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ABSTRACT: One-dimensional (1D) van der Waals (vdW) materials display
electronic and magnetic transport properties that make them uniquely suited as
interconnect materials and for low-dimensional optoelectronic applications.
However, there are only around 700 1D vdW structures in general materials
databases, making database curation approaches ineffective for 1D discovery. Here,
we utilize machine-learning techniques to discover 1D vdW compositions that
have not yet been synthesized. Our techniques go beyond discovery efforts
involving elemental substitutions and instead start with a composition space of 4741 binary and 392,342 ternary formulas. We
predict up to 3000 binary and 10,000 ternary 1D compounds and further classify them by expected magnetic and electronic
properties. Our model identifies MoI3, a material we experimentally confirm to exist with wire-like subcomponents and exotic
magnetic properties. More broadly, we find several chalcogen-, halogen-, and pnictogen-containing compounds expected to be
synthesizable using chemical vapor deposition and chemical vapor transport.

I. INTRODUCTION
There has been an increased use of machine learning to predict
novel material compositions. Despite significant advances in
materials databases, including the Materials Project,1 Inorganic
Crystal Structure Database (ICSD),2 Open Quantum Materials
Database (OQMD),3 Crystallography Open Database (COD),4

and Cambridge Structural Database (CSD),5 there remains a
much larger region in the chemical composition space of
potentially undiscovered materials, up to 10K for relevant binary
and ternary compositions.
Databases have been curated where compositions and

structures from previous experimental published reports are
aggregated. This space is commonly augmented with simple
elemental substitution, and materials discovery seeks to uncover
more novel compositions. While one-dimensional (1D)
materials offer exciting application potential, predicting addi-
tional compositions is difficult due to the restricted set of known
1D materials. Here, we expand the space by machine learning,
trained on existing known compositions, and tackle a small-data
problem more common in machine learning applied to the
physical sciences.6

We focus our work on 1D van der Waals materials, a subset of
the general family of van der Waals-bonded two-dimensional
(2D) planes, 1D wires, and zero-dimensional (0D) clusters.
While such structures can be present in freestanding forms and
synthesized from bottom-up processes, as in quasi-1D carbon
nanotubes or 0D quantum dots, we concentrate on structures
where the low-dimensional subcomponents exist in weakly
bonded bulk form, e.g., a 2D plane of graphene that forms
graphite. We hence focus on systems wherein the bonds

between the subcomponents are primarily van der Waals in
characters. Conversely, bonds within each individual layer, wire,
or cluster are primarily ionic or covalent. Several classes of 2D
materials have been previously studied and characterized,
including systems with a planar honeycomb structure such as
graphene (such as silicene and borophene), a puckered
honeycomb structure (such as phosphorene and monochalco-
genides), transition-metal dichalcogenides, materials of the
MXene family, etc. High-throughput screening has revealed an
even wider scope of compositions, including 1D vdW counter-
parts that are studied less frequently, in part due to their limited
availability.7,8 While 2D materials represent around 4% of all
materials, 1D materials, in their bulk, nonexfoliated form,
represent 1−2% of all experimentally synthesized materials.
Since the number of 1D materials computed so far is even more
limited than 2D materials (less than 1000), it would be useful to
extend such a space and deduce other potentially new 1D
compounds that have not yet been computationally predicted or
experimentally synthesized. Previously, similar ideas have been
successful in expanding the space of 2D vdWmaterials9 by more
than 1500 and closing the loop between computation and
experimental in other material applications.10,11
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Our starting point is in a recent work categorizing existing
materials based on dimensionality, which revealed a number of
bulk structures that support 2D and 1D vdW subcomponents
and are potentially exfoliable.8,12,13 Such materials are of interest
for next-generation computing technologies14 due to stack-
ability, desirable scaling properties, and emergent phenomena
and are relevant for optics and photonics applications.15 In
particular, the 1D magnetic material Fe3O4

16 has been
synthesized, but there exists limited work toward a more diverse
range of analogous 1D magnetic structures from such curation
efforts.
Such efforts would likely be rewarding given the wealth of

correlated electronic states in 1D, ranging from Luttinger-liquid
physics to correlated magnetism, Peierls instability, and
topology (based on the Zak phase, for instance). Likewise, the
possibility of engineering 1D materials with unusual transport is
of key importance for interconnection or heterojunction
applications17 and motivates the search for novel 1D materials
beyond our restricted set of experimentally synthesized and first-
principles computed structures.
We note that our effort is complementary to recent ML-based

investigations which aim at expanding 1D material space18,19 by
training over crystal structures. We take a different approach of

omitting the middle step of predicting structures and instead
utilizing density functional theory (DFT) as a postverification
process. This is motivated by the fact that the final crystal
structure is not a control parameter in common materials
synthesis techniques such as chemical vapor deposition (CVD)
and chemical vapor transfer (CVT). Instead, experimentalists
typically have control of only the input precursor materials,
suggesting that the chemical composition (formula) can be
enough to predict novel synthesizable 1D materials.
In particular, energetic stability, deduced from ground-state

DFT calculations in minimal primitive unit cells, is not sufficient
to guarantee the experimental stability of a given 1D structure.
This is evident by the fact that 1D materials are prone to
displaying charge-density waves, Peierls instability, magnetism,
and other broken-symmetry states. Given the larger unit cell
necessary to simulate such lower-symmetry structures, it is
computationally prohibitive to attempt approaches such as ab
initio random structure search (AIRSS)20 to study the landscape
of 1D systems systematically.
Our approach is not to predict stable crystal structures or

potentially higher-fractional composition ratio for a particular
class or family of material, which is proven to be difficult for ML
tasks but advantageous for DFT calculations.21 Instead, we

Figure 1. (a) Example of a one-dimensional vdW material, NbBr4 corresponding to Materials Project ID mp-1080428 and ICSD 239640, and the
associated structure is shown. (b) The material space under consideration is presented. We start with materials in the Materials Project database with
corresponding ICSDnumbers, where the dimensionality of thematerials is known.We seek for additional low-dimensional materials in the larger space
of randomly generated compositions, targeting those that are likely conductive or magnetic. (c) The percentage of materials by family (containing at
least one chalcogen, halogen, and pnictogen and containing a transition metal of the mentioned families) is shown by dimension. Since the counts refer
to the presence of a family type and each material composition can contain elements of multiple families, the total percentage exceeds 100. Materials in
these classes constitute a majority of low-dimensional materials, which motivates the separate model training process. The number of materials
classified by dimension is shown and further broken down by binary, ternary, or higher-order compositions. 1D materials make up a small number of
existingmaterials, between 1 and 2%. Out of this, a large fraction is captured by the binary and ternary compositions.We further observe that a majority
of 1D compositions are charge-balanced, which motivates the charge-balanced application subspace.
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directly seek to identify approximately 1−2% of all compositions
that may have the potential to be 1D vdW in nature. We have
limited our application space to binary formulas with a
coordination number of up to 5 and ternary compounds with
a coordination number of up to 3.
To our knowledge, while other works, including on 2D

materials,22,23 have substantially helped understanding the
potential structure space of low-dimensional van der Waals
materials, this work can directly predict compositions that can
aid experimentalists in the search of novel 1D materials starting
from a large space of almost 400,000 possible formulas. In
particular, our approach of directly training on the formulas is
also agnostic to the emergence of charge-density waves and
other broken-symmetry states, which could be incorrectly
missed in DFT calculations.
Our method of directly learning stable compositions is based

on previous successful efforts involving 2Dmaterials.9 While this
approach does not directly yield crystal structures, the ML-
generated compositions can directly inform the synthesis of
stable materials through common CVD and CVT methods. In
addition, such an approach yields a probability output between 0
and 1 that determines the robustness of our predictions, which
can be tuned to produce conservative guesses to a more
exploratory set of materials. We showcase this technique can
indeed identify a 1D material, MoI3, which was subsequently
validated in experiments. Our work is organized as follows:
detailing the existing space of materials, describing our machine-
learning methods, and observing how these output predictions
compare with existing families.

II. METHODS
To identify the low-dimensional materials of interest, we
consider entries from the Materials Project database and classify
them by dimension (3D bulk, 2D, and 1D) using a method we
developed,8 determined by how connectivity scales with
supercell size. We include materials in the training data only if
they contain a corresponding Inorganic Crystal Structure
Database (ICSD) number, which indicates prior experimental
synthesis. The composition of the initial training set by

dimensionality and characteristics relevant to our work
(including binary or ternary compositions, coordination
number, and charge balancing) is shown Figure 1c. The positive
training set is taken as the 1D materials in this training set
(Figure 1b).
We considered two machine-learning approaches: random

forest and support vector machine (SVM) models. For the
random forest approach, we consider a model with 100 trees and
a reduced feature set of the top 20 features selected via the
resultant feature importance. For the SVM approach, we used a
radial basis kernel (RBF) with hyperparameter tuning across a
range of input c-values and γ-values, which determines the
misclassification versus the smoothness of the decision hyper-
plane and the impact of a single training example, respectively.
For both models, we assessed the robustness by focusing on the
precision metric. We find high overlap between the two different
types of models across different subsets of the atomic feature
space representation
The trained models are then applied to the larger search space

of all charge-balanced binary and ternary formulas up to certain
coordination numbers (5 for binary, 3 for ternary). As a
secondary extension, to better match the application search
space to the training space, we further tested another training
method where portions of the application space are introduced
in the negative (non-1D) training set. Given that the intrinsic
percentage of 1D materials is so low (1−2%), the cost of
potentially introducing a true positive 1D material to the
negative training set is outweighed by the likely better match
between the training space and the application space.

III. RESULTS AND DISCUSSION
The results of training between different dimensions and
restricting compositions to charge-balanced binary and ternary
cases using the random forest and SVM models are shown in
Table 1. We find that predicted positive examples contain a large
overlap with SVM-predicted positive examples, which indicates
model-agnostic results. From the performance metrics, we
observe that 1D materials are separable from bulk materials and
closer in character to 2D vdW compositions. This is in line with

Table 1. Intrinsic Dimension Distributions and Machine-Learning Resultsa

positive (size) negative (size) baseline %
SVM

accuracy
SVM

precision
RF

accuracy
RF

precision
SVM
P/B RF P/B

SVM
AUC

RF
AUC

1D (647) non-1D (40,636) 1.59 0.919 0.131 0.985 0.667 8.239 41.950 0.830 0.576
1D bulk (19,088) 3.39 0.959 0.438 0.979 0.853 12.920 25.162 0.912 0.722
1D 2D (1378) 46.95 0.783 0.64 0.788 0.75 1.363 1.597 0.829 0.714
2D bulk 7.5 0.889 0.373 0.955 0.793 4.973 10.573 0.873 0.737
2D non-2D 3.57 0.877 0.202 0.972 0.837 5.658 23.445 0.872 0.824
1D (561) non-1D (27,948) 2.0 0.918 0.154 0.981 0.6 7.7 30 0.609 0.552
charge-balanced charge-balanced
binary 1D 1−3 (75) binary non-1D

1−3 (1548)
4.84 0.939 0.429 0.957 1.0 8.864 x 0.743 0.563

binary 1D 1−5 (115) binary non-1D
1−5 (1953)

5.89 0.889 0.31 0.947 1.0 5.263 x 0.824 0.542

ternary 1D
1−3 (112)

ternary non-1D
1−3 (4355)

2.57 0.96 0.375 0.973 1.0 14.591 x 0.858 0.662

aIntrinsic class distributions by material dimension and machine-learning results are provided, including the results for the restricted binary and
ternary compositions. The precision metric suggests that out of the model-predicted 1D materials, this given fraction will truly be 1D in nature. The
precision increases significantly after the charge-balanced binary and ternary restrictions, though the intrinsic fraction of 1D materials is higher.
Classification of 1D versus bulk yields a much higher precision than 1D versus all non-1D (including 2D, 0D, or intercalated classifications). The
results are shown for the support vector regression (SVR) and the random forest model (RF). P/B indicates the precision over the baseline
occurrence percentage of 1D materials, which can measure how much the model improves over random choice. AUC is the area under the curve,
the area under the receiver operating characteristic (ROC).
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materials such as tellurium (Te) capable of showing both 1D
and 2D polymorphism.24 The random forest model demon-
strates higher precision even when using a reduced feature set,
compared to the SVM after hyperparameter tuning.
Following model training, the task of interest is the

classification of 1D versus non-1D applied to a larger space of
randomly generated formulas taken using the method of ref 9.
Within such an approach, all binary and ternary compositions of
the form AxBy or AxByCz, where x, y, and z are coordination
numbers, respectively, are taken using atomic elements up to
number 94, excluding the radioactive elements Tc, Po, Ra, and
At and the group 18 elements of rare gases. A large number of
such random formulas are not expected to yield stable structures
since they do not satisfy basic charge balancing. We accordingly
filter these structures and only consider random formulas that
are charge-balanced, utilizing the Pymatgen python package,25

i.e., there is a combination of the common oxidation states
known for each element that sums to zero. Since a high
percentage of 1D materials can be captured by charge-balanced
binary or ternary compositions, the random subspace is
correspondingly restricted. Due to the large presence of
materials containing a chalcogen, pnictogen, or halogen element
(or one of these elements combined with a transition metal), we
train separate models on these specific subclasses. Since 1D
materials have larger coordination numbers than 2D materials,
this space is expanded using the coordination from (1−5)
instead of (1−3), which was previously used in efforts involving
2D materials. These compositions are termed randomly
generated since they are not experimentally verified composi-
tions.
Due to the limited number of positive samples, different

methods of feature selection are used to reduce the feature set

and limit overfitting. A set of 16 hand-selected features likely to
play a role in 1D material formation is identified based on
physical intuition. The sum and the product variants of these
features, as in the method of ref 26, yields 32 total features. For
the random forest model, as feature importance can be assigned,
a set based on the top 20 features is implemented for the full data
set. A reduced set of the top 10 features is used for the individual
chalcogen-, pnictogen-, and halogen-based feature sets due to
the smaller data size. We find the relevant overlap between our
hand-selected set, and the random forest-selected top features
are whether a constituent element is a metal, electronegativity,
whether a constituent element is an alkaline metal, atomic
volume, Mendeleev number, first ionization energy, periodic
table column number, and covalent radius, indicating that these
characteristics of the composing elements are predictive for the
structural 1D nature.
To determine the relevant metric of interest, we note that the

quality of a machine-learning model can be defined in terms of
precision and recall. Precision is the fraction of predicted 1D
materials that are indeed 1D and is the metric of interest in our
approach since we target 1Dmaterials for experimental synthesis
where false positives are costly. On the other hand, recall is the
ratio of 1D materials that are captured out of the total available
space. Given the limited number of present experimental efforts
on 1D vdW structures, it is unlikely this latter space is saturated,
and correspondingly, we place less emphasis on the recall.
For predictions based on SVM models, instead of using a

boolean output value indicating 1D or non-1Dmaterial based on
the location of a feature vector relative to the separating
hyperplane, we generate a continuous classification between 0
and 1 using Platt scaling.27 For random forest models, a
probability can likewise be determined by the percentage of

Figure 2. (a) Precision−recall curve is shown for the random forest model with the top 20 features selected using feature importance. The precision
and recall are plotted as a function of the threshold for determining whether a material is 1D or not. (b) The confusion matrix is displayed at two
threshold values. (c) The number of positive predicted AB binary compositions is given as a function of the threshold value.
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individual decision trees (100 used) where the individual tree
predicts a composition to be 1D. The relevant threshold of the
probability prediction can be chosen not only based on the
precision−recall curve for the test set but also on the number of
predicted positive 1D materials when the model is used for
screening. A higher threshold yields a shorter candidate list,
which often contains materials that are related by atomic
substitution but likely contain a larger fraction of materials that
are indeed 1D. Conversely, a lower threshold allows for more
diverse candidates that are not likely to be related to one another
by simpler atomic substitutions. The precision and recall metrics
as a function of the probability cutoff threshold and the
precision−recall curve are shown in Figure 2a. The confusion
matrix of test set predictions (true positives, false positives, false
negatives, and true negatives) is compared for two different
cutoff thresholds in Figure 2b. Figure 2c demonstrates the cutoff
threshold determining the number of predicted positive 1D
compositions for the random forest model using different
feature sets. The predicted 1D binary materials for different
thresholds of positive classification are included in the
Supporting Information (SI).
Since the targeted application of our approach is the

experimental synthesis of novel 1D materials, we further
separate the compositions by the material class, determined by
commonly available precursors for chemical vapor transport
(CVT) and chemical vapor deposition (CVD), examining
compounds containing members of the pnictogen (group 15),
chalcogen (group 16), and halogen (group 17) classes as well as
a transition-metal element combined with a member of these
groups. The class, number of materials, and resultant machine-
learning metrics are given in Table 2. Predicted 1D materials
from the chalcogen-only trained model are SbS2, SbS3, SbTe2,
Te2As, Te2I3, Te2S, Te2Se, Te2Se3, Te3As, Te3Br, Te3Br2, Te3Cl,
Te3I, Te3I2, Te3P, Te3S, Te3Se, Te3Se2, TeBr, TeSe, TeSe2, and
TeSe3. Predicted materials from the halogen-trained model
include AsBr, AsI, CrI3, GeCl2, MnI3, MoI3, PtBr2, SbBr, TaI3,
Te3Br, Te3F, Te3I2, and VI3. Pnictogen-trained model
compounds include AsI, SbI, SbS2, and Te2As. These do not
appear in the Materials Project with corresponding ICSD
entries.

One issue that arises in our analysis is 1D materials are
intrinsically rarer by nature: 1−2% of all materials, judging by
the number of materials in the Materials Project that have ICSD
tags associated with their experimental synthesis. However, the
material space in ICSD does not necessarily reflect the search
space. For instance, only 80% of the non-1D material in ICSD is
either binary or ternary, but all of the materials we study are

either ternary or binary. This motivates us to further validate the
performance of our models by mixing a portion of random
formulas that are not 1D into the negative class of the training
space (see the Supporting Information for details). We keep the
test set unchanged to ensure a consistent performance metric
between the original model and the one with the negative class
mixed back into the training set. The unbalanced positive−
negative class distribution motivates this approach, which can be
seen as a variant similar to semisupervised or partially supervised
learning.We see a large amount of predicted overlap results from
nonmixed models, demonstrating prediction robustness.
To further address imbalance of the positive versus negative

classes, we investigated the assignment of different class weights
and implemented oversampling with the synthetic minority
oversampling technique (SMOTE),28 undersampling the non-
1D class with Tomek Links,29 as well as the combined method
SMOTE-Tomek Links using the imbalance-learn python
library.30 While there are slight metric changes, the overall
output-predicted 1D compositions remain comparable. In
particular, we find that the original balanced random forest
classifier, where weights are assigned inversely proportional to
frequency, outperforms the SMOTE and Tomek Links methods
with a higher area under the precision−recall curve (AUC-PR).
This indicates better performance across all probability
thresholds, whereas the SMOTE-based methods can show
increased metric performance at particular thresholds. There is a
high (>70%) overlap between the predicted output binary
compositions across the different sampling methods with
additional details in the SI.
Our machine-learning technique can not only predict new 1D

materials but also find materials with particular electronic and
magnetic properties of interest. One popular method is to
directly train students on the limited subset of materials that
have the desired properties. This would involve repeating the
machine-learning technique applied in this work but on a more
restricted positive class. We found this approach not to be robust
due to the small positive class size. We instead use another
approach, where we train a second model, as a postprocessing
step, on the original set of predictedmaterials as transfer learning
has been shown to yield robust results.31 Table 3 displays the test
metrics for magnetic and conductive predictions using SVM
classifiers on whether a particular composition contains a
magnetic moment larger than 1 μB or a 0 eV band gap,
respectively, according to data from the Materials Project
database. We furthermore train an SVM regressor for values of
the electronic band gap with the results shown in Table 4.
The 1D materials, using a random forest model, separated by

the predicted band gap are given in Table 4. Compositions
predicted using other models and feature sets are included in SI.
Finally, we explore the potential to predict 1D vdW materials

with multiple phases, which is useful for phase-change devices.
Examining known 1D materials, there are 45 compositions
supporting multiple 1D phases and 131 compositions with
another phase that is not 1D. Similarly to the case of determining
the electronic and magnetic properties of novel 1D systems, we
introduce a secondary random forest model trained on data from
the Materials Project to identify whether a particular
composition displays two different crystal structures.
We found a number of predicted 1D compositions to have

multiple phases: AsSe2, Te2As, Te3P2, and TeSe2. This
prediction is based on a stringent threshold of 0.55 in our
random forest model, which best matches the ratio of 1D
structures predicted to host multiple phases, compared to data in

Table 2. Random Forest Performance by Material Classa

class accuracy precision recall

pnictogens 0.983 1 0.16
chalcogens 0.977 0.75 0.25
halogens 0.962 0.75 0.25
TM chalcogenides 0.985 1.0 0.5
TM halides 0.865 0.5 0.2

aPerformance based on class is shown for the random forest model
using the top 10 features selected from training on the entire
composition set. The top features for the chalcogen, halogen, and
pnictogen classes are similar to the features trained on the entire set
due to the larger number of materials in these classes, whereas the
features for the transition metal (TM) versions of these classes differ.
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the Materials Project database. We note that chalcogens such as
Te and Se are known to participate in compounds that display
multiple structures, which is captured by our model. We further
predict up to 10 000 ternary formulas that host multiple
structures.
To demonstrate the novelty of the predicted materials and

determine how much overlap is present between the predicted
1D materials compared to the existing classes, Figure 3 presents
the number of both existing and predictedmaterials for common
families. Materials are classified into families based on the
presence of specific transition metals, and for all of the other
elements, they are classified according to their periodic table
group. The results show an overlap of common families with the

existing 1D materials, indicating that the predictions are
heuristically reasonable, while also revealing novel families.
In particular, we note the appearance of a predicted class of

nitrogen-based pnictogen compounds. This is a surprising result,
as this form of compound was not included in the training data
as Materials Project database entries with the corresponding
ICSD number. Yet there are previous reports of nitrogen-
involved 1D wire-like chains formed under high pressures32 or
nitrogen-involved other low-dimensional forms,33 likely indicat-
ing model predictive power. On the other hand, the predictions
of pure halogens by the model, which are less likely to exist,
might suggest a lower bound for the precision in the model,
below which one expects considerably lower confidence in the
predicted compounds.
One such highlighted 1D material, MoI3, was subsequently

synthesized using CVT and verified to be one-dimensional,
supporting the applicability of our machine-learning predictions.

Figure 3. (a) Existing Materials Project 1D binary compositions and the predicted 1D compositions are grouped by class. Each transition metal is
distinct, whereas other elements are classified by their periodic table group and named using the representative element with the lowest atomic number.
For the 2D binary compositions, a unique class of material with no previous synthesized equivalents, nitrogen-based compounds, appears. (b) The
distribution of elemental frequency across the periodic table is shown for binary compositions (top) and then for ternary compositions using a looser
threshold (bottom), demonstrating the tunable distribution shift and increased diversity of composition types possible.

Table 3. Magnetic and Conductive Performancea

dimension positive negative baseline accuracy precision recall

Magnetic
1D 156 491 31.8 0.788 0.55 0.688
2D 341 1081 31.5 0.812 0.577 0.857
3D 5301 13825 38.3 0.892 0.755 906

Conductive
1D 98 549 17.9 0.8 0.4 0.6
2D 451 971 4.65 0.826 0.698 0.804
3D 13210 5916 0.883 0.942 0.886

aSince we aim for magnetic and/or conductive materials, we train on
band gaps and magnetic moments calculated by density functional
theory, separating the materials based on the dimensionality class.
The cutoff for our classification of a material as magnetic is 1 Bohr
magneton (μB) per unit cell. Metrics are specified for the test set. For
magnetic properties, the precision is highest for the bulk (3D)
materials, but the difference is not very significant across different
dimension classes. For conductivity, the precision is significantly
higher for non-1D and non-0D materials, posing a potential challenge
for prediction.

Table 4. Binary Composition Band Gap Predictionsa

band gap predicted 1D compositions

<0.5 eV Pb2S3, RuI3, SbTe2, TaI3, Te2S, Te2Se,
Te2Se3, Te3S2, Te3Se2, TeSe, VI3

0.5 ≤ x < 1.5 eV AsSe2, AsSe3, MoI3, Sb2Se, Sb3Se2, SbS2,
SbS3, SbSe, SbSe2, SbTe3, Te2As, Te2O,
Te3As, Te3Br, Te3Br2, Te3Cl, Te3I, Te3I2,
Te3Se, TeBr, TeS, TeSe2, TeSe3

1.5 ≤ x < 2.5 eV Sb2I, Sb2I3, Sb3I, Sb3I2, SbI, SbSe3
2.5 ≤ x Sb2Br, Sb2Br3, Sb3Br, Sb3Br2, SbBr, SbCl

a1D binary compositions, generated by a random forest model trained
on all 1D materials, are classified by the predicted band gap,
determined using a separate support vector regression model applied
as a poststep. For all of the materials in this list, there exists an existing
known material of the same family class. Band gap predictions for
model results trained on the separated chalcogen, pnictogen, and
halogen classes are included in the SI.
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This composition was chosen for experimental verification
based on it being predicted by our models even after employing
a high threshold value for the Platt probability, suggesting that it
is highly likely to exist as 1D in nature. Previous reports
suggested a 2D layered structure of this material, with only one
recent report of chain-like synthesis,34 alongside structures of
cluster chains and connected 2D sheets of Mo−I-based
structures, with no mention of “1D”. This reference was found
through a literary search on the predicted shortlist but was not
yet included in existing databases. While this material is present
in the Materials Project as a submitted entry, it does not have an
associated ICSD number, indicating that the machine-learning
model did not come across this material in training. This is a
successful case of themodel behavior, given that thematerial was
selected from the predicted composition list and then confirmed
to be one-dimensional in nature.
To verify the one-dimensional structure of the synthesized

crystals, we conducted scanning electron microscopy (SEM)
and atomic force microscopy (AFM) characterization of the
CVT-grown crystals exfoliated via liquid-phase exfoliation
(LPE) in butyl alcohol, as shown in Figure 4. The SEM image
clearly shows the threads of MoI3 nanowires with high aspect
ratios. Among these nanowires, we located some threads with a
thickness as small as 0.9 nm, close to the thickness of a few
single-atom chain structures. While this material is still
undergoing further characterization, it highlights the strength
of our machine-learning-based prediction of novel 1D materials
and the feasibility of such predictions. Further details about the
experimental characterization are described in ref 35

IV. CONCLUSIONS
In conclusion, we reveal predicted candidates for 1D van der
Waals materials, focusing on those with magnetic and
conductive properties and chemical compositions that are likely
accessible via common experimental synthesis techniques. We
find that one such predicted compound, MoI3, is experimentally
demonstrated to be low-dimensional. To address the concern of
potential overfitting, we trained on different material composi-
tion subspaces, including mixing-in a portion of the screening
space as part of the negative space to best recreate the
composition distribution. The predictions using these various
subspaces and models show a high amount of overlap, indicating
the robustness of this approach.
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