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Locally Anisotropic Nonstationary Covariance
Functions on the Sphere

Jian Cao, Jingjie ZHANG, Zhuoer SUN, and Matthias Katzfuss

Rapid developments in satellite remote-sensing technology have enabled the collection
of geospatial data on a global scale, hence increasing the need for covariance functions
that can capture spatial dependence on spherical domains. We propose a general method
of constructing nonstationary, locally anisotropic covariance functions on the sphere
based on covariance functions in R

3. We also provide theorems that specify the condi-
tions under which the resulting correlation function is isotropic or axially symmetric.
For large datasets on the sphere commonly seen in modern applications, the Vecchia
approximation is used to achieve higher scalability on statistical inference. The impor-
tance of flexible covariance structures is demonstrated numerically using simulated data
and a precipitation dataset.
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1. INTRODUCTION

Traditionally, geostatistical analysis relied on approximating small or regional spatial
domains as flat subsets of R2. However, since the deployment of satellites in the collection
of global data, there is an increasing demand for covariance functions that are valid on
spheres. In this paper, we aim to propose a new family of spherical covariance functions,
defined over the unit 2-sphere S = {s̃ ∈ R

3 : ‖s̃‖ = 1}, which are able to capture non-
stationary features commonly observed in geostatistical datasets.

For processes defined overS, two different distancemeasures are commonly used, namely
the great-arc (or great-circle) distance, whichmeasures the distance “going along the surface
of the sphere”, and the Euclidean or chordal distance, which “pierces through the sphere.”
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The relationship between great-arc distance and chordal distance on S is given by:

r = 2 sin(θ/2), (1)

where r is the chordal distance between two points on S, and θ is the corresponding central
angle, proportional to the great-arc distance. Although a function of chordal distance is natu-
rally a function of great-circle distance, finding a valid correlation function directly based on
great-arc distance is not trivial (e.g., Jones 1963) due to the curvature of S. Most well-known
covariance functions are valid (i.e., positive definite) on R

d , for d ≥ 1, under Euclidean
or Mahalanobis distance, yet may become invalid under great-arc distance (e.g., Gneiting
2013). For example, the Matérn covariance function is only valid under great-arc distance if
its smoothness is no greater than 0.5 (Gneiting 2013). Huang et al. (2011) summarized the
validity of commonly used covariance functions under great-arc distance, focusing mostly
on isotropic covariance functions. Gneiting (2013) further developed characterizations and
constructions of isotropic positive-definite functions on spheres and proved that subject to a
natural support condition, many isotropic positive-definite functions on the Euclidean space
R
3 allow for the direct substitution of the chordal distance by the great-arc distance on the

sphere. Bissiri et al. (2020) proposed conditions for strict positive-definiteness of axially
symmetric covariance functions.

A comprehensive reviewofmodeling spherical processes using the great-arc distancewas
provided in Jeong et al. (2017) and Blake et al. (2022). Here, we provide a non-exhaustive
list of representative works. In the category of isotropic spherical covariance functions,
Ma (2015) proposed a construction based on Gegenbauer polynomials from Ma (2012).
Similarly,Duet al. (2013) designed isotropic variogram functions on spheres using an infinite
sum of the products of positive-definite matrices and ultraspherical polynomials. Alegría
et al. (2021) proposed the F family of isotropic covariance functions that parameterizes
the differentiability of the Gaussian field. Another important class of spherical kernels are
nonstationary but include axial symmetry as a special case. These kernels may be based
on differential operators (Jun and Stein 2007, 2008; Jun 2014), on spherical harmonic
representations (Stein 2007; Emery et al. 2019), on kernel convolution (Heaton et al. 2014),
on stochastic partial differential equations (Lindgren et al. 2011), or on multi-step spectral
methods (Castruccio and Stein 2013; Castruccio andGenton 2014, 2016). Blake et al. (2022)
proposed adaptions of three existing families of stationary kernels, namely the Stieltjes
construction (Menegatto 2020), theF family (Alegría et al. 2021), and the spectral adaptive
approach (Emery et al. 2021) to achieve general nonstationary covariance kernels without
an explicit formulation for axial symmetry. These kernels typically involve more intricate
designs and hence less interpretability than chordal-distance-based kernels.

There are several works in the literature comparing the great-arc and the chordal distances
in terms of parameter estimation and prediction. Guinness and Fuentes (2016) and Jeong and
Jun (2015a) found that the Matérn class with Euclidean distance often performs better than
kernels using the great-arc distance. While Jeong and Jun (2015b) and Alegría et al. (2021)
found situations where great-arc distance could outperform chordal Matérn kernels, these
situations typically assume that a) correlation between locations far apart is still significant
and b) there are only a small number of nearby observed locations for prediction locations,
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which is typically not the case for the simulated or satellite datasets considered here. Hence,
in the present paper, we follow the idea of Yaglom (1987), restricting a valid covariance
function inR3 to S under the chordal distance, and aim to construct a family of interpretable
covariance functions that offer sufficient flexibility to capture the heterogeneous distortion
of the tangent planes at different locations on the sphere.

Our covariance construction is based on the locally anisotropic covariance functions
for Euclidean space proposed in Paciorek and Schervish (2006). Similar ideas were also
discussed in Katzfuss (2011) and Knapp (2012). We will introduce the properties of our
general covariance parameterization and specific parameterizations that lead to isotropic
or axially symmetric covariance structures to suit various geostatistical applications. For
large datasets on the sphere (e.g., with more than 104 points), straightforward computation
of the Gaussian log-likelihood is too expensive for statistical inference, for which we use
the Vecchia approximation (Vecchia 1988) of Gaussian processes (GPs) in our numerical
studies. Our main contributions are: a novel parameterization of the locally anisotropic
matrix proposed in Paciorek and Schervish (2006), an exploration of the special cases of
the covariance class that ensure isotropy and axial symmetry, and a scalable extension using
the Vecchia approximation.

The remainder of this article is organized as follows. Section2 reviews a nonstationary
correlation function on R

d . In Sect. 3, we construct classes of nonstationary covariance
functions on the sphere and provide theorems that specify the conditions for isotropic and
axially symmetric covariance structures. Section4 reviews the Vecchia approximation for
large spatial datasets. In Sects. 5 and 6, we use simulated data and a precipitation dataset
from a physical model to highlight the advantage of our flexible nonstationary covariance
structure. Section7 concludes. Proofs are provided in the Appendix. Code can be found at
Github (https://github.com/katzfuss-group/sphere-local-aniso-cov).

2. LOCALLY ANISOTROPIC COVARIANCE FUNCTIONS

In this section, we briefly review an intuitive construction for nonstationarity proposed
in Paciorek and Schervish (2006) based on any isotropic correlation function, denoted by
ρ, in Rd for all d ∈ N. Specifically, the nonstationary correlation function is composed as:

ρNS(si , s j ) = c(si , s j )ρ
(
q(si , s j )

)
, (2)

q(si , s j ) = {2(si − s j )′(�(si ) + �(s j ))−1(si − s j )}1/2, (3)

c(si , s j ) = |�(si )|1/4|�(s j )|1/4|(�(si ) + �(s j ))/2|−1/2, (4)

where the positive-definite d × d matrix �(si ) is the local anisotropy matrix describing the
spatially varying rotation and scaling, q(si , s j ) is the Mahalanobis distance with respect to
the average anisotropy matrix (�(si ) + �(s j ))/2, and c(si , s j ) is the normalization term.
The anisotropy matrix �(s) at each location needs to be a positive-definite matrix in Rd×d ,
to which we assign the local rotational and scaling effects at the location s. Hence, spatially
varying anisotropy is achieved in the covariance structure represented by Eqs. (2), (3), and
(4).

https://github.com/katzfuss-group/sphere-local-aniso-cov
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This nonstationarity design combines different local anisotropic correlation structures
into a valid global correlation function, leading to greater model expressiveness. Under
the assumption that the anisotropy matrix �(s) varies smoothly across the domain, the
differentiability of ρNS follows that of the underlying isotropic correlation function ρ at
zero. When ρ is chosen as the isotropic Matérn covariance function, one may also vary the
smoothness parameter across the domain to achieve different local smoothness; see Sect. 3.3
for a detailed description.

3. CLASSES OF NONSTATIONARY COVARIANCE FUNCTIONS
ON THE SPHERE

Given the intuitive construction for nonstationarity in Sect. 2, an important question
is how to parameterize the anisotropy matrix �(s) to better capture the local covariance
structure, which can be largely problem dependent. In this section, we consider one general
parameterization of �(s) that represents local rotation and scaling on a tangent plane of
the sphere and probe the conditions for achieving the special cases of isotropic and axially
symmetric covariance functions.

3.1. CONSTRUCTION OF THE COVARIANCE FUNCTIONS

Without loss of generality, assume that S is centered at the origin inR3, (0, 0, 0), and that
the intersection of the prime meridian and the equator, denoted by c:=(0, 0) (0◦ longitude,
0◦ latitude), is located on the x-axis (i.e., it has the Euclidean coordinates c̃:=(1, 0, 0)).
Figure1 shows the part of the sphere that lies in the first (positive) octant of a Cartesian
coordinate system, including the origin and c. The Euclidean coordinates s̃ = (x, y, z) of
any point s = (l, L) with longitude l and latitude L on S are given by:

x = cos(L) cos(l), y = cos(L) sin(l), z = sin(L).

For d-dimensional Euclidean space,we can parameterize�(s) using d scaling parameters
and d −1 rotation parameters (see, e.g., Banerjee et al. 2008). Although S “lives” inR3, the
surface of S is (locally) a two-dimensional space (i.e., the tangent plane) at any point s ∈ S,
indicating a parameterization with only two local scaling and one local rotation parameters.
Consider the tangent plane at c, which is the (y, z)-plane, as shown in Fig. 1. We use
γ1(c) > 0 and γ2(c) > 0 as the scaling parameters in the y and z-directions, respectively,
and κ(c) ∈ [0, π/2) as the rotation parameter, whose collective effect is shown in Fig. 2.
Specifically, the scaling matrix at c is a diagonal matrix D(γ ):=diag{1, γ1, γ2} and the
rotation matrix that rotates the (y, z)-plane at c̃ about the x-axis is given by:

Rx (κ):=
⎛

⎜
⎝
1 0 0
0 cos κ − sin κ

0 sin κ cos κ

⎞

⎟
⎠ .



216 J. Cao, M. Katzfuss

Figure 1. The part of a unit sphere centered at the origin that lies in the first octant of the Cartesian coordinate
system, where all coordinates are positive. The origin and the point c referred to in the text are shown in blue .

γ 1
γ 2

κ

Figure 2. Illustration of the scaling parameters γ1 and γ2 and the rotation parameter κ at reference point c̃, along
with an oval representing the resulting correlation contour .

The anisotropy matrix at the reference point c̃ (spherical coordinates c) is then given by:

�̃(c):=Rx (κ(c))D(γ (c))Rx (κ(c))′. (5)

Consider an arbitrary location s on the S, whose Euclidean coordinates are denoted by s̃.
Thewayweconstruct the anisotropymatrix for s, denotedby�(s), is to left and rightmultiply
(5) by the rotation matrixR(s) such that s̃′�(s)−1s̃ = s̃′(R(s)�̃(s)R(s)′)−1s̃ = c̃′�̃(s)−1c̃.
Here, �̃(s) is parameterized by κ(s) and γ (s), similar to (5), denoting the local rotation and
scaling at s measured at the reference point c. To rotate s to c, we can rotate s̃ about the
y-axis and z-axis by −L and −l, respectively, which is equivalent to left multiplication of
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c̃ byRy(−L)Rz(−l), where

Ry(θ):=
⎛

⎜
⎝

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎞

⎟
⎠ and Rz(θ):=

⎛

⎜
⎝
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞

⎟
⎠ .

Hence, R(s) and �(s) are defined as Rz(l)Ry(L) and Rz(l)Ry(L)�̃(s)Ry(L)′Rz(l)′,
respectively. Therefore, at an arbitrary location s, we have:

s̃′�(s)−1s̃ = c̃′�̃(s)−1c̃ = c̃′(Rx (κ(s))D(γ (s))Rx (κ(s))′
)−1

c̃.

The anisotropy matrix �(s) achieves nonstationarity through introducing local rotation
and scaling. One can further increasing the nonstationarity through assuming heteroge-
neous variances in the domain σ 2(s) > 0, with which the covariance function between two
locations si and s j amounts to:

C(si , s j ) = σ(si )σ (s j )ρNS(si , s j ),

where ρNS(si , s j ) is defined by (2) to (4) through the anisotropy matrix �(s).

3.2. PROPERTIES

The approach above provides a parameterization of�(s) in terms of two spatially varying
ranges, γ (s), and one spatially varying rotation, κ(s), which can in turn be parameterized
in suitable ways for different applications. In this section, we provide conditions on γ (s)
and κ(s) such that the resulting correlation function in (2) is isotropic or axially symmetric;
proofs of the theorems are included in Appendix A.

An isotropic covariance function is a function of only distance between two locations.
Due to the one-to-one relationship between the great-arc and the chordal distances in (1),
isotropic covariance functions on the sphere are isotropic with respect to both chordal and
great-arc distance. By adding constraints to the scaling parameters γ1(s) and γ2(s), the
correlation function ρNS in (2) can achieve isotropy on the sphere:

Theorem 1. The correlation function ρNS in (2) is isotropic (i.e., depends only on
distance) if γ1(s) = γ2(s) ≡ γ is constant.

A subclass of covariance functions that are specifically useful for spherical domains
are axially symmetric covariance functions (e.g., Stein 2007), under which the correlation
between a pair of locations on the sphere depends on longitudes only through the longitude
difference:

Definition. A covariance function C : S × S → R is called axially symmetric if there
exists a function CA such that

C(si , s j ) = CA(li − l j , Li , L j ),
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(a) Isotropy (γ1 = γ2) (b) “Anisotropy” (κ = 0; γ1 > γ2)

(c) Axial symmetry
(d) General nonstationarity with
spatially varying rotation κ(·)

Figure 3. Illustration of special cases of the nonstationary correlation functions in (2) via correlation contours .

where si = (li , Li ) and s j = (l j , L j ) with longitudes li and l j and latitudes Li and L j on
S.

Axially symmetric covariance functions can be also obtained based on the theorembelow:

Theorem 2. The correlation function ρNS in (2) is axially symmetric if κ(s) ≡ 0 and
γ1(·) and γ2(·) are functions of latitude only (i.e., they do not depend on longitude).

Special cases of our general nonstationary covariance function that include isotropic,
anisotropic, axially symmetric, and general nonstationary parameterizations are visualized
in Fig. 3.

3.3. EXAMPLE: A NONSTATIONARY MATÉRN COVARIANCE ON THE SPHERE

The Matérn correlation function is highly popular in geospatial analysis. It is valid inRd

for any d ∈ N and given by
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Mν(r) = 21−ν

	(ν)
rνKν(r), r ≥ 0,

whereKν(·) is the modified Bessel function of the second kind of order ν > 0. The standard
deviation, denoted by σ(·), and the smoothness parameter ν(·) in the Matérn can also vary
over space (Stein 2005). Hence, we can obtain a highly flexible Matérn covariance on the
sphere of the form

MNS(si , s j ) = σ(si )σ (s j )c(si , s j )M(ν(si )+ν(s j ))/2(q(si , s j )), (6)

where c, q are as in (3)–(4), and �(s) can be parameterized in terms of spatially varying
scales γ (s) and rotation ρ(s) as in Sect. 3.1.

Guinness and Fuentes (2016) showed that the local smoothness properties of the Matérn
covariance are preserved when restricting a process in Euclidean space to the sphere. Specif-
ically, a GP with covariance function MNS has m mean square derivatives at s if and only
if ν(s) > m.

4. VECCHIA APPROXIMATION

For many modern large datasets, including those on the sphere, direct application of
GPs is too computationally expensive, as the cost scales cubically in the number of data
points. The approximation proposed by Vecchia (1988) has become highly popular in recent
years,which has linear computational complexity and straightforward parallel featureswhile
maintaining high accuracymeasured by theKullback–Leibler (KL) divergence from the true
process (e.g., Guinness 2018; Katzfuss andGuinness 2021). Based on a given ordering of the
observations, the Vecchia approximation replaces the high-dimensional joint multivariate
normal density with a product of univariate conditional normal densities, in which each vari-
able conditions only on a small subset of previous observations in the ordering, amounting
to an ordered conditionally independent approximation.

Denote h(i) = {1, 2, . . . , i − 1} with h(1) = ∅ and yh(i) = (y1, . . . , yi−1)
′. Consider a

GP y(·) ∼ GP(0,C) on a spatial regionD with zero mean and covariance function C . The
joint density of the observation y = (y1, y2, . . . , yn) is given by

f (y) =
n∏

i=1

f (yi |yh(i)).

The Vecchia approximation replaces h(i) with a subset g(i) ⊂ h(i), where g(i) is usually
chosen to select those indices corresponding to them observations nearest in distance to the
i th observation. This leads to the following approximation of the joint density:

f̂ (y) =
n∏

i=1

f (yi |yg(i)). (7)

The Vecchia approximation ensures computational feasibility for large spatial datasets.
The choices for ordering the locations and selecting the conditioning sets {g(i)}ni=1 are



220 J. Cao, M. Katzfuss

typically based on distance or estimated correlation (Katzfuss and Guinness 2021). Here,
we will use maximum-minimum-distance ordering (Guinness 2018) and nearest-neighbor
conditioning in the numerical studies, both based on the chordal distances. Correlation-based
ordering and conditioning that takes into account the potential nonstationary structure is
also possible (Katzfuss et al. 2022; Kang and Katzfuss 2021). Aside from likelihood-based
parameter inference based on the Vecchia likelihood in (7), the Vecchia approximation can
also be applied to unknown locations in order to obtain accurate approximations of posterior
predictive distributions (e.g., Katzfuss et al. 2020a). In the case of noisy data, the Vecchia
approximation can be applied to the latent (noise-free) GP as before and then combined
with an incomplete-Cholesky decomposition of the posterior precision matrix to preserve
the low computational complexity (Schäfer et al. 2021). We implemented Vecchia inference
based on our new covariance function by extending the R package GPvecchia (Katzfuss
et al. 2020b).

5. NUMERICAL STUDY

We perform simulations to demonstrate the improvement of posterior inference gained
from adopting a more flexible covariance structure. Specifically, we simulate GPs that are
isotropic, axially symmetric, and general nonstationary based on different parameterizations
of the covariance structure introduced in (6). The scaling parameters γ1(s) and γ2(s) are
parameterized as:

γ1(s) = exp(β10 + β11 sin(l) + β12L), (8)

γ2(s) = exp(β20 + β21 sin(l) + β22L), (9)

where s = (l, L) with longitude l and latitude L . Based on Theorems 1 and 2, isotropic,
axially symmetric, and general nonstationary covariance structures are constructed as fol-
lows:

Isotropy: According to Theorem 1, the correlation function ρNS in (2) is isotropic if
γ1(s) = γ2(s) ≡ γ is constant, and so we set the parameters in (8)–(9) as

β1 = (β10, β11, β12) = (−0.5, 0, 0),

β2 = (β20, β21, β22) = (−0.5, 0, 0).

Axial symmetry: According to Theorem 2, the correlation function ρNS in (2) is
axially symmetric if κ(s) ≡ 0 and γ1(·) and γ2(·) are functions of latitude only and
we set the parameters as

β1 = (β10, β11, β12) = (−0.5, 0, 1.44),

β2 = (β20, β21, β22) = (−3.2, 0, 1.44).
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(a) Isotropic (b) Axially symmetric (c) General nonstationary
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Figure 4. Realizations of the isotropic, axially symmetric, and general nonstationary GPs over a 50× 50 grid on
the sphere .

General nonstationarity: A more general nonstationary covariance function can be
obtained by setting

κ = 0.8,

β1 = (β10, β11, β12) = (−0.5,−1.2, 1.44),

β2 = (β20, β21, β22) = (−3.2,−0.3, 1.44).

Each dataset is generated on a regular latitude/longitude grid of size 50 × 50 = 2,500
on the sphere and then split into training and testing subsets, under two different scenarios:
(a) a random sampling of 20% of all locations as the test dataset; (b) ten randomly selected
regions, each with a longitudinal band width of 0.4 and a latitudinal band width of 0.2, that
sum up to approximately 20% of all locations as the test dataset. The training dataset is then
modeled by the three progressively more flexible covariance structures:

Isotropy: unknown β10, β20, with β10 = β20 and fixed β11 = β12 = β21 = β22 =
κ = 0.

Axial symmetry: unknown β10, β12, β20, β22, with fixed β11 = β21 = κ = 0.

General nonstationarity: unknown β10, β11, β12, β20, β21, β22, κ .

Realizations of the isotropic, axially symmetric, and general nonstationaryGPs are shown
in Fig. 4.

The prediction scores for the nine combinations of ‘true’ and ‘assumed’ covariance
structures are summarized in Table 1 that include the mean absolute error (MAE), the root
mean squared error (RMSE), the continuous rankedprobability score (CRPS), and the energy
score.MAE andRMSE consider only point predictions, CRPS evaluatesmarginal predictive
distributions, and the energy score evaluates the joint predictive distribution for the entire
test set. The variance and smoothness parameters of the Matérn covariance functionMν(r)
are σ(s) = 1 and ν(s) = 0.5, respectively, both considered as known. We ran an adaptive
MCMC algorithm (Vihola 2012) for 5,000 iterations for Bayesian inference on the unknown
parameters.We applied the Vecchia likelihood approximation in (7), which uses maximum–
minimum-distance ordering and nearest-neighbor conditioning with a conditioning-set size
of ten. To obtain the posterior predictive distribution at the testing locations, we also used the
Vecchia approximation (i.e., ordinary kriging with ten nearest neighbors), based on MCMC
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Table 1. Prediction scores (lower is better), each averaged over five simulated datasets, for the nine different
combinations of the true and assumed covariance structures

Random Region
MAE RMSE CRPS Energy MAE RMSE CRPS Energy

True model—isotropic
Isotropic 0.569 0.728 0.563 16.1 0.716 0.904 0.710 18.8
Axially symmetric 0.567 0.727 0.556 15.9 0.716 0.904 0.705 18.6
Nonstationary 0.568 0.728 0.551 15.7 0.716 0.904 0.698 18.4
True model—axially symmetric
Isotropic 0.754 0.961 0.751 21.3 0.768 0.968 0.761 20.1
Axially symmetric 0.637 0.834 0.621 18.1 0.741 0.932 0.732 19.2
Nonstationary 0.637 0.835 0.616 18.0 0.741 0.931 0.727 19.1
True model—nonstationary
Isotropic 0.734 0.938 0.730 20.8 0.777 0.973 0.773 20.3
Axially symmetric 0.688 0.883 0.671 19.2 0.761 0.953 0.752 19.6
Nonstationary 0.681 0.874 0.659 18.8 0.754 0.943 0.739 19.3

Test sets are selected as random locations (random) or regions (region) that amount to 20% of the total dataset

samples of the unknown parameters after a burn-in of size one thousand; the resulting
predictive distribution is a mixture of Gaussians.

For datasets generated by isotropic GPs, the prediction scores are very similar under
the assumptions of isotropic, axially symmetric, and nonstationary covariance structures.
The difference becomes more pronounced when the datasets are generated from an axially
symmetric GP, where the axially symmetric and the nonstationary structures have similar
performance. Specifically, both the axially symmetric and the nonstationary structures have
a 13% improvement in RMSE and a 17% improvement in CRPS for random test locations
relative to the baseline isotropic structure, highlighting the improvement in point prediction
accuracy and uncertainty quantification. Similar conclusions can be drawn for the unknown-
region scenario, although the performance difference becomes less significant. Furthermore,
in modeling the general nonstationary GPs, there is a uniform improvement in all prediction
scores when switching from the axially symmetric to the general nonstationary covariance
structure. Notice that the improvement of general nonstationary over isotropic is smaller
when the true model is general nonstationary than when the true model is axially symmetric,
because the extra task of training β11, β21, and κ made the optimization more challenging
overall. The prediction accuracy was barely affected when using a model more flexible
than the truth (i.e., fitting a general nonstationary model to axially symmetric data), but
significant accuracy loss may happen when the covariance kernel lacks expressiveness (i.e.,
fitting a an isotropic model to axially symmetric data).

6. APPLICATION TO PRECIPITATION DATA

Precipitation data are often collected by sensors at irregularly spacedweather-monitoring
stations, necessitating statistical inference in regions with insufficient sensor coverage or
temporalmisalignment. Accuratemodeling of nonstationary dependence is often crucial, for
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Figure 5. Visualization of the precipitation dataset after preprocessing .

Table 2. Prediction scores, using the precipitation data, of isotropic, axially symmetric, and general non-stationary
structures

Random Region
MAE RMSE CRPS Energy MAE RMSE CRPS Energy

Isotropic 0.383 0.549 0.376 27.1 0.756 0.967 0.749 43.1
Axially symmetric 0.268 0.426 0.264 21.6 0.654 0.834 0.649 37.7
Nonstationary 0.269 0.428 0.263 21.6 0.651 0.832 0.620 35.7

Test sets are selected as random locations (random) or regions (region) that amount to 20% of the total dataset

example for quantifying theprobability offloodingdue to the total rainfall in a catchment area
exceeding a particular threshold. In this section, we examine the inference improvements
that can be achieved by increasing the flexibility of the covariance kernel function. Using the
same three types of covariance structures used in Sect. 5, we model a precipitation dataset
from the Community Earth System Model (CESM) Large Ensemble Project (Kay et al.
2015). After subsetting, the dataset contains precipitation rates (m/s) on July 1, 401, on
a roughly a 2◦ resolution in terms of longitude and latitude, totaling 144 × 96 = 13,824
locations on a spherical grid. We consider the standardized log-precipitation anomalies
(i.e., log-precipitation standardized across time) shown in Fig. 5, which does not indicate
any distinct mean structure. 20% of the dataset is used for testing, selected either as random
locations or as random regions, similar to Sect. 5.

Model parameters have the same initializations under the three model assumptions, and
the smoothness parameter ν for the CESM dataset is fixed at 2.5 due to the increased
smoothness compared with the simulated datasets in Fig. 4. We also summarize the perfor-
mance (e.g., scores) of posterior inference in Table 2. The isotropic covariance structure
is significantly out-performed by the axially symmetric and the nonstationary structures
while the difference between the latter two is indistinguishable. To visualize the difference
between the trained kernel functions, we plotted the 0.7-correlation contours centered at
evenly distributed locations on the sphere in Fig. 6.

The contours from the axially symmetric and nonstationary kernels closely resemble each
other, and they are both significantly bigger than those of the isotropic kernel. This indicates
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(a) Isotropic (b) Axially symmetric (c) General nonstationary

Figure 6. 0.7-correlation contours of the trained isotropic, axially symmetric, and general nonstationary GPs on
the sphere .

that using an isotropic covariance structure can be insufficient for practical modeling and a
more flexible kernel can capture the correlation structure more precisely, hence producing
more accurate inference. For the axially symmetric and nonstationary kernels, elongated
ovals indicate strong dependence along the equator, while the dependence is weaker and
more isotropic near the poles. The decay of correlation from a location of interest can be
inferred in a similar manner as in Fig. 2 along different directions.

7. CONCLUSIONS

We proposed an extension of Paciorek and Schervish (2006) for constructing nonstation-
ary, locally anisotropic covariance functions on the sphere based on isotropic covariance
functions in R

3. Special parameterizations of the nonstationary covariance function that
amount to isotropic and axially symmetric covariance structures were also discussed. Axi-
ally symmetric covariance functions are widely used in geospatial analysis of global data,
and their advantages over isotropic covariance structures were demonstrated with both sim-
ulated Gaussian random fields and a CESM precipitation dataset. The extra flexibility of our
nonstationary parameterization also improved posterior inference compared with the axially
symmetric structure, although the improvement was less significant. For large datasets on
the sphere, straightforward computation of Gaussian probabilities is typically too computa-
tionally expensive, and so the Vecchia family of approximations based on nearest neighbors
is often used. This nearest-neighbor approach further reduces any potentially advantages of
great-arc-distance-based kernels to outperform the chordal-distance-based kernels, which
typically rely on long-range dependence and lack of close-by observed locations (Jeong and
Jun 2015b; Alegría et al. 2021).

The locally anisotropic nature of our approach ensures an analytical and interpretable
expression for the location correlation structure, but it also limits the dependence that can
be expressed; for example, dependence along a curved ridge is difficult to capture with our
approach. The flexibility in our construction of the anisotropy matrix�(s) based on (5), (8),
and (9) could be increased by modeling log(γ1(s)) and log(γ2(s)) as Gaussian processes.
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A PROOFS

Proof of Theorem 1. If γ1(s) = γ2(s) ≡ γ is constant, then

D(γ ) =
⎛

⎜
⎝
1 0 0
0 γ 0
0 0 γ

⎞

⎟
⎠ ,

�̃(s) = Rx (κ(s))D(γ (s))Rx (κ(s))′

=
⎛

⎜
⎝
1 0 0
0 cos κ(s) − sin κ(s)
0 sin κ(s) cos κ(s)

⎞

⎟
⎠

⎛

⎜
⎝
1 0 0
0 γ 0
0 0 γ

⎞

⎟
⎠

⎛

⎜
⎝
1 0 0
0 cos κ(s) sin κ(s)
0 − sin κ(s) cos κ(s)

⎞

⎟
⎠

=
⎛

⎜
⎝
1 0 0
0 γ 0
0 0 γ

⎞

⎟
⎠ .

To compute �(s) = Rz(l)Ry(L)�̃(s)Ry(L)′Rz(l)′, we first compute

A := Rz(l)Ry(L) =
⎛

⎜
⎝
cos(l) − sin(l) 0
sin(l) cos(l) 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

cos(L) 0 sin(L)

0 1 0
− sin(L) 0 cos(L)

⎞

⎟
⎠

=
⎛

⎜
⎝
cos(l) cos(L) − sin(l) cos(l) sin(L)

sin(l) cos(L) cos(l) sin(l) sin(L)

− sin(L) 0 cos(L)

⎞

⎟
⎠ ,

�(s) = A�̃(s)A′ =
⎛

⎜
⎝

(1 − γ )x2 + γ (1 − γ )xy (1 − γ )xz
(1 − γ )xy (1 − γ )y2 + γ (1 − γ )yz
(1 − γ )xz (1 − γ )yz (1 − γ )z2 + γ

⎞

⎟
⎠

= (1 − γ )

⎛

⎜
⎝
x
y
z

⎞

⎟
⎠
(
x y z

)
+ γ I3

= (1 − γ )s̃s̃′ + γ I3,

where x = cos(L) cos(l), y = cos(L) sin(l), z = sin(L) are the (x, y, z)-coordinates of a
three-dimensional Cartesian coordinate system. Then

|�(s)| = det{(1 − γ ) s̃s̃′ + γ I3}
= γ 3 · det

{
I3 + 1 − γ

γ
s̃s̃′
}

= γ 3 · det
{
1 + 1 − γ

γ
s̃′s̃
}

= γ 3 · det
{
1 + 1 − γ

γ
· 1
}

= γ 2
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does not depend on s. And for i �= j ,

(�(si) + �(sj))−1 =
(
(1 − γ )s̃i s̃′

i + (1 − γ )s̃ j s̃′
j + 2γ I3

)−1
.

WLOG, we ignore the constant coefficients inside the inverse, and then

(�(si) + �(sj))−1 =
(
s̃i s̃′

i + s̃ j s̃′
j + I3

)−1

= (s̃ j s̃′
j + I3)−1 − (s̃ j s̃′

j + I3)−1s̃i

[1 + s̃′i (s̃ j s̃′
j + I3)−1s̃i ]−1s̃′i (s̃ j s̃′

j + I3)−1.

Let B := (s̃ j s̃′
j + I3)−1, and so

(�(si) + �(sj))−1 = B − Bs̃i (1 + s̃′i Bs̃i )−1s̃′i B = B − Bs̃is̃i′B
1 + s̃′i Bs̃i

,

q2(si , s j ) ∝ (s̃i − s̃ j )
′(�(si) + �(sj))−1(s̃i − s̃ j )

∝ (s̃i − s̃ j )
′B(s̃i − s̃ j ) − 1

1 + s̃′i Bs̃i
(s̃i − s̃ j )

′Bs̃is̃i′B(s̃i − s̃ j ).

So, computation of q(si , s j ) only involves terms s̃′i Bs̃i , s̃′j Bs̃ j and s̃′i Bs̃ j . Because

B = (s̃ j s̃′
j + I3)−1 = I3 − s̃ j (1 + s̃′j s̃ j )−1s̃′j = I3 − 1

2
s̃ j s̃′

j ,

we have

s̃′i Bs̃i = s̃′i s̃i − 1

2
(s̃′i s̃ j )2 = 1 − 1

2
(s̃′i s̃ j )2

s̃′j Bs̃ j = s̃′j s̃ j − 1

2
(s̃′j s̃ j )2 = 1 − 1

2
= 1

2

s̃′i Bs̃ j = s̃′i s̃ j − 1

2
(s̃′i s̃ j )(s̃′j s̃ j ) = s̃′i s̃ j − 1

2
s̃′i s̃ j = 1

2
s̃′i s̃ j .

Further,

s̃′i s̃ j =
[
(s̃i − s̃ j )

′(s̃i − s̃ j ) − s̃′i s̃i − s̃′j s̃ j
]
/2 = [

(s̃i − s̃ j )
′(s̃i − s̃ j ) − 2

]
/2.
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So, q(si , s j ) just depends on the distance (s̃i − s̃ j )′(s̃i − s̃ j ). For the normalization term
c(si , s j ), since we have proved that |�(si)| = |�(sj)| ≡ γ 2,

c(si , s j ) = |�(si)|1/4|�(sj)|1/4|(�(si) + �(sj))/2|−1/2

∝ |(�(si) + �(sj))−1|1/2

∝
(
|(�(si) + �(sj))−1| · |(s̃i − s̃ j )

′(s̃i − s̃ j )|/[(s̃i − s̃ j )
′(s̃i − s̃ j )]

)1/2

∝
(
|(�(si) + �(sj))−1| · det{(s̃i − s̃ j )(s̃i − s̃ j )

′}/[(s̃i − s̃ j )
′(s̃i − s̃ j )]

)1/2

∝
(
det

{
(�(si) + �(sj))−1(s̃i − s̃ j )(s̃i − s̃ j )

′} /[(s̃i − s̃ j )
′(s̃i − s̃ j )]

)1/2

∝
(
det

{
(s̃i − s̃ j )

′(�(si) + �(sj))−1(s̃i − s̃ j )
}

/[(s̃i − s̃ j )
′(s̃i − s̃ j )]

)1/2

∝
{

q2(si , s j )
(s̃i − s̃ j )′(s̃i − s̃ j )

}1/2
.

(10)

We have proved that q(si , s j ) just depends on (s̃i − s̃ j )′(s̃i − s̃ j ), so c(si , s j ) also only
depends on the distance (s̃i − s̃ j )′(s̃i − s̃ j ).
Overall, we can show

ρNS(si , s j ) = c(si , s j )ρ(q(si , s j ))

only depends on the distance (s̃i − s̃ j )′(s̃i − s̃ j ), where ρ(q) is a valid isotropic correlation
function. So, ρNS(si , s j ) is isotropic. ��

Proof of Theorem 2. If κ(s) ≡ 0 and γ1(·), γ2(·) depend on L only, then Rx (κ(s)) ≡
Rx (0) = I3. Then

�̃(s) = D(γ (s)) =
⎛

⎜
⎝
1 0 0
0 γ1(L) 0
0 0 γ2(L)

⎞

⎟
⎠ =

⎛

⎜
⎝
1 0 0
0 γ1(L) 0
0 0 γ1(L)

⎞

⎟
⎠+

⎛

⎜
⎝
0 0 0
0 0 0
0 0 γ2(L) − γ1(L)

⎞

⎟
⎠ .

Due to the results in Theorem 1, we have

�(s) = Rz(l)Ry(L)�̃(s)Ry(L)′Rz(l)
′

= (1 − γ1(L))s̃s̃′ + γ1(L)I3 + (γ2(L) − γ1(L))s̃∗(s̃∗)′,

where

s̃∗ =
⎛

⎜
⎝
cos(l) sin(L)

sin(l) sin(L)

cos(L)

⎞

⎟
⎠ (s̃∗)′(s̃∗) = 1.
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Thus,

|�(s)| = det{(1 − γ1(L)) s̃s̃′ + γ1(L)I3 + (γ2(L) − γ1(L))s̃∗(s̃∗)′}
= γ1(L)3 · det

{
1 − γ1(L)

γ1(L)
s̃s̃′ + γ2(L) − γ1(L)

γ1(L)
s̃∗(s̃∗)′ + I3

}

= γ1(L)3 · det
{(

1−γ1(L)
γ1(L)

s̃ γ2(L)−γ1(L)
γ1(L)

s̃∗
)( s̃′

(s̃∗)′

)

+ I3

}

= γ1(L)3 · det
{(

s̃′
(s̃∗)′

)
(

1−γ1(L)
γ1(L)

s̃ γ2(L)−γ1(L)
γ1(L)

s̃∗
)

+ I2

}

= γ1(L)3 ·
∣
∣∣∣∣

1−γ1(L)
γ1(L)

+ 1 2 sin(L) cos(L)

2 sin(L) cos(L)
γ2(L)−γ1(L)

γ1(L)
+ 1

∣
∣∣∣∣

= γ1(L)γ2(L) − 4γ1(L)3 sin2(L) cos2(L)

only depend on L . WLOG, ignore γ1(L), γ2(L) again (they only depend on L),

(�(si) + �(sj))−1

=
[
s̃i s̃′

i + s̃∗i (s̃∗i )′ + s̃ j s̃′
j + s̃∗j (s̃∗j )′ + I3

]−1

=
[(

s̃i s̃∗i
)( s̃′i

(s̃∗i )′

)

+
(
s̃ j s̃∗j

)( s̃′j
(s̃∗j )′

)

+ I3

]−1

= V−1 − V−1
(
s̃i s̃∗i

)[

I2 +
(

s̃′i
(s̃∗i )′

)

V−1
(
s̃i s̃∗i

)]−1 (
s̃′i

(s̃∗i )′

)

V−1

= V−1 − V−1
(
s̃i s̃∗i

)[

I2 +
(

s̃′iV−1s̃i s̃′iV−1s̃∗i
(s̃∗i )′V−1s̃i (s̃∗i )′V−1s̃∗i

)]−1 (
s̃′i

(s̃∗i )′

)

V−1,

where

V =
(
s̃ j s̃∗j

)( s̃′j
(s̃∗j )′

)

+ I3.

Then

q2(si , s j ) ∝(s̃i − s̃ j )′(�(si) + �(sj))−1(s̃i − s̃ j )

∝(s̃i − s̃ j )′V−1(s̃i − s̃ j ) − (s̃i − s̃ j )′V−1
(
s̃i s̃∗i

)

[

I2 +
(

s̃′iV−1s̃i s̃′iV−1s̃∗i
(s̃∗i )′V−1s̃i (s̃∗i )′V−1s̃∗i

)]−1

·
(

s̃′i
(s̃∗i )′

)

V−1(s̃i − s̃ j ).
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Because

V−1 = I3 −
(
s̃ j s̃∗j

)[

I2 +
(

1 s̃′j s̃∗j
(s̃ j )′s̃ j 1

)]−1 (
s̃′j

(s̃∗j )′

)

= I3 − 1

4 − (s̃′j s̃∗j )2
(
s̃ j s̃∗j

)[( 2 −s̃′j s̃∗j
−(s̃ j )′s̃ j 2

)]−1 (
s̃′j

(s̃∗j )′

)

,

we can figure out that the computation of q2(si , s j ) only involves the following types of
terms

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s̃′i s̃i = 1

s̃′i s̃∗i = s̃′i ·
[

(tan(si2))s̃i +
(
0, 0, cos(si2) − sin2(si2)

cos(si2)

)′]

= tan(si2) + sin(si2)

[
cos(si2) − sin2(si2)

cos(si2)

]

(s̃∗i )′s̃∗i =1

(s̃∗i )′s̃∗j

=
[

(tan(si2))s̃i +
(
0, 0, cos(si2) − sin2(si2)

cos(si2)

)′]′

·
[

(tan(s j2))s̃ j +
(

0, 0, cos(s j2) − sin2(s j2)

cos(s j2)

)′]

= tan(si2) tan(s j2)(s̃′i s̃ j ) + tan(si2) sin(si2)

[

cos(s j2) − sin2(s j2)

cos(s j2)

]

+ tan(s j2) sin(s j2)

[
cos(si2) − sin2(si2)

cos(si2)

]

+
[
cos(si2) − sin2(si2)

cos(si2)

][

cos(s j2) − sin2(s j2)

cos(s j2)

]

s̃′i s̃∗j = tan(s j2)(s̃′i s̃ j ) + sin(si2)

[

cos(s j2) − sin2(s j2)

cos(s j2)

]

s̃′j s̃∗i = tan(si2)(s̃′i s̃ j ) + sin(s j2)

[
cos(si2) − sin2(si2)

cos(si2)

]

s̃′i s̃ j = [
(s̃i − s̃ j )

′(s̃i − s̃ j ) − 2
]
/2.

We can change the index i to j for the first three terms, and they are still valid. Thus,
these values only depend on si2, s j2 and s̃′i s̃ j , and s̃′i s̃ j can be expressed in terms of the
distance (s̃i − s̃ j )′(s̃i − s̃ j ). The computation of q2(si , s j ) only depends on the distance
(s̃i − s̃ j )′(s̃i − s̃ j ) and the longitudes si2, s j2. Similar to (10) in the proof of Theorem
1, we can also show that c(si , s j ) is a function of (s̃i − s̃ j )′(s̃i − s̃ j ), si2 and s j2. Then
ρNS(si , s j ) = c(si , s j )ρ(q(si , s j )) := ρA(s̃i − s̃ j , si2, s j2), so it is axially symmetric. ��
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