Bayesian approach. MCMC’s requirement for full dataset processing in each iteration poses
scalability challenges for large datasets. Stochastic gradient MCMC methods (Nemeth and
Fearnhead 2021) show promise in bypassing this limitation, offering potential for enhanced
hyperparameter uncertainty quantification while maintaining scalability.
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Moving forward, there are several potential extensions and avenues for future research.
One promising direction is the incorporation of a temporal component, enhancing the pro-
posed methodology’s utility in climate model emulation and capturing temporal variations.
Another useful direction to enhance the flexibility and applicability of the MVTM approach
is the inclusion of covariates. Here, the distribution of y is related to covariate values. In the
context of climate models, this would allow to interpolation between emission scenarios.

A continuation of the extension presented is to make the model highly multivariate.
While providing most flexibility, the current formulation requires relating (12) ) entries in the
hyperparameter to the process positions. This approach is suitable for relatively small P.
However, it seems prohibitive when considering all 1168 variables in the CESM.

Furthermore, an important extension to consider is relaxing the assumption of conditional
normality at each location. By allowing for more flexible modeling, such as accounting for
skewed or heavy-tailed data, we can extend the Bayesian transport map to multivariate
spatial fields where one field may represent extreme values.

In summary, the MVTM approach offers a powerful tool for learning the distribution
of multivariate spatial fields. Its ability to handle nonlinearity, scalability, and potential for
future enhancements make it a promising methodology in spatial statistics.
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A ALGORITHMS

Data: Training data Y, validation data V/, initial hyper parameters 8, batchsize bs, learning rate /r, max
epochs E, patience, estimation mode
Result: Estimated hyperparameteré
best_logilik <— —oo
0«0
patience_counter <— 0
/* epoch loop */
for epoch < 0 to E do
batches <« create batches of Y of size bs
/* for each batch, perform gradient based update */
for batch in batches do
| @ =0+ 1rVglog(int_lik(batch, 6))
end
/* update patience counter; break if patience is exhausted */
if log(int_lik(V, @)) > best_logilik then
best_logilik < log(int_lik(V, 6))
60
patience_counter <— 0
else
| patience_counter <— patience_counter + 1
end

if patience_counter > patience then
| break loop

end
/* check if reordering is required and perform if so */
if mode is OR and epoch indicates reordering then
Y <« update ordering and conditioning sets of Y using current positions
V < update ordering and conditioning sets of V' using current positions 6
/* reset patience counter */
best_logilik < log(int_lik(V, 8))
6«0
patience_counter <— 0
end
end

return 6
Algorithm 1: Pseudocode of the algorithm estimating the hyperparameters. The training

data Y and validation data V contains the ordering and conditioning sets. When the esti-
mation mode is CPP, the elements of # associated with the latent positions are not updated.
The epochs after which a reordering happens in estimation mode OR are predefined.
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