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Abstract. Lakeland is an educational game developed with the intent of expos-
ing secondary science students to complex systems, namely phosphorous cycling.
Data collected anonymously through embedded logging structures was sampled to
include sessions where players returned to play more than once during December
2019 consistent with classroom play. Using Epistemic Network Analysis, games
from the same player were compared to identify significant differences in how
players responded to game events. Consistent with prior research around sys-
tems thinking, players’ ability to think through temporally distant phenomena,
as evidenced by changes in their use of time manipulation and short vs. self-
sustaining strategies in Game 1 and Game 2, demonstrate the potential for ENA
to uncover and even assess complex student behaviors using log data. Further-
more, this study highlights the importance of including computer-generated data
alongside the human-generated reactions being logged.
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1 Introduction

“You set out to form a new town called Lakeland. Your people love to play in the water.
Grow your town without ruining the lakes,” [1]. Lakeland’s players receive quite the
edict upon beginning a new game. A relatively open landscape sets the stage as players
build their first house near the beloved lake, but despite the serenemusic and lighthearted
graphics, the tone is set. As a player, you have the power to make or break Lakeland;
don’t mess up.

Thedecision space afforded to players is sufficientlywide to see a variety of responses
to the problem set out before them. This variety creates an opportune moment for us to
gain insight into how players begin to piece together the complex systems that underlie
the game’s simulation, a challenging proposition given that students often fail to capture
the dynamics of complex systems [2]. Yet each time a player’s action yields some
response from the game, there is a new opportunity presented for the student to assemble
a causal relationship that underlies the system. The student and simulation go round and
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round creating a “circle of gameplay” that could be likened to a conversation [3]. We
can use log data to “eavesdrop” on the player’s conversation with the game to better
understand how players progress in their ability to navigate the rules of the game.

While prior games-based, quantitative ethnographic (QE) research has focused pri-
marily on user actions in the analysis of learning [4], collaboration [5], and student quit
behavior [6] in games, in this study, we propose the addition of computer-generated
events. We utilize Lakeland as the context to explore this while answering the question,
“How do player responses to in-game feedback change between first and second games
played?” Through this process, we demonstrate that the inclusion of game data allows
visualization of the interplay between game and player and is useful in understanding
student growth. This work directly contributes to the growing body of work taking a QE
approach to analyzing user-generated log data. With this approach, we demonstrate that
ENA can effectively visualize differences between first-time play sessions and repeat
play sessions by focusing the model on the player-feedback game loop and indicators
of systems thinking.

2 Relevant Literature

2.1 Systems Thinking in Science

Student success in Lakeland hinges on the students’ ability to understand the varied
relationships to seek a solution. They must consider more than just a series of causal
events to see the problem posed in a more holistic way, a task that may be considered
a “wicked problem” [7]. This framing draws a particular definition of system thinking
that highlights the unique nature of problems, interplay between attempts to address the
problem and how it is framed, and ambiguity of the causality particularly as it related
to the temporal distance between an intervention and any direct effects.” [8]. Grohs
et al. operationalize the “wicked problem” framing in their attempt to assess systems
thinking in students by centering their assessment around student ability to work within
three dimensions of understanding the problem, recognizing competing perspectives,
and ability to think through different points in time incorporating both historic and
present considerations [9].

If this seems like a tall order for students, it’s because it is. In problem-based contexts,
students often fall short of being able to consider varied aspects of the systems at play to
propose solutions [3, 10]. The trouble stems from failing to notice aspects of the system
that are either temporally distant, varying in impact, or non-obvious, microscopic as
a mechanism [3]. The further away a consequence is from the causal agent, whether
enacted by a student or occurring in the environment, the less likely a student is to detect
the relationship and incorporate it into their understanding of the system. A student has
to notice both the cause and the effect with a short enough time passing to connect the
two [3]. Despite systems thinking appearing in a significant portion of the cross-cutting
concepts in the Next Generation Science Standards [11], the context in which students
encounter these concepts tend to be ill-suited for success. Environmental systems in
particular have presented challenges for students in perceiving how toxins accumulate in
the environment, understanding the intricacies of stock and flow systems, and reconciling
the temporal delays between actions and their effect [10].
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The persistent appearance of time as a determining factor for student understanding
is something well-suited to exploiting in game contexts. In real-time strategy games, the
ability to manipulate time is often afforded to the player easing the demand on players to
remember events that occurred long ago and tie them to current consequences.Everything
becomes more connected for those who know what to look for. Additionally, rules allow
designers to assist students in noticing phenomena by forcing spatial proximity, for
example encouraging towns to be in close proximity to the lake inLakeland. Furthermore,
the natural scaffolding that exists in game environments perpetually attunes players to
the information available to them through tutorials and visual indicators; thus, as students
become more comfortable with the “rules of the game,” they will likely progress in their
ability to engage in relevant systems thinking.

2.2 Educational Games and Assessment

As noted above, educational games are a particularly good format for circumventing
many of the issues that inhibit systems thinking because they put players in a situated
learning environment that allows for interactions that might not otherwise be cost or time
efficient [12]. These environments also provide a unique opportunity to gain insights into
or assess how students think about or approach problems. This can happen by accident
through the nature of the task given the student, or they can be intentionally designed and
embedded. The latter example, known as stealth assessments are named as such because
the assessment is tied to the game mechanic itself and imperceptible to the player [13].

Lakeland was not explicitly developed with stealth assessments in mind. However,
we can retroactively compare how an expert system engineer would balance competing
problems in Lakeland with how a novice student might approach the same task. Using
the idea of an epistemic frame [12] to evaluate student actions, the engineer would be
more likely to see the connection between feedback from seemingly disparate areas [9]
to find long-term solutions whereas novices (secondary science students) would be more
likely to employ short term solutions. Analysis of the solutions players seek may serve
as a proxy for a designed assessment.

The student’s proposed solutions and decisions are not generated in isolation; they
are perpetually influenced by the “circle of gameplay” where the “gamer’s input and the
game’s output reciprocally influence each other,” [3]. Players are made aware of hidden
mechanisms by the game feedback, and the way a player responds to game challenges
and feedback provides evidence of their level of understanding of the underlying content
[13]. Therefore, it is essential that we consider the dynamic between game and player as
proposed by Owen and Baker [14] who advocate for including game feedback events as
essential components of logging systems for behavioral modeling in educational video
games.

2.3 Games and Quantitative Ethnography

Prior work has centered on the work of epistemic games or quantitative ethnographic
approaches to gamedata, but there are several gaps that have been identified.Arastoopour
Irgens and colleagues began looking at in-game data through ENA modeling, but the
observed behaviors of the students largely focused on textual data communicated to
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teammates or non-player characters in the virtual internship [4]. More recently, log data
has been analyzed using ENA to identify trends amongst students who quit challenging
levels in Physics Playground, but the analysis was limited to students’ actions [11].
Feedback provided by the game did not close the loop of player experience. It is within
reason then that by connecting player actions to feedback received, we can build a better
understanding of the player’s decision space. We seek to extend prior assessment work
using Epistemic Network Analysis in games as a method for visualizing the shift in the
relationship between in-game feedback and student actions from first play session to
subsequent sessions.

3 Methods

3.1 Context

Lakeland was designed to teach students about the complex ways nutrient cycles are
manifested in agricultural and environmental contexts, and in doing so encourage sys-
tems thinking throughout gameplay. Like many real-time strategy games, players are
constantly making decisions that have short-term and long-term impacts in the game
space. In Lakeland, the primary player decisions include what they can buy and how
they use the resources - corn, milk, and manure - from farms and dairies (Fig. 1). Ulti-
mately, success in the game hinges on understanding how to manage soil nutrition for
productivity in order to expand without causing algae blooms.

Fig. 1. Player decisions are limited to decisions around what they buy (left) and how they choose
to utilize resources, either before or after production (right).

Players are assisted by a near-constant stream of feedback. As play begins, tutorials
are presented by different advisors, a manifestation of the different perspectives inherent
to wicked problems [9]: the farm advisor introduces players to the logistics of manure
replenishing nutrients in the soil, the mayor focuses on expansion of the town, and the
business advisor pushes the player to turn products into profits. Each potential avenue
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for players to focus on is further elucidated in the achievements available that focus
on town growth, number of farms, amount of money, and size of algae bloom (for the
destructive player). In the town, farmbits (townspeople) report their satisfaction (Fig. 2a)
and needs (Fig. 2b) through emojis. Similarly, farm and lake tiles show visual indicators
of production (Fig. 2c) and changing nutrient levels (Fig. 2d). However, learning the rules
of a game and its underlying system takes time, and it is not uncommon that players will
not be successful at deciphering the help that game is trying to provide on their first try.

Fig. 2. Positive and negative feedback provided to players from visual cues comes from Farmbits
or Farms. (a) A fed Farmbit. (b) A tired Farmbit. (c) A farm that has produced corn. (d) A nutrient
depleted farm (upper left) and nutrient rich farm (lower right).

3.2 Data Collection

CSV files containing both processed and raw user data for December 2019 were down-
loaded from the Open Game Data website [12]. Data is anonymized and contains no
additional indication of the context under which it was generated other than the game
itself.

The processed data CSV included aggregate features calculated at the scale of a
given level as well as an entire session. Session records were filtered to obtain ses-
sions representative of a typical student’s classroom play experience: sessions length
between 5 and 45 min, active (user generated) event counts greater than 20, and English
selected (original language). To subset the data, the processed data was segmented using
the “num_play” feature into first (“num_play” = 1) and subsequent (“num_play” >1)
games played. From those two segments, a random selection of ten first sessions and ten
subsequent sessions was obtained to further down sample. Final selection for included
sessions was based on whether a player had both first and subsequent sessions in Decem-
ber as we wanted to eliminate possible interference from long spans of time between
plays. This yielded eight session for investigation.

The raw data CSV included a live stream of events for each player organized by
session ID. In order to make the event data “human readable” for the purposes of coding,
a Python script turned the JSON event data from each line into a textual description of
the event using the documentation provided by the developers in the associated ReadMe
file. For example, Event 7 is a “Buy” event that is sent with JSONmetadata including the
item selected to buy, tile data including description, nutrition and position in terms of X,
Y coordinates on the map, whether the player can build on that tile, and the information
of every tile they hovered over when choosing where to place their item.



Counting the Game: Visualizing Changes in Play 223

3.3 Quantitative Analysis

Filtered data was analyzed to both confirm the effectiveness of the filters and to consider
similarity of student experience between first and subsequent game play experiences.
A paired, two-tailed t-test was used to compare length of play and number of student
actions between games. This was essential to ensure that a student simply did not act in
the first game, causing their lone farmbit to die, and necessitating a restart of the game.
Additionally, paired, two-tailed t-tests were used to confirm that therewere no significant
differences in how many of the twenty-six possible tutorials players encountered and
how many of the sixteen possible achievements they received. Game tutorials occur
as students progress through the game introducing them to concepts as they go. The
tutorials range in conceptual complexity from simply explaining the buy mechanism to
introducing the idea of fertilizer runoff and algae blooms.

3.4 Qualitative Coding

Codes were developed using a grounded approach based on our own play experiences,
prior observations of student game play, and special consideration for feedback and
behaviors related to systems thinking. To begin, we played through the game considering
the feedback given and our actions before referring to the ReadMe files for the game.We
considered game events in isolation to simplify how we looked for a given behavior. For
example, in considering the meaning of buying corn, we went through all the possible
reasons a player would buy corn. We then looked at the game play log and discussed
what was happening in each situation that a player was buying corn. Based on those
observations, the code of short-term solution was created to represent the observations
that players often bought corn when (1) they had farmbits in crisis with no chance of
producing corn or (2) they did not have the resources necessary to invest in a self-
sustaining solution. We applied a similar method for game event codes deriving them
via a combination of developer intent and our response to the feedback during gameplay.

A final pass on the codes and coordinating definitions sought to incorporate the
systems thinking literature. Acknowledging the importance of temporal distance in
a student’s ability to comprehend complex systems, a code was introduced for Time
Manipulation with the thought that students who were trying to understand relationships
would use the fast-forward tool to shorten the time between interactions. This aligned
with our own verbalized use of the fast-forward and pause features during initial game
play and student observations.

With the codes completed, we turned our attention to applying the codes to the log
file dataset using the nCoder webtool [16]. Since the event text was generated through a
uniform script, our collaborative code-defining process yielded high levels of agreement
between coders and the automated coder. Individual codes and agreement measures can
be seen in Table 1.
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Table 1. Codebook (Kappa agreement reported in order of Rater 1 vs Classifier; Rater 2 vs
Classifier, and Rater 1 vs Rater 2.)

Code Definition Example Agreement

Positive farmbit Farmbit (townsperson)
expresses contentment or
happiness with emojis

Lucy at 26,26; I’ve got
my floatie on. Swimming
emoji

1.00**
1.00**
1.00**

Negative farmbit Farmbit expresses sadness
or distress

Sidney at 20,23… I’m
tired. Sleepy face

0.96*
0.96*
1.00**

New resources When a resource is
produced and appears on
the map

Farmharvested at 25,25;
Items marked for use and
sell

1.00**
0.92*
0.92*

Time manipulation When the player changes
game speed

current: fast, previous:
play, Player Changed

1.00*
1.00*
1.00*

World feedback When visual feedback
indicates a problem with a
world tile

Farmfail; farm at 23,23;
Items marked for sell and
sell

0.95*
0.92*
0.92*

Short term solutions Player buys resource that
doesn’t have lasting
impact (food, manure,
skimmer)

Tile: Growing, Medium
nutrition, land at 19,30;
buy: food

0.96*
1.00**
0.96*

Self-
sustaining solutions

Players buys a long-term
solution such as a farm or
dairy

Tile: Growing, Medium
nutrition; at 29,24; buy
farm

1.00**
1.00**
1.00**

Resource management When players indicate a
resource should be used,
sold, or consumed

Itemuseselect; item at
27,23; food for use,
Previously Sell

1.00**
1.00**
1.00**

*rho ≤ 0.05, **rho < 0.01

3.5 Epistemic Network Analysis

Epistemic Network Analysis [17] was used to explore the data using the ENAWeb Tool
[18]. Units of analysis were defined as all events associated with a given game (Game
1 or Game 2) subset by Speaker (Player or Game) and Session_id. For example, one
unit included all lines associated with player X’s first game. The ENA algorithm uses
a moving window to judge co-temporality when constructing a network model [19],
defined here as 10 events. A window size of 10 was chosen due to the rapid nature
of feedback generated from the game and co-occurrence of logging events (i.e. If the
game generates new resources, and a farmbit reacts immediately, there may be two
more actions before the player has a chance to respond. In order to ensure that we were
capturing connections between the game and the player.) The resulting networks are
aggregated for the categories of first or second game. Networks for third game or higher
were removed due to having too few samples.
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The ENA model normalized the networks for all units of analysis before they were
subjected to a dimensional reduction using singular value decomposition, which pro-
duces orthogonal dimensions that maximize the variance explained by each dimension.
A means rotation was performed between the groups to better interpret the axis.

Networks were visualized using network graphs where nodes correspond to the
codes, and edges reflect the relative frequency of co-occurrence, or connection, between
two codes. These networks were compared using network difference graphs that illus-
trated differences between first games and second games by subtracting the weight of
each connection in the Second Game Played network from the corresponding connec-
tions in the First Game Played network. To further test for differences we applied a
Mann-Whitney test to the location of points in the projected ENA space for units in each
category.

4 Results

4.1 Qualitative Counts

After filtering sessions, eight sessions were identified as having both first and second
sessions that occurred inDecember. The average session durations for Game 1 andGame
2 were 11.6 min and 15.7 min, respectively. Players in Game 1 acted more frequently
than those in Game 2 logging one player action for every 3.06 events logged by the game
as opposed to a 1 to 3.38 ratio for Game 2. A two-tailed, paired t-test demonstrated no
significant differences in the play sessions regarding length of play or number of actions:
session duration p = .30, session active events p = .11, and session events p = .11. This
indicates that play within each of the selected games was comparable and confirms
the effectiveness of the filter in looking for games that fit the typical classroom use.
Paired, two-tailed t-tests also compared the number of achievements players received
and number of tutorials they encountered inGame 1 andGame 2 and found no significant
differences (p = .06, p = .10).

4.2 Quantitative Models

Epistemic Network Analysis of Game One and Game Two yielded an ENA model
that had co-registration correlations of 0.98 (Pearson) and 0.98 (Spearman) for the first
dimension and 0.99 (Pearson) and 0.99 (Spearman) for the second indicating a strong
goodness of fit between the visualization and the original model. Along the X axis
(MR1), aMann-Whitney test showed that Game 1 (Mdn= 0.05, N= 28)was statistically
significantly different at the alpha = 0.05 level from Game 2 (Mdn = −0.44, N = 16 U
= 124.00, p = 0.01, r = 0.45).

Figure 3 shows the relationshipsmost prominent inGame1.Wechoose to specifically
focus on relationships between player actions with the game and player actions with
themselves. Player-Game connections are dominated by frequent connections between
Positive Farmbit Feedback and Resource Management and Positive Farmbit Feedback
and Time Manipulation. Player-Player connections most often occur between Resource
Management and Time Manipulation.
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Fig. 3. ENA plot of Game 1 sessions.

In Game 2, shown in Fig. 4, the connection between Positive Farmbit Feedback and
Resource Management dominates the player-game connections with TimeManipulation
and Positive Farmbit Feedback also showing a strong connection. There are not any
strong player to player connections.

Fig. 4. ENA plot of Game 2 sessions.

In these plots, the Y axis is interpreted as game feedback (positive axis) vs. player
events (negative axis). This allows visualization of the connections between player and
game as they run vertically through the plot. In the comparison plot, a means rotation of
the X axis elucidates the difference between first and second game players (Fig. 5).

Short-term, reactionary actions such as TimeManipulation and Short Term Solutions
fall towards the left on the x axis whereas sustainable, planning actions such as Resource
Management fall towards the right. First game players tend to manipulate time more
in connection to farmbit feedback whereas second game players manipulate time in
connection to new resources. Similarly, positive feedback is more often connected to
short-term solutions during first games and resource management during second games.
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Fig. 5. Comparison ENA plot of Game 1 (red network) and Game 2 (blue network) demonstrate
the differences between games. (Color figure online)

4.3 Qualitative Description

To better understand the differences in how players respond to feedback in Game 1 as
opposed to Game 2, we can focus on the connections between Time Manipulation in
each case. Tables 2 and 3 illustrate narrative differences between howNewResources and
Positive Farmbit Feedback are connected to Time Manipulation. The selections chosen
include 10 log events to parallel the size of the moving stanza used in the ENA models.
Events that were not coded in ways relevant to the model were left in the sequence and
marked with “N/A,” but they were described in the explanation with possible impact.

The player we observe in the Game 1 event sequence is not showing that they are
planning ahead. They have not checked on any of the resources in this section. They have

Table 2. Event sequence of a Game 1 session.

Log event Coded Explanation

Farmharvested tile at 24,23, Items marked for
use and use

New Resources The player sees their farm get harvested. Both
corn that are produced display on the game board.
They are not consumed by a farmbit because they
are not hungry. While it was raining, any fertilizer
that was placed onto farms by the player moved,
but the rain stops. The game slows down the
speed of play as another farm produces more
food. Sidney goes to the lake to get water to
restart the farm. The player pauses the game,
likely to take inventory of all the new resources
produced after the rain. The rain tutorial ends.
The player starts the time back at a normal pace.
Noting the abundance of corn, the player selects
an item and marks it for sale

Rainstopped N/A

Speed: Changed to playfrom fast by game N/A

Farmharvested tile at 23,23, Items marked for
use and use

New Resources

Emote Sidney, at 26,26, I’ve got my floatie on
flamingo swim emoji

Positive Farmbit

Speed: Changed to pause from play by Player Time Manipulation

Checkpoint End: Rain N/A

Speed to play from pause by Player Time Manipulation

Selecti tem item: at 22,22, food for use N/A

Itemuseselect item: at 22,22, food for sell,
Previously Use

Resource
Management
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Table 3. Event Sequence of a Game 2 Session

Log event Coded Explanation

Emote Mary, at 21,21, Ive got my
floatie on flamingo swim emoji

Positive Farmbit The player sees their Farmbit enter
the water, likely to begin growing
another harvest at the farm. The
player decides to sell one unit of
food, which is not the same resource
Mary takes off to sell. The player
checks on two other items which lets
them see that both are set to be used
for food. The player slows time
down in preparation for new
resources to be produced. Mary
continues tending the farm that just
produced by getting water with their
floatie and taking produce to be sold
at the market. The player moves the
game back to fast to speed through
the production

Itemuseselect item: at 20,24, food
for sell, Previously Use

Resource
Management

Emote Mary, at 17,22, Off to
market sale

Positive Farmbit

Selectitem item: at 22,24, food for
use

Information
Seeking

Selectitem item: at 23,25, food for
use

Information
Seeking

Speed: Changed to fast from play
by Player.

Time Manipulation

Farmharvested: at 22,24, Items
marked for use and use

New Resources

Emote Mary, at 21,21, Ive got my
floatie on flamingo swim emoji

Positive Farmbit

Emote Mary, at 17,24, Off to
market sale

Positive Farmbit

Speed: Changed to play from fast
by Player

Time Manipulation

gotten several pieces of feedback that production is continuing successfully through the
farmbit collecting water to restart growth and the new resources now accumulating on
the board. It is possible that the player is working towards stockpiling their resources, so
they do not need to change their use. However, when the game encourages the player to
slow down, calling attention to the changes that have happened after the rain, the player
feels it is necessary to slow further and pauses the underlying simulation. It is only in this
moment, when the feedback from the game is paused, that the player begins to interact
with their resources and plan.

In the selected sequence from Game 2, the player is still changing the speed of the
game, but it is not in direct relation to an immediate event. They are responding in order
to plan and set up future actions. This is evident through positioning of emotes and
actions the player is taking. While the player marks an item for sale at tile 20, 24, the
Farmbit takes items to market from tiles 17, 22 and 17, 24 which came from a different
farm that previously produced. The player is also checking unrelated items available on
the board, likely to confirm their plan.

How players choose to use their ability tomanipulate the passage of time in Lakeland
differs between Game 1 and Game 2. Through looking at Time Manipulation we also
are able to see differences in when players manage their resources. The Game 1 player
is only able to manage resources in the moment, choosing to pause the game before
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making decisions, whereas the Game 2 player is able to forecast the needs of their town
and manages resources far in advance of when they are needed.

5 Discussion

ENAwas an effective tool for capturing the shift in player actions fromGame 1 to Game
2. This aligns with prior findings where ENA was used to identify novices and experts
in virtual internships [4]. Expert systems-thinkers should be able to predict the causal
relationships of the systemandbeboth preemptive in their approach to potential problems
as well as know what information is valuable to act on in the moment. By applying a
grounded coding approach to the actions that players are taking, we were able to tell a
story about how the player’s strategy develops between sessions. Grounding the chosen
codes in the known challenges of systems thinking (temporal distance in particular),
player actions, and game feedback created a sufficient framework for understanding
how players are moving through the game in relation to their conceptual understanding
of the game and its intended learning objectives.

There are several limitations of this study worthy of further investigation. Primarily,
the sample size is small, including only a handful of players; it would be worthwhile to
expand the sample for generalizability. The games were also heavily filtered, and it may
yield interesting results to include players who experience rapid iteration through quick
failed games. Furthermore, the nature of a moving window in ENA creates connections
ahead of and behind events. There is no way to determine causality or directionality
based on these findings at this time. This provides a potential use case for directional
ENA in future iterations.

Moving forward, these exploratory findings indicate the potential application of ENA
as a method for assessing students from log data alone. The next steps would include
investigating these patterns through both ideographic (comparison of individual to self
over time) and nomothetic (comparison of trends within a group) lenses as a test of
validity. Here, we have demonstrated the beginnings of this work through the generation
of a network based on a group of individuals who share commonalities, in this case
being new to Lakeland or a repeat player. Expanding our sample size would allow for
nomothetic-like extrapolation to the “general laws that hold across persons” [20].

A next step would include comparing networks that represent an individual’s actions
over time, such as player 5 at the beginning, middle and end of Game 1, or player
5 over the course of Game 1, Game 2, and Game 3. This would allow an idiographic
demonstration should their network shift from session to session demonstrating a change
in student behavior and thus understanding.

In this paper, we have focused on the detectable differences between game play
sessions, not on their implications. The method demonstrated here could further serve
a variety of audiences within the larger educational games community including game
designers as ameasure of design effectiveness or teachers as ameans of assessment. Still,
from another angle, the method described serves the larger quantitative ethnography
community in furthering the way that we think about data, coding, and models. We
have integrated computer-generated actions into our models alongside raw log data in a
meaningful way that tells a story of user experience, a contribution that can add to the
way we investigate student interactions with digital environments in the future.
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