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ABSTRACT
Weconsider theestimationproblem inhigh-dimensional semi-supervised learning.Ourgoal is to investigate
when and how the unlabeled data can be exploited to improve the estimation of the regression parameters
of linear model in light of the fact that such linear models may be misspecified in data analysis. We first
establish the minimax lower bound for parameter estimation in the semi-supervised setting, and show that
this lower bound cannot be achieved by supervised estimators using the labeled data only. We propose an
optimal semi-supervised estimator that can attain this lower bound and therefore improves the supervised
estimators, provided that the conditionalmean function canbeconsistently estimatedwith aproper rate.We
further propose a safe semi-supervised estimator. We view it safe, because this estimator is always at least as
good as the supervised estimators. We also extend our idea to the aggregation of multiple semi-supervised
estimators caused by different misspecifications of the conditional mean function. Extensive numerical
simulations and a real data analysis are conducted to illustrate our theoretical results. Supplementary
materials for this article are available online.
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1. Introduction

Semi-supervised learning is an emerging research area in statis-
tics and machine learning (Zhu 2005; Chapelle, Scholkopf, and
Zien 2006), and can have a great potential in electronic health
records (EHR) based studies for clinical research. In these types
of studies, one major challenge is the lack of gold-standard
health outcomes or phenotypes (Kohane 2011). The validated
phenotypes are often obtained by manual chart reviews that are
prohibitively expensive (Liao et al. 2010); therefore, only can a
very small subset of patients be annotated by experts in reality.
For the rest of the patients, their covariate information, often
high-dimensional (Weisenthal et al. 2018; Gensheimer et al.
2019; Abdullah et al. 2020), is only available.

Developing efficient statistical methods to analyze such data
is a timely and important problem. Let Y denote the outcome
variable and X the p-dimensional covariates. In addition to n
iid samples (Y1,X1), . . .(Yn,Xn) ∼ (Y ,X), we also observe N
iid data consisting of only covariates, Xn+1, . . .,XN+n ∼ X.
Following the convention, the former is referred to as labeled
data and the latter is called unlabeled data. We also denote
Y = (Y1, . . .,Yn)T ∈ R

n and X = (X1, . . .,Xn)T ∈ R
n×p

the outcomes and covariates from the labeled data, and X̃ =
(X1, . . .,XN+n)T ∈ R

(N+n)×p the covariates from both. In
this work, we focus on high-dimensional regression problems;
namely, p can be much larger than n. The size of the unlabeled
data N is allowed but not required to be larger than n.

We consider the so-called assumption lean regression frame-
work (Buja et al. 2019; Berk et al. 2019),
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Y = f (X) + ε, (1.1)

where f (X) = E(Y|X) is the unknown conditional mean func-
tion, ε is the random error independent of X ∈ R

p with E(ε) =
0, E(ε2) = σ 2, and σ 2 is an unknown parameter. We consider
the random design and assume that X and Y are centered with
E(X) = 0 and E(f (X)) = 0. On one hand, we would like to
put as fewer assumptions as possible on f (X) to enable model
flexibility. On the other hand, for the purpose of interpretability,
we often fit simple parametric models such as linear regression
to explain the association between Y and X. To meet both ends,
we consider linear regression as a workingmodel where the true
data generating process follows (1.1). Since E[(Y − XTθ)2] =
E[(f (X) − XTθ)2] + σ 2, the regression coefficients in a linear
model correspond to the L2(P) projection of f (X) onto the linear
space spanned by X, that is,

θ∗ = arg min
θ∈Rp

E[(f (X) − XTθ)2]

that delineates the linear dependence between Y and X. We
do not include intercept in θ∗ simply because E(X) = 0 and
E(f (X)) = 0. Our goal here is to estimate the high dimensional
parameter θ∗.

In the supervised setting with n labeled observations, a num-
ber of penalized estimators have been proposed to estimate θ∗,
such as lasso (Tibshirani 1996) and Dantzig selector (Candes
and Tao 2007).While significant progress has beenmade toward
understanding the estimation in the fully supervised setting,
there is very limited research in the semi-supervised setting. It is
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important to observe that under (1.1), since the linear regression
is the working model, the covariate X is no longer the ancillary
statistic for the regression parameter θ∗. Therefore, the covariate
X in the unlabeled data, usually with a much bigger sample size
than the labeled data, is informative and may be beneficial for
estimating θ∗.

Our first contribution is to establish the minimax lower
bound for estimating θ∗ in the semi-supervised setting. In
particular, to derive this lower bound, we assume f (·) is
unknown but belongs to some specific model class, such
that methods for estimating f (·) are available in the existing
literature. Based on the lower bound, when N is sufficiently
large, the error term due to the model misspecification or
equivalently the nonlinearity of f (·) becomes negligible. This
reveals one potential benefit from using the unlabeled data
in that the estimation of θ∗ can be more robust to the model
misspecification. Moreover, we show that the fully supervised
estimators (e.g., lasso and Dantzig selector) do not attain this
lower bound. Our second contribution is to propose a new
semi-supervised estimator that achieves this lower bound under
some conditions. In Theorem 3.2, we show that the rate of
our estimator depends on whether the unknown f (·) can be
consistently estimated. When f (·) belongs to some specific
model class so that it can be consistently estimated with a proper
rate, the proposed estimator attains the minimax lower bound
up to some logarithmic factor, and therefore improves the rate of
the supervised estimators. When f (·) is misspecified, however,
the rate of our semi-supervised estimator becomes sub-optimal
and may be even slower than the supervised estimators. Our
third contribution is to develop a general two-step refitting
procedure that further improves the above semi-supervised
estimator. The resulting estimator is guaranteed to be no worse
than the supervised estimators no matter f (·) is misspecified or
not, and remains minimax rate-optimal when f (·) belongs to
some specific model class so that can be consistently estimated
with a proper rate, hence, it provides a safe use of the unlabeled
data. Therefore, we call it the safe semi-supervised estimator. In
empirical studies one may encounter the situation that, while all
misspecified, different estimates of f (·) are available. We further
extend the idea of creating safe semi-supervised estimator to the
aggregation of multiple semi-supervised estimators under such
a situation. The convergence rate of the aggregated estimator
is guaranteed to be no worse than any of the un-aggregated
semi-supervised estimators. Overall, our goal is to exploit both
safe and efficient use of the unlabeled data by developing semi-
supervised estimators of θ∗ such that their convergence rates
are faster, or at least no slower, than the standard supervised
estimators (e.g., lasso and Dantzig selector).

1.1. RelatedWork

In computer science, a large number of classification algorithms
have been developed under semi-supervised setting, which
mainly focus on data with discrete labels; see Zhu (2005)
and Chapelle, Scholkopf, and Zien (2009) for some surveys.
Common assumptions such as manifold assumption and cluster
assumption were made in the literature in order to obtain
fast rate of convergence in classification (Rigollet 2006). In
nonparametric regression problem, Wasserman and Lafferty

(2008) showed that unlabeled data do not always help to improve
the rate of the mean squared error, but with semi-supervised
smoothness assumption the estimator with faster rate could be
developed.

More recently, Van Engelen and Hoos (2020) and Yang et al.
(2021) provided comprehensive surveys on many up-to-date
developments in semi-supervised learning, especially with deep
neural networks. For example, themethods named asMixmatch
(Berthelot et al. 2019) and Fixmatch (Sohn et al. 2020) lever-
age unlabeled data through pseudo-labeling and consistency
regularization to assist the prediction model. The self-training
method, which trains a model to fit pseudo-labels predicted by
previously learned models, has also been developed for semi-
supervised learning (Xie et al. 2020; Chen et al. 2020; Wei
et al. 2020). The performance of many modern semi-supervised
learning algorithms in some image classification tasks is com-
pared and discussed by Oliver et al. (2018).

There are also progress considering how to make use of the
unlabeled data to obtain an estimator with a smaller asymptotic
variance, when the dimension p is fixed and small. For exam-
ple, Zhang, Brown, and Cai (2019), Azriel et al. (2016), and
Chakrabortty and Cai (2018) investigated how to incorporate
the unlabeled data to improve the estimation efficiency for the
population mean E(Y) and regression coefficients in a working
linear regression.

With high-dimensional data, Alquier and Hebiri (2012) pro-
posed a transductive version of lasso and Dantzig selector in
the semi-supervised setting. They showed that the transductive
estimators have the same rate as the supervised ones. More
recently, Bellec et al. (2018) proposed a modified lasso estimator
and showed that the excess risk of their estimator in prediction
has the same rate of convergence as the supervised lasso estima-
tor. These existing theoretical results neither confirm nor deny
the existence of estimators with improved statistical rate when
unlabeled data are available. To the best of our knowledge, it
remains an open problem of when and how one can develop
a semi-supervised estimator with improved statistical rate by
exploiting the available unlabeled data. We bridge this gap by
showing the minimax lower bound and proposing new semi-
supervised estimators.

1.2. Organization of the Article

The rest of this article is organized as follows. In Section 2,
we give the minimax lower bound for semi-supervised estima-
tion. In Section 3, we introduce the optimal semi-supervised
estimator and its corresponding upper bound. In Section 4 we
devote ourselves into the safe semi-supervised estimator, where
we propose a two-step procedure regardless of the quality of
the estimated conditional mean model. In Section 5 we extend
the idea to aggregation of multiple semi-supervised estimators
caused by different misspecifications of the conditional mean
model. Numerical experiments and a real data application are
in Sections 6 and 7, respectively. All the technical proofs are
contained in the supplementary materials.

1.3. Notations

Let PX,Y and PX denote the joint distribution of (X,Y) and the
marginal distribution of X, respectively. For v = (v1, . . ., vp)T ∈
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R
p, we define ‖v‖0 = |supp(v)| where supp(v) = {i : vi �= 0}

and |A| is the cardinality of a set A, ‖v‖q = (
∑p

i=1 |vi|q)1/q
for 1 ≤ q < ∞, and ‖v‖∞ = max1≤i≤p |vi|. Denote v⊗2 =
vvT . For a matrix M = [Mij], Mi· and M·j denote the ith row
and jth column, respectively. Define ‖M‖max = maxij |Mij|,
‖M‖1 = maxj

∑
i |Mij|, ‖M‖∞ = maxi

∑
j |Mij|. If the matrix

M is symmetric, then �min(M) and �max(M) are the minimal
and maximal eigenvalues ofM. We denote Ip the p × p identity
matrix. For S ⊆ {1, . . ., p}, let vS = {vk : k ∈ S} and Sc
be the complement of S. For matrix X ∈ R

n×p and index set
D ⊆ {1, . . ., n}, XD = {Xi : i ∈ D}T ∈ R

|D|×p. For a function f ,
let ‖f ‖2 = √

E[f (X)2] denote the L2(P) norm of f .
For two positive sequences an and bn, we write an � bn if

C ≤ an/bn ≤ C′ for some C,C′ > 0. Similarly, we use a � b
to denote a ≤ Cb for some constant C > 0. Given a, b ∈ R, let
a∨ b and a∧ b denote the maximum and minimum of a and b.

2. Minimax Lower Bound for Semi-Supervised
Estimation

The semi-supervised learning setting refers to that we observe
n iid copies of (Y ,X) and additional N iid copies of X, where
the distributions of X in both labeled and unlabeled data are
the same. In Theorem 3.2 presented in Section 3, we will rig-
orously show that the unknown conditional mean function f (·)
plays an important role in assessing the optimality of semi-
supervised estimators. However, the correct specification and
consistent estimation of f (·) under high dimensionality is by no
means a trivial problem. In the literature, methods for consis-
tently estimating f (·) with a proper rate are only available when
f (·) belongs to some specific model class. In that regard, when
analyzing the minimax lower bound here, we assume that f (·)
belongs to one of the following two model classes.

We first define the pairwise interaction model Fpairwise =
{∑p

j=1 γjXj + ∑
1≤j≤k≤p γjkXjXk}, where γ = (γ1, . . ., γp, γ11,

γ12, . . ., γpp) ∈ R
p+p(p+1)/2 are unknown parameters satisfying

‖γ ‖0 ≤ s̄. In practice, the conditional mean function f (X) is
usually nonlinear in X. In Fpairwise, we account for the non-
linearity by incorporating the quadratic terms and the pairwise
interactions. To mitigate the model complexity, the parameter
γ is assumed to be s̄-sparse (Zhao and Leng 2016). We refer to
Supplement S.4 for further discussions. Thus, we define the class
of joint distributions of (X,Y) as

Ppairwise
�,σ = {PX,Y | Y = f (X) + ε, f (·) ∈ Fpairwise,

‖θ∗‖0 ≤ s, var(ε) = σ 2,
E(f (X) − XTθ∗)2 ≤ �2, and PX ∈ PX},

where θ∗ implicitly depends on the distributionPX,Y , the param-
eter s controls the sparsity of θ∗,PX = {PX|E[X] = 0, var(Xj) =
1 and �min(cov(X)) ≥ Cmin > 0} with some constant Cmin.
For notational simplicity, we write E(·) for EPX,Y (·). We note
that, Ppairwise

�,σ is indexed by two non-negative parameters �2

and σ 2, where the former controls the magnitude of model
misspecification f (X) − XTθ∗ or equivalently the nonlinearity
of f (X) in the second moment and the latter is the variance of ε.
In particular, we allow �2 to grow with n in our framework.

The second model class we consider is the additive model
Fadditive = {∑p

j=1 fj(Xj)}, where fj’s are unknown second-order-
smooth functions (Lin and Zhang 2006; Meier, Van de Geer,
and Bühlmann 2009; Huang, Horowitz, andWei 2010; Raskutti,
Wainwright, andYu 2012). To ease the presentation, we defer the
definition of �-smooth functions to Supplement S.4. Similarly,
we assume the number of nonzero functions is bounded by
s̄. Compared to Fpairwise, the additive model does not allow
interactions among covariates but offers more flexibility in asso-
ciating each component Xj with Y . Similar to Ppairwise

�,σ , we can
define the class of distributions Padditive

�,σ , where we replace f ∈
Fpairwise with f ∈ Fadditive in the definition.

The following theorem offers the lower bound for the conver-
gence rate of any estimator of θ∗ over the classes of distributions
Ppairwise

�,σ orPadditive
�,σ , in the semi-supervised setting. Throughout

the paper without causing confusion, we useC,C′, c1, and c2, etc.
to denote generic constants whose values can change from time
to time.

Assumption 2.1. Assume that s log(p/s) ≤ Cn for some constant
C, 4 ≤ s ≤ (n − 1)/4, and the sparsity level in Fpairwise and
Fadditive satisfies s̄ ≥ s.

Theorem 2.2. Under Assumption 2.1, we have that for any 1 ≤
q ≤ ∞,

inf
θ̂

sup
PX,Y∈Ppairwise

�,σ

PPX,Y

[
‖̂θ − θ∗‖q ≥ c1s1/q

(
�

√
log(p/s)
n + N

+ σ

√
log(p/s)

n

)]
> c2, (2.1)

where inf θ̂ denotes the infimum over all estimators based on the
labeled data (Yi,Xi) for 1 ≤ i ≤ n and unlabeled data Xi for n+
1 ≤ i ≤ n + N, and c1 and c2 are some positive constants. Here
we denote s1/∞ = 1. In addition, the same lower bound (2.1)
holds when we replace PX,Y ∈ Ppairwise

�,σ with PX,Y ∈ Padditive
�,σ .

Remark 2.3. The lower bound (2.1) in Theorem 2.2 is obtained
by restricting f (·) to be in eitherFpairwise orFadditive. Indeed, this
is a stronger result than the case without such a restriction. The-
orem 2.2 implies, if one considers the class of joint distributions
of (X,Y) as

P�,σ = {PX,Y | Y = f (X) + ε, ‖f ‖2 < ∞, ‖θ∗‖0 ≤ s,
var(ε) = σ 2,E(f (X) − XTθ∗)2 ≤ �2, and PX ∈ PX}

without specifying the model class of f (·), the minimax lower
bound remains the same as in (2.1). This lower bound con-
sists of two components. Up to some absolute constants, the
first term s1/q�

√
log(p/s)/(n + N) corresponds to the error

due to potential model misspecification and the second term
s1/qσ

√
log(p/s)/n comes from the uncertainty inherited from

the randomness of the error ε, which always exists even if the
regression function is linear f (X) = XTθ∗. In this case, we have
� = 0 and the lower bound agrees with the existing result
for sparse linear regression (Verzelen 2012; Bellec, Lecué, and
Tsybakov 2018).
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Remark 2.4. The sample size of the unlabeled data N plays an
important role in the lower bound (2.1). In Supplement S.4.1,
we show that under some conditions, �2 � s so � → ∞ as the
sparsity grows and �

σ

√
n

n+N → ∞may happen. In this case, the

dominating term in the lower bound s1/q�
√
log(p/s)/(n + N)

can be reduced as N increases. If N is sufficiently large such that
�
σ

√
n

n+N → c < ∞, the lower bound attains its minimum

s1/qσ
√
log(p/s)/n, which can be viewed as the irreducible error

in the semi-supervised setting since a further increase of N
would no longer decrease the lower bound. As an illustration,
we plot the lower bound in Figure 1 of Supplement S.2.

Before delving into our proposed estimators, we briefly sum-
marize some known properties of supervised estimators which
shall be useful later. The supervised Dantzig selector is defined
as

θ̂D = argmin ‖θ‖1, s.t.
∥∥∥ 1n

n∑
i=1

(Yi −XT
i θ)Xi

∥∥∥∞ ≤ λD, (2.2)

where λD is a tuning parameter. It is shown in Lemma S.4 of
Supplement S.3 that with high probability

‖̂θD − θ∗‖1 = Op

{
s(� + σ)

√
log p
n

}
. (2.3)

Under the condition N � n, the lower bound in (2.1) is
strictly smaller in order than the upper bound (2.3) if and only
if�/σ → ∞. In this case, the supervised estimator θ̂D does not
attain the lower bound and is thus sub-optimal in the minimax
sense; see Figure 1 in Supplement S.2. Similarly, the supervised
lasso estimator is defined as

θ̂L = argmin
θ∈Rp

1
2n

n∑
i=1

(Yi − XT
i θ)2 + λL‖θ‖1, (2.4)

where λL is a tuning parameter. The same upper bound as in
(2.3) can be derived similarly. The Dantzig selector and the
lasso estimator are theoretically equivalent (Bickel, Ritov, and
Tsybakov 2009). To better illustrate the motivation of how to
incorporate the unlabeled data, we next introduce our semi-
supervised estimator with the formulation of the Dantzig selec-
tor in Section 3.

3. Optimal Semi-Supervised Estimator

3.1. Motivation and the Key Step

To motivate our estimator, we first briefly explain how the con-
vergence rate of θ̂D in (2.2) is derived. Following the standard
argument in Bickel, Ritov, and Tsybakov (2009), the Dantizig
selector satisfies ‖̂θD − θ∗‖1 = Op(sλD), where the tuning
parameter λD � ‖ 1

n
∑n

i=1 Xi(Yi − XT
i θ∗)‖∞. In the proof of

Lemma S.4, we further show that ‖ 1
n

∑n
i=1 Xi(Yi −XT

i θ∗)‖∞ �√
log p
n {E(Yi − XT

i θ∗)2}1/2 with high probability. The desired
bound (2.3) is obtained by noting that

E(Yi−XT
i θ∗)2 = E(Yi−f (Xi))

2+E(f (Xi)−XT
i θ∗)2 ≤ σ 2+�2.

(3.1)

In view of (2.3) and Remark 2.3, we see that the slow rate of θ̂D is
driven by the sup-norm of the score function ‖ 1

n
∑n

i=1 Xi(Yi −
XT
i θ∗)‖∞.
To find an estimator with the improved rate, our key idea is to

construct a modified score function. To this end, we decompose
the score function of θ̂D as

1
n

n∑
i=1

Xi(Yi − XT
i θ∗) = 1

n

n∑
i=1

Xi(Yi − f (Xi))

+ 1
n

n∑
i=1

Xi(f (Xi) − XT
i θ∗).

We propose to replace the last term as 1
n+N

∑n+N
i=1 Xi(f (Xi) −

XT
i θ∗), the sample average over both labeled and unlabeled data.

Apparently, it is a consistent estimator ofE[Xi(f (Xi)−XT
i θ∗)] =

− 1
2E[ ∂

∂θ
(f (Xi)−XT

i θ∗)2]with a faster rate. Thus, the unlabeled
data can help estimate the expectation of the gradient of the
model misspecification error. This explains why the unlabeled
data may help in the case of misspecification. This leads to the
following modified score function

1
n

n∑
i=1

Xi(Yi − f (Xi)) + 1
n + N

n+N∑
i=1

Xi(f (Xi) − XT
i θ∗)

= ξ̄ − �̂n+Nθ∗, (3.2)

where �̂n+N = 1
n+N

∑n+N
i=1 X⊗2

i and

ξ̄ = 1
n

n∑
i=1

XiYi − 1
n

n∑
i=1

Xif (Xi) + 1
n + N

n+N∑
i=1

Xif (Xi). (3.3)

Further insight on the modified score function can be found in
Supplement S.4.5.

3.2. Computation of ξ̄

To compute ξ̄ , we need to find an estimator for f (·), the unknown
conditional mean function. In the rest of the article, we use
ĥ(·) to denote the estimate of the conditional mean function
and will discuss some examples in Remark 3.3. To account for
the possible model misspecification of the unknown conditional
mean function, we assume that there exists a function h(·) with
‖h‖2 < ∞ such that the estimate ĥ(·) converges to h(·) in the
L2(P) norm. We refer to h as a conditional mean model. When
the conditional mean model is correctly specified, we would
expect that f = h and ĥ(·) is consistent for f (·).

A serious challenge may arise from deriving the theoretical
property of our proposed semi-supervised estimator if we use all
data to obtain ĥ(·) due to the dependence between the estimator
ĥ(·) and the data (Xi,Yi) in the sample average from ξ̄ . To bypass
this challenge, we adopt the cross-fitting technique that was
devised for semiparametric estimation problems (Bickel 1982;
Schick 1986) as well as for high-dimensional data (Robins et al.
2017; Chernozhukov et al. 2018). For notational simplicity, we
denote byD∗ the labeled data andD the full dataset.Without loss
of generality, we split the labeled data D∗ into two folds D∗

1 and
D∗
2 with size n1 = n2 = n/2. Similarly, we split the unlabeled

data into two folds U1 and U2 with size N1 = N2 = N/2.
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MergingU1 andU2 withD∗
1 andD∗

2, respectively, we obtain two
independent datasets D1 = D∗

1 ∪ U1 and D2 = D∗
2 ∪ U2. Next,

for j = {1, 2}, we train the estimator ĥ−j using the data D∗\D∗
j

and then construct

ξ̂ j = 1
nj

∑
i∈D∗

j

XiYi − 1
nj

∑
i∈D∗

j

Xîh−j(Xi) + 1
nj + Nj

∑
i∈Dj

Xîh−j(Xi).

(3.4)
In view of the modified score function (3.2), replacing ξ̄ with
ξ̂ = (̂ξ1 + ξ̂ 2)/2, we propose the following semi-supervised
Dantzig selector

θ̂SD = argmin ‖θ‖1, s.t. ‖�̂n+Nθ − ξ̂‖∞ ≤ λSD. (3.5)

Similarly, we define the semi-supervised lasso estimator as

θ̂SL = arg min
θ∈Rp

θT�̂n+Nθ − 2̂ξTθ + 2λSL‖θ‖1. (3.6)

3.3. Theoretical Property of the Proposed Estimator

We develop the theoretical property for the proposed optimal
semi-supervised estimator.

Assumption 3.1. Wemake the following assumptions:

(A1) �−1/2X is a zeromean sub-Gaussian vector with bounded
sub-Gaussian norm and cov(X) = � has smallest eigen-
value �min(�) ≥ Cmin > 0 for some positive constant
Cmin. Moreover, max1≤j≤p �jj = O(1).

(A2) max1≤i≤n+N ‖Xi‖∞ ≤ K1 where we allow K1 to diverge
with (n,N, p).

(A3) E(ε2) = σ 2 and E[(f (X) − XTθ∗)2] ≤ �2.
(A4) θ∗ is s-sparse with ‖θ∗‖0 ≤ s, and s log p

n+N = O(1).

Assumption (A1) is a standard technical condition for X
in order to verify the restricted eigenvalue (RE) condition
(Bickel, Ritov, and Tsybakov 2009). Assumption (A2) imposes
the boundedness of the covariates, which simplifies the analysis
when the linear model is misspecified (Bühlmann and Van de
Geer 2015). In particular, when Xi is uniformly bounded, K1
becomes a constant. If each component ofXi is Gaussian or sub-
Gaussian, Assumption (A2) still holds with high probability
with K1 = C

√
log[p(n + N)] for some constant C. Assumption

(A3) only requires the existence of the second moment of ε and
f (X) − XTθ∗. We note that, unlike Bickel, Ritov, and Tsybakov
(2009), we do not assume the residual Y − XTθ∗ to be sub-
Gaussian. This is because the residual in the misspecified model
Y − XTθ∗ = ε + (f (X) − XTθ∗) contains the nonlinear term
f (X) − XTθ∗ which can be large. While we only assume the
moment condition in Assumption (A3), the boundedness in
Assumption (A2) enables us to apply the Nemirovski moment
inequality (Lemma S.2) to control the deviation of the sample
estimates from their population. Assumption (A4) is the sparsity
condition. In particular, Bühlmann and Van de Geer (2015)
provided some sufficient conditions on f (X) and the distribution
of X under which θ∗ is sparse in the misspecified model. We
further require s log p

n+N = O(1) to verify the RE condition under
the random design; see Lemma S.3.

Given Assumption 3.1, we establish the convergence rate of
the semi-supervised Dantzig selector θ̂SD in (3.5). By Bickel,

Ritov, and Tsybakov (2009), one can easily show that the same
error bounds hold for the semi-supervised lasso estimator θ̂SL.
For simplicity, we only present the asymptotic results for θ̂SD,
where n, p → ∞ and N can be either fixed or tends to infinity
as well.

Theorem 3.2. Suppose Assumption 3.1 holds and the estimator
ĥ−j(·) satisfies

‖̂h−j − h‖2 = Op(bn),

for j = 1, 2, where bn is a deterministic sequence. Denote Gh =
‖h − f ‖2. With some tuning parameter λSD � K1(�

√
log p
n+N +

(σ + bn + Gh)
√

log p
n ), the estimator θ̂SD in (3.5) achieves the

following error bounds

‖̂θSD−θ∗‖q = Op
(
K1s1/q

{
�

√
log p
n + N

+(σ+bn+Gh)

√
log p
n

})
,

(3.7)
for q = 1, 2. Moreover, if Gh = 0, that is, f = h, bn/σ = o(1)
and K1 = O(1), we obtain

‖̂θSD − θ∗‖q = Op
(
s1/q

{
�

√
log p
n + N

+ σ

√
log p
n

})
. (3.8)

The error bound (3.7) depends on bn, the stochastic error
from the estimator ĥ−j, andGh that can be viewed as the asymp-
totic bias of the estimator. If we assume f belongs to Fpairwise
or Fadditive introduced in Section 2, there exist estimators ĥ−j

in the literature such that Gh = 0 and bn/σ = o(1); see
further explanations in Remark 3.3 and more detailed examples
in Supplement S.5. Thus, with K1 = O(1), the error bound (3.7)
reduces to (3.8), which matches the minimax lower bound with
q = 1, 2 in Theorem 2.2 up to a log s factor. Therefore, we call
the estimator under this situation the optimal semi-supervised
estimator. On the other hand, if the bias term Gh is large, the
error bound (3.7) implies that our estimator θ̂SDmay have a slow
rate. We will revisit this problem in Section 4.

Practically, we can set the tuning parameter λSD =
CK1(�̂

√
log p
n+N + σ̂

√
log p
n ) and choose the constant C by cross-

validation. To account for the magnitude of �2 and σ 2 in λSD,
we suggest to estimate �2 and σ 2 by �̂2 = (�̂2

1 + �̂2
2)/2 and

σ̂ 2 = (̂σ 2
1 + σ̂ 2

2 )/2, where �̂2
j = 1

nj
∑

i∈Dj (̂h
−j(Xi)− θ̂

T
DXi)2 and

σ̂ 2
j = 1

nj
∑

i∈D∗
j
(Yi − ĥ−j(Xi))2. The cross-validation method

works well in our simulations.

Remark 3.3. (Examples of ĥ). If the knowledge of f (X) is
available to some extent, we can leverage this information
to construct estimators of f (X). We introduced two model
classes Fpairwise and Fadditive in Section 2. For instance, if
f (·) ∈ Fadditive, we can directly apply the existing estimators
in the literature; see Lin and Zhang (2006), Meier, Van de Geer,
and Bühlmann (2009), Huang, Horowitz, and Wei (2010), and
Raskutti, Wainwright, and Yu (2012), among many others. In
particular, corollary 2 in Huang, Horowitz, and Wei (2010)
implies that their adaptive group lasso estimator ĥ constructed
with spline basis functions satisfies ‖̂h− f ‖2 = Op(n−d/(2d+1)),
where d is the smoothness of the function fk(·).



6 S. DENG ET AL.

Remark 3.4. (Comparisonwith Alquier andHebiri 2012). In the
semi-supervised setting, Alquier and Hebiri (2012) proposed
a transductive version of lasso and Dantzig selector based on
the imputation method. Let Ỹ = (Ỹ1, . . ., Ỹn+N) denote the
imputed outcomes (or pseudo-outcomes) from some prelimi-
nary estimator. The transductive Dantzig selector is given by

θ̂T = argmin ‖θ‖1 s.t. 1
n + N

‖X̃(Ỹ − X̃T
θ)‖∞ ≤ λT . (3.9)

If the imputation satisfies 1
n+N ‖X̃(Ỹ − X̃θ∗)‖∞ � (σ +

�)

√
log p
n , it can be shown that ‖̂θT − θ∗‖1 � (σ + �)s

√
log p
n

with high probability. We can see that the error bound is of the
same order as the supervised Dantzig selector (2.3). Thus, the
transductiveDantzig selector is also sub-optimal in theminimax
sense; see the last paragraph of Section 2.

To see how the transductive Dantzig selector differs from
our estimator θ̂SD, we assume that the imputation is attained by
using our estimator ĥ(·), that is, Ỹi = ĥ(Xi) for 1 ≤ i ≤ n + N.
For simplicity, let us omit the cross-fitting step here and defer
more derivations in Supplement S.4.3. Then the modified score
function �̂n+Nθ − ξ̂ in our estimator (3.5) can be rewritten as

�̂n+Nθ − ξ̂ = 1
n + N

n∑
i=1

Xi(Yi + N
n

{Yi − Ỹi} − XT
i θ)

+ 1
n + N

n+N∑
i=n+1

Xi(Ỹi − XT
i θ).

We can see that for the samples from the unlabeled data (i ∈ {n+
1, . . ., n + N}), we use Ỹi as the pseudo-outcome. However, for
the samples from the labeled data (i ∈ {1, . . ., n}),Yi+N

n {Yi−Ỹi}
serves as the pseudo-outcome. In comparison, the transductive
Dantzig selector (3.9) always uses Ỹi as the pseudo-outcome for
i ∈ {1, . . ., n + N}.
Remark 3.5. (Comparison with Bellec et al. 2018). Recently,
Bellec et al. (2018) proposed a modified lasso estimator for pre-
diction in the semi-supervised setting, which can be reformatted
as the following Dantzig selector

θ̂U = argmin ‖θ‖1, s.t. ‖�̂n+Nθ − 1
n

n∑
i=1

XiYi‖∞ ≤ λU ,

(3.10)
where �̂n+N = 1

n+N
∑n+N

i=1 X⊗2
i . Compared with our estimator

θ̂SD in (3.5), θ̂U turns out to be a special case of θ̂SD by plugging
ĥ = 0 into (3.4).

Bellec et al. (2018) showed that if a large number of unlabeled
data are used to compute �̂n+N , it becomes more plausible to
assume that the compatibility (or RE) constant is bounded away
fromzero. The statement also holds true for our semi-supervised
estimator θ̂SD with the use of �̂n+N . Moreover, they proved
that the error bound for the excess risk in prediction remains
Op(s log p/n) under certain conditions, including |Y| ≤ C for
some constant C > 0 which indeed implies � = O(1) and σ =
O(1) by their proof of Theorem 7. To make a fair comparison
of θ̂U with our estimator θ̂SD, we show that under the same
conditions in our Theorem 3.2,

‖̂θU − θ∗‖1 = Op
(
s(� + σ + (θ∗T�θ∗)1/2)

√
log p
n

)
. (3.11)

The proof is deferred to Supplement S.4.2. It is seen that θ̂U
has a slower rate than our estimator θ̂SD if �/σ → ∞ or
θ∗T�θ∗/σ 2 → ∞. Again, in Supplement S.4.1, we consider the
examples where �2 � s and σ is a constant, so that �/σ → ∞
holds, as s grows with n. Perhaps, a more surprising fact is that
the convergence rate of θ̂U can be even slower than the fully
supervisedDantzig selector θ̂D in (2.3) if θ∗T�θ∗/(σ 2+�2) →
∞. Indeed, our simulation studies confirm that the estimator θ̂U
often produces larger estimation error than θ̂SD and θ̂D.

4. Safe Semi-Supervised Estimator

Recall from Theorem 3.2 that our semi-supervised estimator
θ̂SD is minimax optimal, if the conditional mean function f (·)
can be consistently estimated with a proper rate, for example,
when f (·) belongs to Fpairwise or Fadditive introduced in Sec-
tion 2. If this does not hold, there is no guarantee that the
estimator θ̂SD attains the minimax lower bound or outperforms
the supervised estimator. In particular, when Gh + bn � �, the
convergence rate of θ̂SD can be even slower than the supervised
estimator θ̂D in (2.2), hence, the integration of unlabeled data
might fail to improve the estimation accuracy of θ∗.

To tackle this problem, we develop a safe semi-supervised
estimator via a two-step procedure to adapt to the unknown
quality of the conditional mean model h(·), which makes the
final estimator no worse than the supervised estimator. To facili-
tate the theoretical analysis of the two-step estimator, we proceed
with the lasso type estimators in this section. Recall that the
supervised lasso was defined in (2.4) in Section 2. Equivalent to
(3.6), we can rewrite our optimal semi-supervised lasso estima-
tor θ̂SL as

θ̂SL = argmin
θ∈Rp

2∑
j=1

∑
i∈Dj

(̂
h−j(Xi) − XT

i θ
)2

n + N

−
2
∑

i∈D∗
j

(
Yi − ĥ−j(Xi)

)
XT
i θ

n
+ 2λSL‖θ‖1. (4.1)

We construct the safe semi-supervised estimator in the fol-
lowing two steps. First, for a given estimate of the unknown
conditional mean ĥ, we compute our semi-supervised lasso
estimator θ̂SL in (4.1) and the supervised lasso estimator θ̂L in
(2.4). Since the estimator θ̂SL may not be desirable when the
corresponding conditional mean model h is misspecified, in the
second stepwe further improve the initial estimator θ̂SL by a step
of refitting on a suitable estimate of the support set of θ∗. Denote
the support set of two lasso type estimators θ̂L and θ̂SL by T̂1 and
T̂2, respectively.We define the safe semi-supervised estimator as

θ̂R = θ̂SL + ω̂, (4.2)

where ω̂ ∈ R
p is attained by

ω̂ = argmin
supp(ω)⊆T̂1∪T̂2

1
2n

n∑
i=1

(Yi−XT
i (̂θSL+ω))2+λω‖ω‖1. (4.3)

In (4.3) we impose supp(ω) ⊆ T̂1 ∪ T̂2, which implies ω̂j = 0
for any j /∈ T̂1 ∪ T̂2. Thus, the safe semi-supervised estimator θ̂R
may only differ from θ̂SL on the estimated support set T̂1 ∪ T̂2.
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Since both the estimands of θ̂SL and θ̂R are θ∗, by the definition
of (4.2) we can treat ω̂ as an estimator of θ∗ − θ∗ = 0. At a
first sight, one may expect that estimating a known vector of 0
by ω̂ and summing with θ̂SL will inflate the error of the resulting
estimator. However, we show a surprising result that the two step
estimator θ̂R may outperform the initial estimator θ̂SL.

In the following, we will first explain the intuition behind the
estimator θ̂R. Let us consider two scenarios. First, if our initial
estimator θ̂SL in step 1 is able to achieve a fast rate, one would
expect that ω̂ ≈ 0 due to the L1 regularization in (4.3). Thus,
θ̂R will inherit the fast rate from the initial estimator θ̂SL. In the
second scenario, if θ̂SL has a slow rate due tomodelmisspecifica-
tion, with a suitable choice of tuning parameters, we can obtain
ω̂ ≈ θ̂L − θ̂SL. As a toy example, if p is fixed and small and
we set all tuning parameters in ω̂, θ̂SL and θ̂L to be 0, it is easily
shown from the least square formula that ω̂ = θ̂L − θ̂SL. Thus,
in this case, the safe semi-supervised estimator will resemble the
supervised estimator, since θ̂R = θ̂SL + ω̂ ≈ θ̂L. In summary,
the refitting step can simultaneously retain the fast rate of θ̂SL if it
has, and alleviate the potentially unsatisfactory performance of
θ̂SL undermodelmisspecification. The following theorem shows
the convergence rate of the safe semi-supervised estimator θ̂R.

Theorem 4.1. Suppose Assumption 3.1 holds, �max(�) ≤
Cmax < ∞ and s(log p)2 = o(n). Assume that we choose
the tuning parameters λSL, λL and λω in (4.1), (2.4), and

(4.3) as λSL � K1(�
√

log p
n+N + (σ + bn + Gh)

√
log p
n ) and

λL � λω � K1(� + σ)

√
log p
n . We have for q = 1, 2,

‖̂θR − θ∗‖q = Op(RSL ∧ RL),

where RSL = s1/qK1
(
�

√
log p
n+N + (σ + bn + ‖f − h‖2)

√
log p
n

)
,

and RL = s1/qK1(� + σ)

√
log p
n .

Recall that RSL and RL correspond to the convergence rates of
θ̂SL and θ̂L, respectively. Theorem 4.1 shows that θ̂R attains the
faster rate between θ̂SL and θ̂L. Thus, the estimator θ̂R remains
minimax rate-optimal when the initial estimator θ̂SL is optimal
(see Theorem 3.2), and is guaranteed to be no worse than the
supervised estimators even if the conditional mean model is
misspecified.

To choose the tuning parameters, we note that the magni-
tude of λSL is the same as λSD in Theorem 3.2. We can apply
the same cross-validation method explained after Theorem 3.2
to tune λSL. Since λL can be written as λL = CK1{E(Y −
XTθ∗)2}1/2

√
log p
n for some constant C, one may use scaled lasso

to estimate the noise level E(Y − XTθ∗)2, and further apply
cross-validation to tune λL. In practice, to reduce the compu-
tational cost, once we have selected the tuning parameter λL, we
can simply set λω = λL, which works well in our simulations.

Remark 4.2. The two-step approach is inspired by the recent
works of Bastani (2020) and Li, Cai, and Li (2020) in the con-
text of transfer learning. However, our theoretical guarantee in
Theorem 4.1 is much stronger than those works. Using our
terminology, the theoretical analysis in Bastani (2020) and Li,
Cai, and Li (2020) implied that the estimator θ̂R can only attain

the worst possible rate between θ̂SL and θ̂L, that is, ‖̂θR−θ∗‖q =
Op(RSL + RL), which is not sufficient to show θ̂R to be safe. We
obtain a sharper result in Theorem 4.1 because our refitting step
(4.3) differs from those works. In particular, unlike their works,
we constrain the support of the estimator ω̂ to be T̂1∪ T̂2, which
guarantees the sparsity of θ̂R. This is an important intermediate
step to prove Theorem 4.1. Finally, we note that, in the context
of transfer learning, Li, Cai, and Li (2020) also considered how
to use model aggregation, such as Q-aggregation (Dai, Rigollet,
and Zhang 2012), to improve the initial estimator. We refer to
Supplement S.4.4 for further discussion on model aggregation.

5. Aggregation of Semi-Supervised Estimators

Recall from Theorem 3.2 that the performance of the semi-
supervised estimator depends on the estimator ĥ of the con-
ditional mean model. In practice, it is uncommon for us to
find a consistent estimator of the conditional mean function.
More commonly, we may face multiple choices of ĥ’s, none of
which is consistent.Wemay expect that different ĥ’s only capture
different aspects of the non-linearity of the conditional mean
function. Does aggregatingmultiple semi-supervised estimators
help us explore the non-linearity of the conditional mean func-
tion? Here, we generalize the two-step method in Section 4 to
answer this question.

Assume that two different estimators of the conditional mean
function ĥ1 and ĥ2 are available. We denote by θ̂h1 and θ̂h2 the
semi-supervised lasso estimators in (4.1) with ĥ1 and ĥ2 and
tuning parameters λh1 and λh2 , respectively. In the following,
we will apply the two-step procedure to combine θ̂h1 and θ̂h2 .
We first compute θ̂h1 and θ̂h2 in step 1. Their support sets are
denoted by Ĥ1 and Ĥ2. In step 2, we use θ̂h1 as the initial
estimator and define the aggregated estimator as

θ̂AH = θ̂h1 + ω̂h, (5.1)

where

ω̂h = argmin
supp(ω)⊆Ĥ1∪Ĥ2

2∑
j=1

(∑
i∈Dj

(̂
h−j
2 (Xi) − XT

i (̂θh1 + ω)
)2

n + N

−
2
∑

i∈D∗
j

(
Yi − ĥ−j

2 (Xi)
)
XT
i (̂θh1 + ω)

n

)
+ 2λH‖ω‖1.

Unlike the refitting step in (4.3), we also incorporate the unla-
beled data to compute ω̂h so that θ̂AH can attain a better conver-
gence rate than θ̂h1 or θ̂h2 . Onemay note that the creation of θ̂AH
is not symmetric to h1 and h2; however, our theoretical analysis
below shows that the priority order of h1 and h2 does not really
matter.

Proposition 5.1. Suppose Assumption 3.1 holds, �max(�) ≤
Cmax < ∞ and s(log p)2 = o(n + N). The estimators ĥ1 and ĥ2
satisfy ‖̂h−j

1 − h1‖2 = Op(bh1) and ‖̂h−j
2 − h2‖2 = Op(bh2) for

j = 1, 2. DenoteGh1 = ‖h1−f ‖2 andGh2 = ‖h2−f ‖2. Selecting
some tuning parameters λh1 � K1(�

√
log p
n+N + (σ + bh1 +
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Gh1)
√

log p
n ), λh2 � λH � K1(�

√
log p
n+N +(σ +bh2 +Gh2)

√
log p
n ),

we can show that for q = 1, 2,

‖̂θAH − θ∗‖q = Op(Rh1 ∧ Rh2),

where Rhj = s1/qK1
(
�

√
log p
n+N + (σ + bhj + ‖f − hj‖2)

√
log p
n

)
.

This proposition shows that the aggregated estimator θ̂AH
attains the best possible rate between θ̂h1 and θ̂h2 . Following the
same reasoning, one may use θ̂AH as the initial estimator and
repeat the refitting step, if a third estimator θ̂h3 is available. The
resulting estimator attains the best possible rate among the three
estimators θ̂h1 , θ̂h2 , and θ̂h3 . We expect that, in general, our two-
step procedure can be applied to aggregate multiple estimators,
as long as the number of the candidates is fixed and small. We
refer to Section 6 for numerical performance of the aggregated
estimators.

6. Simulation Studies

6.1. Data GeneratingModels and Practical
Implementation

We first generate a p-dimensional multivariate normal random
vector Z ∼ N (0,�) with �jk = 0.3|j−k|. We set the covariate
X = (X1, . . .,Xp) to be X1 = |Z1| and Xj = Zj for 1 < j ≤ p.
The reason we takeX1 = |Z1| is that this transformation implies
E(Xk

1Xj) = 0 for j �= 1 but the parameter θ∗
1 for centered

X1 is nonzero. We consider the following three data generating
models for Y . For Model 1, we consider an additive model

Y = 0.5X2
1 + 0.8X3

3 − (X4 − 2)2 + 2(X5 + 1)2 + 2X6 + ε,

where ε ∼ N (0, 1). To calculate the corresponding regression
parameter θ∗ under the working linear model, we first center Y
and X1 so that their means are 0. By Proposition 4 in Bühlmann
and Van de Geer (2015), we know that the support of θ∗ is
S = {1, 3, 4, 5, 6} and θ∗

j for any j ∈ S is given by the L2(P)

projection in the sub-model only with the variable Xj (e.g., θ∗
3 =

argminE(0.8X2
3 − θ3X3)

2). After some calculation, we obtain
θ∗ = (1.1, 0, 2.4, 4, 4, 2, 0, . . ., 0), which is sparse.

For Model 2, we consider

Y = 0.6(X1 + X2)
2 + 0.4X3

4 − X5 + 2X6 + ε,

where ε ∼ N (0, 1). The model is non-additive since it includes
an interaction term between X1 and X2. The corresponding
regression parameter θ∗ is (1.48, 1.04, 0, 1.2,−1, 2, 0, . . ., 0).

Besides, we consider a nonadditive Model 3 which includes
extra randomly selected support sets S1 and S2 on top of Model
1. We choose |S1| = |S2| = 5 and set

Y = 0.5X2
1 + 0.8X3

3 − (X4 − 2)2 + 2(X5 + 1)2 + 2X6

+ 2
∑
k∈S1

Xk + 0.05(
∑
k∈S2

Xk)
3 + ε,

where ε ∼ N (0, 1). In this model, θ∗
k = 0.75 for k ∈ S2, θ∗

k = 2
for k ∈ S1, and the other components of θ∗ are the same as in
Model 1. Under each data generatingmodel, we consider several
combinations of (n, p) and vary the ratioN/n in a certain range.

We repeat the simulation 100 times and output the average as
final results.

Before we proceed to illustrate the results, we list the esti-
mators considered in this section and discuss several practi-
cal implementation issues. Since the performance of lasso and
Dantzig type estimators are similar, we only consider theDantzig
type estimators here for simplicity.

• The proposed semi-supervised estimator θ̂SD in (3.5) (SSL1)
with a sparse additive model h1. We estimate the sparse
additive model by using the group lasso with the spline basis
(Huang, Horowitz, and Wei 2010). To be specific, we use the
cubic spline basis with degree of freedom df = 5. To select
the penalty parameter in group lasso and make computation
easier, the BIC criterion is used; see Section 4 in Huang,
Horowitz, and Wei (2010) for the definition. After we derive
the estimator ĥ1 and subsequently ξ̂ , we modify the source
code in theflarepackage to compute θ̂SD, where the tuning
parameter λSD is selected by 5-fold cross-validation.

• The proposed semi-supervised estimator θ̂SD in (3.5) (SSL2)
with a pairwise interaction model h2. The model h2(·) corre-
sponds to the linear regression containing all the linear terms,
the squares of the variable and the interaction terms (Zhao
and Leng 2016).

• The supervisedDantzig selector θ̂D in (2.2) (Dantzig).Weuse
the flare package to compute the estimator and select the
tuning parameter by 5-fold cross-validation.

• The modified Dantzig selector θ̂U in (3.10) (U-Dantzig).
• The aggregated estimator θ̂AH in (5.1) (SSL12) that combines

SSL1 and SSL2.
• The safe semi-supervised estimator θ̂R (S-SSL1) using SSL1

as the initial estimator. As seen from the discussion after
Theorem 4.1, we set the tuning parameter λω identical to the
tuning parameter for the supervised Dantzig selector.

• The safe semi-supervised estimator θ̂R (S-SSL12) using
SSL12 (e.g., the aggregated estimator) as the initial estimator.

6.2. Numerical Results

Under Model 1 with p = 500 and n = 200, the comparisons
of the estimation errors of SSL1, SSL2, Dantzig, SSL12, S-SSL1,
and S-SSL12 are illustrated in Figure 1, while the results fromU-
Dantzig are shown in numbers in the caption of the figure due to
the scale of plot. Since the true data generating model is additive
with some quadratic terms, both SSL1 and SSL2 can leverage the
non-linearity of the conditionalmean function and their estima-
tion errors are much smaller than Dantzig, which agrees with
Theorem 3.2. Besides, we can see that SSL1 outperforms SSL2,
since the imposed additive model in SSL1 can better estimate
the conditional mean function. By aggregating SSL1 and SSL2,
our estimator SSL12 achieves the minimum L2 error among all
those methods. For the two safe semi-supervised estimators (S-
SSL1 and S-SSL12), they retain the optimal rate in L2 norm
from the corresponding semi-supervised estimators (SSL1 and
SSL12), and clearly outperformDantzig, which is consistentwith
the theoretical property in Theorem 4.1.

One interesting observation is that U-Dantzig performs
much worse than the fully supervised estimator Dantzig; see the
caption of Figure 1. Thus, using the sample covariance �̂n+N
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Figure 1. The L2 and L1 estimation errors under Model 1 with p = 500 and n = 200. The length of the vertical bar represents the magnitude of the sample standard
deviations. L2 errors for U-Dantzig are 5.75 (0.20), 7.14 (0.24), 7.47 (0.26) and L1 errors for U-Dantzig are 6.15 (0.17), 6.53 (0.15), 6.73 (0.15). The numbers in the parenthesis
are sample standard deviations.

from both labeled and unlabeled data in the Dantzig selector
may not provide any empirical improvement; see Remark 3.5 for
the theoretical justification. In addition, as the size of unlabeled
data N increases, the improvement of our semi-supervised
estimators (SSL1, SSL2, SSL12, S-SSL1, and S-SSL12) is more
overwhelming, whereas the performance of U-Dantzig tends to
deteriorate.

The comparisons under Model 2 with p = 500 and n = 200
are shown in Figure 2. Since Model 2 includes an interaction
term between X1 and X2, the sparse additive model h1 is incon-
sistent for the true regression function. Thus, SSL1 does not
improve the estimation accuracy compared with fully super-
vised Dantzig. However, the safe semi-supervised estimator, S-
SSL1, successfully mitigates the undesired performance of SSL1
and its L1 and L2 errors are smaller than Dantzig. This agrees
with Theorem 4.1 that the refitting step provides a safe use of
unlabeled data even if the imposed conditional mean model
is incorrect. On the other hand, since the pairwise interaction
model h2 is a correctly specified conditional mean model, the
estimators SSL2, SSL12, and S-SSL12, that depend on thismodel,
show small estimation errors.

Under Model 3, since the true conditional mean function
differs significantly from the additivemodel h1, SSL1 yields large
estimation errors. Nevertheless, the performance of S-SSL1 is
comparable and no worse than the fully supervised Dantzig.
While the pairwise interaction model h2 cannot account for the
third order interaction terms in the set S2, it can still partially
explain the non-linearity of the true conditional mean function.
Thus, the performance of SSL2 is still better than Dantzig in L2
norm when N/n = 5 and also in L1 norm. The comparison
results are summarized in Figure 3.

The Supplement S.6 contains further simulation results with
p = 200 and n = 100, and with p = 1000 and n = 300,
for all the three models considered above, as well as some other
numerical results.

7. Real Data Application

In this section, we illustrate our proposed methods in a real
data example, derived from the Medical Information Mart for
Intensive Care III (MIMIC-III) database (Johnson et al. 2016).
MIMIC-III is an openly available electronic health records sys-
tem developed by the MIT Lab for Computational Physiology.
It contains de-identified health-related data for 38,597 adult
patients (aged 16 years or above) admitted to intensive care units
(ICU) of the Beth Israel Deaconess Medical Center between
2001 and 2012. Some details of the adult patients by their first
ICU admissions are available in the Table 1 of Johnson et al.
(2016).

Researchers have used theMIMIC-III database to investigate
a variety of medical issues such as predicting ICU readmissions
(Brown et al. 2012; Tabak et al. 2017; Xue, Klabjan, and Luo
2019) and associating various clinical biomarkers withmortality
(Liu et al. 2020; Du et al. 2021; Jhou et al. 2021; Tang et al. 2021).
Our initial motivation for this data analysis is to understand
the relation between the albumin level in the blood sample,
oftentimes used to screen for liver or kidney disease (Phillips,
Shaper, and Whincup 1989), and all other variables including
demographics, chart events, and clinical biomarkers from the
laboratory tests.

After all of the data pre-processing steps detailed in Supple-
ment S.7, we are leftwith a dataset with 4784 patients and each of
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Figure 2. The L2 and L1 estimation errors under Model 2 with p = 500 and n = 200. The length of the vertical bar represents the magnitude of the sample standard
deviations. L2 errors for U-Dantzig are 2.31 (0.08), 2.75 (0.09), 2.87 (0.11) and L1 errors for U-Dantzig are 4.28 (0.10), 4.62 (0.10), 4.66 (0.07).

Figure 3. The L2 and L1 estimation error under Model 3 with p = 500 and n = 200. The length of the vertical bar represents the magnitude of the sample standard
deviations. L2 errors for U-Dantzig are 11.46(0.23), 13.29(0.25), 13.62(0.26) and L1 errors for U-Dantzig are 14.32(0.16), 15.73(0.24), 15.60(0.20).

them has p = 2928 covariates. The results depicted in Figure 4
are an aggregation from 100 replications. In each replication,
we randomly choose 2000 patients and call the first n = 500
patients the labeled data. We mask the outcome “albumin” for
all other 1500 patients and call them the unlabeled data. In each
experiment, we gradually increase the sample size of the unla-
beled data from N = 500 to N = 1000 and to N = 1500. Since

the working model already includes some pairwise interaction
terms among biomarkers, we use the random forest to estimate
the conditional mean function in our SSL estimator and the
corresponding S-SSL estimator. The L1 and L2 estimation errors
presented in Figure 4 are computed against the lasso estimator
using all of the 4784 samples, which is regarded as the proxy of
the underlying true linear coefficients of the working model.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

Figure 4. The L2 and L1 estimation error for real data application. The length of the vertical bar represents the magnitude of the sample standard deviations.

From Figure 4, as the ratio N/n increases from 1 to 3, com-
pared to supervised lasso, the proposed S-SSL estimator could
bring the L1 error down around 7.6% to 10.3% and the proposed
SSL estimator could bring the L1 error down around 10.1% to
21.7%, respectively. The percentage decrease for the L2 error
ranges from 14.9% to 22.4% for the S-SSL estimator and from
23.2% to 28.6% for the SSL estimator. Compared to the S-SSL
estimator, the outperformance of the SSL estimator, albeit not as
significant as the comparison with the supervised lasso, is still
noticeable from Figure 4. The likely reason for this is that the
random forest used in our semi-supervised estimators (SSL and
S-SSL) has already effectively captured the structure of the con-
ditionalmean function. Thus, S-SSL behaves similarly to SSL.All
of these observations support the effectiveness of the methods
proposed in this article. In Supplement S.7, similar results can
be obtained where the estimation errors are computed against
the lasso which exclusively employs samples that are not used in
the computation of the three comparators.

Finally, Supplement S.7 also contains the detailed data clean-
ing and data pre-processing procedures for this application, as
well as some other results and conclusions. Along the article, we
also submit the programming code for anyone who has interest
to reproduce the results.

Supplementary Materials

The supplementary materials include the technical proofs, some more
detailed theoretical results and discussions, and additional numerical
results.
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S.1 Sub-Gaussian variable and vector

To characterize the tail behavior of random variables, we introduce the following definition.

Definition S.1 (Sub-Gaussian variable and vector). A random variable X is called sub-

Gaussian if there exists a positive constant K2 such that P(|X| > t) ≤ exp(1− t2/K2
2) for all

t ≥ 0. The sub-Gaussian norm of X is defined as ∥X∥ψ2 = supp≥1 p
−1/2(E|X|p)1/p. A vector

X ∈ Rp is a sub-Gaussian vector if the one-dimensional marginals vTX are sub-Gaussian

for all v ∈ Rp, and its sub-Gaussian norm is defined as ∥X∥ψ2 = sup∥v∥2=1 ∥vTX∥ψ2 .

S.2 Illustration of Convergence Rate
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Figure 1: Plot of the lower bound with q = 1 in Theorem 2.2 (the solid curve) and the upper
bound from Dantzig selector in (2.3) (the dashed line), against the value of (N + n)/n. The
region between the two corresponds to the gap between the lower bound for semi-supervised
estimators and the upper bound obtained from the supervised estimators. In this plot, we
fix n and vary the value of N .
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S.3 Proofs

Throughout the proofs without causing extra confusions, for notation simplicity, we use

C,C ′, c1, c2 etc. to denote generic constants whose values can change from time to time.

S.3.1 Preliminary Lemmas

We start with several basic lemmas that we will apply in our proofs.

Lemma S.1 (Lemma B.1 in Chernozhukov et al. (2018)). Let {Xn}, {Yn} be sequences of

random variables. If for any c > 0, P(|Xn| > c|Yn) = op(1). Then Xn = op(1).

Lemma S.2 (Nemirovski moment inequality, Lemma 14.24 in Bhlmann and Van de Geer

(2011)). For m ≥ 1 and p > em−1, we have

E
[
max
1≤k≤p

∣∣∣ n∑
i=1

(γk(Zi)− E[γk(Zi)])
∣∣∣m] ≤ (8 log 2p)

m
2 E

[
( max
1≤k≤p

n∑
i=1

γ2
k(Zi))

m/2
]

(S.1)

Lemma S.3 (Theorem 3.1 in Rudelson and Zhou (2012)). Assume that X ∈ Rn×p has

zero mean and covariance Σ. Furthermore, assume that the rows of XΣ−1/2 ∈ Rn×p

are independent sub-gaussian random vector with a bounded sub-gaussian constant and

Λmin(Σ) > Cmin > 0, max1≤j≤pΣjj = O(1). Set 0 < δ < 1, 0 < s0 < p, and L > 0. Define

the following event,

Bδ(n, s0, L) = {X ∈ Rn×p : (1− δ)
√

Cmin ≤ ||Xv||2√
n||v||2

,∀v ∈ C(s0, L) s.t. v ̸= 0}. (S.2)

and C(s0, L) = {θ ∈ Rp : ∃S ⊆ {1, ..., p}, |S| = s0, ||θSc||1 ≤ L||θS||1}. Then, there exists a

constant c1 = c(L, δ) such that, for sample size n ≥ c1s0 log(p/s0), we have

P(Bδ(n, s0, L)) ≥ 1− e−δ
2n. (S.3)

Lemma S.4. Assume that Assumption 3.1 holds. Consider the Dantzig selector θ̂D in (2.2)

2



with λD ≍ K1

√
(σ2+Φ2) log p

n
. We have

||θ̂D − θ∗||1 = Op(sλD), and
1

n

n∑
i=1

[XT
i (θ̂D − θ∗)]2 = Op(sλ

2
D). (S.4)

Moreover, we have

∥Σ̂n(θ̂D − θ∗)∥∞ = Op(λD),

where Σ̂n = 1
n

∑n
i=1X

⊗2
i .

Proof. The proof of the convergence rate of θ̂D in (S.4) is similar to Theorem 7.1 in Bickel

et al. (2009). The key step is to derive

|| 1
n

n∑
i=1

Xi(Yi −XT
i θ

∗)||∞ ≲ K1(σ
2 + Φ2)1/2

√
log p

n
,

which is implied by Lemma S.2 together with E(Yi −XT
i θ

∗)2 = σ2 + Φ2 and ∥Xi∥∞ ≤ K1.

The rest of the proof is omitted. To show the rate of ∥Σ̂n(θ̂D − θ∗)∥∞, we note that, with

λD = CK1

√
(σ2+Φ2) log p

n
for some sufficiently large C, we have

∥Σ̂n(θ̂D − θ∗)∥∞ ≤ ∥ 1
n

n∑
i=1

Xi(Yi −XT
i θ̂D)∥∞ + ∥ 1

n

n∑
i=1

Xi(Yi −XT
i θ

∗)∥∞

≤ 2λD,

where we invoke the constraint of θ̂D as the definition of Dantzig selector in the last step.

S.3.2 Proof of Theorem 2.2

To simplify the notation, we use PΦ,σ to denote Ppairwise
Φ,σ or Padditive

Φ,σ in the proof. The proof

is very similar under these two classes, and we will point out the difference when it occurs.

The lower bound consists of two parts. First, by taking f(X) = XTθ∗, that is when

the linear model is correctly specified, the proof in Proposition 6.4 of Verzelen (2012) with

3



conditions s log(p/s) ≤ C ′n and 2 ≤ s ≤ (n− 1)/4 directly implies

inf
θ̂

sup
PX,Y ∈PΦ,σ

PPX,Y

[
||θ̂ − θ∗||q ≳ c1s

1/qσ

√
log(p/s)

n

]
> c2.

We note that taking f(X) = XTθ∗ is feasible under Ppairwise
Φ,σ and Padditive

Φ,σ , and we also use

the assumption s̄ ≥ s.

Second, to establish the lower bound s1/qΦ
√
log(p/s)/(n+N), we first construct a set of

hypotheses and then apply Theorem 2.7 in Tsybakov (2008). In this case, we take f(X) =

bfu(Xu), for some u ⊆ {1, 2, ..., p} with a = |u| ≤ s/2 and b ∈ R to be set later. For example,

under Ppairwise
Φ,σ , we can set fu(Xu) = X1X2; under Padditive

Φ,σ , we can set fu(Xu) = X2
1 (note that

x2 is a second order smooth function). Without the loss of generality, we set u = {1, ..., a}.

Define the set M = {x ∈ {0, 1}p−a : ∥x∥0 = s/2}. It follows from the Varshamov-Gilbert

bound (e.g., Lemma 2.9 in Tsybakov (2008)) and Lemma A.3 in Rigollet and Tsybakov

(2011) that there exists a subset M′ of M such that for any x, x′ in M′ with x ̸= x′, we

have

ρH(x, x
′) >

s

16
, and log |M′| ≥ c′1s log(

p− a

s
), (S.5)

where ρH denotes the Hamming distance and c′1 > 0 is an absolute constant. Denote the

element of the finite set M′ by wj and the index set for the nonzero entries by [j]. For each

wj ∈ Rp−a, we extend the vector by adding zero at the first a entries, i.e. the corresponding

element in u to obtain a p-dimensional vector (0a,w
j), and for notational simplicity, we still

call it wj.

Next, we construct a finite set of hypotheses by perturbing the distribution of X. Denote

N = (N1, ..., Np) ∼ N (0, Ip). Let us consider the following hypothesis

H0 : X = (X1, ..., Xp) with Xℓ = Nℓ,

and under H0, denote θ∗ = argminθ∈Rp E0[(f(X) − XTθ)2]. It is easily seen that θ∗
uc = 0.

4



With f⊥(X) = f(X) − XTθ∗, we can choose b so that E0[(f
⊥(X))2] = Φ2. We construct

other hypotheses as

Hj : X = (X1, ..., Xp) with Xℓ =


ρ
Φ
f⊥(N) +

√
1− ρ2Nℓ, if wj

ℓ = 1,

Nℓ, if wj
ℓ = 0,

for j = 1, ..., |M′|, where ρ > 0 is a quantity to be chosen later. Let Ej denote the expectation

under Hj. Clearly, Ej(Xℓ) = 0. After some simple calculation, we can verify that for

j = 1, ..., |M′|,

Ej[XℓXm] =


ρ2 if wj

ℓ and wj
m ̸= 0 and ℓ ̸= m,

1 if ℓ = m,

0 otherwise.

(S.6)

Denote by M = Ej[XXT ] the covariance matrix of X under Hj. From (S.6), there exists

a permutation matrix P such that M = PBPT , where B = diag(A, Ip− s
2
) and A is a s/2-

dimensional equicorrelation matrix with the off-diagonal entry ρ2 and the diagonal entry 1.

Assume that the (λ,v) are the eigenvalue and corresponding eigenvector of B. Following

the definition of eigenvalues, (λ,Pv) are the eigenvalue and eigenvector of M. As a result,

λmin(M) = λmin(B) = λmin(A) = 1 − ρ2, where the last two equalities follow from the

property of the block diagonal matrix and equicorrelation matrix. With the choice of ρ as

specified in (S.11), we can derive that λmin(M) > 1/2 and therefore M is positive definite.

Our next step is to verify that the corresponding estimand θj = {Ej(XXT )}−1Ej(Xf(X))

is s-sparse. To this end, we first note that

Ej[Xℓf(X)] =


ρΦ, if wj

ℓ = 1,

Ej[Nlf(N)] = θ∗
l , if wj

ℓ = 0.

To calculate M−1, we first rewrite the equicorrelation matrix A as A = (1−ρ2)I s
2
+ρ21 s

2
1Ts

2
,
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where 1 s
2
is a s

2
-dimensional vector of 1. The Woodbury formula implies

A−1 =
1

1− ρ2
I s

2
− ρ2

(1− ρ2)(1 + ( s
2
− 1)ρ2)

1 s
2
1Ts

2
.

Thus, we obtain M−1 = PB−1PT with B−1 = diag(A−1, Ip− s
2
). Let et denote the canonical

basis in Rp with the t-th entry being 1 and the rest being 0. Note that the permutation

matrix P can be written as P = (ej1 , ..., ejs/2 , ejs/2+1
, ..., ejp), where the indexes j1, ..., js/2

belong to [j] and js/2+1, ..., jp are not in [j]. Combining the above argument, the estimand

θj under hypothesis Hj is given by

θj = PB−1PTEj[Xf(X)] = PB−1

ρΦ1s/2

θ∗
−[j]

 = P

ρΦA−11s

θ∗
−[j]



=


ρΦ

1+( s
2
−1)ρ2

, if wj
ℓ = 1,

θ∗
l , if wj

ℓ = 0.

, (S.7)

from which we know θj is s-sparse since ||θ∗||0 ≤ s
2
.

In the sequel, we will verify Ej(f(X)−XTθj)2 ≤ Φ2 holds. Recall thatN = (N1, ..., Np) ∼

N (0, Ip). By (S.7), we have

Ej(f(X)−XTθj)2 = E0

[
(f(N)−NTθ∗ − sρ2f⊥(N)

2(1 + (s/2− 1)ρ2)
− ρΦ

√
1− ρ2

1 + (s/2− 1)ρ2

∑
k∈[j]

Nk)
2
]

= (1− sρ2

2(1 + (s/2− 1)ρ2)
)2Φ2 +

sρ2Φ2(1− ρ2)

2(1 + (s/2− 1)ρ2)2

= Φ2 (1− ρ2)2 + sρ2(1− ρ2)/2

(1 + (s/2− 1)ρ2)2

= Φ21− (s/2− 1)ρ4 + (s/2− 2)ρ2

1 + (s− 2)ρ2 + (s/2− 1)2ρ4
< Φ2

Due to the choice of b, under H0 we have E0(f(X) − XTθ0)2 = Φ2. Therefore, we have

shown that the distribution of (X, Y ) under the hypotheses Hj for j = 0, ..., |M′| belongs to

6



the class of distributions PΦ,σ.

To apply Theorem 2.7 in Tsybakov (2008), we need to (1) lower bound ∥θj − θj
′∥q

for 0 ≤ j < j′ ≤ |M′| and (2) upper bound the Kullback-Leibler divergence between the

probability measure of the data denoted by Pj and P0 under Hj and H0. For (1), we have

from (S.7) that for 1 ≤ j < j′ ≤ |M′|

∥θj − θj
′∥q =

Φρ

1 + (s/2− 1)ρ2
ρ
1/q
H (wj,wj′) ≥ s1/qΦρ

161/q(1 + (s/2− 1)ρ2)
, (S.8)

where the last step follows from (S.5). For j = 0 and j′ ≥ 1 we have

∥θj − θj
′∥q =

Φρs1/q

21/q(1 + (s/2− 1)ρ2)
. (S.9)

To quantify the Kullback-Leibler divergence, recall that the data in matrix form can be

written as (Y , X̃), where X̃ = (X1, ..., Xn+N)
T and Y = (Y1, ..., Yn)

T . With a slight change

of notation, we use Xiℓ to denote the ℓ-th component of Xi for 1 ≤ ℓ ≤ p and 1 ≤ i ≤ n+N .

Under Hj, the data distribution can be decomposed as

pj(Y , X̃) = p(Y |X)pj(X̃) = p(Y |X)
n+N∏
i=1

pj(Xi)

= p(Y |X)
n+N∏
i=1

pj(Xi,−{[j],u})pj(Xi,[j]|Xi,u)pj(Xi,u),

where we note that the p.d.f. p(Y |X) remains the same across j and Xi,−{[j],u} stands for

the subvector of Xi by excluding the indexes in {[j], u}. From the above decomposition, the

Kullback-Leibler divergence is given by

K(Pj,P0) = Ej
[
log

p(Y |X)pj(X̃)

p(Y |X)p0(X̃)

]
= (n+N)Ej

[
log

pj(Xi,[j]|Xi,u)

p0(Xi,[j]|Xi,u)

]
.

7



Furthermore, notice that

pj(Xi,[j]|Xi,u) =
∏
k∈[j]

pj(Xik|Xi,u)

=
∏
k∈[j]

( 1√
2π(1− ρ2)

exp
{
−

(Xik − ρ
Φ
f⊥(Xu))

2

2(1− ρ2)

})
,

p0(Xi,[j]|Xi,u) =
∏
k∈[j]

p0(Xik|Xi,u) =
∏
k∈[j]

( 1√
2π

exp
{
− X2

ik

2

})
.

Hence, with some index k ∈ [j] we obtain

K(Pj,P0) =
(n+N)s

2

(
Ej[−

(Xik − ρ
Φ
f⊥(Xu)))

2

(1− ρ2)
]− log(1− ρ2) + Ej[X2

ik]
)

=
(n+N)s

2

(
1− log(1− ρ2) (S.10)

− 1

(1− ρ2)
Ej

[
X2
ik +

ρ2

Φ2
((f⊥(Xu))

2 − 2
ρ

Φ
Xikf

⊥(Xu)
])

=
(n+N)s

2

(
1− log(1− ρ2)− 1 + ρ2 − 2ρ2

1− ρ2
)

=
(n+N)s

2
log

(
1 +

ρ2

1− ρ2

)
≤ s(n+N)ρ2

2(1− ρ2)
.

We set

ρ =
1

4

√
c′1 log(p/s)

n+N
, (S.11)

where c′1 is specified in (S.5). Given the condition
(s/2−1)c′1 log(p/s)

(n+N)
≤ 1 and s ≥ 3, we have

1− ρ2 ≥ 1
2
. Then from (S.10) the Kullback-Leibler divergence can be bounded as follows

K(Pj,P0) ≤
s(n+N)ρ2

2(1− ρ2)
≤ c′1s log(p/s)

16
≤ 1

16
log |M′|,

where the last inequality follows from (S.5). Finally, with the choice of ρ in (S.11), we obtain

from (S.8) and (S.9) that

∥θj − θj
′∥q ≥ Cs1/qΦ

√
log(p/s)

n+N
.
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where we use the inequality 1 + (s/2− 1)ρ2 ≤ 17/16 and C is a constant. We complete the

proof by applying Theorem 2.7 in Tsybakov (2008).

S.3.3 Proof of Theorem 3.2

Proof. Here, we show a general version with surrogate function h(X). First, we can rewrite

that

ξ̂j =
∑
i∈D∗

j

XiYi − ĥ−j(Xi)Xi

nj
−

∑
i∈Dj

ĥ−j(Xi)Xi

nj +Nj

=
∑
i∈D∗

j

XiYi − f(Xi)Xi

nj
−

∑
i∈Dj

f(Xi)Xi

nj +Nj

+
∑
i∈D∗

j

(f(Xi)− h(Xi))Xi

nj

−
∑
i∈Dj

(f(Xi)− h(Xi))Xi

nj +Nj

+
∑
i∈D∗

j

(h(Xi)− ĥ−j(Xi))Xi

nj
−

∑
i∈Dj

(h(Xi)− ĥ−j(Xi))Xi

nj +Nj

.

Denote

I1 =
∑
i∈D∗

j

(h(Xi)− ĥ−j(Xi))Xi

nj
−

∑
i∈Dj

(h(Xi)− ĥ−j(Xi))Xi

nj +Nj

. (S.12)

I2 =
∑
i∈D∗

j

(f(Xi)− h(Xi))Xi

nj
−

∑
i∈Dj

(f(Xi)− h(Xi))Xi

nj +Nj

. (S.13)

Next, we aim to show that ||I1||∞ = Op(K1bn

√
log p
n

). To this end, we further decompose

I as

||I1||∞ ≤
∥∥∥ 1

nj

∑
i∈D∗

j

{(h(Xi)− ĥ−j(Xi))Xi} − ED∗
−j

[
(h(X)− ĥ−j(X))X

]∥∥∥
∞

+
∥∥∥ 1

nj +Nj

∑
i∈Dj

{(h(Xi)− ĥ−j(Xi))Xi} − ED∗
−j

[
(h(X)− ĥ−j(X))X

]∥∥∥
∞
, (S.14)

where ED∗
−j

denotes the conditional expectation given the data in D∗
−j = D∗\D∗

j . Let us de-

note gk(X) = (h(X)−ĥ−j(X))Xk and γk(X) = gk(X)−ED∗
−j
[gk(X)]. From (S.14), it suffices

to upper bound max1≤k≤p
1
nj

∑
i∈D∗

j
γk(Xi) and max1≤k≤p

1
nj+Nj

∑
i∈Dj

γk(Xi), respectively.

9



We know

ED∗
−j

[
max
1≤k≤p

∑
i∈D∗

j

g2k(Xi)
]
≤ njK

2
1 ||ĥ−j − h||22, (S.15)

which follows from ∥X∥∞ ≤ K1 in Assumption 3.1. Therefore, with the application of lemma

S.2 by choosing m = 2, we can show

ED∗
−j

[
max
1≤k≤p

∣∣∣ 1
nj

∑
i∈D∗

j

γk(Xi)
∣∣∣2] ≤ K2

1

8 log(2p)

nj
||ĥ−j − h||22.

Furthermore, the Markov inequality implies for any c > 0

P
(
max
1≤k≤p

| 1
nj

∑
i∈D∗

j

γk(Xi)| ≥ cK1bn

√
log 2p

nj

∣∣∣D∗
−j

)

≤
(ED∗

−j
[max1≤k≤p | 1

nj

∑
i∈D∗

j
γk(Xi)|2]

c2K2
1b

2
n

nj
log(2p)

)
∧ 1

≤
(8||ĥ−j − h||22

c2b2n

)
∧ 1. (S.16)

For any ϵ > 0, let c′ be a sufficiently large constant such that the event E = {||ĥ−j − h||22 ≤

c′b2n} holds with probability at least 1− ϵ. From (S.16), we know that

P
(
max
1≤k≤p

| 1
nj

∑
i∈D∗

j

γk(Xi)| ≥ cK1bn

√
log 2p

nj

)

= E
[
P
(
max
1≤k≤p

| 1
nj

∑
i∈D∗

j

γk(Xi)| ≥ cK1bn

√
log 2p

nj

∣∣∣D∗
−j

)]

≤ E
[
(
8||ĥ−j − h||22

c2b2n
∧ 1)I(E)

]
+ E

[
(
8||ĥ−j − h||22

c2b2n
∧ 1)I(Ec)

]
≤ 8c′

c2
+ P(Ec) ≤ 2ϵ.
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where the last step holds by taking c2 = 8c′/ϵ and the definition P(Ec) ≤ ϵ. This implies

max
1≤k≤p

∣∣∣ 1
nj

∑
i∈D∗

j

γk(Xi)
∣∣∣ = Op(K1bn

√
log p

nj
).

Following the same argument, the following probability bound holds

max
1≤k≤p

∣∣∣ 1

nj +Nj

∑
i∈Dj

γk(Xi)
∣∣∣ = Op(K1bn

√
log p

nj +Nj

).

What is more, if we denote ||f − h||22 = E[(f(X)− h(X))2], we can also derive

||I2||∞ = Op(K1||f − h||2

√
log p

nj
).

The rest of the proof follows the same line as in the proof of Theorem 7.1 in Bickel et al.

(2009). Recall that we assume for j = {1, 2}, nj = n/2 and Nj = N/2. We can show that

∥∥∥∑n+N
i=1 XiX

T
i

(n+N)
θ∗ − ξ̂1 + ξ̂2

2

∥∥∥
∞

=
∥∥∥∑n+N

i=1 Xi(X
T
i θ

∗ − f(Xi))

(n+N)
+

∑n
i=1X

T
i (Yi − f(Xi))

n

∥∥∥
∞
+Op(K1bn

√
log p

n
)

+Op(K1||f − h||2

√
log p

nj
)

≤
∥∥∥∑n+N

i=1 Xi(X
T
i θ

∗ − f(Xi))

(n+N)

∥∥∥
∞
+
∥∥∥∑n

i=1X
T
i (Yi − f(Xi))

n

∥∥∥
∞
+Op(K1bn

√
log p

n
)

+Op(K1||f − h||2

√
log p

nj
)

= Op(K1Φ

√
log p

n+N
) +Op(K1σ

√
log p

n
) +Op(K1bn

√
log p

n
) +Op(K1||f − h||2

√
log p

nj
).

(S.17)

where the last probability bound holds by the same argument in the proof of example 14.3

in Bhlmann and Van de Geer (2011).
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Then, if we set λSD = C ′K1(Φ
√

log p
n+N

+ (σ + bn + ||f − h||2)
√

log p
n

) for sufficiently large

C ′, (S.17) implies

λSD ≥
∥∥∥∑n+N

i=1 XiX
T
i

(n+N)
θ∗ − ξ̂1 + ξ̂2

2

∥∥∥
∞

(S.18)

holds with probability tending to 1. Let δ = θ̂SD − θ∗. By the construction of Dantzig

estimator, when (S.18) holds, we have ||δT c ||1 ≤ ||δT ||1 where T denotes the support of θ∗

and

1

n+N
||X̃TX̃δ||∞ ≤ ||X̃

TX̃θ̂SD
n+N

− ξ̂1 + ξ̂2
2

||∞ + ||X̃
TX̃θ∗

n+N
− ξ̂1 + ξ̂2

2
||∞ ≤ 2λSD.

Therefore,
1

n+N
||X̃δ||22 =

1

n+N
δTX̃TX̃δ

≤ 1

n+N
||δTX̃TX̃||∞||δ||1

≤ 2λSD × 2||δT ||1 ≤ 4λSD
√
s||δT ||2.

With smallest eigenvalue condition (A1) and Lemma S.3, we know on the event of Bc1(n +

N, s, 1), 1
n+N

||X̃δ||22 ≥ (1− c1)
2Cmin||δT ||22. Therefore,

||δT ||2 ≤
4λSD

√
s

(1− c1)2Cmin

.

Above all, we know ||δ||1 ≤ 2||δT ||1 ≤ 2
√
s||δT ||2 ≤ 8λSDs

(1−c1)2Cmin
. As a byproduct, we can show

that ||δ||2 ≲ λD
√
s. This completes the proof.

S.3.4 Proof of Theorem 4.1

Before the proof starts, we need an additional notation for the largest restricted eigenvalue.

Denote

ϕmax(L) = max
1≤||v||0≤L

vT Σ̂n+Nv

||v||22
.
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Then we know ϕmax(·) is an increasing function. We further use the same notation to denote

the event for the upper bound parallel to the lower bound in definition (S.2)

BUδ (n, s0, L) = {X ∈ Rn×p :
||Xv||2√
n||v||2

≤ (1 + δ)
√

Cmax,∀v ∈ C(s0, L) s.t. v ̸= 0}, (S.19)

and under same condition in Lemma S.3,

P(BUδ (n, s0, L)) ≥ 1− e−δ
2n. (S.20)

Lemma 3.5 in Javanmard and Montanari (2018) shows that |T̂1| ≲ s with high probability

under the assumption that s(log p)2 = o(n). With those notations above, we can show the

following lemma ensuring the sparsity of T̂2 in a similar spirit.

Lemma S.5. Suppose Assumption 3.1 holds, Λmax(Σ) ≤ Cmax < ∞ and s(log p)2 = o(n +

N). On the event of Bδ(n, s, 3) ∩ BUδ (n, s, 3) ∩
{
λSL ≥ 2||Σn+Nθ

∗ − ξ̂||∞
}
, we can show

|T̂2| ≤
64Cmaxs

(1− c1)2Cmin

.

Proof. Recall the estimator θ̂SL is defined as

θ̂SL = argmin
θ∈Rp

2∑
j=1

∑
i∈Dj

(
ĥ−j(Xi)−XT

i θ
)2

n+N
−

2
∑

i∈D∗
j

(
Yi − ĥ−j(Xi)

)
XT
i θ

n
+ 2λSL||θ||1.

(S.21)

By KKT condition, we have

2∑
j=1

∑
i∈Dj

(
ĥ−j(Xi)−XT

i θ̂SL
)
Xi

n+N
+

∑
i∈D∗

j

(
Yi − ĥ−j(Xi)

)
Xi

n
= λSLv(θ̂SL), v(θ) ∈ ∂||θ||1.
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Hence we know

∑n+N
i=1

(
XT
i θ

∗ −XT
i θ̂SL

)
Xi

n+N
= λSLv(θ̂

(j)
SL)

−
2∑
j=1

(∑
i∈D∗

j

(
Yi − ĥ−j(Xi)

)
Xi

n
+

∑
i∈Dj

(
ĥ−j(Xi)− X̂T

i θ
∗)Xi

n+N

)
,

and by previous reasoning in Theorem 3.2, we know

||
2∑
j=1

(∑
i∈D∗

j

(
Yi − ĥ−j(Xi)

)
Xi

n
+

∑
i∈Dj

(
ĥ−j(Xi)− X̂T

i θ
∗)Xi

n+N

)
||∞ ≤ λSL

2
.

Therefore, for k ∈ T̂2,
∣∣∑i∈Dj

(
XT

i θ∗−XT
i θ̂SL

)
Xk

i

n+N

∣∣ ≥ λSL/2. We square both sides of the in-

equality and sum over k ∈ T̂2. With ∆ = X̃(θ∗ − θ̂SL), we attain that

λ2
SL

4
|T̂2| ≤

∑
k∈T̂2(∆

TX̃·k)
2

n+N
≤ ||(Σ̂n+N)T̂2 ||

2
2||∆||22. (S.22)

First, by a standard argument for lasso estimator, we can show the same result as for the

dantzig selector in Theorem 3.2 and we know ||∆||22 ≤ 16sλ2
SL/

(
(1− c1)

2Cmin

)
on the event

of Bδ(n, s, 3) ∩
{
λSL ≥ 2||Σ̂n+Nθ

∗ − ξ̂||∞
}
.

Second, employing Lemma 3.5 in Javanmard and Montanari (2018), we know

P(ϕmax(k) ≥ Cmax + C

√
k

n+N
+

t√
n+N

) ≤ 2 exp (−ct2 + k log p+ k), (S.23)

for t ≥ 0, where C, c depend only on Cmax. Hence, ||(Σ̂n+N)T̂2||2 ≤ ϕmax(|T̂2|) ≤ ϕmax(n +

N) ≤ c1

√
(n+N) log p

n+N
holds with large probability, and by inequality (S.22), we know |T̂2| ≲

s
√
log p. Finally, we can refine the bound, as ϕmax(|T̂2|) ≤ ϕmax(C

′s
√
log p) ≤ Cmax if

s(log p)2 = o(n+N). From (S.22), we derive that

|T̂2| ≤
64Cmaxs

(1− c1)2Cmin

.
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Now, we are ready to prove Theorem 4.1.

Proof. We take ω = 0 in the basic inequality,

1

2n

n∑
i=1

(Yi −XT
i (θ̂SL + ω̂))2 + λω||ω̂||1 ≤

1

2n

n∑
i=1

(Yi −XT
i θ̂SL)

2.

Then we have

1

2n

n∑
i=1

(XT
i ω̂)2 + λω||ω̂||1 ≤

1

n
|

n∑
i=1

(Yi −XT
i θ̂SL)X

T
i ω̂|

≤ 1

n
|

n∑
i=1

(Yi −XT
i θ

∗)XT
i ω̂|+ 1

n
|

n∑
i=1

XT
i (θ

∗ − θ̂SL)X
T
i ω̂|

≤ || 1
n

n∑
i=1

(Yi −XT
i θ

∗)XT
i ||∞||ω̂||1 +

4
∑n

i=1(X
T
i (θ

∗ − θ̂SL))
2

n

+
1

4n

n∑
i=1

(XT
i ω̂)2.

Denote λ0 = || 1
n

∑n
i=1(Yi−XT

i θ
∗)XT

i ||∞. Choosing λω ≥ CωK1(Φ+σ)
√

log p
n

≥ 2λ0, we then

arrive that

1

4n

n∑
i=1

(XT
i ω̂)2 +

λω
2
||ω̂||1 ≤

4

n

n∑
i=1

(XT
i (θ

∗ − θ̂SL))
2.

With the given sparsity of supp(ω̂), we can proceed to show the rate of θ̂SL hold for θ̂R by

(1− δ)Cmin||ω̂||22 ≤ 16(1 + δ)Cmax||θ∗ − θ̂SL||22.

That is to say ||θ̂R − θ∗||2 ≤ ||θ∗ − θ̂SL||2 + ||ω̂||2 ≤ (2Cmax

Cmin
+ 1)||θ∗ − θ̂SL||2.
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From the basic inequality, taking ω = θ̂L − θ̂SL,

1

2n

n∑
i=1

(Yi −XT
i (θ̂SL + ω̂))2 + λω||ω̂||1 ≤

1

2n

n∑
i=1

(Yi −XT
i θ̂L)

2 + λω||θ̂L − θ̂SL||1,

we can see

1

2n

n∑
i=1

(Yi −XT
i θ̂R)

2 ≤ 1

2n

n∑
i=1

(Yi −XT
i θ̂L)

2 + λω(||θ̂L − θ̂SL||1 − ||ω̂||1).

Therefore, we have

1

2n

n∑
i=1

(XT
i (θ̂L − θ̂R))

2 ≤ 1

n
|

n∑
i=1

(Yi −XT
i θ̂L)X

T
i (θ̂L − θ̂R)|+ λω||θ̂L − θ̂R||1.

We know with the same choice of λω ≥ CK1(Φ + σ)
√

log p
n

with large enough constant C,

λω ≥ ||
∑n

i=1(Yi −XT
i θ̂L)Xi

n
||∞ = Op(K1(Φ + σ)

√
log p

n
),

so we attain that

1

2n

n∑
i=1

(XT
i (θ̂L − θ̂R))

2 ≤ 2λω||θ̂L − θ̂R||1.

The support set of θ̂L − θ̂R is contained in T̂1 ∪ T̂2, so we have

||θ̂L − θ̂R||1 ≲
√
s||θ̂L − θ̂R||2.

On the event of Bc1(n, |T̂1 ∪ T̂2|, 1),

1

n

n∑
i=1

(XT
i (θ̂L − θ̂R))

2 ≥ (1− c1)
2Cmin||θ̂L − θ̂R||22.

Hence, ||θ̂L − θ̂R||2 ≤ λω
√
s/((1 − c1)

2Cmin). What is more, ||θ̂R − θ∗||2 ≤ ||θ̂R − θ̂L||2 +

||θ̂L − θ∗||2 ≲ λω
√
s.
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S.3.5 Proof of Proposition 5.1

The proof is in a similar spirit as Theorem 4.1. We only provide a sketch.

Proof. Recall that the objective function can be rewritten as

(θ̂h1 + ω)T Σ̂n+N(θ̂h1 + ω)− (ξ̂1 + ξ̂2)
T (θ̂h1 + ω) + 2λH ||ω||1.

where ξ̂ is defined with h2. First, we can take ω = 0 in the basic inequality, so

(θ̂h1 + ω̂)T Σ̂n+N(θ̂h1 + ω̂)− (ξ̂1 + ξ̂2)
T θ̂R + 2λH ||ω̂||1 ≤ θ̂Th1Σ̂n+N θ̂h1 − (ξ̂1 + ξ̂2)

T θ̂h1 .

Simplify it and we have

ω̂T Σ̂n+N ω̂ + 2λH ||ω̂||1 ≤ 2|ω̂T (Σ̂n+N θ̂h1 −
(ξ̂1 + ξ̂2)

2
)|

≤ 2||(Σ̂n+Nθ
∗ − (ξ̂1 + ξ̂2)

2
)||∞||ω̂||1 + 2|ω̂Σ̂n+N(θ

∗ − θ̂h1)|

≤ λH ||ω̂||1 +
ω̂T Σ̂n+N ω̂

2
+ 2(θ∗ − θ̂h1)

T Σ̂n+N(θ
∗ − θ̂h1)

Hence we have

1

2
ω̂T Σ̂n+N ω̂ + λH ||ω̂||1 ≤ 2(θ∗ − θ̂h1)

T Σ̂n+N(θ
∗ − θ̂h1)

As what we did previously, we choose λH ≥ 2||Σ̂n+Nθ
∗− (ξ̂1+ξ̂2)

2
||∞ as the one computing θ̂h2 .

Therefore, ||ω̂||2 ≤
√

Cmax/Cmin||θ∗−θ̂h1||2 and ||θ̂R−θ∗||2 ≤
(√

Cmax/Cmin+1
)
||θ∗−θ̂h1||2.
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On the other hand, we choose ω = θ̂h2 − θ̂h1 . Then

(θ̂h1 + ω̂)T Σ̂n+N(θ̂h1 + ω̂)− (ξ̂1 + ξ̂2)
T θ̂R + 2λH ||ω̂||1 ≤

θ̂Th2Σ̂n+N θ̂h2 − (ξ̂1 + ξ̂2)
T θ̂h2 + 2λH ||θ̂h2 − θ̂h1||1.

It simplifies to

(θ̂AH − θ̂h2)
T Σ̂n+N(θ̂AH − θ̂h2) + 2λH ||ω̂||1 ≤

2|(θ̂AH − θ̂h2)
T (Σ̂n+N θ̂h2 −

(ξ̂1 + ξ̂2)

2
)|+ 2λH ||θ̂h2 − θ̂h1||1

Therefore, choose λH ≥ 2||Σ̂n+N θ̂h2 −
(ξ̂1+ξ̂2)

2
||∞, and we have

(θ̂AH − θ̂h2)
T Σ̂n+N(θ̂AH − θ̂h2) ≤ 3λH ||θ̂AH − θ̂h2||1 (S.24)

With the sparsity on Ĥ1 and Ĥ2, we have ||θ̂AH − θ̂h2||2 ≤ 3λh2
√
s/
(
(1 − c1)

2Cmin

)
and

||θ̂AH − θ∗||2 ≤ 4λh2
√
s/
(
(1− c1)

2Cmin

)
.

S.4 Supplementary Technical Results

S.4.1 E(f(X)−XT θ∗)2 ≍ s

Assume that the true conditional mean function f(X) has an additive form f(X) =
∑

k∈S fk(Xk)

with E(fk(Xk)) = 0, where Xk is the k-th component of X and S is a subset of {1, ..., p}

with |S| = s. We further assume that all the covariates X1, ..., Xp are mutually independent.
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We have

E(f(X)−XTθ∗)2 = E
{∑
k∈S

(fk(Xk)−Xkθ
∗
k)−

∑
k/∈S

Xkθ
∗
k

}2

= E
{∑
k∈S

(fk(Xk)−Xkθ
∗
k)
}2

+ E
{∑
k/∈S

Xkθ
∗
k

}2

=
∑
k∈S

E(fk(Xk)−Xkθ
∗
k)

2 +
∑
k/∈S

Σkk(θ
∗
k)

2,

where we use the fact that E(fk(Xk)) = 0 and E(Xk) = 0. By the definition of θ∗, we know

that for k /∈ S, θ∗k = 0. For k ∈ S, θ∗k = argminθ E(fk(Xk)−Xkθ)
2 = E(fk(Xk)Xk)/Σkk and

E(fk(Xk)−Xkθ
∗
k)

2 = E(f 2
k (Xk))− [E(fk(Xk)Xk)]

2/Σkk

which is a constant. For example, if Xk ∼ N(0, 1) and fk(Xk) = X3
k , then E(fk(Xk) −

Xkθ
∗
k)

2 = 6. Thus, we have E(f(X)−XTθ∗)2 = 6s.

S.4.2 Rate of θ̂U

Recall that the modified Dantzig selector θ̂U is defined as

θ̂U = argmin ∥θ∥1, s.t. ∥Σ̂n+Nθ − 1

n

n∑
i=1

XiYi∥∞ ≤ λU .

Assume that Assumption 3.1 holds. By choosing λU ≍ K1

√
(σ2+Φ2+θ∗TΣθ∗) log p

n
, we obtain

that

∥θ̂U − θ∗∥1 = Op

(
sK1(Φ + σ + (θ∗TΣθ∗)1/2)

√
log p

n

)
.

Under the conditions in our Theorem 3.2, we have K1 = O(1). This implies the bound

(3.11).

The proof follows from the same argument as in Lemma S.4. The only nontrivial step is
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to bound ∥Σ̂n+Nθ − 1
n

∑n
i=1 XiYi∥∞. Using the triangle inequality, we have

∥Σ̂n+Nθ − 1

n

n∑
i=1

XiYi∥∞ ≤ ∥ 1
n

n∑
i=1

Xi(Yi − f(Xi))∥∞

+ ∥ 1
n

n∑
i=1

Xi(f(Xi)−XT
i θ

∗)∥∞ + ∥(Σ̂n −Σ)θ∗∥∞ + ∥(Σ̂n+N −Σ)θ∗∥∞.

We have already derived in (S.17) that,

∥ 1
n

n∑
i=1

Xi(Yi − f(Xi))∥∞ ≲ K1σ

√
log p

n
,

∥ 1
n

n∑
i=1

Xi(f(Xi)−XT
i θ

∗)∥∞ ≲ K1Φ

√
log p

n
.

To control ∥(Σ̂n − Σ)θ∗∥∞, we note that ∥Xi∥∞ ≤ K1 and E(XT
i θ

∗)2 = θ∗TΣθ∗. We

obtain

∥(Σ̂n −Σ)θ∗∥∞ ≲ K1(θ
∗TΣθ∗)1/2

√
log p

n
,

by the Nemirovski moment inequality in Lemma S.2 and Markov inequality. The last term

∥(Σ̂n+N −Σ)θ∗∥∞ is dominated by ∥(Σ̂n −Σ)θ∗∥∞ and can be ignored. Thus, we obtain

∥Σ̂n+Nθ − 1

n

n∑
i=1

XiYi∥∞ ≲ K1(Φ + σ + (θ∗TΣθ∗)1/2)

√
log p

n
.

S.4.3 Rate of θ̂T

Although the method in Alquier and Hebiri (2012) does not apply cross-fitting procedure

and they did not have a convergence rate result, to facilitate rate analysis here, we still use

cross-fitting version of pseudo outcomes and let Ỹ = (ĥ−j1(X1), ..., ĥ
−jn+N (Xn+N)), where

ji = 1, 2 depending on which split of data Xi is in.

Recall that the transductive Dantzig selector is given by

θ̂T = argmin ||θ||1 s.t.
1

n+N
||X̃(Ỹ − X̃Tθ)||∞ ≤ λT , (S.25)
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where Ỹ = (Ỹ1, ..., Ỹn+N) = (ĥ−j1(X1), ..., ĥ
−jn+N (Xn+N)). Under assumption 3.1 and condi-

tions in Theorem 3.2, by choosing λT ≍ K1

(
Φ
√

log p
n+N

+ (bn +Gh)
)
, we obtain that

∥θ̂T − θ∗∥q = Op

(
K1s

1/q
{
Φ

√
log p

n+N
+ (bn +Gh)

})
.

This rate is no better than our proposed methods when bn+Gh ≫ (bn+Gh+σ)
√

log p
n

. This

is true under the situation that Gh = 0 and bn achieved with some traditional nonparametric

rate such as the one discussed in Remark 3.3.

The proof mainly follows the same argument as in Lemma S.4. The only nontrivial step

is to bound 1
n+N

||X̃(Ỹ − X̃Tθ)||∞. Using triangle inequality, we have

1

n+N
||X̃(Ỹ − X̃Tθ)||∞ ≤ ||

∑n+N
i=1 Xi(Ỹi − f(Xi))

n+N
||∞ + ||

∑n+N
i=1 Xi(f(Xi)−XT

i θ
∗))

n+N
||∞

We have already derived in S.17 that,

∥ 1

n+N

n+N∑
i=1

Xi(f(Xi)−XT
i θ

∗)∥∞ ≲ K1Φ

√
log p

n+N
.

To deal with ||
∑n+N

i=1 Xi(Ỹi−f(Xi))

n+N
||∞, we adopt the other formulation of this term, which is

||
∑2

j=1

∑
i∈Dj

Xi(ĥ
−j(Xi)− f(Xi))

n+N
||∞ ≤ 1

2

2∑
j=1

||
∑

i∈Dj
Xi(ĥ

−j(Xi)− f(Xi))

nj +Nj

||∞

≤ 1

2

( 2∑
j=1

||
∑

i∈Dj
Xi(ĥ

−j(Xi)− f(Xi))

nj +Nj

− ED∗
−j

[
(ĥ−j(X)− f(X))X

]
||∞

+ ∥ED∗
−j

[
(ĥ−j(X)− f(X))X

]
∥∞

)
= Op

(
K1(bn +Gh)

√
log p

n+N
+K1(bn +Gh)

)
= Op

(
K1(bn +Gh)

)
,
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where the bounds are derived similarly to S.12 and S.13. Thus, we obtain that

1

n+N
||X̃(Ỹ − X̃Tθ)||∞ ≲ K1

(
Φ

√
log p

n+N
+ (bn +Gh)

)
.

S.4.4 Counter Example of Weighted Estimator

Since Nemirovski (2000), there is a vast literature on aggregation of estimators; see Rigollet

et al. (2012) for a recent review. In the context of Section 4, as an alternative, we may

consider the weighted estimator of the form θ̂β = βθ̂SL + (1 − β)θ̂L for some β ∈ [0, 1],

which corresponds to the convex combination of two estimators θ̂SL and θ̂L. As suggested

by Nemirovski (2000), to find the optimal weighted estimator, we have to split the sample.

The first sample is used to compute the initial estimators θ̂SL and θ̂L, while the optimal

weight β̂ is estimated from the second sample, say {(X1, Y1), ..., (Xn′ , Yn′)}, by solving the

following constrained least square problem

β̂ = argmin
β∈[0,1]

1

n′

n′∑
i=1

(Yi −XT
i (βθ̂SL + (1− β)θ̂L))

2. (S.26)

The optimal weighted estimator is given by θ̂β̂. However, our preliminary analysis suggests

that in the semi-supervised setting, an optimal performance in the prediction does not nec-

essarily lead to a more accurate estimation of θ∗. In other words, our Theorem 4.1 does not

generally hold for the weighted estimator θ̂β̂. To illustrate this argument, a counter example

is given below. Along this line, one future research question is that, in the context of Section

5, whether it is possible to combine an increasing number of semi-supervised estimators via

some more refined aggregation methods, such as Q-aggregation (Dai et al., 2012).

We next study the property of this weighted estimator. Above is a univariate least square

problem and denote

Ŵ =

∑n′

i=1(Yi −XT
i θ̂L)X

T
i (θ̂SL − θ̂L)∑n′

i=1(X
T
i (θ̂SL − θ̂L))2

. (S.27)

22



Then

β̂ =


Ŵ if Ŵ ∈ [0, 1],

0 if Ŵ < 0,

1 if Ŵ > 1.

With β̂, we denote θ̂β̂ = β̂θ̂SL + (1− β̂)θ̂L.

Firstly, we consider the case where β̂ = 0, and β̂ = 1 follows the same argument. When

β̂ = 0, we have
n′∑
i=1

(Yi −XT
i θ̂L)

2 ≤
n′∑
i=1

(Yi −XT
i θ̂SL)

2, (S.28)

from which we can get

(θ̂L − θ∗)T Σ̂n(θ̂L − θ∗) ≤ (θ̂SL − θ∗)T Σ̂n(θ̂SL − θ∗) +
2

n′

n′∑
i=1

((ηi + ϵi)X
T
i (θ̂L − θ̂SL)).

(S.29)

The remainder term 2
n′

∑n′

i=1((ηi + ϵi)X
T
i (θ̂L − θ̂SL)) is Op(

K1(Φ+σ)||θ̂L−θ̂SL||2√
n

). Intuitively,

by triangle inequality, we can show that ||θ̂L − θ̂SL||2 is of order K1(σ + Φ)
√

s log p
n

, and

therefore the remainder term is Op(
K2

1 (Φ+σ)2
√
s log p

n
). However, the inequality S.29 shows that

||θ̂L−θ∗||2 is not guaranteed to be of smaller order than ||θ̂SL−θ∗||2, although the prediction

from θ̂L is preferred.

Indeed, in this case ||θ̂L−θ∗||2 can be larger than the order of ||θ̂SL−θ∗||2. To illustrate

this argument, a counter example is given as follows.

Assume that the true conditional mean function f(X) is supported on S, a subset of

{1, ..., p} with |S| = s and projection coefficients are nonzero only on S with value θ. We

further assume that all the covariates X1, ..., Xp are i.i.d.uniformly distributed on [-1,1].

Suppose we have two initial estimators θ̂L and θ̂SL whose support sets are both S ∪

S ′, where |S ′| = s. Let θ̂kL = θ̂kSL = θ + δ for k ∈ S, θ̂kL = δ1, θ̂kSL = δ2 for k ∈ S ′

and δ1, δ2 ≥ 0. Next, we construct examples where θ̂L achieves the minimal prediction
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error among all the convex weighted estimator but has arbitrarily larger order of estimation

error than θ̂SL. We can compute Ŵ according to equation (S.27), and the denominator is∑n′

i=1(
∑

k∈S′ Xk
i )

2(δ1 − δ2)
2, where Xk

i is the k-th coordinate of Xi. And the numerator is∑n′

i=1(Yi−
∑

k∈S X
k
i (θ−δ)−

∑
k∈S′ Xk

i δ1)(
∑

k∈S′ Xk
i (δ2−δ1)). Set δ = σ

√
log p
n′ , δ2 = Φ

√
log p
n′+N

and δ1 = ρ
√

log p
n′ , where N ≫ n′ and ρ ≪ Φ but δ1 ≫ δ2, so that ||θ̂L−θ∗||2 ≫ ||θ̂SL−θ∗||22.

Denote

T1 =
1

n′

n′∑
i=1

(
∑
k∈S′

Xk
i )

2(δ1 − δ2)
2,

T2 =
1

n′

n′∑
i=1

(Yi −
∑
k∈S

Xk
i (θ − δ))(

∑
k∈S′

Xk
i (δ2 − δ1)),

and

T3 =
1

n′

n′∑
i=1

(
∑
k∈S′

Xk
i δ1)(

∑
k∈S′

Xk
i (δ1 − δ2)),

so that the denominator is T1 and the numerator is T2 − T3. We firstly notice that E[T1] =

1
3
s(δ1 − δ2)

2, and E[T3] =
1
3
s(δ1 − δ2)δ1. Although E[T2] = 0, but we will show that T2 can

be as large as the order sδ1(δ1 − δ2). By Chebyshev’s inequality,

Pr
(
| 1
n′

n′∑
i=1

(Yi − θ
∑
k∈S

Xk
i )(

∑
k∈S′

Xk
i (δ2 − δ1))| > t

)
≤

E[(Y − θ
∑

k∈S X
k)2]E[(

∑
k∈S′ Xk)2](δ2 − δ1)

2

n′t2

≤ s(δ2 − δ1)
2(Φ2 + σ2)

n′t2
, (S.30)

so we have 1
n′

∑n′

i=1(Yi − θ
∑

k∈S X
k
i )(

∑
k∈S′ Xk

i (δ2 − δ1)) = Op(

√
s(Φ2+σ2)(δ1−δ2)√

n′ ). Therefore,

we can see that as long as
√

Φ2+σ2

n′ ≫
√
sδ1 = ρ

√
s log p
n′ , or with another sufficient condition

that Φ2 ≫ sρ2 log p, |T2| can be as large as T3. Then there is a non-vanishing probability

that T2+T3 ≤ 0. In this case, the optimal weight β̂ is 0, which indicates θ̂L is more favorable.

However, it is clear to see that the estimation error of θ̂L is of larger order than that of θ̂SL.

At last, we show an example where Φ2 ≫ sρ2 log p. Set f(X) = (
∑

k∈S X
k)3, and

denote A =
∑

k∈S X
k

√
s

, then we know Var(A) = 1
3
and

√
sA follows a Irwin-Hall Distri-

bution so that
√
3A can be approximate well by a standard Gaussian variable. Hence,

24



θ = E[(
∑

k∈S X
k)4]/E[(

∑
k∈S X

k)2] = sE[A4]
E[A2]

should be of order s and Φ2 = E[(
∑

k∈S X
k)3 −

θ(
∑

k∈S X
k)2] = s3E[(A3 − θ

s
A)2] is of order s3.

S.4.5 Further intuition on modified score function

Recall that the score function of the supervised lasso/Dantzig selector can be rewritten as

S1 =
1

n

n∑
i=1

Xi(Yi −XT
i θ

∗) =
1

n

n∑
i=1

Xi(Yi − f(Xi)) +
1

n

n∑
i=1

Xi(f(Xi)−XT
i θ

∗).

With unlabeled data, we propose to replace the last term with 1
n+N

∑n+N
i=1 Xi(f(Xi)−XT

i θ
∗),

the sample average over both labeled and unlabeled data. This leads to the following modified

score function

S2 =
1

n

n∑
i=1

Xi(Yi − f(Xi)) +
1

n+N

n+N∑
i=1

Xi(f(Xi)−XT
i θ

∗). (S.31)

To see why this manipulation is useful without going through the technical details (e.g, con-

centration inequalities), let us compare the variance of S1 and S2. Under mild assumptions

(e.g. data are i.i.d, ϵ and X are independent), it is easily seen that

Cov(S1) =
1

n
(σ2 + Φ2)Σ, and Cov(S2) =

1

n
σ2Σ+

1

n+N
Φ2Σ,

where σ2 = Var(ϵ), Φ2 = E(f(X) −XTθ∗)2 and Σ = Cov(X). Clearly, Cov(S1) − Cov(S2)

is always a semi-positive definite matrix, which implies that the variability of the proposed

modified score function is smaller than the original score function. In particular, by compar-

ing the two terms 1
n+N

Φ2Σ and 1
n
Φ2Σ in Cov(S2) and Cov(S1) respectively, we can claim

that our manipulation can reduce the variance due to model misspecification.

S.5 Examples of ĥ

Sparse additive models. Assume that Yi given Xi = (Xi1, ..., Xip) follows the additive
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model

Yi = µ+

p∑
j=1

fj(Xij) + ϵi,

where µ is an intercept, fj’s are unknown functions and ϵi is the random error. For identifi-

cation purpose, we assume Efj(Xij) = 0. Suppose that some of the functions fj are 0. We

also assume fj is ℓ̄-smooth, that is the kth derivative f
(k)
j exists and satisfies the Lipschitz

condition |f (k)
j (t1) − f

(k)
j (t2)| ≤ C|t1 − t2|ℓ̄−k, where C is a constant and k is the greatest

integer strictly less than ℓ̄.

The literature on how to estimate these additive functions is vast, see Lin and Zhang

(2006); Meier et al. (2009); Huang et al. (2010); Raskutti et al. (2012) among many others.

Here, we adopt the adaptive group lasso approach in Huang et al. (2010) as a concrete

example. Suppose Xj takes values in [a, b]. Let a = c0 < c1 < .... < cK+1 = b be a

partition of [a, b] into K subintervals It = [ct, ct+1), where K = nv for some 0 < v < 1/2 and

maxk |ck − ck−1| = O(n−v). Let Sn denote the space of polynomial splines of order ℓ, that is

the restriction of the function to It is a polynomial of degree ℓ and for ℓ ≥ 2 the function is

ℓ − 2 times continuously differentiable on [a, b]. For the space of splines Sn, there exists a

normalized B-spline basis {ϕk, 1 ≤ k ≤ mn}, where mn = K + ℓ, such that for any f ∈ Sn

we have f(x) =
∑mn

k=1 βkϕk(x).

Based on the spline theory, any ℓ̄-smooth function fj can be approximated by
∑mn

k=1 βjkϕk(x).

Thus, Huang et al. (2010) proposed to estimate the unknown functions by solving the fol-

lowing group lasso problem

min
n∑
i=1

[
Yi − µ−

p∑
j=1

mn∑
k=1

βjkϕk(Xij)
]2

+ λn

p∑
j=1

wj∥βj∥2,

where λn is the tuning parameter, wj is weight in the adaptive lasso, and βj = (βj1, ..., βjmn).

Let us denote the resulting estimator by µ̂ and β̂jk for 1 ≤ j ≤ p and 1 ≤ k ≤ mn. Then we
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have

ĥ(x) = µ̂+

p∑
j=1

mn∑
k=1

β̂jkϕk(xj).

Under the conditions detailed in Huang et al. (2010), their Corollary 2 implies that ||ĥ−f ||2 =

Op(s
1/2n−ℓ̄/(2ℓ̄+1)), where ℓ̄ is the smoothness of the function fj and s is the number of nonzero

fj’s.

Pairwise interaction models. Zhao et al. (2016) considered the following interaction

models,

Yi =

p∑
j=1

γjXij +
∑

1≤j≤k≤p

γjkXijXik + ϵi

where ϵi is the random error and {γj}1≤j≤p and {γjk}1≤j≤k≤p are unknown parameters.

Assume that {γj}1≤j≤p and {γjk}1≤j≤k≤p are sparse. Zhao et al. (2016) proposed the following

lasso estimator

min
n∑
i=1

[
Yi −

p∑
j=1

γjXij +
∑

1≤j≤k≤p

γjkXijXik

]2
+ λ1

p∑
j=1

|γj|+ λ2

∑
1≤j≤k≤p

|γjk|.

Let us denote the resulting estimator by γ̂j and γ̂jk. Then we have

ĥ(x) =

p∑
j=1

γ̂jxj −
∑

1≤j≤k≤p

γ̂jkxjxk.

In this case, ||ĥ − f ||2 corresponds to the prediction error in the lasso problem. Following

the proof in Zhao et al. (2016), it can be shown that ||ĥ− f ||2 = Op(
√
s log p/n), where s is

the number of nonzero parameters.

We also note that in the analysis of interaction models, one common assumption is known

as the strong hierarchy principle, that is if an interaction XjXk exists then their main effects

(the linear terms of Xj and Xk) also exist. Zhao et al. (2016) also proposed a group lasso

approach to accommodate the strong hierarchy principle in interaction models.
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N=300 N=900 N=1500
L1 error L2 error L1 error L2 error L1 error L2 error

SSL12 3.93 1.17 2.50 0.86 2.15 0.78
SSL21 3.84 1.19 2.40 0.86 2.10 0.79

Table 1: The L1 and L2 estimation errors of SSL12, SSL21 with Model 1 for n = 300,
p = 1000.

S.6 Supplementary Simulation Results

Parallel to the results presented in the main paper for Models 1, 2, 3 with p = 500 and

n = 200, here we also present the similar results for Models 1, 2, 3 with p = 200 and n = 100

in Figures 2, 3 and 4, as well as for Models 1, 2, 3 with p = 1000 and n = 300 in Figures 5, 6

and 7, respectively. The results from analyzing the L2 and L1 estimation errors are similar

to the main paper, so are omitted.

When creating the aggregated estimator θ̂AH in Section 5, suppose that we have two

candidate models h1 and h2 for the conditional mean functions. The aggregated estimator

in (5.1) is given by θ̂AH = θ̂h1 + ω̂, where we use the semi-supervised estimator with model

h1, θ̂h1 , as an initial estimator. The creation of θ̂AH is not symmetric to h1 and h2. Theo-

retically, Proposition 5.1 shows that the aggregated estimators have the same convergence

rate regardless whether we use θ̂h1 or θ̂h2 as the initial estimator. To back up our theory,

we add new simulation results for the aggregated estimator named as SSL21, which uses θ̂h2

as the initial estimator. Tables 1,2,3 show that the two aggregated estimators SSL21 and

SSL12 have similar performance.

Additionally, in Section 3.2, we adopt the splitting strategy 50-50 in the cross-fitting

technique; i.e., we use 50% of labeled data to train the model ĥ−j and the other 50% to

compute ξ̂j; see (3.4). It is of interest to consider an imbalanced split, such as 70-30. Note

that, due to the symmetry of calculating the estimator θ̂SD in (3.5), the split strategies of

70-30 and 30-70 essentially result in the same estimator. The comparison results in Table 4

show that the splitting strategy of 50-50 is slightly preferred.
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Figure 2: The L2 and L1 estimation error under Model 1 with p = 200 and n = 100. The
length of the vertical bar represents the magnitude of the sample standard deviations. L2

errors for U-Dantzig are 9.14(0.32), 11.16(0.34), 11.47(0.35). L1 errors for U-Dantzig are
7.68(0.20), 8.33(0.19), 8.49(0.19).

Figure 3: The L2 and L1 estimation error under Model 2 with p = 200 and n = 100. The
length of the vertical bar represents the magnitude of the sample standard deviations. L2

errors for U-Dantzig are 4.21 (0.14), 4.25(0.14), 4.24(0.14). L1 errors for U-Dantzig are
5.32(0.16), 5.29(0.15), 5.50(0.15).
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Figure 4: The L2 and L1 estimation error under Model 3 with p = 200 and n = 100. The
length of the vertical bar represents the magnitude of the sample standard deviations. L2

errors for U-Dantzig are 17.46(0.45), 19.03(0.40), 19.73(0.44). L1 errors for U-Dantzig are
16.99(0.27), 17.70(0.26), 17.88(0.31).

Figure 5: The L2 and L1 estimation error under Model 1 with p = 1000 and n = 300.
The length of the vertical bar represents the magnitude of the sample standard deviations.
L2 errors for U-Dantzig are 4.12(0.12), 4.94(0.14), 5.18(0.15). L1 errors for U-Dantzig are
5.09(0.11), 5.57(0.10), 5.74(0.12).
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Figure 6: The L2 and L1 estimation error under Model 2 with p = 1000 and n = 300.
The length of the vertical bar represents the magnitude of the sample standard deviations.
L2 errors for U-Dantzig are 1.82(0.06), 2.01(0.06), 2.11(0.07). L1 errors for U-Dantzig are
3.47(0.06), 3.89(0.07), 3.98(0.07).

Figure 7: The L2 and L1 estimation error under Model 3 with p = 1000 and n = 300. The
length of the vertical bar represents the magnitude of the sample standard deviations. L2

errors for U-Dantzig are 8.82(0.18), 10.32(0.21), 10.77(0.21). L1 errors for U-Dantzig are
11.81(0.14), 13.97(0.19), 14.33(0.20).
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N=300 N=900 N=1500
L1 error L2 error L1 error L2 error L1 error L2 error

SSL12 3.07 0.73 2.90 0.68 2.88 0.67
SSL21 2.98 0.73 2.70 0.67 2.63 0.66

Table 2: The L1 and L2 estimation errors of SSL12, SSL21 with Model 2 for n = 300,
p = 1000.

N=300 N=900 N=1500
L1 error L2 error L1 error L2 error L1 error L2 error

SSL12 8.54 4.72 8.02 4.53 7.92 4.53
SSL21 8.39 4.71 7.81 4.51 7.70 4.51

Table 3: The L1 and L2 estimation errors of SSL12, SSL21 with Model 3 for n = 300,
p = 1000.

Model 1 Model 2 Model 3
split ratio SSL1 SSL2 SSL1 SSL2 SSL1 SSL2

L2 error
50-50 0.74 1.03 0.80 0.65 5.65 4.25
70-30 0.78 1.08 0.96 0.74 6.06 4.55

L1 error
50-50 2.20 2.53 2.97 2.62 9.06 7.77
70-30 2.44 2.74 3.55 2.62 9.30 8.07

Table 4: The L1 and L2 estimation errors of estimators SSL1 and SSL2 with split ratio 50-50
and 70-30, for the setting with p = 1000, n = 400 and N = 1200.
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S.7 Supplementary Materials in Real Data Application

The MIMIC-III database is comprehensive in nature and it includes 26 individual tables in

csv format, named “admissions”, “patients”, “outputevents”, “chartevents”, etc. It includes

vital signs, medications, laboratory measurements, observations and notes charted by care

providers. The total data size reached 40GB after decompression. There are two types of

data in the database: static data and dynamic data. The static data do not change over

time and are recorded only once such as the date of birth, while the dynamic data are mainly

the vital signs that periodically measured during the patient’s ICU stay such as the blood

pressure and the heart rate. The Table 3 of Johnson et al. (2016) contains all the classes

of the data available in MIMIC-III while their Table 4 provides an overview of the 26 data

tables.

Due to the complexity of this large database, a few preprocessing steps are conducted to

improve the quality of the data.

For the patient selection process, we exclude patients with less than 24-hour ICU stays,

since those patients with short length of stays have many missing values in the covariates.

Patients who died during the ICU stay are also excluded. Additionally, for patients with

multiple ICU admissions, we only keep the first ICU admission in our analysis. This database

has a variety of missing values with different patterns, including for the outcome “albumin”.

To illustrate our method, we choose not to impute this outcome and instead only focus on

the patients whose “albumin” is available.

We consult the previous literature (Brown et al., 2012; Tabak et al., 2017; Xue et al.,

2019; Liu et al., 2020; Du et al., 2021; Jhou et al., 2021; Tang et al., 2021) to select the

variables used in our data analysis. In general, the variable selection takes into account

the following directives (Fialho et al., 2012; Nates et al., 2016). First, variables must be

easily and/or routinely assessed in the 24 hours before discharge. There is a special concern

for the patients who were older than 89 years, because their dates of birth were shifted to

obscure their true age to comply with Health Insurance Protability and Accountability Act
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(HIPAA) regulations. These patients appear in the database with ages of over 300 years,

and the MIMIC-III team only provides the median age for the patients before shifting, which

is 91.4. Thus, for the patients with shifted age, we replace their age with the median 91.4.

Second, the balance should be kept in the number of selected variables given that it will

affect the number of patients that will be used in the analysis, i.e., the more variables that

are defined, the fewer patients are likely to have all of them collected at the same time; or

the high number of variables will bias the dataset towards selecting patients having similar

conditions. Third, the variables selected should be independent with minimum correlation.

For dynamic data such as many clinical biomarkers with continuous scale, the database

collects the minimum, the maximum, as well as the mean, values during each patient’s ICU

stay. In order to alleviate the potential collinearity among these variables, we decide to only

include the mean values in our analysis. Additionally, besides the 78 covariates themselves,

we include pairwise interactions among 75 of the covariates that are continuous-scale clinical

biomarkers as well as their squared terms, which all together result totally p = 2928 variables.

Regarding other missing data issues, in our situation, around 54% covariates contain

missing values. Among these covariates with missing values, the missingness proportions are

9.4% on average and the range is from 0.2% to 30.8%. For the demographic variables, most

observations were complete. For the laboratory test observations, observations are missing

mainly because the variables are considered to be irrelevant to the current clinical problems,

thus those laboratory tests are not requested by clinician. For those missing values, we

simply impute them using the mean of observed samples, the so-called mean imputation.

After all of these data pre-processing steps, we are left with a dataset with 4784 patients

and each of them has p = 2928 covariates. In our analysis, we consider a high dimensional

setting where the sample size of our labeled data is n = 500.

Besides the results reported in the main text, we also carry out a parallel analysis and

summarize the results, aggregating from 100 replications, in Figure 8. The difference is, here

we set aside 2500 patients that are not going to be used in the computation of the three
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Figure 8: The L2 and L1 estimation error for real data application reported in the supple-
ment.

comparative estimators. Instead, these 2500 patients are used to compute the lasso estimator,

regarded as the proxy of the underlying true linear coefficients of the working model in this

situation. In each replication we randomly choose 2000 patients from the remaining 2284

patients and call the first n = 500 patients the labeled data. The corresponding results in

Figure 8 show a similar pattern as in the main text.

Last but not least, regarding our analysis results, we also collect the variable selection

results from the comparison of supervised lasso, S-SSL and SSL estimators. The results

show that the variables white blood cells, hemoglobin and lymphocytes are selected

more frequently by both of SSL and S-SSL than supervised lasso. In the medical literature,

there are various evidence documenting the associations between the albumin level in the

blood sample with our selected biomarkers here, such as with the hemoglobin level (Fukui

et al., 2008), with the lymphocytes level (Alagappan et al., 2018), and with the count of the

white blood cells (Cavalot et al., 2002). More interestingly, researchers recently started to use

the so-called HALP score, a combination of hemoglobin, albumin, lymphocyte, and platelet

levels in the blood sample (Chen et al., 2015), as a prognostic factor for various disease types

35



(Peng et al., 2018; Guo et al., 2019; Shen et al., 2019; Tojek et al., 2019). By exploring the

data with the random forest model, our statistical results from the semi-supervised methods

are consistent with the medical literature.

S.8 Discussion

In this paper, we consider high-dimensional semi-supervised learning, and focus on when

and how we can exploit the unlabeled data to achieve the optimal and safe estimates of

model parameters. Our key observation is that, the covariate X in the unlabeled data,

whose sample size can be much bigger then the labeled data, could be very informative for

the parameter of interest in a misspecified model. We derive the minimax lower bound for

parameter estimation in the semi-supervised setting, and show that generally the traditional

supervised estimators without using the unlabeled data cannot attain this lower bound.

Then, we propose a semi-supervised estimator, which depends on the correct specification of

the conditional mean function, can attain the minimax lower bound and hence is optimal. To

alleviate the strong requirement for this optimal estimator, we further propose a safe semi-

supervised estimator. We view it safe, because this estimator remains minimax optimal

when the conditional mean function is correctly specified, and is always at least as good as

the supervised estimators.

While our focus is on the parameter estimation, we should note some recent and im-

portant progress in inference, particularly in the construction of confidence intervals with

high-dimensional data in the semi-supervised setting(Zhang and Bradic, 2019; Cai and Guo,

2020). It would be important and challenging to develop procedures for statistical inference

under our framework.

36



References

Alagappan, M., Pollom, E. L., von Eyben, R., Kozak, M. M., Aggarwal, S., Poultsides,

G. A., Koong, A. C., and Chang, D. T. (2018), “Albumin and neutrophil-lymphocyte

ratio (NLR) predict survival in patients with pancreatic adenocarcinoma treated with

SBRT,” American journal of clinical oncology, 41, 242–247.

Alquier, P. and Hebiri, M. (2012), “Transductive versions of the LASSO and the Dantzig

Selector,” Journal of Statistical Planning and Inference, 142, 2485–2500.

Bhlmann, P. and Van de Geer, S. (2011), Statistics for High-Dimensional Data: Methods,

Theory and Applications, Springer Publishing Company, Incorporated, 1st ed.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009), “Simultaneous analysis of Lasso and

Dantzig selector,” Ann. Statist., 37, 1705–1732.

Brown, S. E., Ratcliffe, S. J., Kahn, J. M., and Halpern, S. D. (2012), “The epidemiology of

intensive care unit readmissions in the United States,” American Journal of Respiratory

and Critical Care Medicine, 185, 955–964.

Cai, T. and Guo, Z. (2020), “Semisupervised inference for explained variance in high di-

mensional linear regression and its applications,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 82, 391–419.

Cavalot, F., Massucco, P., Perna, P., Traversa, M., Anfossi, G., and Trovati, M. (2002),

“White blood cell count is positively correlated with albumin excretion rate in subjects

with type 2 diabetes,” Diabetes Care, 25, 2354–2355.

Chen, X.-L., Xue, L., Wang, W., Chen, H.-N., Zhang, W.-H., Liu, K., Chen, X.-Z., Yang,

K., Zhang, B., Chen, Z.-X., et al. (2015), “Prognostic significance of the combination

of preoperative hemoglobin, albumin, lymphocyte and platelet in patients with gastric

carcinoma: a retrospective cohort study,” Oncotarget, 6, 41370.

37



Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and

Robins, J. (2018), “Double/debiased machine learning for treatment and structural pa-

rameters,” The Econometrics Journal, 21, C1–C68.

Dai, D., Rigollet, P., and Zhang, T. (2012), “Deviation optimal learning using greedy Q-

aggregation,” The Annals of Statistics, 40, 1878 – 1905.

Du, H., Siah, K. T. H., Ru-Yan, V. Z., Teh, R., Tan, C. Y. E., Yeung, W., Scaduto, C.,

Bolongaita, S., Cruz, M. T. K., Liu, M., et al. (2021), “Prediction of in-hospital mortality

of Clostriodiodes difficile infection using critical care database: a big data-driven, machine

learning approach,” BMJ Open Gastroenterology, 8, e000761.

Fialho, A. S., Cismondi, F., Vieira, S. M., Reti, S. R., Sousa, J. M., and Finkelstein, S. N.

(2012), “Data mining using clinical physiology at discharge to predict ICU readmissions,”

Expert Systems with Applications, 39, 13158–13165.

Fukui, M., Tanaka, M., Hasegawa, G., Yoshikawa, T., and Nakamura, N. (2008), “Association

between serum bioavailable testosterone concentration and the ratio of glycated albumin

to glycated hemoglobin in men with type 2 diabetes,” Diabetes Care, 31, 397–401.

Guo, Y., Shi, D., Zhang, J., Mao, S., Wang, L., Zhang, W., Zhang, Z., Jin, L., et al.

(2019), “The Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score is a Novel

Significant Prognostic Factor for Patients with Metastatic Prostate Cancer Undergoing

Cytoreductive Radical Prostatectomy,” Journal of Cancer, 10, 81.

Huang, J., Horowitz, J. L., and Wei, F. (2010), “Variable selection in nonparametric additive

models,” Ann. Statist., 38, 2282–2313.

Javanmard, A. and Montanari, A. (2018), “Debiasing the lasso: Optimal sample size for

Gaussian designs,” The Annals of Statistics, 46, 2593 – 2622.

38



Jhou, H.-J., Chen, P.-H., Yang, L.-Y., Chang, S.-H., and Lee, C.-H. (2021), “Plasma Anion

Gap and Risk of In-Hospital Mortality in Patients with Acute Ischemic Stroke: Analysis

from the MIMIC-IV Database,” Journal of Personalized Medicine, 11, 1004.

Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L., Feng, M., Ghassemi, M., Moody, B.,

Szolovits, P., Celi, L. A., and Mark, R. G. (2016), “MIMIC-III, a freely accessible critical

care database,” Scientific Data, 3, 160035.

Lin, Y. and Zhang, H. H. (2006), “Component selection and smoothing in multivariate

nonparametric regression,” Ann. Statist., 34, 2272–2297.

Liu, X., Feng, Y., Zhu, X., Shi, Y., Lin, M., Song, X., Tu, J., and Yuan, E. (2020), “Serum

anion gap at admission predicts all-cause mortality in critically ill patients with cerebral

infarction: evidence from the MIMIC-III database,” Biomarkers, 25, 725–732.
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