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ABSTRACT
This work is motivated by learning the individualizedminimal clinically important difference, a vital concept
to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-
dimensional statistical problemwhere theparameter of interest lies in an individualized linear threshold. The
goal is to develop a hypothesis testing procedure for the significance of a single element in this parameter
as well as of a linear combination of this parameter. The difficulty dues to the high-dimensional nuisance
in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold
model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal
with these challenges, we construct a test statistic via a new bias-corrected smoothed decorrelated score
approach, and establish its asymptotic distributions under both null and local alternative hypotheses. We
propose a double-smoothing approach to select the optimal bandwidth in our test statistic and provide
theoretical guarantees for the selected bandwidth. We conduct simulation studies to demonstrate how our
proposed procedure can be applied in empirical studies. We apply the proposed method to a clinical trial
where the scientific goal is to assess the clinical importanceof a surgery procedure. Supplementarymaterials
for this article are available online.
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1. Introduction

1.1. Motivation: IndividualizedMinimal Clinically
Important Difference (iMCID) under
High-dimensionality

In clinical studies, instead of statistical significance, the effect of
a treatment or intervention is widely assessed through clinical
significance. By leveraging patient-reported outcomes (PRO)
that are directly collected from the patients without a third
party’s interpretation, the aim of assessing clinical significance is
to provide clinicians and policy makers the clinical effectiveness
of the treatment or intervention. For example, in our motivating
study, the ChAMP randomized controlled trial (Bisson et al.
2015), the interest is to identify the smallest WOMAC pain score
change such that the corresponding improvement and beyond
can be claimed as clinically significant. In Jaeschke et al. (1989),
this concept was first and formally introduced as the minimal
clinically important difference (MCID), “the smallest difference
in score in the domain of interest which patients perceive as
beneficial and which would mandate a change in the patient’s
management”.

There are roughly three approaches to determine the mag-
nitude of MCID (Lassere et al. 2001; Erdogan et al. 2016; Angst
et al. 2017; Jayadevappa et al. 2017): distribution-based, opinion-
based, and anchor-based. Although adopted in various studies
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(Wyrwich et al. 1999a, 1999b; Samsa et al. 1999; Bellamy et al.
2001; Norman et al. 2003), the first two approaches are usually
criticized (McGlothlin and Lewis 2014) due to, for example,
“distribution-based methods are not derived from individual
patients” and “expert opinion may not be a valid and reliable
way to determine what is important to patients.” The third
approach, anchor-based, conceptually determines the MCID by
incorporating both certainty of effective treatment encoded as a
continuous variable and the patient’s satisfaction collected from
the anchor question. It is clinically evident (Wells et al. 2001)
that the magnitude of MCID would depend on various factors
such as the demographic variables and the patients’ baseline
status. For example, in a shoulder pain reduction study (Heald
et al. 1997), because of the higher expectation for complete
recovery, the healthier patients with mild pain at baseline often
deemed greater pain reduction as “meaningful” than the ones
who suffered from chronic disease. Therefore, it is of scientific
interest to generally estimate the individualizedMCID (iMCID)
based on each individual patient’s clinical profile as well as to
quantify the uncertainties of those estimates.

Nowadays, there is an increasing use and advancing devel-
opment of EHR-based (electronic health records) studies in
clinical research. The EHR data are complex, diverse and
high-dimensional (Abdullah et al. 2020). The rich information
contained in the EHR data could facilitate the determination
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and quantification of iMCID. Therefore, there is a press-
ing need to develop statistical methods that incorporate the
high-dimensional data into both magnitude determination and
uncertainty quantification of iMCID.

1.2. Problem Formulation

To facilitate the presentation, we first introduce some notation.
Let X ∈ R be a continuous variable representing the score
change collected from the PRO, for example, the WOMAC pain
score change from baseline to one year after surgery in the
ChAMP trial. Let Y = ±1 be a binary variable derived from
the patient’s response to the anchor question, where Y = 1
represents an improvedhealth condition andY = −1 otherwise.
We use a d-dimensional vector Z to denote the patient’s clinical
profile including demographic variables, clinical biomarkers,
disease histories, among many others. Suppose the data we
observe are n iid samples {(xi, yi, zi)}ni=1 of (X,Y ,Z). We focus
on the high-dimensional setting, that is, d � n.

First, if there were no covariateZ, theMCID can be estimated
by argmaxτ {P(X ≥ τ |Y = 1) + P(X < τ |Y = −1)}, which is
equivalent to

argmin
τ

E[w(Y)L01{Y(X − τ)}], (1.1)

where L01(u) = 1
2 {1 − sign(u)} is the 0-1 loss, sign(u) = 1 if

u ≥ 0 and −1 otherwise, w(1) = 1/π , w(−1) = 1/(1 − π)

and π = P(Y = 1). When the high-dimensional covariate
Z is available, as the focus of this article, the natural idea is to
consider the iMCID with a functional form of Z, say τ(Z). In
clinical practice, a simple structure, such as linear, is preferred
due to its transparency and convenience for interpretation, espe-
cially for high-dimensional data. Therefore, we focus on the
linear structure τ(Z) = βTZ in this article. The objective thus
becomes

β∗ = argmin
β

R(β), where

R(β) = E
[
w(Y)L01{Y(X − βTZ)}], (1.2)

and the expectation is with respect to the joint distribution of
(X,Y ,Z). Throughout this article we assume that β∗ exists and
is unique—the existence and uniqueness can be verified under
specific models; see Section S3.1 in the supplementary materials
for details. Denote β∗ = (θ∗, γ ∗T)T , where θ∗ is an arbitrary
one-dimensional component of β∗ and γ ∗ represents the rest
of the parameter which is high-dimensional. In this article,
we start from considering the hypothesis testing procedure for
the parameter θ∗. With a simple reparameterization, the same
procedure can be applied to infer the iMCID cT0 β∗ for some fixed
and known vector c0 ∈ R

d.
It is worthwhile to mention that, although the motivation

of this article is to study iMCID, our formulation of this prob-
lem can be similarly applied to other scenarios as well, such
as the covariate-adjusted Youden index (Xu et al. 2014), one-
bit compressed sensing (Boufounos and Baraniuk 2008), linear
binary response model (Manski 1975, 1985), and personalized
medicine (Wang et al. 2018). Interested readers could refer to
Feng et al. (2022) for those examples.

1.3. From Estimation to Inference

Incorporating high-dimensional data in the objective, that is,
moving forward from (1.1) to (1.2), is not trivial, even for the
purpose of estimation only. Recently, Mukherjee et al. (2019)
established the rate of convergence of the (penalized) maxi-
mum score estimator for (1.2) in growing dimension that d is
allowed to grow with n. In a related work, Feng et al. (2022)
proposed a regularized empirical risk minimization frame-
work with a smoothed surrogate loss for estimating the high-
dimensional parameter β∗, and showed the estimation problem
is nonregular in that there do not exist estimators of β∗ with
root-n convergence rate uniformly over a proper parameter
space.

Under (1.2), developing a valid statistical inference proce-
dure is challenging, even for fixed dimensional setting. Man-
ski (1975, 1985) considered the binary response model Y =
sign(X − ZTβ + ε), where ε may depend on (X,Z) but with
Median(ε|X,Z) = 0. It can be shown that the true coefficient
β∗ can be equivalently defined via (1.2) with w(−1) = w(1) =
1/2. The maximum score estimator is proposed to estimate β ,
and is later shown to have a non-Gaussian limiting distribution
(Kim and Pollard 1990). To tackle the challenge of nonstandard
limiting distribution of the maximum score estimator, Horowitz
(1992) proposed the smoothedmaximum score estimator which
is asymptotically normal in fixed dimension.

On top of the nonregularity of the problem (1.2), the high-
dimensionality of the parameter adds an additional layer of
complexity for inference. The reason is that the estimator that
minimizes the penalized loss function does not have a tractable
standard limiting distribution under high dimensionality, due
to the bias induced by the penalty term. For regular models
(e.g., generalized linear models), there is a growing literature
on correcting the bias from the penalty for valid inference,
such as Javanmard and Montanari (2014), Zhang and Zhang
(2014), Van de Geer et al. (2014), Belloni et al. (2015), Ning
and Liu (2017), Cai and Guo (2017), Fang et al. (2017), Neykov
et al. (2018), Feng and Ning (2019), Fang et al. (2020), among
others. Theirmain idea is to first construct a consistent estimator
of the high dimensional parameter via proper regularization,
and then remove the bias (via debiasing or decorrelation) in
order to develop valid inferential statistics.While thesemethods
enjoy great success under regular models, it remains unclear
whether they can be applied to conduct valid inference in
nonregular models such as the problem we consider in this
article. To the best of our knowledge, our work is the first that
provides valid inferential tools for nonregular models in high
dimension.

1.4. Our Contributions

In this article, we propose a unified hypothesis testing frame-
work for the one-dimensional parameter θ∗ as well as for the
iMCID encoded as a linear combination of β∗. We start from
considering the hypothesis testing problem H0 : θ∗ = 0 versus
H1 : θ∗ �= 0, where we treat γ ∗ as a high-dimensional nuisance
parameter. Built on the smoothed surrogate estimation frame-
work (Feng et al. 2022), we propose a bias corrected smoothed
decorrelated score to form the score test statistic.
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There are several new ingredients in the construction of our
score statistic. First, the score function is derived based on a
smoothed surrogate loss to overcome the nonregularity due to
the nonsmoothness of the 0–1 loss. Second, unlike the existing
works on high-dimensional inference, the score function from
the smoothed surrogate loss is asymptotically biased. By explic-
itly estimating the bias term, we derive a new bias corrected
score. Third, the decorrelation step, developed by Ning and Liu
(2017) for regularmodels, is applied to reduce the uncertainty of
estimating high-dimensional nuisance parameters. Compared
to Ning and Liu (2017), the adoption of the smoothed loss and
the corresponding bias correction step are new, which alsomake
our inference much more challenging than the existing works.
Theoretically, we show that under some conditions, the pro-
posed score test statistic converges in distribution to a standard
Gaussian distribution under the null hypothesis. We further
establish the local asymptotic power of the test statistic when
θ∗ deviates from 0 in a local neighborhood. In particular, we
give the conditions under which the test statistic has asymptotic
power one.

When constructing the bias corrected smoothed decorrelated
score, we need to specify a bandwidth parameter, whose optimal
choice depends on the unknown smoothness of the data dis-
tribution. We further propose a double-smoothing approach to
select the optimal bandwidth by minimizing the mean squared
error (MSE) of the score function. To our knowledge, such
bandwidth selection procedures have not been studied for high-
dimensional models. We show that under some extra smooth-
ness assumptions, the ratio of the data-driven bandwidth to the
theoretically optimal bandwidth converges to one in probability.
Moreover, the proposed score test statistic with the data-driven
bandwidth still converges in distribution to a standard Gaussian
distribution under the null hypothesis.

1.5. Paper Structure and Notation

The organization of this article is as follows. In Section 2, we
first provide some background on the estimation of iMCID then
introduce the bias corrected smoothed deccorelated score and
the associated test statistic. In Section 3, we discuss the theo-
retical properties of the score test. The data-driven bandwidth
selection is addressed in Section 4. The corresponding results
for cT0 β∗, the linear combination of parameters, are briefly sum-
marized in Section 5. Sections 6 and 7 contain simulation studies
and a real data example, respectively. All the technical details and
proofs are contained in the supplementary materials.

Throughout the article, we adopt the following notation. For
any set S , we write |S| for its cardinality. For any vector v ∈ R

d,
we use vS to denote the subvector of v with entries indexed by
the set S , and define its �q norm as ||v||q = (

∑d
j=1 |vj|q)1/q

for some real number q ≥ 0. For any matrix M ∈ R
d1×d2 ,

we denote ||M||max = maxi,j |Mij|. For any two sequences an
and bn, we write an � bn if there exists some positive constant
C such that an ≤ Cbn for any n. We let an � bn stand for
an � bn and bn � an. Denote a ∨ b = max(a, b) and
a ∧ b = min(a, b). For function F(θ , γ ), we denote ∇θF(θ , γ )

and∇γ F(θ , γ ) as the first-order derivatives, and∇2
θ ,θF(θ , γ ) the

second-order derivative.

2. Methodology

2.1. Review of Penalized Smoothed Surrogate Estimation

Under high dimensionality that d � n, estimating β∗ via the
empirical risk minimization (1.2) induces challenges from both
statistical and computational perspectives. The nonsmoothness
of L01(u) would cause the estimator to have a nonstandard
convergence rate, which happens even in the fixed low dimen-
sional case (Kim and Pollard 1990). Moreover, minimizing the
empirical risk function based on the 0–1 loss is computationally
NP-hard and is often very difficult to implement. To tackle these
challenges, Feng et al. (2022) considered the following smoothed
surrogate risk

Rδ(β) = E

[
w(Y)Lδ,K

{
Y(X − βTZ)

}]
, (2.1)

where Lδ,K(u) = ∫ ∞
u/δ K(t)dt is a smoothed approximation of

L01(u), K is a kernel function defined in Section 3 and δ > 0 is a
bandwidth parameter. As the bandwidth δ shrinks to 0, Lδ,K(u)
converges pointwisely to L01(u) (for any u �= 0), from which it
can be shown that β∗ also minimizes the smoothed risk Rδ(β)

up to a small approximation error. They further proposed the
following penalized smoothed surrogate estimator

β̂ := argmin
β

Rnδ (β) + Pλ(β), (2.2)

where Pλ(β) is some sparsity inducing penalty (e.g., Lasso) with
a tuning parameter λ, and Rnδ (β) is the corresponding empirical
risk

Rnδ (β) = 1
n

∑n
i=1 R̄iδ(β) = 1

n
∑n

i=1 w(yi)Lδ,K
(
yi(xi − βTzi)

)
.

(2.3)
Computationally, the empirical surrogate risk Rnδ (β) is a smooth
function of β , which renders the optimization more tractable.
Statistically, under some conditions, the estimator β̂ is shown to
be rate-optimal, that is, the convergence rate of β̂ matches the
minimax lower bound up to a logarithmic factor. We refer to
Feng et al. (2022) for the detailed results.

2.2. Bias Corrected Smoothed Decorrelated Score

While Feng et al. (2022) showed that the penalized smoothed
surrogate estimator β̂ is consistent, it does not automatically
equip with a practical inferential procedure for β∗, mainly
because of the sparsity inducing penalty. In practice, how to
draw valid statistical inference is often the ultimate goal. In our
motivating example, it is of critical importance to quantify the
uncertainty of cT0 β∗ where c0 represents the realized value of a
new patient’s clinical profile. In other words, we would like to
develop a testing procedure for

H0L : cT0 β∗ = 0 versus H1L : cT0 β∗ �= 0. (2.4)

In this section, we focus on a special case of (2.4), the hypothesis
test for θ∗,

H0 : θ∗ = 0 versus H1 : θ∗ �= 0, (2.5)

where we treat γ as the nuisance parameter. Once the results for
(2.5) are clear, we can extend them to (2.4), to be presented in
Section 5.
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For (2.5), we propose a new bias corrected smoothed decor-
related score test. It is well known that the classical score
test is constructed based on the magnitude of the gradient of
the log-likelihood, or more generally, the empirical risk func-
tion associated with R(β) in (1.2). However, this construc-
tion breaks down in our problem due to the following two
reasons.

First, to construct the score statistic, one needs to plug in
some estimate of the nuisance parameter γ such as γ̂ obtained
by partitioning β̂ = (θ̂ , γ̂ T

)T in (2.2). However, since γ is a
high-dimensional parameter, the estimation error from γ̂ may
become the leading term in the asymptotic analysis of the score
function. To deal with the high-dimensional nuisance parame-
ter, we use the decorrelated score, where the key idea is to project
the score of the parameter of interest to a high-dimensional
nuisance space (Ning and Liu 2017). On the population level,
it takes the form

∇θR(θ , γ ) − ω∗T∇γR(θ , γ ), (2.6)

where the decorrelation vector is ω∗ =(∇2
γ ,γR(β∗)

)−1∇2
γ ,θR(β∗). When R(θ , γ ) corresponds to

the expected log-likelihood function of the data, the definition
of ω∗ coincides with that in Ning and Liu (2017). In general,
however,R(θ , γ ) is not always the log-likelihood function, so we
define ω∗ as

(∇2
γ ,γR(β∗)

)−1∇2
γ ,θR(β∗) in order to mitigate the

bias from estimating γ . We refer to the review paper (Neykov
et al. 2018) for further discussions.

Second, even if the above decorrelated score approach can
successfully remove the effect of the high-dimensional nuisance
parameter, one cannot construct the sample based decorrelated
score from (2.6), as the sample version of R(θ , γ ) is non-
differentiable, leading to the so called nonstandard inference.
To circumvent this issue, we approximate R(θ , γ ) in (2.6) by the
smoothed surrogate risk Rδ(θ , γ ) in (2.1), that is

∇θR(θ , γ ) − ω∗T∇γR(θ , γ )

= {∇θRδ(θ , γ ) − ω∗T∇γRδ(θ , γ )
} − approximation bias.

(2.7)
Since the empirical version of Rδ(θ , γ ) is smooth, we define the
(empirical) smoothed decorrelated score function as Sδ(θ , γ ) =
∇θRnδ (θ , γ ) − ω∗T∇γRnδ (θ , γ ). With γ estimated by γ̂ , the
estimated score function is then naturally defined as

Ŝδ(θ , γ̂ ) = ∇θRnδ (θ , γ̂ ) − ω̂
T∇γRnδ (θ , γ̂ ), (2.8)

where ω̂, to be defined more precisely in Section 2.3, is an
estimator of ω∗.

In view of (2.7) and (2.8), the sample version of∇θRδ(θ , γ )−
ω∗T∇γRδ(θ , γ ) is given by Ŝδ(θ , γ̂ ) and therefore, to construct
a valid score function, it remains to estimate the approximation
bias in (2.7). To proceed, we first analyze the population ver-
sion of this approximation bias, which is simply v∗T∇Rδ(β

∗)
at β = β∗, where v∗ = (1,−ω∗T)T . After some analysis,
we can show that the magnitude of the approximation bias
depends on the smoothness of f (x|y, z), the conditional den-
sity of X given Y and Z. To obtain an explicit form of the
approximation bias, we assume that f (x|y, z) is �th order dif-
ferentiable for some � ≥ 2, to be defined more precisely in
Section 3. Under this assumption, we can show that as the

bandwidth parameter δ → 0, v∗T∇Rδ(β
∗) = δ�μ∗(1 + o(1)),

where

μ∗ := v∗Tb∗ = v∗T( ∫
K(u)

u�

�! du
)

∑
y∈{−1,1}

w(y)
∫

yzf (�)(β∗Tz|y, z)f (y, z)dz,

=
( ∫

K(u)
u�

�! du
)

︸ ︷︷ ︸
γK,�

v∗T

E

[
w(Y)YZf (�)(β∗TZ|Y ,Z)

]
︸ ︷︷ ︸

T(�)(β∗)

, (2.9)

and f (�)(x|y, z) denotes the �th order derivative of f (x|y, z) with
respect to x.

To estimate the approximation bias v∗T∇Rδ(β
∗), it suffices

to estimate μ∗. From (2.9), once f (�)(x|y, z) at x = β∗Tz
is estimated, we can construct a plug-in estimator for μ∗. To
be specific, assume that a pilot kernel estimator with some
kernel function U and bandwidth h is available to estimate
f (�)(β∗Tz|y, z). Then we can estimate μ∗ by

μ̂ = γK,�v̂TT̂(�),n
h,U (β̂), (2.10)

where T̂(�),n
h,U (β̂) := 1

n
∑n

i=1 w(yi)yi zi
h1+�U(�)

( β̂
Tzi−xi
h

)
and v̂ =

(1,−ω̂
T
)T .

The last step to construct a valid score test is to find the
asymptotic variance of the smoothed decorrelated score Sδ(β

∗).
Lemma 1 in the next section shows that the asymptotic variance
of the standardized decorrelated score (nδ)1/2Sδ(β

∗) is σ ∗2 =
v∗T�∗v∗, where

�∗ :=
∑

y∈{−1,1}
w(y)2

∫
zzT

∫
K(u)2duf (β∗Tz|y, z)f (y, z)dz,

=
( ∫

K(u)2du
)

︸ ︷︷ ︸
μ̃K

E

[
w(Y)2ZZTf (β∗TZ|Y ,Z)

]
︸ ︷︷ ︸

H(β∗)

, (2.11)

and thus σ ∗ can be estimated by

σ̂ =
√

μ̃K v̂TĤn
g,L(β̂)v̂, (2.12)

where Ĥn
g,L(β̂) = 1

n
∑n

i=1 w2(yi)zizTi
1
g L(

xi−β̂
Tzi

g ) with some
kernel function L and bandwidth g. In Section S4 in the Sup-
plement, we propose an alternative kernel-free estimator of σ ∗,
which does not require any additional kernel function or band-
width. We show that the estimator is still consistent for σ ∗ but
may have a slower convergence rate than σ̂ here.

Equipped with the smoothed decorrelated score Ŝδ(θ , γ̂ ) in
(2.8), the estimate of the approximation bias δ�μ̂ in (2.10) and
the estimate of the asymptotic variance σ̂ 2 in (2.12), we define
the bias corrected smoothed decorrelated score statistic as

Ûn = √
nδ

(
Ŝδ(0,γ̂ )−δ�μ̂

σ̂

)
. (2.13)
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Remark 1. Compared to the existing decorrelated score
approach (Ning and Liu 2017), our methodological innovation
is to develop an explicit bias correction step to remove the
approximation bias in (2.7) induced by the smoothed surrogate
risk. From the theoretical aspect, our test statistic Ûn is rescaled
by (nδ)1/2 rather than the classical n1/2 factor, which leads to
the nonstandard rate of the decorrelated score not only under
the null but also under local alternatives; see Section 3.

2.3. Detailed Implementation

For numerical implementation, we follow the path-following
algorithm presented in Feng et al. (2022) to compute the ini-
tial estimator β̂ . For the estimator ω̂, recall that ω∗ satisfies
∇2

γ ,γR(β∗)ω∗ = ∇2
γ ,θR(β∗). Since ∇2R(β∗) can be approxi-

mated by the Hessian of the smoothed surrogate loss∇2Rnδ (β
∗),

we consider the following Dantzig type estimator ω̂, where

ω̂ = argmin
ω

||ω||1 s.t. ||∇2
γ ,θR

n
δ (β̂) − ∇2

γ ,γRnδ (β̂)ω||∞ ≤ λ′,

(2.14)
for some tuning parameter λ′ > 0.

For implementing Ûn, we note that the analysis of the
asymptotic distribution of Ûn is complicated by the depen-
dence between the estimator β̂ and Sδ(θ , γ ). To decouple the
dependence and ease theoretical development, we apply the
cross-fitting technique to construct the bias corrected smoothed
decorrelated score. Specifically, instead of using the same set of
samples for estimating β̂ , ω̂ and constructing the score function
Sδ(θ , γ ), we will first estimate β̂ using one set of samples, and
then use the rest of samples for estimating ω̂ and constructing
Sδ(θ , γ ). We can further switch the samples and aggregate the
decorrelated score.Without loss of generality, assume the sample
size n is even and we divide the samples into two halves with
equal size for this purpose. Formally, denote β̂

(i)
, ω̂(i), i = 1, 2

as the estimator based on the ith fold of the samples, Ni, and
similarly ∇Rn(i)

δ (β),∇2Rn(i)
δ (β) as the corresponding gradient

and Hessian. Define

Ŝ(1)
δ (θ , γ̂ (2)

) = ∇θR
n(1)
δ (θ , γ̂ (2)

) − ω̂
(1)T∇γR

n(1)
δ (θ , γ̂ (2)

),

and Ŝ(2)
δ (θ , γ̂ (1)

) in a similar way. The estimated decorrelated
score via cross-fitting is

Ŝδ(θ , γ̂ ) = 1
2
(
Ŝ(1)
δ (θ , γ̂ (2)

) + Ŝ(2)
δ (θ , γ̂ (1)

)
)
. (2.15)

Similarly, we define the cross-fitted estimators μ̂ and σ̂ as

μ̂ = 1
2
γK,�(v̂(1)TT̂(�),n(1)

h,U (β̂
(2)

) + v̂(2)TT̂(�),n(2)
h,U (β̂

(1)
)),

σ̂ 2 = μ̃K
2

[
v̂(1)TĤn(1)

g,K (β̂
(2)

)v̂(1) + v̂(2)TĤn(2)
g,K (β̂

(1)
)v̂(2)

]
,

(2.16)

where

T̂(�),n(1)
h,U (β̂

(2)
) = 1

|N1|
∑
i∈N1

w(yi)yi
zi

h1+�
U(�)

(
β̂

(2)T
zi − xi
h

)
,

Ĥn(1)
g,L (β̂

(2)
) = 1

|N1|
∑
i∈N1

w2(yi)zizTi
1
g
L(

xi − β̂
(2)T

zi
g

),

(2.17)

and similarly for T̂(�),n(2)
h,U (β̂

(1)
), Ĥn(2)

g,L (β̂
(1)

). Given Ŝδ(θ , γ̂ ) in
(2.15) and the above estimators μ̂ and σ̂ , we can form the score
test statistic Ûn in the same way as in (2.13).

3. Theory

3.1. Assumptions

In this article, we consider the following definition of function
smoothness.

Definition 1. We say the conditional density f (x|y, z) of X given
Y ,Z is �th order smooth, if for any z and y ∈ {−1, 1}, the
conditional density f (x|y, z) is �-times continuously differen-
tiable in x with derivatives f (i)(x|y, z) bounded by a constant
C, |f (i)(x|y, z)| ≤ C for i = 1, . . . , �, and f (�)(x|y, z) is Hölder
continuous with some exponent 0 < ζ ≤ 1, that is, for any z,�
and y ∈ {−1, 1}, |f (�)(x + �|y, z) − f (�)(x|y, z)| ≤ L�ζ , where
L > 0 is some constant.

Assumption 1. We assume f (x|y, z) is �th order smooth with
some integer � ≥ 2.

Assumption 1 concerns the smoothness of f (x|y, z). To see
why the smoothness condition is important, notice that the
gradient functions of (2.1) and (1.2) are

∇Rδ(β) =
∑

y∈{−1,1}
w(y)

∫
yz

[ ∫ 1
δ
K(

y(x − βTz)
δ

)f (x|y, z)dx
]
f (y, z)dz

∇R(β) =
∑

y∈{−1,1}
w(y)

∫
yzf (βTz|y, z)f (y, z)dz, (3.1)

from which we can see that f (βTz|y, z) in ∇R(β) is substituted
by its kernel approximation

∫ 1
δ
K(

y(x−βTz)
δ

)f (x|y, z)dx, and thus
the difference between∇Rδ(β) and∇R(β)naturally depends on
the smoothness of f (x|y, z).

Notice that our smoothness condition in Definition 1 is
slightly stronger than the standard Hölder smoothness condi-
tion in the nonparametric literature (Tsybakov 2009). In partic-
ular, we require that f (�)(x|y, z) is Hölder continuous with some
exponent 0 < ζ ≤ 1. This additional assumption is essential
to show the rate of the bias estimator μ̂ in (2.10). The Hölder
class condition in Assumption 1 can be relaxed to a variation of
Nikol’ski class condition (Tsybakov 2009); see Section S3.2 in the
supplementary materials for details.

Assumption 2. We assume K(t) is a kernel function with
bounded support that satisfies: K(t) = K(−t), |K(t)| ≤ Kmax <

∞ ∀ t ∈ R,
∫
K(t)dt = 1,

∫
K2(t)dt < ∞, and |K ′| < ∞.

We also assume that K degenerates at the boundaries. A kernel
is said to be of order � ≥ 1 if it satisfies

∫
tjK(t)dt = 0, ∀ j =

1, . . . , � − 1,
∫
t�K(t)dt �= 0, and

∫ |t|q|K(t)|dt are bounded by
a constant for any q ∈ [�, � + 1].
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Assumption 2 above is about the kernel functionK(t) that we
first introduced in the surrogate risk Rδ(β) in (2.1). We provide
a list of commonly seen second-order, fourth-order, and sixth-
order kernel functions in Section S3.3 of the supplementary
materials.

We now impose regularity conditions on (X,Y ,Z).

Assumption 3. There exists a constant c > 0 such that c ≤
P(Y = 1) ≤ 1 − c and the weight function w(·) is positive and
upper bounded by a constant.

Assumption 4. We assume max1≤j≤d |Zj| ≤ Mn for some Mn
that possibly depends on n, whereM2

n ≤ C
√
nδ/ log(d) for some

constant C > 0. We also assume that E[|Zj|4|Y = y] is bounded
by a constant for y ∈ {1,−1}.

Assumption 5. We assume σ ∗ = √
v∗T�∗v∗ is bounded away

from 0 and infinity by some constants, and |μ∗| = |v∗Tb∗| is
also upper bounded by a constant.

Assumption 4 requires the boundedness of Z and the fourth
order moment. Notice that if each component of Z is sub-
Gaussian with bounded sub-Gaussian norm, Assumption 4 is
satisfied with high probability with Mn � √

log d providing
(log d)3/(nδ) = O(1) which is a mild assumption. For binary
covariates Zj ∈ {0, 1}, it holds that Mn = 1. Assumption 5
ensures that the asymptotic variance of the smoothed decorre-
lated score σ ∗ does not degenerate and the approximation bias
μ∗ is bounded. In Section S3.4 in the supplementary materials,
we verify that under mild conditions, Assumptions 1–5 hold
under the binary responsemodel. Finally, we impose the follow-
ing assumption on the estimators of β∗ and ω∗.

Assumption 6. Assume there are estimators β̂ and v̂ =
(1,−ω̂

T
)T with

||β̂ − β∗||1 � η1(n) and ||v̂ − v∗||1/||v∗||1 � η2(n),

for some nonrandom sequences η1(n), η2(n) converging to 0 as
n → ∞.

It is shown by Feng et al. (2022) that, under some conditions,
the estimator β̂ in (2.2) achieves the (near) minimax-optimal
rate η1(n) = √

s( s log(d)n )�/(2�+1) where s = ||β∗||0. For v̂ =
(1,−ω̂

T
)T , we assume ||v̂ − v∗||1 � ||v∗||1η2(n). Notice that

the term ||v∗||1 is not absorbed into η2(n) only for notational
simplicity. In Lemma S7 in the Supplement, we show that a
Dantzig type estimator v̂ could attain the fast rate η2(n).

3.2. Theoretical Results

We start from the following lemma which characterizes the
asymptotic distribution of the decorrelated score function eval-
uated at the true parameter β∗.

Lemma 1. Under Assumptions 1–5, if (||v∗||1Mn)3/(nδ)1/2 =
o(1) and δ = o(1), then

√
nδ v∗T(∇Rnδ (β∗)−∇Rδ(β

∗))√
v∗T�∗v∗

d→ N(0, 1), (3.2)

where
v∗T∇Rδ(β

∗) = δ�v∗Tb∗(1 + o(1)). (3.3)

Asymptotically, the bias and standard deviation of
v∗T∇Rnδ (β

∗) can be seen from this lemma. Since μ∗ = v∗Tb∗

and σ ∗ = √
v∗T�∗v∗ are both bounded by constants, the

asymptotic bias and standard deviation are of order δ� and
(nδ)−1/2, respectively. Thus, choosing δ = cn−1/(2�+1) for any
constant c > 0 attains the optimal bias and variance tradeoff.
Note that in this lemma we require (||v∗||1Mn)3/(nδ)1/2 = o(1)
to verify the Lindeberg condition in the central limit theorem,
which holds as long as δ does not shrink to zero too fast.

Our first main theorem characterizes the asymptotic normal-
ity of the decorrelated score under the null hypothesis with nui-
sance parametersγ ∗ andω∗ estimated by those inAssumption 6.

Theorem 1. Under Assumptions 1–6, if (||v∗||1Mn)3/(nδ)1/2 =
o(1), log(d)nδ3 = o(1), nδ2�+1 = O(1), and

(nδ)1/2||v∗||1
(

η1(n)
δ

∨ η2(n)
)

(√
log(d)
nδ

∨ δ� ∨ M2
nη1(n)

)
= o(1), (3.4)

then under H0 : θ∗ = 0, it holds that
√
nδŜδ(0,γ̂ )−√

nδ2�+1μ∗
σ ∗

d→
N(0, 1).

Theorem 1 implies that the decorrelated score with some
high-dimensional plug-in estimators γ̂ and ω̂ has the same
asymptotic distribution as in Lemma 1. Several conditions are
needed to show this result. The first condition (||v∗||1Mn)3/
(nδ)1/2 = o(1) is from Lemma 1, and the second condition
log(d)
nδ3 = o(1) is alsomild as long as δ does not go to zero too fast.

The third condition nδ2�+1 = O(1) guarantees that the higher
order bias of the decorrelated score can be ignored and therefore
it suffices to only correct for the leading bias term in (3.3).

We now elaborate the condition (3.4). Roughly speaking,

the term
√

log(d)
nδ ∨ δ� ∨ M2

nη1(n) comes from the bound
for ||∇Rn(1)

δ (θ , γ̂ (2)
) − ∇R(θ , γ )||∞. Indeed, the cross-fitting

technique guarantees the independence between γ̂
(2) and

∇Rn(1)
δ (θ , γ ), which plays a key role in the analysis. Condition

(3.4) simply means that this bound interacting with the estima-
tion error of γ̂ and ω̂ is sufficiently small.We can further simplify
the condition (3.4) by plugging the order of η1(n) derived in
Feng et al. (2022) and η2(n) = s′(log(d)/n)(�−1)/(2�+1) derived
from Lemma S7 in the supplementary materials where s′ =
||ω∗||0.

Recall that in our score statistic Ûn in (2.13), we plug in the
estimators μ̂ and σ̂ for μ∗ and σ ∗. In Lemmas S8 and S9 in the
supplementary materials, we establish the rate of convergence
of μ̂ and σ̂ . Under the assumption that |μ̂ − μ∗| = op(1) and
|σ̂ − σ ∗| = op(1), the Slutsky’s theorem implies that the bias

corrected decorrelated score statistic Ûn
d→ N(0, 1) under the

null hypothesis.
Accordingly, given the desired significance level α, we define

the test function as
TDS = I(|Ûn| > �−1(1 − α/2)),
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where �−1(·) is the inverse function of the cdf of the standard
normal distribution. Thus, our result shows that the Type I error
of the test TDS converges to α asymptotically, that is, P(TDS =
1|H0) → α.

Now denote ∇2
θ |γR(β∗) = ∇2

θθR(β∗) − ∇2
θγR(β∗)(∇2

γ γ

R(β∗))−1∇2
γ θR(β∗). Our second main theorem characterizes

the limiting behavior of Ûn under the local alternative hypothe-
sis H1 : θ∗ = C̃n−φ for some constants C̃ �= 0 and φ > 0.

Theorem 2. Assume the conditions in Theorem 1 and in Lem-
mas S8 and S9 of the supplementary materials, and further

||v∗||21M4
nn

1−4φ/δ = o(1),
(nδ)1/2||v∗||1(η1(n) ∨ η2(n))Mnn−φ = o(1), (3.5)

and that μ̂, σ̂ are consistent estimators of μ∗, σ ∗. Then, by
choosing the optimal bandwidth δ � n−1/(2�+1), the following
results hold under the local alternative hypothesis H1 : θ∗ =
C̃n−φ .

1. When φ = �
2�+1 , it holds that Ûn

d→ N(−ξ , 1), where ξ =
C̃∇2

θ |γR(β∗)/σ ∗ is assumed to be a constant.
2. When φ < �

2�+1 , it holds that for any fixed t,
limn→∞ P(|Ûn| > t) = 1.

In addition to the conditions imposed in Theorem 1 and
Lemmas S8 and S9, we further require two additional conditions
involving the magnitude of θ∗ in (3.5). The first condition
||v∗||21M4

nn1−4φ/δ = o(1) is imposed to ensure the local asymp-
totic normality (LAN) in terms of the parameter θ∗. The second
condition in (3.5) is similar to (3.4), which controls the magni-
tude of ||∇R(0, γ ∗)||∞ and ||∇2Rδ(θ

∗, γ ∗) − ∇2Rδ(0, γ ∗)||max
under the alternative hypothesis.

This theorem implies that the proposed test converges in
distribution to a normal distribution with mean −ξ , when the
contiguous alternatives approach the null hypothesis at a rate
n− �

2�+1 . In addition, if the alternatives deviate from the null
hypothesis in the magnitude larger than n− �

2�+1 (i.e., φ < �
2�+1 ),

the asymptotic power of our test is 1. In other words, our test
can successfully detect the nonzero θ∗ whosemagnitude exceeds
the order of n−�/(2�+1). In contrast, for regular models, the local
alternative that is detectable is of the standard parametric rate
n−1/2.

Remark 2. By choosing the optimal bandwidth δ � n−1/(2�+1),
all the conditions in Theorem 2 can be simplified and summa-
rized as

M2
n ≤ n�/(2�+1)(log d)−1/2,

log d = o(n(2�−2)/(2�+1)),
||v∗||1M2

n = o(n2φ−(�+1)/(2�+1)), and
||v∗||1Mn = o(n�/(6�+3) ∧ nφ−�/(2�+1){η1(n) ∨ η2(n)}−1),

where η1(n) = s(4�+1)/(4�+2)(log d/n)�/(2�+1) = o(1),
η2(n) = s′(log d/n)(�−1)/(2�+1) = o(1) and ||v∗||1{(log d)1/2 ∨
n�/(2�+1)M2

nη1(n)}{n1/(2�+1)η1(n) ∨ η2(n)} = o(1). Consider
the extreme case � → ∞, it can be verified that log d = n1/5,
s = s′ = n1/10, ||v∗||1 = n1/20,Mn = n1/50 would satisfy all of
these conditions when φ = 1/2.

In addition, these conditions could be further simplified if
one is willing to assume ||v∗||1 = O(1) andMn = O(1). If that
is the case, condition (3.4) becomes

s(4�+1)/(4�+2)(s(4�+1)/(4�+2) ∨ s′)
n−(�−1)/(2�+1)(log d)(4�−1)/(4�+2) = o(1)

when taking δ � n−1/(2�+1). If we consider the extreme case
with � → ∞, it suffices to have s(s∨ s′) log d = o(n1/2) in order
to satisfy all of the conditions when φ = 1/2.

4. Data-Driven Bandwidth Selection

In the previous section, we establish the theoretical property
of the bias corrected smoothed decorrelated score when the
underlying conditional density f (x|y, z) is �th order smooth.
However, this smoothness parameter � is typically unknown in
practice, leading to the following two complications. First, in
Assumption 2, a kernel function K of the same order is applied,
which implicitly requires the knowledge on the smoothness
parameter �. In practice, the choice of kernel functions is often
determined by the user’s preference rather than the theory. Since
high order kernels may exacerbate the problem of variability,
choosing low order kernels of 2 or 4 is often recommended
(even if the density is more smooth); see Härdle et al. (1992).
Second, the optimal bandwidth δ � n−1/(2�+1) that balances
the asymptotic bias and variance of the decorrelated score in
Lemma 1 also depends on the unknown �. It is well known from
the nonparametric literature that the choice of bandwidth is an
extremely important problem of both theoretical and practical
values (Bowman1984; Silverman 1986; Sheather and Jones 1991;
Hall et al. 1992; Jones et al. 1996).

In this section, we focus on how to choose the bandwidth
δ in a data-driven manner. In view of the above discussion on
the kernels, we assume that a low order kernel K is chosen (for
simplicity, we still denote its order by �) and meanwhile the
underlying conditional density has a higher order smoothness
parameter.

Assumption 7. We assume that the kernel K is of order � and
f (x|y, z) is (� + r)th order smooth for some � ≥ 2 and r > 0.

We define the optimal bandwidth δ∗ as the one that mini-
mizes the MSE of the smoothed decorrelated score:

δ∗ = argmin
δ

M(δ), where M(δ) = E[(v∗T∇Rnδ (β
∗))2].

(4.1)
A direct bias-variance decomposition ofM(δ) gives

M(δ) = 1
n
E[(v∗T∇R̄1δ(β

∗))2] + n − 1
n

(v∗T∇Rδ(β
∗))2

:= 1
n
V(δ) + n − 1

n
SB(δ), (4.2)

where ∇R̄1δ(β
∗) is defined in (2.3), V(δ) = E[(v∗T∇R̄1δ(β

∗))2]
is used as a proxy for the variance, and SB(δ) = (v∗T∇Rδ(β

∗))2
denotes the squared error. To estimate δ∗, our main idea is to
construct estimators V̂(δ) and ŜB(δ) for V(δ) and SB(δ) and
then estimate δ∗ by

δ̂ = argmin
δ

M̂(δ) where M̂(δ) = 1
n
V̂(δ) + n − 1

n
ŜB(δ).
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From the proof of Lemma 1, we can show that SB(δ) =
(δ�μ∗)2(1+ o(1)) and V(δ) = δ−1σ ∗2(1+ o(1)) as δ → 0, and
thus σ ∗2/δ and (δ�μ∗)2 are the asymptotic versions of V(δ) and
SB(δ), respectively. As a result, one may attempt to estimate the
optimal bandwidth by minimizing the asymptotic MSE σ̂ 2/δ +
(δ�μ̂)2 with the plug-in estimators σ̂ and μ̂ developed in the
previous section. However, the asymptotic MSE depends on the
unknown smoothness � and therefore is not appropriate for
bandwidth selection in practice.

Instead, we propose to estimate V(δ) and SB(δ) using a
different strategy. Our estimates are still in the cross-fitting
fashion, but when we estimate the bias B(δ) that dues to the
approximation using the kernel function K(·) of order � with
bandwidth δ, we will have to use a new pilot kernel function J(·)
of order rwith bandwidth b. Essentially when the target function
has higher order smoothness than the kernel function applied
for estimation, a different kernel smoothing procedure has to be
used for estimating the bias. This is motivated by the “double-
smoothing” technique in nonparametric statistics (Härdle et al.
1992; Neumann 1995), and is also related to the “smoothed cross
validation” approach (Hall et al. 1992).

To be specific, we estimate V(δ) with the following moment
estimator

V̂(δ) = 1
2
(
v̂(1)T

�̂(1)(δ)v̂(1) + v̂(2)T
�̂(2)(δ)v̂(2)), (4.3)

where �̂(1)(δ) = 1
|N1|

∑
i∈N1 ∇R̄iδ(β̂

(2)
)∇R̄iδ(β̂

(2)
)T and simi-

larly for �̂(2). To estimate the squared bias SB(δ), note that the
bias term B(δ) can be written as

B(δ) = v∗T∇Rδ(β
∗) = v∗T (∇Rδ(β

∗) − ∇R(β∗))︸ ︷︷ ︸
A(β∗,δ)

=
∫
u
K(u)

{
v∗T(∇R(uδ,β∗) − ∇R(β∗))

}
du, (4.4)

where we use ∇R(uδ,β∗) = ∑
y w(y)

∫
z zyf (uδ + β∗Tz|y, z)

f (y, z)dz to denote the population gradient with a bias induced
by uδ, with a bit abuse of notation. We propose to estimate B(δ)

by

B̂(δ) = 1
2

(
v̂(1)T 1

|N1|
∑
i∈N1

Ai(β̂
(2)
, δ)

+ v̂(2)T 1
|N2|

∑
i∈N2

Ai(β̂
(1)
, δ)

)
, (4.5)

where

Ai(β̂ , δ) =
∫
u
K(u)w(yi)

ziyi
b

[
J(
xi − β̂

T
zi − uδ
b

) − J(
xi − β̂

T
zi

b
)
]
du,

(4.6)
and J(·) is the aforementioned new pilot kernel function of order
r with bandwidth b. Essentially, we substitute ∇R(uδ,β∗) and
∇R(β∗) in (4.4) with their corresponding second smoothers
through kernel function J(·). We now estimate the squared bias
by ŜB(δ) = B̂(δ)2.

To analyze theoretical properties of the estimates, let’s define
� = [q1n−1+ε1 , q2n−1+ε2 ] as the range of bandwidth δ for some
constants 0 < q1 ≤ q2 and 0 < ε1 < ε2 < 1. Since the optimal

bandwidth δ∗ is of order n−1/(2�+1), we can guarantee δ∗ ∈ �

for some suitable ε1 and ε2. Under some conditions, the uniform
convergence rates of V̂(δ) and ŜB(δ) are given by

|V̂(δ) − V(δ)| � ψ1(n, δ)
δ

, |ŜB(δ) − SB(δ)| � δ2�ψ2(n, δ),

uniformly over all δ ∈ �, where

ψ1(n, δ) = ||v∗||21
(

η2(n) ∨
√
log(n ∨ d)

nδ
∨ Mnη1(n)

)
,

ψ2(n, δ) = ||v∗||21
(√

log(n ∨ d)
nb2�+1 ∨ (δ ∨ b)r

∨Mnη1(n)(1 ∨ Mnη1(n)
δ�

) ∨ η2(n)
)
.

We refer to Lemmas S11 and S12 in Section S2 in the supplemen-
tary materials for the formal statement of the results and further
interpretations of the rates. With these two lemmas, we further
establish the convergence rate of the data-driven bandwidth δ̂,
that is, δ̂−δ∗

δ∗ � Cn,δ∗ , where Cn,δ∗ = ψ1(n, δ∗) ∨ ψ2(n, δ∗), see
Theorem S2 in the supplementary materials. That is, our data-
driven bandwidth δ̂ is consistent.

For notational simplicity, let Ûn(δ) denote the bias corrected
smoothed decorrelated score test statistic with a pre-specified
bandwidth parameter δ. The main result in this section shows
that Ûn(δ̂) with the data-driven bandwidth δ̂ is still asymptoti-
cally normal under the null hypothesis.

Theorem 3. Under the conditions in Theorem S3 in the supple-
mentary materials and H0 : θ∗ = 0, it holds that

Ûn(δ̂)
d→ N(0, 1).

There are twomajor challenges in the analysis of Ûn(δ̂). First,
the estimator δ̂ and the decorrelated score statistic are generally
dependent with each other, which prevents the direct use of
many concentration inequalities such as Bernstein’s. To decouple
the dependence, similar to Section 2.3, we carefully design a
cross-fitting approach by splitting the data into three folds. Due
to the space constraint, we leave the detailed algorithm to Sec-
tion S2 in the supplementary materials. Second, different from
Theorem 1 which presents the asymptotic normality of Ûn(δ)

with a fixed δ, the uncertainty of δ̂ needs to be incorporated
in the proof of Theorem 3. In particular, we use concentration
inequalities to take care of the higher order error terms in the
Taylor expansion of Ûn(δ̂) with respect to both δ and β . This
leads to much more involved analysis than that in Theorem 1.

5. Hypothesis Testing for the Linear Combination

Our results presented thus far are for the hypothesis testing
(2.5), where θ is simply a single element in β . In applications,
researchers may be more interested in the hypothesis testing
(2.4), a linear combination of the parameter β . For example, as
we mentioned at the beginning of Section 2.2, in the study of
inferring iMCID, it is of interest to test cT0 β∗ = 0 where c0
represents the realized value of a new patient’s clinical profile
and we assume c01 �= 0 without loss of generality. The methods
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and results for (2.5) are essential. Below, we show that, in a
parallel manner, all of them can be developed for (2.4) which
is more applicable in scientific applications. We also point out,
technically, ourmethods and results can be further extended to a
more general null hypothesisH0M : Mβ∗ = 0whereM ∈ R

m×d

andm is a fixed integer.
To test the hypothesis (2.4), consider the one to one repa-

rameterization (θ , γ ) → (ξ , γ ), where ξ = cT0 β . Under this
new set of parameters, the null hypothesis can be written as
H0L : ξ∗ = 0, and the smoothed surrogate loss reduces to
Rnδ (

ξ−cT02γ
c01 , γ ), where we write c0 = (c01, cT02)T with c02 ∈ R

d−1.

Define C =
[

1
c01 0

−c02
c01 Id−1

]
∈ R

d×d. From the chain rule, we

can show that

∇(ξ ,γ )Rnδ (
ξ − cT02γ

c01
, γ ) = C

∇Rnδ (θ , γ ), ∇2
(ξ ,γ ),(ξ ,γ )R

n
δ (

ξ − cT02γ
c01

, γ ) = C∇2Rnδ (θ , γ )CT ,

(5.1)

and similarly for Rδ(
ξ−cT02γ

c01 , γ ) and R(
ξ−cT02γ

c01 , γ ). Therefore,
following the same idea as in Section 2.2, we define the smoothed
decorrelated score as

SLδ (ξ , γ ,ω
∗
L) = ∇ξRnδ (

ξ−cT02γ
c01 , γ ) − ω∗T

L ∇γRnδ (
ξ−cT02γ

c01 , γ ),
(5.2)

where ω∗
L =

[
∇2

γ ,γR(
ξ−cT02γ

c01 , γ )
]−1∇2

γ ,ξR(
ξ−cT02γ

c01 , γ ).
We write v∗

L = (1,ω∗T
L )T and denote μ∗

L, σ
∗
L as the (scaled)

asymptotic bias and standard deviation of the score function
SLδ (ξ , γ ,ω

∗
L), that is,

μ∗
L = v∗T

L Cb∗, σ ∗
L =

√
v∗T
L C�∗CTv∗

L, (5.3)

where b∗ and �∗ are defined in (2.9) and (2.11), respectively.
From above we can see that the estimation methods for ω∗,μ∗
and σ ∗ proposed in Section 2.2 can be easily extended to obtain
corresponding estimators for ω∗

L,μ
∗
L, and σ ∗

L . Given these esti-
mators, we define the test statistics for H0L as

ÛL
n = (nδ)1/2

SLδ (0, γ̂ , ω̂L) − δ�μ̂L
σ̂L

.

Accordingly, all the parallel results presented in Sections 3 and
4 can be developed. In the interest of space, we only present the
following result that characterizes the asymptotic distribution of
ÛL
n under the null hypothesis H0L. All other parallel results are

omitted.

Theorem 4. If Assumptions 1–6 hold with μ∗, σ ∗, v∗, v̂ substi-
tuted by μ∗

L, σ
∗
L , v∗

L, v̂L, and in addition μ̂L and σ̂L are consistent
estimators of μ∗

L and σ ∗
L , respectively, then under the same

conditions as in Theorem 1 and the null hypothesis H0L : ξ∗ =
0, it holds that ÛL

n
d→ N(0, 1).

6. Simulation Studies

In this section, we evaluate the empirical performance of the
proposed methods. Although many models can be formulated
as special cases of our problem (1.2), here we mainly consider
the following binary response model

Y = sign(X − β∗TZ + ε), (6.1)

where ε possibly depends on X and Z but the median of ε given
X and Z is 0.

6.1. Experiments with Prespecified Bandwidth

In the first set of experiments, we evaluate the performance of
the proposed test statistic with prespecified bandwidth. We use
Gaussian kernel K of order 2 with bandwidth prespecified at
δ = n−1/5. The choices of other tuning parameters are detailed
in Section S5 in the supplementary materials. Throughout this
section, we consider sample size n = 800, dimension d =
100, 500, 1000 and generate β∗

2 , . . . ,β∗
s by sampling from a uni-

form distribution within [1, 2] for s = 3, 10. The first coordinate
β∗
1 would vary depending on the purpose of the experiment, and

the rest coordinates ofβ∗ are all set to 0.After that, the coefficient
vector is then normalized such that ||β∗||2 = 1. We generate
X ∼ N(0, 1) and Z ∼ N(0,�ρ), where (�ρ)jk = ρ|j−k| with
ρ = 0.2, 0.5, 0.7. For all cases, the simulations are repeated 250
times.

In the first scenario, we let ε ∼ N(0, 0.22(1+2(X−β∗TZ)2)),
which is referred to as Heteroscedastic Gaussian scenario later
on. We compare the proposed smoothed decorrelated score
test (SDS) with the decorrelated score test method (DS) (Ning
and Liu 2017) and Honest confidence region method (Hon-
est) (Belloni et al. 2016) from the “hdm” package. We fix the
significance level at 0.05 and first evaluate the performance of
the tests under the null hypothesis H0 : β∗

1 = 0. In this
case, we set β∗

1 = 0. Note that the R code for the DS and
Honest approaches is tailored for the high-dimensional logis-
tic regression, which differs from the above data-generating
process.

Table 1 reports the empirical Type I error rate under the first
scenario. The error rate from the SDS method is generally close
to the nominal significance level 0.05, which empirically verifies
the theoretical results in Theorem 1. For both Honest and DS
methods, the empirical Type I error rate seems to be consistently
higher or lower than the nominal level. This is expected as

Table 1. The empirical Type I error rate of the tests under the Heteroscedastic
Gaussian scenario from SDS, DS and Honest methods.

s = 3 s = 10

d Method ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.2 ρ = 0.5 ρ = 0.7

100 SDS 5.6% 5.0% 6.4% 4.8% 4.8% 5.2%
DS 1.2% 2.0% 2.0% 2.0% 1.8% 1.8%

Honest 5.2% 5.6% 7.6% 5.4% 5.2% 6.8%
500 SDS 4.8% 4.4% 5.6% 5.6% 5.0% 4.8%

DS 0.2% 0.4% 0.4% 0.2% 0.0% 0.4%
Honest 7.0% 10.8% 7.6% 8.2% 6.8% 7.2%

1000 SDS 4.4% 6.0% 5.6% 5.0% 5.4% 5.0%
DS 0.0% 0.4% 0.2% 0.0% 0.0% 0.4%

Honest 10.0% 10.4% 12.6% 12.4% 6.4% 15.2%
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Figure 1. Empirical rejection rate of the proposed test under both scenarios with s = 10, d = 100, 500, 1000 and ρ = 0.2, 0.5, 0.7.

Table 2. The empirical Type I error rate of the tests under the Heteroscedastic
Uniform scenario from SDS, DS, and Honest methods.

s = 3 s = 10

d method ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.2 ρ = 0.5 ρ = 0.7

100 SDS 6.0% 5.6% 6.8% 7.2% 6.8% 7.2%
DS 2.0% 0.4% 0.8% 1.6% 0.8% 1.2%

Honest 9.6% 17.6% 19.2% 9.6% 18.4% 21.6%
500 SDS 6.4% 6.8% 6.4% 6.0% 7.6% 7.2%

DS 1.6% 0.8% 0.0% 0.8% 1.2% 0.4%
Honest 11.2% 15.6% 20.0% 13.6% 17.2% 22.8%

1000 SDS 8.4% 7.6% 8.8% 9.2% 7.6% 8.0%
DS 0.0% 0.4% 0.4% 1.2% 0.8% 0.0%

Honest 13.6% 15.2% 22.4% 16.0% 19.2% 20.8%

these two methods only work for the logistic regression. By
taking a closer look at the Normal Q-Q plot of the test statis-
tics, we observe that the distribution of the test statistics from
the Honest and DS methods deviate substantially from Gaus-
sian, as opposed to those yield by the proposed SDS method.
Please see Section S6.2 in the supplementary materials for more
details.

In the second scenario, we let ε ∼ 0.2 · Unif(−G(X,Z),
G(X,Z)), where G(x, z) =

√
1 + 2(x − β∗Tz)2. In other words,

the error ε follows a uniform distribution such that its range
depends on the covariates X,Z (we will call it Heteroscedas-
tic Uniform scenario). Similar to the Heteroscedastic Gaussian
case, we compare SDS method with DS and Honest methods
and study the empirical Type I error rate. From Table 2 we can
see that the proposed method yields Type I error close to the
nominal level as opposed to the other two. The Normal QQ-
plots in Section S6.2 in the supplementary materials further
confirm the asymptotic normality of our SDS test statistics. The
above results suggest that in practice, if the underlying data
generating process is the binary response model, our proposed
approach provides valid inferential results while the existing
approaches fail.

Next, we investigate the empirical power of the SDS
method. We use the same data-generating processes as in the
above two scenarios, but instead of setting β∗

1 = 0, we
vary β∗

1 in the grid {0.02, 0.05, 0.075, 0.10, 0.15, 0.20, 0.25, 0.30}
for the Heteroscedastic Gaussian case, and {0.025, 0.05, 0.075,
0.10, 0.125, 0.15, 0.175} for the Heteroscedastic Uniform case.
Similarly, we consider s = 3, 10, d = 100, 500, 1000 and ρ =
0.2, 0.5, 0.7. Figure 1 shows the empirical rejection rate of the
SDS method when s = 10 (see Section S6.3 for the results when
s = 3). Note that we do not compare with the DS and Honest
methods for the empirical power, because these two tests do not
maintain the desired Type I error in our scenarios. We can see
that for all considered cases, the empirical power converges to 1
as the magnitude of the signal β∗

1 becomes larger, which agrees
with Theorem 2. In addition, we find that the dimension d has
minor effects on the empirical power, which is reasonable as
Theorem 2 only depends on log d via the condition (3.5). Finally,
we note that the power of the test deteriorates as the correlation
of the design increases.

6.2. Experiments with Data-Driven Bandwidth

In the next set of experiments, we study the empirical perfor-
mance of the data-driven bandwidth selection approach.Wefirst
study the Type I error and power of our SDS method for testing
H0 : β∗

1 = 0 versus H1 : β∗
1 �= 0 with data-driven bandwidth.

We consider the same data generating processes as in Section 6.1
with n = 800, d = 100, s = 3, 10 and ρ = 0.2, 0.5, 0.7.
We seek for the minimizer of the estimated MSE over δ ∈
[0.1, 1.2] and each experiment is repeated 250 times. After δ̂ is
obtained, we plug-in it into the test statistic and estimate the bias
and variance as discussed in Section S5 in the supplementary
materials. With the same implementations, we also evaluate the
empirical power of the test by varying β∗

1 in the same grid as in
Section 6.1.
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Figure 2. Empirical power of the tests under the Heteroscedastic Gaussian and Uniform scenarios with data-driven bandwidth δ̂.

Table 3. The empirical Type I error rate of the tests under the Heteroscedastic
Gaussian and Uniform scenarios with data-driven bandwidth δ̂.

s = 3 s = 10

Data generating process ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.2 ρ = 0.5 ρ = 0.7

Heteroscedastic Gaussian 6.8% 7.2% 5.6% 8.4% 7.2% 6.4%
Heteroscedastic Uniform 8.8% 8.0% 7.6% 8.4% 6.8% 5.2%

Table 3 shows the empirical Type I error rate over 250 repe-
titions when β∗

1 = 0, and Figure 2 shows the empirical power
for different β∗

1 �= 0 in these scenarios. Similar to the case
when the bandwidth δ is prespecified, the empirical Type I errors
are generally close to the nominal level 0.05, and the empirical
power converges to 1 as β∗

1 becomes larger. We refer to Section
S6 in the supplementary materials for further numerical results.

From all of these numerical results, we recommend using the
data-driven bandwidth selection approach in practice.

7. Analysis of ChAMP Trial

In this section we analyze the ChAMP (Chondral Lesions And
Meniscus Procedures) trial (Bisson et al. 2017), which con-
tains clinical information about n = 138 patients undergoing
arthroscopic partial meniscectomy (APM), a knee surgery for
meniscal tears. The response variable is Y = 1 if the patient is
healthy/satisfactory and −1 otherwise, obtained from the SF-36
survey. The continuous measurement X encodes the WOMAC
pain score change from the baseline to one-year after the surgery.
The dataset also contains d = 160 additional variables from the
patient’s clinical profile, denoted by Z. The scientific question
is to determine the iMCID, defined as a linear combination
of the covariates βTZ, such that the treatment of debriding
chondral lesions can be claimed as clinically significant by
comparing the WOMAC pain score change with this individ-
ualized threshold. As we can see, this application naturally

Table 4. The three significant variables (with p-value < 0.05/d) identified by the
proposed SDSmethod, and their corresponding p-values obtained from the DS and
Honest methods.

p-value KQOL_6wk flex_inj_pre KSymp_3mo

SDS 3.583e-07 5.575e-05 4.482e-05
DS 0.0168 0.0340 0.0213
Honest 0.0591 0.0241 0.4383

fits into our formulation (1.2) with weight function w(y) =
1/P(Y = y). The goal of the analysis is to address this ques-
tion by providing valid inferential results for each component
of β .

We apply the proposed SDS test for H0j : βj = 0 versus
H1j : βj �= 0, where 1 ≤ j ≤ d. We use the same tuning param-
eter setting for estimating β∗,ω∗ and the asymptotic bias and
variance of the score function following Section S5. For com-
parison, we also apply the DS and Honest methods discussed in
Section 6.1.

Table 4 lists the three significant variables (i.e., those with p-
value < 0.05/d =3.125e-04) from the proposed SDS approach.
Interestingly, all of them are clinically relevant and can pro-
vide meaningful implications for iMCID. The significance of
the variable KQOL_6wk, which represents the KOOS score for
quality of life at 6-week, definitely indicates how the patients
recover at a relatively early stage after the surgery. The vari-
able flex_inj_pre means the degree of flexion right before the
surgery. Its significance recommends that the baseline disease
severity would affect the magnitude of iMCID—this similar
phenomenon was also discovered in the clinical literature for
other types of diseases, such as the shoulder pain reduction study
(Heald et al. 1997). The third variable KSymp_3mo is the KOOS
score for other symptoms at 3-month. In some previous analysis
of ChAMP trial where only estimate is available but without
inference results, this variable has the second largest coefficient
(Feng et al. 2022).
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The results from the DS and the Honest methods are differ-
ent. First, the DS method only yields 1 significant variable and
the Honest method yields 13. From Table 4, the three signifi-
cant variables identified by the proposed SDS method cannot
be identified by either DS or Honest. In general, compared
to the proposed SDS method, DS identifies fewer significant
variables while Honest identifies more. This phenomenon is
also evident from the simulation results in Section 6.1. On
the other hand, the results from the three methods do not
completely contradict with each other. For instance, the two
significant variables, KQOL_6wk and KSymp_3mo, identified
from the proposed SDS method, has the fourth and fifth
smallest p-values in the DS method. Please refer to Section
S6.7 in the supplementary materials for more results of this
analysis.

In general, recall that DS and Honest methods are devised
for the logistic regression, while our proposed SDS method can
produce valid inference results under the binary responsemodel
(6.1), which is more flexible since the distribution of ε is left
unspecified. Therefore, we expect that the significant variables
identified by SDS are potentially more reliable and clinically
more relevant. Our results presented in this session echo this
rationale.

Supplemental Materials

The supplementary materials include the technical proofs, some more
detailed theoretical results and discussions, and additional numerical
results.
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