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Abstract

Rosenbaum and Rubin’s pioneering work on “The Central Role of the Propensity Score
in Observational Studies for Causal Effects” has shaped the landscape of the literature in
causal inference and missing data analysis. In the past decades, the concept of propensity
score has been used not only under ignorability assumption, but also under nonignorability
assumption. The nice properties of double robustness and semiparametric efficiency are
well known under ignorability; however, the situation is a lot more sophisticated under
nonignorability. In this paper, we summarize what we have learnt from analyzing a semi-
parametric nonignorable propensity score model. It turns out that, under nonignorability,
the efficient estimator for the quantity of interest might be too complicated to be practically
implemented. On the other hand, by sacrificing the efficiency to some extent, one type of
robust estimators is much easier to derive and implement; hence is recommended. This is
a general tradeoff between efficiency and robustness in a typical semiparametric model.

Keywords: Efficiency, Ignorability, Influence function, Nonignorability, Propensity score,
Robustness

1. Propensity Score

The propensity score was introduced in Rosenbaum and Rubin (1983). It is a seminal work.
In the past four decades, it has flourished numerous novel ideas and fascinating methods
for estimating causal effects and for analyzing data with missing values. More importantly,
it has shaped the landscape of the literature on causal inference and missing data analysis.
The idea of using propensity score model has been not only well studied in the discipline
of statistics, but also fruitfully applied in social sciences, health sciences, and biomedical
studies.
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In this work, our discussion mainly extends the propensity score from under ignorable
assumption to nonignorable. Though the elegant double robustness and semiparametric
efficiency are crystal clear under ignorability, they are not automatic under nonignorabil-
ity. Without sacrificing any efficiency, the optimal estimator under nonignorability might
be too complicated to be practically implementable. We use a semiparametric nonignor-
able propensity score model as an exemplar to elucidate a tradeoff between efficiency and
robustness.

Our discussion can be presented in the context of either causal inference or missing
data analysis, and we take the latter simply for brevity. We first introduce some notations.
Throughout, we denote scalar Y as the outcome, and binary variable R as the indicator of
whether Y is observed or not; i.e., R = 1 if Y is observed and R = 0 if otherwise. We use
X to collect all the covariates and we assume X is fully observed. Suppose the interest is to
estimate some summary of the outcome Y, say, E{¢(Y)}, where {(-) is a known function.
In applications, we have N independent and identically distributed copies of (R, RY,X),
and we denote n the sample size with completely observed data.

2. Propensity Score under Ignorability: Double Robustness and
Semiparametric Efficiency

We first briefly review the results under ignorability assumption. Denote 7(y,x) as pr(R =
1| y,x). Ignorability simply means 7(y,x) = m(x); that is,

pr(R =1]Y,X) =pr(R = 1] X). (1)

Equivalently, R and Y are conditionally independent given the value of X. The ignora-
bility assumption has been termed missing-at-random (MAR) in traditional missing data
analysis (Little and Rubin, 2019). In causal inference, it has been variously described as
unconfoundedness, selection on observables, or, exogeneity; see, e.g., Imbens (2004); Imbens
and Rubin (2015).

Under assumption (1), the joint distribution from one single observation of (R, RY, X)
is

Fx(){m(x) fyx (v, %)} {1 = m ()}, (2)

where fy|x (y,x) encodes the conditional distribution of ¥ given X, and fx(x) the marginal
distribution of X. Then, following the routine of characterizing the geometric structure of
the semiparametric model (Bickel et al., 1993; Tsiatis, 2006), one can derive, the nuisance
tangent space

where 71 = [{r — m(x)}a(x) : Va(x)] is the nuisance tangent space of 7(x), T2 = {rb(y,x) :

E(b | x) = 0} is the nuisance tangent space of fyx(y,x), and T3 = {c(x) : E(c) = 0} is
the nuisance tangent space of fx(x).
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To estimate E{¢(Y)}, its efficient influence function is

bt = g l6W) = BIC) [+ BG(Y) | X} — B} (3)
- sl B = ) X - Bl

The well-known property of double robustness and semiparametric efficiency of estimating
E{¢(Y)} can be easily seen from analyzing its efficient influence function ¢.g. We concisely
write below.

1. Robustness to the misspecification of the propensity score 7(x): We have E(¢.g) = 0
as long as F{C(Y) | x} is correctly specified. This is also indicated by the fact that
¢.g is orthogonal to 7T, the nuisance tangent space corresponding to the propensity
score.

2. Robustness to the misspecification of E{{(Y) | x}: We have E(¢.4) = 0 as long
as the propensity score 7(x) is correctly specified. If E{¢(Y) | x} is misspecified as
zero, @.g becomes the influence function of the so-called inverse probability weighting
estimator.

3. Semiparametric efficiency: if both 7(x) and E{{(Y’) | x} are correctly specified, ¢.q
leads to the semiparametrically efficient estimator. The efficiency lower bound is

E(¢es Perr)-

3. Propensity Score under Nonignorability: Efficiency versus Robustness

Ignorability may not hold in various applications such as patient-reported outcomes, elec-
tronic health records, and mobile health. See, e.g., Frankel et al. (2012); Gomes et al.
(2016); Mercieca-Bebber et al. (2016); Ayilara et al. (2019); Groenwold (2020); Carreras
et al. (2021); Goldberg et al. (2021); Lim et al. (2021). If the ignorability assumption (1) is
not satisfied, the propensity score is called nonignorable, or missing-not-at-random (MNAR)
in the missing data literature. Nonignorability does exist in causal inference as well, where
researchers could assume the treatment assignment to depend on potential outcomes, or, in
general, the unmeasured confounder.

To make the propensity score assumption as flexible as possible while still achieving
model identifiability (Rotnitzky and Robins, 1997), a semiparametric nonignorable propen-
sity score has been proposed in Shao and Wang (2016) and further studied in Shetty et al.
(2022). The propensity score is defined as

m(y,x) = 7(y,u, B, 9) = expit{h(y, B) + g(u)}, (4)

where expit(-) = exp(-)/{1+exp(-)}, B is an unknown d-dimensional parameter (parametric
component), h(-) is a known function, h(0,8) = 0, and g(-) is an arbitrary unspecified
function (nonparametric component). The covariate X can be split as X = (U™, ZT)", and
Z is termed the shadow variable in the literature. The shadow variable concept enables
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the model identifiability by assuming that the propensity score does not depend on the
shadow variable. It is also possible that the nonignorable propensity score depends on the
entire variable X, but then in such case other assumptions have to be imposed to attain the
model identifiability. Putting this restriction aside, the assumption in (4) does generalize
the ignorability assumption (1), and becomes (1) if the true value of 3 is zero.

Under assumption (4), the joint likelihood of (X, R, RY') can be written as

Ix.rRY (X,7,1y) = fx(X){frx(y, x)7(y,0,B,9)}" {1 - ffwx(y, x)m(y,u, B, g)dy}' "
Using the fact that

Frix(y.%) = fyix,r=1(y,x)/7(y,u, B, 9)
yxisx § fyix,r=1(t,x)/7(t, 0, B, g)dt

where fy|x r=1(y,X) is the conditional distribution of ¥ given X and R = 1, it can be
rewritten as

fx,R,RY (X,7,7Y) (5)

= fx(x) fyix,p=1(y,%) " . 1 1—r
’ J v pma(t %)/ (8, B, g)dt § fyx,p=1(t,x)/7(t,u, B, g)dt :

Clearly, model (5) is much more complicated than the model (2). To estimate E{¢(Y)}
under model (5), one has to first estimate both the parameter 3 and the nonparametric
components fx(-), fy|x,r=1(-) and g(u). While the estimation of fx(-) and fyx r-1(")
does not involve missing data and can be done by using various off-the-shelf methods, the
estimation of g(u) might not be straightforward. How to estimate g(u) turns out to be
pivotal as we learn from this nonignorable propensity score model.

3.1 Efficient Estimation of 3 and F{{(Y)}: Feasible?

Under assumption (4), Shetty et al. (2022) showed that the efficient score for estimating 3
is

Sur(x,77y) = BEO[L = {1+ 90 H0Ay], ©)

where

a(w)B{e 8 | x,1) — B{e " ANG(Y, 8) | x, 1}

g(x) E{e "VB) [x,1} + e 90w E{e2h( B x, 11

E | B{e "0 Ohyy (v, 8) | x, 1}E{e 08 | x,1}/d(x) | u,1]
At = B ([E{e 08 | x, 1}2/d(x) | u, 1) and
d(x) = E{e"P)|x 1} + e 9@ p{e20) | x 1},

Although it is specific, the efficient score Seg(x, 7, 7y) has a very complicated form and its
implementation is not straightforward. Essentially, an estimate of g(u) is needed. To pursue
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the efficient estimation of 3, one might have to first use some approximation technique to
locate an appropriate estimator for g(u).

Further, to achieve the efficient estimation of F{¢(Y)}, in the supplementary material
of this paper, we derive the efficient influence function for estimating E{¢(Y)} as

— L — X cz(u ! _w(X)
Geg (X, 7, 7Y) = (5.0 [C(?J) b3 (x) + c3( )E{W—l(y’ u) | x} — 1]
1 —w(x)

—EACY} +bs(x) —es(W) e T — 1
+M7 Mo Ser (x, 7, 79), "

by(x) — E{C(Y)r Y(Y,u) | x} — E{C(Y) | x}
’ E{r=t(Y,u)|x} -1 ’

) = B (| gyt - 0w | ) - 06 ) du)

B {1 —wx)}?
ds(u) = E(E{w_l(Y,HHX}_l |u>7

1—w(x)H1 — 7Y, u)th, T (v
My - E{E[g<x>{1w<x>}|u]{ e T gy

—g(x){1 - 7(v,u)}hj" (1)},
My = B ([bs(X) — COV)(Y, B) {1 - 7(¥,w)})
—E[E ({1 — w(x)pbs(x) — {1 - w(x)}E{¢(Y) | x)

et ) [ B () )~ 1] )

{1~ w()} (1~ (Y, )T
{1 (Vu) [x) - 1
1—wx){l —7m(Y,u ,
T 1 OO
El{r(Y,0) ~ w(x)}(Y) |
Efuw() —w?(x) [u]

dg(u)_l

az(u) =

Note that, in the efficient influence function ¢.g(x,7,7y) in (7), Sex(x,7,7y) is the
efficient score for 3 given in (6). Also, w(x) is defined as w(x) = [E{r~!(Y,u) | x, 1}]_1. If
the true value of 3 is zero hence the model (4) becomes ignorable, it can be easily checked
that bg(x) = E{¢(Y) | x}, c3(u) = My = 0 and the efficient influence function (7) becomes
the one in (3) in Section 2.

The expression of the efficient influence function (7), while explicit, is very complex.
This complexity is the result of the structure of the problem setting itself. The terms
involve the unknown non-parametric function g(u). In order to achieve efficient estimation
of E{¢(Y)} one would need to further plug in the estimators for 3, g(-), which will make
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the above equation more convoluted. In addition, the expectations in various expressions
are conditional on x, E(- | x), and estimating them involve first estimating conditional
expectations given x,7 = 1, E(- | x,7 = 1), and converting them to E(- | x) via E(-|x) =
W(x)E{- x 7~ Y(Y,u) | x,r = 1}. In obtaining all these expectations, to avoid possible model
misspecification so that efficiency can be guaranteed, non-parametric techniques need to be
used, and the nested structure of the conditional expectations will further complicate the
implementation of the estimator. These obstacles, in addition to the large number of terms,
will make the implementation of the efficient estimator very computationally expensive.

3.2 Robust Estimation of 8 and E{({(Y)}: Feasible

Shetty et al. (2022) discovered that the efficient score function in (6) has mean zero
property even when the unknown function g(u) is replaced by a working model g*(u),
due to the special form of the propensity score. This leads to the estimating equation

Zij\il g:ﬁ(xi7 T, T’Lyl) = 07 i'e'7
N, &% (u;) B{e ") | x;, 1} — E{e "Phiy(Y, B) | x;, 1}
i=1 E{eih(yvﬁ) | X, 1} + efg*(ui)E\‘{672h(Yu@) | X, 1}

where at any u, x,

[1—ri{l+ e )-PwBN] = 0,

B | B{e 0 Phyy (v, 8) | x, 11E{e 08 | x,1}/d*(x) | u,1]
B ([B{e=n8) | x, 1}]2/d*(x) | u,1)
c?*(x) = E{e*h(y’ﬁ) | x,1} + 679*(H)E{672h(y”3) | x,1}.

Under the misspecified g*(u), solving the above estimating equation still leads to a consis-
tent estimator for B, which reveals a robustness property of the procedure. The conditional
expectations in the above equations, which are functions of fully observed data, were esti-
mated using parametric or nonparametric methods.

Next, they proposed a robust estimator for the quantity of interest, E{((Y")}, using
the fact that E{C(Y)} = E{C(Y) | R = 1}pr(R = 1) + E{¢(Y) | R = O}pr(R = 0).
The first term E{¢(Y) | R = 1}pr(R = 1) only depends on the observed data, hence is
proposed to be estimated by N1 Zfil ri¢(yi). Further, E{¢(Y) | R = 0} = [E{{(Y) |
R = 0,x} fx|r—o(x)dx and

E{CY)(r~' —1) [x,1} _ E[¢(Y)exp{-n(Y,B8)} | x,1]

E{(ﬂ-il - 1) | X, 1} E[exp{_h(yvﬁ)} | X, 1]
Hence E{¢(Y) | R = 0)pr(R = 0) can be estimated by & v (1 —TZ)E[CE([}Q;?EHQ%ﬁQPﬁI]
Therefore they estimated E{¢(Y")} by

Ly (Tic(yz,) + 1y PO el (Y. B} | i 1]) |
N i=1 Elexp{—h(Y,8)} | xi,1]

In summary, the estimation procedures proposed in Shetty et al. (2022) relied on the
efficient score for 3; however, they do not require the estimation or modeling of g(u). They
used a working model g*(u) and showed that the resulting estimator is still consistent even
if the working model is misspecified.

a*(u) =

)

E{C(Y) | R=0,x} =
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4. Discussion

Our research mainly generalizes the assumption on the propensity score from ignorable
to nonignorable. This is practically important, especially in analyzing data with missing
values in various biomedical studies. Our main finding is that, the nice and clean property of
double robustness and semiparametric efficiency cannot be straightforwardly extended from
ignorability to nonignorability. In general, it is a lot more sophisticated and mathematically
involved. In the nonignorable propensity score we analyze in this work, we advocate, instead
of pursuing the efficient estimation of B and F{{(Y)}, one should consider the robust
estimation which, albeit less efficient, is empirically easier and more feasible.
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