JULY 2022 BARNES ET AL. 1

This Looks Like That There: Interpretable Neural Networks for Image Tasks When
Location Matters?

ELIZABETH A. BARNES,* RANDAL J. BARNES,” ZANE K. MARTIN,* AND JAMIN K. RADER?

@ Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
® Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota

(Manuscript received 3 January 2022, in final form 17 April 2022)

ABSTRACT: We develop and demonstrate a new interpretable deep learning model specifically designed for image anal-
ysis in Earth system science applications. The neural network is designed to be inherently interpretable, rather than ex-
plained via post hoc methods. This is achieved by training the network to identify parts of training images that act as
prototypes for correctly classifying unseen images. The new network architecture extends the interpretable prototype
architecture of a previous study in computer science to incorporate absolute location. This is useful for Earth system sci-
ence where images are typically the result of physics-based processes, and the information is often geolocated. Although
the network is constrained to only learn via similarities to a small number of learned prototypes, it can be trained to exhibit
only a minimal reduction in accuracy relative to noninterpretable architectures. We apply the new model to two Earth sci-
ence use cases: a synthetic dataset that loosely represents atmospheric high and low pressure systems, and atmospheric re-
analysis fields to identify the state of tropical convective activity associated with the Madden—Julian oscillation. In both
cases, we demonstrate that considering absolute location greatly improves testing accuracies when compared with a loca-
tion-agnostic method. Furthermore, the network architecture identifies specific historical dates that capture multivariate,
prototypical behavior of tropical climate variability.

SIGNIFICANCE STATEMENT: Machine learning models are incredibly powerful predictors but are often opaque
“black boxes.” The how-and-why the model makes its predictions is inscrutable—the model is not interpretable. We in-
troduce a new machine learning model specifically designed for image analysis in Earth system science applications.
The model is designed to be inherently interpretable and extends previous work in computer science to incorporate lo-
cation information. This is important because images in Earth system science are typically the result of physics-based
processes, and the information is often map based. We demonstrate its use for two Earth science use cases and show
that the interpretable network exhibits only a small reduction in accuracy relative to black-box models.

KEYWORDS: Climate variability; Neural networks; Pattern recognition

1. Introduction 2) controlling and improving the machine learning approach (e.g.,
Keys et al. 2021), and 3) discovering new science (e.g., Toms et al.
2020; Barnes et al. 2020). Effective explanations also increase user
confidence.

Because researchers are driven by the desire to explain the
decision-making process of deep learning models, a large vari-
ety of post hoc explainability methods have been developed
(e.g., Buhrmester et al. 2019; Barredo Arrieta et al. 2020;
Samek et al. 2021). By post hoc, we mean methods in which a
deep learning model has already been trained and the user
attempts to explain the predictions of the black-box model
after the predictions have been made. Although post hoc ex-
plainability methods have demonstrated success across many
scientific applications [including Earth system science; e.g.,
McGovern et al. (2019); Toms et al. (2020); Davenport and
Diffenbaugh (2021)], they are not without their drawbacks.
Post hoc explainability methods do not exactly replicate the
computations made by the black-box model. Instead, through a

& Supplemental information related to this paper is available at ~ set of assumptions and simplifications, these methods quantify
the Journals Online website: httpSZ//dOi.Org/lOA1175/AIES—D—22— some reduced version of the model (e.g.7 Montavon et al. 2018)
000151 and, thus, do not explain the actual decision-making process of

the network. Furthermore, the explanations are not always reli-

Corresponding author: Elizabeth A. Barnes, eabarnes@colostate. ~ able (Kindermans et al. 2019). Different explanation methods
edu can produce vastly different explanations of the exact same

Machine learning has been identified as an innovative,
underexplored tool for furthering understanding and simula-
tion of the Earth system (Balmaseda et al. 2020; Irrgang
et al. 2021; National Academies of Sciences, Engineering, and
Medicine 2020). Artificial neural networks (as a type of super-
vised machine learning) have emerged as a powerful tool for
extracting nonlinear relationships amid noisy data, and thus
are particularly suited to this endeavor. However, a major
criticism of the use of neural network models for scientific ap-
plications is that they are “black boxes.” Scientists typically
want to know why the model reached the decision that it did.
The benefit of explaining the decision-making process of a
model goes beyond that of satisfying curiosity: explanation
can assist users in 1) determining if the model is getting the right
answers for the right reasons (e.g., Lapuschkin et al. 2019),

DOI: 10.1175/A1ES-D-22-0001.1 €220001

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

https://doi.org/10.1175/AIES-D-22-0001.s1
https://doi.org/10.1175/AIES-D-22-0001.s1
mailto:eabarnes@colostate.edu
mailto:eabarnes@colostate.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

2 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

black-box model (Mamalakis et al. 2021, 2022). Even if the ex-
planation is reliable, at times the output of the explainability
method itself requires extensive deciphering by the scientist to
understand the result (e.g., Mayer and Barnes 2021; Martin
et al. 2022; Barnes et al. 2020). Rudin (2019) discusses in detail
many of these potential issues with explainable machine learn-
ing methods and suggests that we should instead be using ma-
chine learning models that are inherently “interpretable.” That
is, instead of trying to explain black-box models, we should be
creating models where the decision-making process is interpret-
able by design.

Chen et al. (2019) present an example of one type of interpret-
able neural network, the prototypical part network (ProtoPNet).
The ProtoPNet hinges on training a neural network to identify
patches of the training images that act as “prototypes” for cor-
rectly classifying unseen images. The idea for the ProtoPNet
stems from the need to define a form of interpretability that
works the way a scientist might describe their way of thinking. In
their specific application, Chen et al. (2019) focus on classify-
ing images of birds by their species. A scientist may classify a
new bird image by comparing it with representative examples
of each species (i.e., species prototypes) and choosing the pro-
totype that most resembles the image, that is, this looks like
that. In this way, the network is inherently interpretable in that
the actual decision-making process can be linked to specific
features of the bird in the input image and their similarity to a
relatively small number of species-specific prototypes that are
directly drawn from the training set. For bird species identifi-
cation, Chen et al. (2019) demonstrate that the ProtoPNet
learns prototypes that represent distinguishing features such as
the red head of a red-bellied woodpecker, or the bright blue
wing of a Florida jay.

Images in Earth system science are typically the result of
physics-based processes, and the information is often geolo-
cated. Thus, unlike the ProtoPNet of Chen et al. (2019), which
does not care where the bird’s wing is in the image, the loca-
tion of specific Earth system features can be critical to the fi-
nal task [although this is certainly not always the case—e.g.,
identification of cloud types from satellite imagery; Rasp et al.
(2019)]. For example, the mere presence of a low pressure sys-
tem on a weather map is not enough to know where it will
rain. Instead, the location of the low—where it is—is also vital
for this task. Similarly, identifying the presence of a strong El
Nino requires not only warm sea surface temperatures, but
specifically warm sea surface temperatures in the tropical
equatorial east Pacific Ocean (e.g., Philander 1983). Here, we
extend the ProtoPNet of Chen et al. (2019) to consider abso-
lute location in the interpretable prototype architecture,
which we call the prototypical location network (ProtoLNet).
We demonstrate that considering absolute location greatly
improves the network accuracy (ProtoLNet rather than
ProtoPNet) for two Earth science use cases. The first use
case, the idealized-quadrants use case (section 3), applies the
ProtoLNet to a synthetic dataset that loosely represents high
and low pressure systems where the need for location infor-
mation is readily apparent. The second use case applies the
ProtoLNet to over 100 years of atmospheric reanalysis fields
to identify the state of tropical convective activity associated

VOLUME 1

with the Madden-Julian oscillation (MJO; Madden and Julian
1971, 1972; Zhang 2005). The MJO use case (section 4) pro-
vides a real, geophysical example of how the ProtoLNet relies
on location information to make its predictions and demon-
strates how the learned prototypes can be viewed as prototyp-
ical behavior of transient climate phenomena.

2. Network design and training

As discussed in the introduction, the ProtoLNet is largely
based on the ProtoPNet of Chen et al. (2019). We describe the
network architecture below, highlighting where our ProtoLNet
diverges from the ProtoPNet of Chen et al. (2019). We then
describe the training procedure in detail.

a. ProtoLNet architecture

The ProtoLNet is designed to classify images by comparing
latent patches of the input image with prototypical latent
patches learned from the training set, all while explicitly con-
sidering the location within the image of the similar latent
patches. Throughout, we use the word “patch” to refer to a
group of neighboring pixels within the input image and
“latent patch” to refer to a latent representation of a patch
that is computed via a series of convolutional and pooling
layers within the convolutional neural network. In this sec-
tion, we first provide a general overview of the ProtoLNet
architecture from start to finish, and then go into more detail
about each step in subsequent paragraphs, ending with the
training process.

The ProtoLNet architecture (Fig. 1) is very similar to that
of the ProtoPNet and starts with a base convolutional neural
network (CNN) chosen by the user that takes in an image as
input. As discussed more in section 2c, this base CNN may be
a pretrained network, or a newly initialized network with ran-
domized weights. The CNN is followed by two 1 X 1 convolu-
tional layers that act to restructure the dimensions of the
CNN output to be consistent with the subsequent prototype
layer. It is within the prototype layer that the interpretable
learning is done. The network is trained to learn representa-
tive latent patches within the training set specific to each class,
termed prototypes, which provide evidence for the image be-
longing to a particular class. That is, when the input image has
a patch whose latent representation looks like that prototype, it
is labeled as belonging to the prototype’s associated class. This is
done by computing the similarity of each prototype to the latent
patches of the input image. Unique to our ProtoLNet, these sim-
ilarity scores are scaled by a learned, prototype-specific location
scaling grid so that similarities to the prototypes are only impor-
tant for certain locations within the input image. The maximum
scaled similarity score across the latent patches for each proto-
type is then computed. These scores are connected to the output
via a fully connected layer, and the weighted scores are summed
for each output class to produce a total number of “points” for
each class. The class with the highest number of points is then
identified as the predicted class.

As will be discussed in detail in section 2c, the ProtoLNet
learns the convolutional kernels within the two 1 X 1 convolu-
tion layers, the prototypes, the location scaling grid, and the

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

JuLYy 2022

prototype 1

prototype 2

prototype m

64 channe'k,‘

per prototype

prototype
similarity
grid grid grid

® B] &

==
Bl (7 [

BARNES ET AL. 3

scaled
similarity

location
scaling

max pool

1.447
11.94
.

.
2.23

1.954

—_—

— —
base CNN two 1x1 quilt of
convolution latent
layers patches
- o

extended CNN

output
logits

fully connected
final weights
(no biases)

prototype
layer

FIG. 1. Schematic depicting the ProtoLNet architecture. Example and internally consistent dimensions of the tensors at each step are
given in gray brackets, although the specific dimensions vary for each use case. Pink colors denote components of the network that are
trained (learned), and gray and black colors denote components that are directly computed. The weights within the base CNN (blue shad-

ing) can either be trained or frozen.

final fully connected weights (pink components in Fig. 1). The
user must specify the number of prototypes specific to each
output class. For the use cases presented here, we choose an
equal number of prototypes for each class, so if there are n
classes and p prototypes per class, then there are m =n X p
total prototypes. A critical aspect of the architecture is that
each prototype is assigned to only one class since it is used as
evidence that a particular sample belongs its class.

Each sample is pushed through the extended CNN, which
results in an output “quilt” of latent patches. To introduce
some general notation, the quilt has shape a X b X D, where
a X b is the new image shape after undergoing pooling in the
base CNN and D corresponds to the number of convolutional
kernels chosen by the user. Each prototype vector p then has
shape 1 X 1 X D. To simplify our discussion, from here for-
ward we will drop the general notation and instead use the
specific dimensions (denoted in gray) of the example shown
in Fig. 1; thatis,a=2,b =3, and D = 64.

For the example in Fig. 1, a latent patch has shape 1 X 1 X 64,
and the quilt of latent patches output by the extended CNN
has shape 2 X 3 X 64. Because the input image has already po-
tentially undergone multiple convolutional and pooling layers
within the extended CNN, these latent patches do not repre-
sent a single pixel of the input image, but instead are a latent
representation of some larger patch within the input image.
Similar to the latent patches, each of the m learned prototypes
are a latent representation of some larger region of the input
image. Each prototype has the same shape as a latent patch:
1 X 1 X 64. The similarity score for a prototype p and a latent
patch z is computed as a function of the distance between
these two vectors (i.e., the L, norm of the difference). The
greater the distance between, the lower the similarity score.
Following Chen et al. (2019), we compute

2
—pll5 +
iz~ pll 1)~10 lH(L

|z — p||§ el distance)’

5

SimilarityScore = log(

)

where || ||§ is the squared L, norm and ¢ is a small number,
there to guard against divide-by-zero problems. Applying this
similarity metric to a quilt of latent patches results inm 2 X 3
similarity grids, one for each prototype. The values within
these grids thus quantify how much that latent patch of the in-
put looks like each prototype.

In the original ProtoPNet, at this point the maximum
similarity within each similarity grid is computed for each
prototype. However, unique to our ProtoLNet—and indeed
the novelty of this work—is that we scale each prototype’s
similarity grid by a location-specific value learned by the
network. This step rescales the similarities such that simi-
larities in certain locations are accentuated and similarities
in other locations are muted. To follow this paper’s title,
it is not enough for this latent patch (at any location) to
look like that prototype. Instead, this latent patch must
look like that prototype in only specific locations—there.
This results in m location-scaled similarity grids, one for
each prototype.

Once again following the architecture of the original
ProtoPNet, we apply max pooling to each scaled similarity
grid to obtain a single score for the maximum similarity
(scaled by the location scaling) between a prototype and the
input image. These scores are then connected to the output
layer via a fully connected layer with learned weights but zero
bias. The choice of zero bias in the final fully connected layer
is essential for interpreting the prototypes as providing evi-
dence for a particular class. With a zero bias, the final points
contributing to each class are composed only of a sum of location-
scaled similarity scores multiplied by a final weight. The final
weights layer is trained separately from the rest of the net-
work. The layer is trained in such a way as to keep weights
connecting prototypes with their associated class large, while
minimizing the weights connecting prototypes with their non-
class-output units (see section 2c). Last, as is standard with a
fully connected layer, the output values (weighted scores) contrib-
uting to each output unit are summed to produce a total number

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

4 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS VOLUME 1
Stage Type Bca:;i L 1x1 Prototypes Locat'ion Fi‘n N
ayers Scaling Weights
1 |train prototypes frozen/train train train train frozen
2 [replace prototypes frozen frozen replace frozen frozen
3 |train weights frozen frozen frozen frozen train

FI1G. 2. The three different stages of training the ProtoLNet.

of points for each class. The class with the highest number of points
is identified as the predicted class.

In the original ProtoPNet, there was no location scaling.
Without this location scaling, the network is agnostic to where
the input image looks most like each prototype. That is, the
only thing of import is that the image looks like the prototype
somewhere. Returning to the example of classifying bird im-
ages [as explored in Chen et al. (2019)], a prototype may cor-
respond to a latent representation of the red head of a red-
bellied woodpecker. The original ProtoPNet does not care
whether a red head is found in the upper left or the upper
right of the input image. Rather, the ProtoPNet just considers
whether a red head is present at all. For our ProtoLNet pre-
sented here, the network is designed to take into consider-
ation not only that a red head is found but also where within
the image the red head occurs. As we will show, this consider-
ation of location can be highly beneficial in geophysical
applications.

b. Choosing the base CNN

We envision three main approaches to choosing a base
CNN. The first takes an existing CNN that has been previ-
ously trained to perform classification tasks. This CNN may
already be performing well, but interpretability is desired.
The user removes the output layer and fully connected layers
of their existing CNN and then use the result as their base
CNN for the ProtoLNet. In this approach, the ProtoLNet is
used purely for interpretability of the original CNN.

The second approach to choosing a base CNN is to, once
again, take a pretrained CNN, remove the output and fully
connected layers, and then use the result as the base CNN for
the ProtoLNet. The difference is that now the user allows the
weights within the base CNN to be further refined during the
ProtoLNet training in order to optimize the performance of
the ProtoLNet. Allowing the base CNN weights to be up-
dated implies that the user is no longer interpreting the same
base CNN with which they started. However, if the goal is to
create an interpretable network that is as accurate as possible,
this may be a good approach. Furthermore, for image classifi-
cation tasks, one might choose to use a CNN previously
trained on a large dataset, for example, “VGG-19” (Simonyan
and Zisserman 2014), as done by Chen et al. (2019).

The third approach to choosing a base CNN applies when no
suitable pretrained base CNN exists. In this case, the user must
train the interpretable network from scratch. In this instance,
there are two main choices. A separate base CNN could be
trained, stripped of its final output and fully connected layers,
and then appended to the ProtoLNet (as discussed above).

Alternatively, one could initialize the base CNN with random
initial weights and train it directly within the ProtoLNet archi-
tecture. We have tried both methods for the use cases explored
here and found that they produced similar accuracies (although
we acknowledge this may not always be the case). Here, we pre-
sent results where we first pretrain a base CNN and then
append it to the ProtoLNet, in order to provide a base accuracy
with which to compare our ProtoLNet results.

c. ProtoLNet training

The training of the ProtoLNet is done in triads of stages
(Fig. 2), largely following the original training approach of
Chen et al. (2019). The first stage of training involves learning
the prototypes by training the 1 X 1 layers, prototypes, loca-
tion scaling grid, and the base CNN (if desired by the user;
see section 2b) at the same time. The final weights are frozen
during this stage. The second stage of training involves replac-
ing each prototype with the nearest latent patch within the
training samples of the same class. That is, stage 1 allows the
network to learn any form of the prototype latent patch, and
stage 2 replaces this prototype with the most similar training
latent patch from the same class. In this way, the prototypes
always directly correspond to a latent patch in one particular
training sample. In the third stage of training, we freeze all el-
ements of the ProtoLNet except for the fully connected final
weights (pink arrows in Fig. 1), and the network learns them
alone. These three stages are then cycled through multiple
times (for our use cases, up to 5 times) for full training of the
ProtoLNet.

1) INITIALIZATION

Prior to stage 1, the two 1 X 1 convolutional layers are ini-
tialized with random values drawn from a truncated normal
distribution (He et al. 2015). The prototypes are initialized
with random values drawn from a uniform distribution be-
tween 0.0 and 1.0, and the location scaling grid is initialized
with ones everywhere (see appendix B for additional details).
The final weights w that connect a prototype with its assigned
class are given an initial value of 1.0, and all other final
weights are initialized to —0.5. The initialization of the base
CNN was already discussed in section 2b.

2) STAGE 1

Training is performed via stochastic gradient descent with
the Adam optimizer and batch size of 32. For the quadrants
use case, the learning rate is set to 0.01 for every stage-1 cycle.
For the MJO use case, the learning rate is also initially set to
0.01 but is reduced by an order of magnitude for the third

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

JuLYy 2022

cycle of stage 1 and every cycle thereafter. The network is
trained with the standard cross-entropy loss (e.g., Géron
2019) added to two additional loss terms: the ClusterCost and
SeparationCost. The cross-entropy loss penalizes the network
for misclassifying the training samples. The ClusterCost en-
courages the network to construct prototypes such that train-
ing images have at least one latent patch with high similarity
to a prototype of the correct class. The SeparationCost dis-
courages the network from constructing prototypes such that
training images have any latent patches with a high similarity
to prototypes of the incorrect classes. Thus, the full stage-1
loss function takes the form

Loss = CrossEntropy + g, ClusterCost — B,SeparationCost,

@

where B; and 3, are coefficients chosen by the user. Full forms
of the ClusterCost and SeparationCost, along with their coeffi-
cient values, are provided in appendix C. For all use cases, we
train in stage 1 for 10 epochs before moving to stage 2 of
training.

3) STAGE 2

This stage does not involve any iterative training but in-
stead is direct computation. Specifically, the similarity scores
are computed between each learned prototype from stage 1
and every latent patch of every training image of the same
class. The prototype is then replaced by the training latent
patch with the highest similarity. Note that this replacement
process will nearly always reduce the accuracy of the net-
work because it replaces the stage-1 optimized prototypes
with something from the training set. However, this step is
central to the interpretability of the ProtoLNet. By cycling
through all three training stages multiple times, the network
learns to perform well using the replaced prototypes from
the training set.

4) STAGE 3

The final weights w, ; connecting prototypes of class k to
the output class j are learned via convex optimization, since
all other layers are frozen. As a reminder, all w; ; for k are
initialized to 1.0, and the rest, wy ; for k # j, are initialized to
—0.5. The weights are frozen for stages 1 and 2 of training.
In stage 3, all other free parameters in the ProtoLNet are fro-
zen, and the weights alone are trained to minimize the cross-
entropy loss of the final output plus an additional L, regulari-
zation term evaluated on the weights wy ; for k # j. This addi-
tional loss term provides sparsity to the final model, that is,
wy, j = 0 for k # j, which reduces the use of negative reasoning
by the network (“this does not look like that”). See Singh and
Yow (2021) for an exploration of the consequences when this
sparsity requirement is relaxed. For the idealized-quadrants
use case, we set the regularization parameter to 0.5. For the
MIJO use case, it is set to 0.1. For all use cases, we train in
stage 3 for 10 epochs. At that point, we either end training
completely (i.e., we have the fully trained ProtoLNet), or we
cycle through stages 1-3 again.

BARNES ET AL. 5

3. Use case: Idealized quadrants

As a first demonstration of the ProtoLLNet, we construct an
idealized synthetic test set to loosely represent the horizontal
(latitude by longitude) spatial structures of geophysical anom-
alies. For example, the synthetic fields (or images) could rep-
resent idealized low and high pressure circulations. The
anomaly fields are 100 X 100 pixels in size and are constructed
by first initializing the field with random Gaussian noise. We
then randomly add an additional anomaly value (uniformly
distributed between 2 and 15) to the center of one or more of
the four quadrants of each square field. Last, we smooth each
field with a Gaussian filter with standard deviation of 7 to
make the fields look more like typical tropospheric pressure
anomalies. Example samples are shown in Fig. 3.

The fields in the idealized dataset are assigned labels based
on the sign of the anomalies in each of the four quadrants of
the sample (Fig. 3). Specifically, fields with negative anomalies
in both the second and fourth quadrants are labeled class O,
fields with positive anomalies in both the second and third
quadrants are labeled class 1, and all other fields are labeled
class 2 (Figs. 3a—c). Figures 3d—f show example samples for
each class. As designed, sample 230 (labeled class 0) has nega-
tive anomalies in the second and fourth quadrants, sample 78
(labeled class 1) has positive anomalies in the second and
third quadrants, and sample 153 (labeled class 2) does not
achieve either of the requirements of classes 0 or 1. As will
become clear, this idealized dataset was designed such that
the location of the different anomalies matters.

The synthetic dataset has equally balanced classes by con-
struction, with 3000 samples for each of the three classes
(9000 samples total). This set is then randomly split such that
7200 samples are used for training and 1800 for testing. Prior
to training, the input images are standardized by subtracting
the mean and dividing by the standard deviation over all
training pixels.

We task the ProtoLNet with ingesting a single input field and
classifying it into one of the three classes, as depicted in Fig. 4.
The network cannot simply identify the existence of negative
anomalies (in the case of class 0) or the existence of positive
anomalies (in the case of class 1). Instead, it must consider the ex-
istence of different signed anomalies and their location within the
input field. To illustrate this point, we trained a ProtoPNet where
location is not considered (i.e., learning of the location scaling
grid is turned off) and—unsurprisingly—the network fails with
an accuracy of 32%, no better than random chance (i.e., 33%).

We first train a standard CNN to perform the classification
task and act as our base CNN for the ProtoLNet. Details of
the CNN architecture and training parameters are provided in
appendix A. Once the CNN is trained, we remove the final
fully connected layer and output layer and append the result
to the ProtoLNet to become the base CNN (see Fig. 1). We
assign 5 prototypes (with D = 128) to each output class, for a
total of 15 prototypes. Using more prototypes than this
yielded prototypes that rarely provided points for any sample.
We cycle through the three stages of ProtoLNet training
(Fig. 2) 5 times, freezing the base CNN for the first cycle of
stage 1 but allowing it to train for all subsequent cycles of

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

6 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

(a) Composite of class =0

(b) Composite of class = 1

VOLUME 1

(c) Composite of class = 2

(d) Sample 230, class = 0

(e) Sample 78, class = 1

(f) Sample 153, class = 2

FI1G. 3. (a)—(c) Composites of all samples by class label for the idealized-quadrants use case.
(d)-(f) One example sample for each class.

stage 1. Once fully trained, the ProtoLNet achieves an accu-
racy of 96%, a significant improvement over random chance
and the ProtoPNet. For comparison, the base CNN achieves
an accuracy of 98%. The ProtoLNet is not designed to outper-
form all alternative approaches. Instead, it is designed to
provide interpretability with a minimal loss in accuracy.

The power of the ProtoLNet is that once trained, its deci-
sion-making process can be interpreted by the user. Three ex-
ample predictions are shown in Fig. 5, along with their two
“most winning” prototypes (i.e., prototypes that gave the
most points to the winning class for each example) and the as-
sociated location scaling grids. To avoid any confusion, we
want to clearly state that the “prototypes” outlined in colored
boxes in Figs. 5a(i),(iii), Sb(i),(iii), and Sc(i),(iii) are not the
prototypes themselves. The actual prototypes are vectors of
latent patches of size 1 X 1 X 128 and would likely be incom-
prehensible since they capture the output of a series of complex
convolutions, poolings, and nonlinear activations. Instead, we
visualize the group of neighboring pixels of the training field
that contribute to the prototype latent patch, often termed the
“receptive field.” In contrast, the location scaling panels in
Figs. 5a(ii),(iv), 5b(ii),(iv), and 5c(ii),(iv) display the actual grids

class 0

ProtoLNet class 1

SHput class 2

output
layer

FIG. 4. Prediction setup for the idealized-quadrants use case.

used in the prototype layer computation, which is why the
squares are much larger than the pixels in the input field
(i.e., the dimensions have been reduced to 25 X 25).

Consider sample 230 (Fig. 5a), which the ProtoLNet cor-
rectly labeled as class 0. Prototypes 2 and 4 contributed the
most points to a class 0 prediction, giving 8.8 and 5.2 points,
respectively. Prototype 2 was drawn from training sample 6
and, more specifically, prototype 2 represents a latent patch
from the purple-boxed region of training sample 6 [Fig. 5a(i)].
The location scaling grid for prototype 2 [Fig. Sa(ii)] shows
that this prototype is highly relevant only when found in the
upper-left corner of the field (dark gray and black pixels).
Thus, the ProtoLNet identified high similarity between proto-
type 2 and an upper-left patch of sample 230. Or in other
words, the ProtoLNet identified that sample 230 looks like
that prototype there.

Prototype 4 [Figs. 5a(iii),(iv)] also contributed points to the
correct prediction of class 0. Note that prototype 4 was also
drawn from training sample 6; coincidentally the same sample
as prototype 2. Looking at prototypes 2 and 4 together, one
can interpret that the network’s decision-making strategy is to
look for blue anomalies in the upper-left and bottom-right
quadrants of the image—which is exactly how class 0 is de-
fined. A similar interpretation can be found for sample 78
(Fig. 5b) with a class label of 1. The network identifies the
class 1 sample by looking for positive anomalies in the upper-
left and bottom-left quadrants.

The network’s decision-making strategy is particularly in-
teresting for sample 153 with a label of class 2 (Fig. 5c). Proto-
type 13 corresponds to features associated with a weakly
positive anomaly in the upper-left or bottom-right quadrants.
From this, it appears that the network is ruling out a class 0
sample, which exhibits negative anomalies in these quadrants.
Similarly, prototype 14 corresponds to features associated

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

JULY 2022

BARNES ET AL.

(a) Sample 230, class =0

() Prototype 2
Training Sample 6

(iiy Prototype 2
Location Scaling

8.8 points
5.2 points

B #
.o

(iiiy Prototype 4
Training Sample 6

(iv) Prototype 4
Location Scaling

(b) Sample 78, class = 1

() Prototype 8
Training Sample 1

(i) Prototype 8
Location Scaling

6.4 points
5.6 points

) =

O

O

(iii) Prototype 9@
Training Sample 1

(iv) Prototype 9@
Location Scaling

- »

(i) Profotype 13

(i) Prototype 13

(C) Sdmple]53, C|OSS = 2 Training Sample 6932 Location Scaling
6.5 points
4.9 points . .

B . . '

(iiiy Prototype 14
Training Sample 1287

(iv) Prototype 14
Location Scaling

O

FI1G. 5. Three example predictions by the network for the idealized-quadrants use case, along
with the two winning prototypes for each sample and the associated location scaling grid. For
each of the three samples, there are two prototypes shown [labeled as (i) and (iii)] along with
their associated location scaling grids [labeled (ii) and (iv)].

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

8 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

with a weakly negative anomaly in the upper-left or bottom-
left quadrants. That is, the network rules out a class 1 field
that exhibits strong positive anomalies in these two quadrants.
Figures 5c(ii),(iv) nicely demonstrates that the location scaling
grid can highlight multiple locations throughout the field for
the same prototype. The interpretability of the ProtoLNet
prediction thus allows for identification of the patches of the
input field that were used to make the prediction, that is, the
patches whose latent representation most looks like class-
specific prototypes learned during training.

One interesting observation is the sparsity of the location scal-
ing grids in (Fig. 5) despite no explicit sparsity requirement in
the loss function. This comes about due to the SeparationCost
[Eq. (2)] pushing the values of the location scaling grid to lower
values in unimportant areas. Since the SeparationCost is sub-
tracted in the loss function, and the location scaling values s; ap-
pear in the denominator of the SeparationCost, the gradient of
the loss function ultimately favors small location scaling values
for unfavorable prototypes.

4. Use case: MJO phase classification

We next apply the ProtoLNet architecture to Earth system
reanalysis fields. Specifically, the network is tasked with in-
gesting maps of atmospheric fields in the tropics and predict-
ing the current phase of the MJO. The MJO is a large-scale,
eastward-propagating coupling between tropical wind and
convection that oscillates on subseasonal (30-60 days) time
scales (Madden and Julian 1971, 1972; Zhang 2005). Canoni-
cal MJO events form in the Indian Ocean and propagate east
into the western Pacific: the “phase” of the MJO describes
roughly where it is in this life cycle.

The task of classifying the current phase of the MJO from
maps of the tropics is chosen here to demonstrate the utility
of our method to a relatively straightforward climate science
task. Classification of MJO phase requires the network to
identify coherent, multivariate tropical patterns on a particu-
lar (planetary) spatial scale, and the MJO’s eastward propaga-
tion also requires the network to take advantage of spatial
location in its decision-making. Thus, while straightforward
from a scientific perspective, the task of classifying MJO
phase is well suited as a demonstrative use case for the Proto-
LNet methodology. Toms et al. (2021) classified the state of
the MJO to explore the utility of explainability methods, in
contrast to our interpretable method, for Earth system science
applications.

We define MJO activity and phase using the real-time mul-
tivariate MJO index (RMM; Wheeler and Hendon 2004).
RMM is derived through an empirical orthogonal function
(EOF) analysis of three variables: outgoing longwave radia-
tion (OLR), 200-hPa zonal wind (u200), and 850-hPa zonal
wind (u850). Each variable in RMM is preprocessed by re-
moving the seasonal cycle (i.e., the all-time mean and first
three harmonics of the annual cycle on each calendar day),
and the previous 120-day mean of each day (to remove vari-
ability associated with longer time scales than the MJO). Vari-
ables are averaged from 15°N to 15°S, and the leading two
modes of the EOF analysis are used to define the MJO

VOLUME 1

through two daily time series. Plotted on a two-dimensional
plane, the distance of a point from the origin represents the
strength of the MJO (often called the RMM amplitude), and
the phase angle describes the phase of the MJO, or where it is
in its life cycle. Following Wheeler and Hendon (2004), when
the MJO is active (e.g., above a certain amplitude threshold)
we divide the RMM phase space into octants. Phases 1 and 2,
for example, correspond to active MJO convection in the
Indian Ocean. Phases 3 and 4 are associated with activity
around the “Maritime Continent,” and so on. If the MJO is
not active, we label it as phase 0.

We define and track the MJO using the ECMWF twentieth-
century reanalysis (ERA-20C) data (Poli et al. 2016), a dataset
than spans the entire twentieth century and provides a larger
sample size than the observational record. From ERA-20C,
we use daily OLR, u850, and u200 data from 1 May 1900 until
31 December 2010 to calculate the RMM index. RMM is cal-
culated from the ERA-20C data following the methodology in
Wheeler and Hendon (2004) discussed above, except that the
full ERA-20C period is used to define the climatology, and the
processed data are projected onto the observed EOF modes
from Wheeler and Hendon (2004) (as opposed to the EOFs
from the ERA-20C data). Over the period when the observed
RMM index overlaps with our ERA-20C RMM index, the two
indices have a correlation of approximately 0.9, indicating very
good agreement in how the RMM index is formed.

The network input is composed of three channels of 17 lati-
tudes by 105 longitudes of u200, u850, and OLR, representing
the three geophysical variables that go into the computation
of the MJO index (see Fig. 6). Thus, a single sample has shape
17 X 105 X 3. The labels are set to be the phase of the MJO,
with phase 0 representing days where the amplitude of the
MJO is less than 0.5. We choose to train on all available data;
thus, the classes are not equally balanced across phases (see
Fig. S1 in the online supplemental material), although they
are similar.

Given that there is memory of the MJO phase from one
day to the next, we divide the 1900-2010 data into training
and testing via distinct years. Specifically, the testing data are
all calendar days within the 22 randomly selected years: 1902,
1903, 1907, 1912, 1916, 1917, 1918, 1923, 1935, 1937, 1941,
1945, 1946, 1949, 1953, 1961, 1965, 1976, 1992, 2007, 2008, and
2010. The remaining 89 years compose the training years.
(Results for other combinations of training/testing accuracies
are given in Table S1 in the online supplemental material.)
This results in 32387 training samples and 8035 testing sam-
ples. The three input fields (channels) are converted to anom-
alies prior to analysis following a similar preprocessing as for
the RMM computation. That is, the time-mean calendar-day
seasonal cycle is subtracted from each gridpoint, and the
mean of the previous 120 days is removed. Each variable is in-
dividually normalized by dividing it by its tropics-wide stan-
dard deviation. Then, immediately prior to training, the inputs
are further standardized by the mean and standard deviation
across all grid points and channels of the training set (via flat-
tening the input fields).

We first train a standard CNN to perform the classification
task and act as our base CNN for the ProtoLNet. Details of

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

JuLYy 2022

BARNES ET AL. 9

phase 0

phase 1
ProtoLNet

phase 8

output
layer

FIG. 6. Prediction setup for the MJO use case.

the CNN architecture and training parameters are provided in
appendix A. Once the CNN is trained, we remove the final
fully connected layer and output layer and append the result
to the ProtoLNet to become the base CNN (see Fig. 1). We
assign 10 prototypes (with D = 64) to each output class, which
results in a total of 90 prototypes. Fewer than 90 reduced the
accuracy, while using more than 90 did not improve the pre-
dictions. We cycle through the three stages of ProtoLNet
training (Fig. 2) 5 times, freezing the base CNN for the first
cycle of stage 1, but allowing it to train on all subsequent
cycles of stage 1. Once fully trained, the ProtoLNet achieves a
testing accuracy of 73% for classifying the phase of the MJO
into one of nine classes (random chance is approximately
11%), which is similar to the accuracy found in Toms et al.
(2021) using a black-box neural network. Figure S2 in the on-
line supplemental material shows that the ProtoLNet exhibits
testing accuracies between approximately 70%-80% across
phases. A ProtoPNet, which does not consider location, never
achieves an accuracy above 30%.

Interestingly, the base CNN upon which our ProtoLNet
was trained converged to an accuracy of 58%, much lower
than that of the subsequent ProtoLNet. We believe that the
improved accuracy of the ProtoLNet is due to the regularizing
nature of the prototype architecture. That is, the prototype
approach constrains the network to focus on only a few latent
features for phase identification, allowing it to converge on an
appropriate decision-making strategy when the training data
is limited (see discussion of additional experiments in section 5).
We believe that this may be an additional benefit of the proto-
type approach that is worthy of further investigation. With that
said, Table S1 in the online supplemental material shows accu-
racies for the base CNN and ProtoLNet for six additional ran-
dom seeds that set the model initialization and training/testing
split. The ProtoLNet accuracies are incredibly robust across all
seeds. While in two of the cases the base CNN achieved lower
accuracies than the ProtoLNet (as in the setup shown here), the
base CNN more often achieved a slightly higher accuracy than
the ProtoLNet. Thus, it appears that the original accuracy of
the base CNN does not solely dictate the resulting accuracy
of the ProtoLNet.

An example of the interpretability of the ProtoLNet’s pre-
diction for testing sample 7591 is shown in Fig. 7. This sample

corresponds to phase 2 of the MJO on 14 October 2008, and
the three input fields (u200, u850, and olr) are displayed
across the top row for that day. All anomalies are shown, but
the shading outside of the prototype receptive field is muted
in color. Note that the large-scale, enhanced convection of the
western Indian Ocean (Fig. 7c) is a classic indication of a
phase-2 MJO event, corresponding with a coupled wind re-
sponse that shows upper-level easterlies (Fig. 7a), and lower-
level westerlies (Fig. 7b) in the same region.

The network correctly classifies this sample as phase 2, and we
can use the interpretability of the ProtoLNet to further explore
why. Although multiple prototypes contributed to the winning
number of points for the classification of sample 7591, it can be
insightful to investigate the winning prototype (i.e., the prototype
that contributes the most points). With multiple channels as
input, the winning prototype for this sample (prototype 20) is
visualized as three different fields, one for each input variable
(i.e., u200, u850, olr), as shown in Figs. 7d-f. Prototype 20 is a
latent patch corresponding to the state of the western Indian
Ocean on 18 November 1914. The location scaling grid associ-
ated with prototype 20 (Fig. 7g) highlights that similarities to this
prototype are only heavily weighted when found at these longi-
tudes. Thus, we see that the anomaly fields on 14 October 2008,
for sample 7591 look a lot like those of prototype 20, with
upper-level easterlies, lower-level westerlies, and enhanced con-
vection over the western Indian Ocean. This provides evidence
for why the network classified this sample as MJO phase 2.

Figure 8 shows three additional (correctly predicted) testing
samples and their winning prototypes, displaying only one
geophysical field for each prediction to simplify the figure.
Sample 759 on 30 January 1907 is classified as phase 1, in part
because its upper-level winds look like those of prototype 16
from 27 December 1940 over the central Pacific (Figs. 8a,d).
The lower-level westerlies over the Indian Ocean on 5 March
1912 look like those of phase-4 prototype 49 from 23 March
1988 (Figs. 8b,e). Enhanced convection as seen by the OLR
field east of the Maritime Continent on 23 September 1902
looks like that of phase-6 prototype 61 (Figs. 8c,f).

As a summary of the MJO classification results, Fig. 9 dis-
plays the most frequently winning prototype for each phase of
the MJO. A hallmark feature of the MJO is its eastward prop-
agation, and Fig. 9 reveals the eastward progression of the

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

10

ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

VOLUME 1

phase 2 (c) u200 of Sample 7591 Oct 142008 phase 2 (b) u8s0 of Sample 7591 Ot 142008 phase 2 (c) olr of Sample 7591 Oct 14 2008
\(*ﬁ -mﬁfg e “
\ g W i A Ve o A P ST
(d) u200 of Prototype 20 Nov 18 1914 (e) u850 of Prototype 20 Nov 18 1914 (f) olr of Prototype 20 Nov 18 1914
! . , Y ,

(g) Prototype 20 Location Scaling

MJO phase

FIG. 7. (a)~(c) One example prediction (testing sample 7591) by the ProtoLNet for the MJO use case, along with (d)—(f) the winning
prototype (prototype 20) and (g) the associated location scaling grid. The three input fields are u200 in (a) and (d), u850 in (b) and (e),
and olr in (c) and (f). All anomalies are shown in (a)-(c), but the shading outside the prototype patch is muted in color. The color scales
are dimensionless, with red shading denoting positive values and blue shading denoting negative values. (bottom center) The points given
to each class by each prototype, with the sum (i.e., total points) displayed along the top of the plot. Colored dots denote prototypes associ-
ated with the same class, and white dots denote contributions from prototypes of other classes.

prototypes (and associated location scaling grids) starting in
phase 2 and continuing to phases 7 and 8. That is, the ProtoLNet,
with its location-specific focus, has learned representative proto-
types that move eastward with the known progression of the
MJO. Phase 1, however, does not appear to behave this way.
Prototype 16 is often the most-winning prototype for phase 1,
but it is focused over the mid-Pacific rather than the western
Indian Ocean as one might expect (this is true for most of the
phase-1 prototypes; see Fig. S5 in the online supplemental
material). The reason why phase-1 prototypes tend to focus on
this region is not clear, but we hypothesize the network may
be focusing on wind signals in this region associated with a
phase-1 event forming or a previous MJO event decaying.
Further investigation is needed.

Figure 10 shows a breakdown of how often (i.e., for how
many testing samples) each prototype was the winning proto-
type. For example, prototype 49 from 23 March 1988, is the

most-winning prototype for phase 4, and it is the winning pro-
totype for 98% of all correctly classified phase-4 testing sam-
ples. This suggests that this prototype is highly indicative of
phase-4 MJO events. On the other hand, phase 7 has multiple
prototypes that frequently earn the title of winning prototype.
Thus, prototype 70 (displayed in Fig. 9) should be interpreted
as only one possible indicator of phase 7.

All 10 learned prototypes for each phase are provided in
Figs. S4-S812 in the online supplemental material. Careful in-
spection shows that some of the learned prototypes come from
the same training sample, indicating a particularly prototypical
event. However, in cases where the prototypes come from
the same training sample and have similar location scaling
grids, there could be concern that this is a repeated proto-
type. Chen et al. (2019) discuss an additional “pruning” step
in their ProtoPNet methodology, although it could also be
that the CNN is identifying different aspects of the image that

phase 1 hase 4 (B) uBS0 of Sarnple 1159 Mar05 1912 phase 6 (c) or of Sample 265 sep 23 1902
i i 3 ST - 3
4 \ ray
2 e | [oL
() u200 of Prototype 16 pec 27 1940 (e) u850 of Prototype 49 par 23 1988 (f) olr of Prototype 61 pec 25 1996
R .- P 3 4
(d) Prototype 16 Location Scaling (e) Prototype 49 Location Scaling (f) Prototype 61 Location Scaling
40 2 54 B 40 2.4 272 13 B 40 3 14 8 2
20 ' . . g 2 [' » 21, .
Sof i L b do ol v i bbb i S S
20 20 20
0 2 3 4 5 7 0 2 3 4 5 7 0 2 3 5
MJO phase MJO phase MJO phase

FIG. 8. Asin Fig. 7, but for three additional example testing samples (one per column), displaying only one geophysical field for each.

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

JuLYy 2022

BARNES ET AL. 11

ase0 U200 of Prototype 0 octos 1973 phaseo U850 of Prototype 0 oey081973 phase 0 olr of P’°'°*Vpe'_0 Oct 08 1973 Prototype 0 Location Scaling
7 ; h 7 i Z h 7
: V - “ Tk ’ ‘
2 L. ol B T 4 By
phase 1 u200 of Prorotype 16 pec 27 1940 phase | u850 of Prototype 16 pee 27 1940 phase 1 olr of Prototype 16 pec o7 1940 Profotype 16 Location Scaling
YA e ! 4 TVA T
e ‘ il | || |
A . -) T - A . e

u200 of Prototype 20 g, 151914 u850 of Prototype 20 gy 18 1914

phase 2 olrof Protatype 20 _woy 181914 Profotype 20 Location Scaling

hase 2 E\(: ‘ ~ “ ‘ 1 Dhuse?_ .\(: ‘ 7:' ; ‘
S By s 2 by

i

hase 3

phases U200 of Prototype 34 rop, 12 1085 uB50 of Prototype 34 ¢ 12 1085
\! 17 " L H = H

it Vo Gl 2

hased Ol of Prototype 34 ¢ep 12 joss

Profotype 34 Location Scaling

= e e

hase 4 u200 of Prorotyps A9 \aar 23 1988 hase 4 u850 of Prototype 49 140 23 1988

haseq Ol Of Prototype 49 wer 23 1088 Profotype 49 Location Scaling

u2[]] of Prcrotype 53 mar2s 1988,

hase5 4850 of Prototype 53 g 2 1088

hase § olr of Prototype 53 gy 25 1088

Prototype 53 Location Scaling

phase §

¥

4 a i B A e

ol N | u

L

u200 of Prototype 61 pec 25 1996 uB50 of Prototype 61 pec 25 1995
T = ¥ ;

phase &
g h

hase &

K] P

Olr of Prototype 61 pec s 1996 Prototype 61 Lecation Sealing

hase &

'ﬂ' P .

Prototype 70 Location Scaling

shase7 U200 Of Profotype 70 pec 14 192 ohase 7 UBS0 OF Prototype 70 pec 14 192 ohaez Ol Of PrOtOtype 70 pac 14 1904
! 5 & - R]] L ~ ¢ =
K] Ak e K] . e gt

3 Ve o ’ u

ohases U200 of Prototype 89 a1 1951 phases U850 of Prototype 89 a1 1951

7, 7 Ny
Y B n N

Ol of Prototype 89 wmay 11 1051 Prototype 89 Location Scaling

phase 8

| n

FIG. 9. The most frequently winning prototype for correctly classified testing samples by MJO phase. (left),(left center),(right center) Three
different input variables. (right) The associated location scaling.

are prototypical. Either way, for this MJO use case Figs. S4-S12
specify how often a particular prototype was the “winning”
prototype and in all cases, it is one specific prototype that
wins out over the rest, which is why we are confident show-
ing Fig. 10.

Figure 11 shows the breakdown of the monthly distribution
for all prototypes for active MJO phases 1-8. The network
preferentially chooses prototypes from November to March
when the MJO is known to be most active, however, proto-
types from May and July are also learned, likely to capture the
differences in MJO behavior across seasons (Zhang 2005).
The monthly seasonality for all prototypes, including those for
MIJO phase 0, are shown in Fig. S3 in the online supplemental
material.

5. Discussion

The value of the ProtoLNet design is that interpretation of
the network’s decision-making process is baked into the archi-
tecture itself, rather than performed post hoc like most ex-
plainable AI methods (Buhrmester et al. 2019; Barredo
Arrieta et al. 2020; Samek et al. 2021). Although the network
is constrained to only learn via similarities to a small number
of learned prototypes, multiple use cases demonstrate that it
can be trained to exhibit only a small reduction in accuracy
relative to noninterpretable architectures (Chen et al. 2019;
Singh and Yow 2021). Moreover, for our MJO use case, the
ProtoLNet actually improved in accuracy over its base CNN.
We hypothesize that this is because the ProtoLNet greatly re-
duces the search space possibilities, which allows the network

to converge on a good prediction strategy given a limited sam-
ple size. One might think of this as a form of regularization,
or instead, a form of physics-guided constraint (e.g., Beucler
et al. 2021) that forces the network to learn physically
realizable evidence for each class. To further explore this
hypothesis, we trained additional ProtoLNets for the ideal-
ized-quadrants use case (section 3), but with a much smaller
training size (only 1400 samples for training). In all cases, the
ProtoLNets obtained higher testing accuracies—sometimes
significantly higher—than their respective base CNNs (see
results in Fig. S13 in the online supplemental material). This

Frequency of winning prototype by MJO phase

frequency
o o
o [e+]

o
~

o
o

0.0 -
0 1 2 3 4 5 7

MJO phase

F1G. 10. The frequency at which each prototype is the winning
prototype (i.e., contributes the most points to the predicted class)
for each correctly classified testing sample. Each phase has 10 pos-
sible prototypes; however, there are some prototypes that are
never a winning prototype. They have frequency of zero.

Unauthenticated |

Downloaded 06/06/24 06:47 PM UTC

—_
\)

Seasondality of learned prototypes for phases 1-8

[o=]

SR oo

of prototypes (out of 80)
IS)

o N B O @

Jan Feb Mar AprMay Jun Jul Aug Sep Oct Nov Dec

FIG. 11. Number of learned prototypes for MJO phases 1-8 (of a
total of 80 prototypes, because phase 0 is excluded) binned by
month of the year of the training sample from which the prototype
was drawn.

is not to say that the ProtoLNet is categorically more accurate
than a standard CNN. A more thorough exploration of the
hyperparameter space could bring the base CNN accuracy up
to that of the ProtoLNet. Instead, we just wish to highlight
that, with minimal tuning, the ProtoLNet was able to consis-
tently achieve high accuracies with limited training data.

In addition to being interpretable, the ProtoLNet provides
the benefit of learning a small subset of prototypical parts from
the training set that reflect identifiable features for each output
class. That is, each prototype is found “in the wild” and, thus,
has a direct connection to a sample that has occurred. This
should be distinguished from more standard architectures that
learn complex latent representations and features that may
never occur in reality. For the case of MJO phase classification,
this means that the network can learn particular example MJO
events that generalize across the observational record and re-
flect identifiable features for each specific MJO phase. Thus, al-
though predicting the current phase of the MJO is routine
from a scientific perspective, the ProtoLNet allows us to look
back and identify specific dates that exhibit prototypical MJO
phase behavior, as shown in Figs. 9 and 11. Furthermore, it is
straightforward to extend the interpretable ProtoLNet setup of
Fig. 6 to ingest current atmospheric fields and predict the MJO
phase at some lead time into the future.

As we have used it here, the ProtoLNet design learns local-
ized prototypes from the input that provide evidence for a par-
ticular output class. This should be distinguished from the
standard climate approach that composites the input fields
over many samples for a single class, and thus results in a
smooth averaged field (assuming there are enough samples to
average out the noise). Such a composite field is computed
pixel by pixel and as such, does not capture shared gradients
or higher-level features that can be learned by the convolu-
tional layers of the ProtoLNet. Finally, as discussed above, the
ProtoLNet identifies prototypical behavior that has been real-
ized in a training sample, while the composite field provides a
smoothed, idealized picture that will likely never be observed.

The ProtoLNet is based on the ProtoPNet of Chen et al.
(2019), which uses positive reasoning, that is, this looks like
that, to predict the correct class of an input image. Singh and

ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

VOLUME 1

Yow (2021) introduce a variation, the NP-ProtoPNet, which
additionally includes negative reasoning, that is, this does not
look like that. Their argument is that by allowing negative rea-
soning, the network is able to better rule out incorrect classes
and achieve accuracies on-par with the best performing black-
box models. It is straightforward to apply our location-scaling
grid to a NP-ProtoPNet, which mainly involves relaxing the
sparsity requirement of the final weights layer. However, by
allowing both positive and negative reasoning, interpreting
the model’s decision-making process may become significantly
more difficult due to competing negative and positive point
contributions to the final output classes. Thus, we chose to
focus on positive reasoning for this study.

6. Conclusions

Driven by the desire to explain the decision-making process
of deep learning models, a large variety of post hoc explainabil-
ity methods have been developed (e.g., Buhrmester et al. 2019;
Barredo Arrieta et al. 2020; Samek et al. 2021). However, these
explainability methods come with their own challenges
(Kindermans et al. 2019; Mamalakis et al. 2021), and recent
work by Rudin (2019) and Chen et al. (2019) suggests that
instead of trying to explain black-box models, we should be
creating models where the decision-making process is inter-
pretable by design.

Here, we extend the interpretable ProtoPNet of Chen et al.
(2019) to consider absolute location in the interpretable proto-
type architecture, which we term the ProtoLNet. The results
of our work can be summarized by three main conclusions:
1) Considering absolute location in the ProtoLNet architecture
greatly improves accuracy for the geophysical use cases ex-
plored here. 2) The ProtoLNet is interpretable in that it di-
rectly provides which prototypes are similar to different
patches of an input image (i.e., this looks like that), and where
these prototypes matter (i.e., there). 3) The network is able to
learn specific historical dates that serve as multivariate proto-
types of the different Madden—Julian oscillation phases.

This work serves as one example of an interpretable deep
learning model specifically designed for Earth system science ap-
plications (see also Sonnewald and Lguensat 2021). There is
much more research to be done on the topic. For example, the in-
corporation of negative reasoning and extension to regression
tasks could be beneficial for its use in Earth science. Furthermore,
the interpretation and utility of the learned prototypes them-
selves, apart from the prediction task, leaves much to be explored.
Thus, this work should be seen as merely a step in the direction
of interpretable deep learning for Earth science exploration.

Acknowledgments. This work was funded, in part, by the
National Science Foundation (NSF) AI Institute for Re-
search on Trustworthy Al in Weather, Climate, and Coastal
Oceanography (AI2ES) under NSF Grant ICER-2019758.
Author Martin recognizes support from NSF under Award
2020305. Author Rader recognizes support from the U.S.
Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Department of Energy

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

JuLYy 2022

Computational Science Graduate Fellowship under Award
DE-SC0020347.

Data availability statement. Code and data are available on
Zenodo (https://doi.org/10.5281/zenodo.6903858). The ERA-20C
is publicly available (https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era-20c).

APPENDIX A

Base CNN Architectures and Training

The base CNN for the idealized-quadrants uses case
(section 3) has two convolutional layers of 32 kernels each.
Every convolutional layer is followed by an average pooling
layer with kernel size 2 X 2 and a stride length of 2. The
output of the final average pooling layer is flattened, and
then fed into a final dense layer of 64 units that is fed into
the final output layer of 3 units. The final output layer con-
tains the softmax activation function that converts the out-
puts into confidences that sum to 1.0. The final dense layer
is trained with dropout (Srivastava et al. 2014) at a rate of
0.4 to reduce overfitting. When the base CNN is appended
to the ProtoLNet, the dropout rate is set to zero. That is,
dropout is only used to reduce overfitting during the pre-
training of the base CNN. The base CNN is trained with a
fixed learning rate of 5 X 10~ for 12 epochs.

The base CNN for the MJO use case (section 4) has three
convolutional layers of 16 kernels each. Every convolutional
layer is followed by an average pooling layer with kernel size
2 X 2 and a stride length of 2. The convolutional layers are
trained with dropout at a rate of 0.4 to reduce overfitting.
The output of the final average pooling layer is flattened, and
then fed into a final dense layer of 32 units that is fed into
the final output layer of 9 units. The final output layer con-
tains the softmax activation function that converts the outputs
into confidences that sum to 1.0. The final dense layer is
trained with dropout at a rate of 0.2. When the base CNN is
appended to the ProtoLNet, the dropout rates are set to zero.
That is, dropout is only used to reduce overfitting during the
pretraining of the base CNN. The base CNN is trained with a
fixed learning rate of 0.000 17548 for 23 epochs.

The hyperparameters for these networks were explored
using KerasTuner. We did not find the results to be overly
sensitive to these choices.

APPENDIX B

Learning Location Scaling Exponents

The location scaling values must be nonnegative. Subse-
quently, we use a trick from Duerr et al. (2020) and learn
the exponents of the location scaling, rather than the values
themselves. That is, if s, denotes the location scaling value

for prototype p at latent patch k then
(B1)

s, = ng,

where the free parameter v, is learned by the network dur-
ing training. Thus, at initialization, all vy, values are

BARNES ET AL. 13

initialized to 0 so that the location scaling grid (all s, val-
ues) is initialized to a grid of numeral 1s.

APPENDIX C

Stage-1 Loss Function

The stage-1 loss function is given by Eq. (2). There are
three components: the usual CrossEntropy, plus a Cluster-
Cost, and minus a SeparationCost.

Consider a set of input samples and associated class la-
bels [(x; y;): i =1, 2, ..., N]. The output from the extended
CNN given sample x; is a quilt of latent patches z;, where
k indexes the latent patches. For the architecture shown in
Fig. 1, k € {1, 2, ..., 6} because the quilt is 2 X 3. Let s, de-
note the current location scaling value associated with latent
patch k and Py, denote the set of all prototypes belonging to
class y;. The ClusterCost is given by

1 N
Tust t=—
ClusterCos NZ

i=1

(C1)

2
z., —
min minin ik Pl s
pePy’_ k Sk + €

where || ||§ is the squared L, norm and e is a small number,
there to guard against divide-by-zero problems.

The ClusterCost encourages training images to have at
least one latent patch with high similarity to a prototype of
the same class. The computation is based on Chen et al.
(2019) but incorporates the location scaling grid introduced
in this paper.

The SeparationCost discourages training images from
having high similarity to prototypes belonging to the incor-
rect class. The computation is almost identical to that of the
ClusterCost. The difference is that we minimize over the
set of all prototypes that do not belong to class y;:

1 Iz — ol
S tionCost = — > min mi ik T2 C2
eparationCos Nizl(lr,g‘l)g mkln S +e (€2)

For the idealized-quadrants use case, we set the Cluster-
Cost coefficient B; ~ 0.17 (see code for all digits) and the
SeparationCost coefficient B, = B4/10. For the MJO use
case 31 = 0.2 and B, = B1/10. Note that the negative sign in
front of the SeparationCost term in Eq. (2) encourages the
network to have larger separation (lower similarity) be-
tween samples and the prototypes from incorrect classes.

REFERENCES

Balmaseda, M., and Coauthors, 2020: NOAA-DOE Precipitation
Processes and Predictability Workshop. DOE Tech. Rep.
DOE/SC-0203 and NOAA Tech. Rep. OAR CPO-9, 48 pp.,
https://cpo.noaa.gov/Portals/0/Docs/ESSM/Events/2020/NOAA _
DOE_PrecipWorkshopReport_July2021.pdf?ver=2021-07-14-
160100-057.

Barnes, E. A., B. Toms, J. W. Hurrell, I. Ebert-Uphoff, C.
Anderson, and D. Anderson, 2020: Indicator patterns of
forced change learned by an artificial neural network.

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

https://doi.org/10.5281/zenodo.6903858
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-20c
https://cpo.noaa.gov/Portals/0/Docs/ESSM/Events/2020/NOAA_DOE_PrecipWorkshopReport_July2021.pdf?ver=2021-07-14-160100-057
https://cpo.noaa.gov/Portals/0/Docs/ESSM/Events/2020/NOAA_DOE_PrecipWorkshopReport_July2021.pdf?ver=2021-07-14-160100-057
https://cpo.noaa.gov/Portals/0/Docs/ESSM/Events/2020/NOAA_DOE_PrecipWorkshopReport_July2021.pdf?ver=2021-07-14-160100-057

14 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

J. Adv. Model. Earth Syst., 12, e2020MS002195, https://doi.
org/10.1029/2020MS002195.

Barredo Arrieta, A., and Coauthors, 2020: Explainable artificial
intelligence (XAI): Concepts, taxonomies, opportunities and
challenges toward responsible Al. Inf. Fusion, 58, 82-115,
https://doi.org/10.1016/j.inffus.2019.12.012.

Beucler, T., M. Pritchard, S. Rasp, J. Ott, P. Baldi, and P.
Gentine, 2021: Enforcing analytic constraints in neural net-
works emulating physical systems. Phys. Rev. Lett., 126, 098302,
https://doi.org/10.1103/PhysRevLett.126.098302.

Buhrmester, V., D. Miinch, and M. Arens, 2019: Analysis of ex-
plainers of black box deep neural networks for computer vi-
sion: A survey. arXiv, 1911.12116, https:/doi.org/10.48550/
arXiv.1911.12116.

Chen, C., O. Li, D. Tao, A. Barnett, C. Rudin, and J. K.
Su, 2019: This looks like that: Deep learning for inter-
pretable image recognition. 33rd Conf. on Neural Infor-
mation Processing Systems (NeurIPS 2019), Vancouver, BC,
Canada, IEEE, https://proceedings.neurips.cc/paper/2019/
file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf.

Davenport, F. V., and N. S. Diffenbaugh, 2021: Using machine learn-
ing to analyze physical causes of climate change: A case study
of U.S. Midwest extreme precipitation. Geophys. Res. Lett., 48,
€2021GL093787, https://doi.org/10.1029/2021GL093787.

Duerr, O., B. Sick, and E. Murina, 2020: Probabilistic Deep
Learning: With Python, Keras and Tensorflow Probability.
Simon and Schuster, 296 pp.

Géron, A., 2019: Hands-on Machine Learning with Scikit-Learn,
Keras, and TensorFlow. 2nd ed. O’Reilly, 1150 pp.

He, K., X. Zhang, S. Ren, and J. Sun, 2015: Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet
classification. 2015 IEEE Int. Conf. on Computer Vision
(ICCV), Santiago, Chile, IEEE, 1026-1034, https:/doi.org/10.
1109/ICCV.2015.123.

Irrgang, C., N. Boers, M. Sonnewald, E. A. Barnes, C. Kadow, J.
Staneva, and J. Saynisch-Wagner, 2021: Towards neural earth
system modelling by integrating artificial intelligence in earth
system science. Nat. Mach. Intell., 3, 667-674, https://doi.org/
10.1038/s42256-021-00374-3.

Keys, P. W, E. A. Barnes, and N. H. Carter, 2021: A machine-
learning approach to human footprint index estimation with
applications to sustainable development. Environ. Res. Lett.,
16, 044061, https://doi.org/10.1088/1748-9326/abe00a.

Kindermans, P.-J., S. Hooker, J. Adebayo, M. Alber, K. T. Schiitt,
S. Diahne, D. Erhan, and B. Kim, 2019: The (un)reliability of
saliency methods. Explainable Al: Interpreting, Explaining and
Visualizing Deep Learning, W. Samek et al., Eds., Springer,
267-280, https://doi.org/10.1007/978-3-030-28954-6_14.

Lapuschkin, S., S. Wildchen, A. Binder, G. Montavon, W. Samek,
and K.-R. Miiller, 2019: Unmasking Clever Hans predictors
and assessing what machines really learn. Nat. Commun., 10,
1096, https://doi.org/10.1038/s41467-019-08987-4.

Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day
oscillation in the zonal wind in the tropical Pacific. J. Atmos.
Sci., 28, 702-708., https://doi.org/10.1175/1520-0469(1971)028
<0702:DOADOI>2.0.CO;2.

——, and ——, 1972: Description of global-scale circulation cells
in the tropics with a 40-50 day period. J. Atmos. Sci., 29,
1109-1123., https://doi.org/10.1175/1520-0469(1972)029<1109:
DOGSCC>2.0.CO;2.

Mamalakis, A., I. Ebert-Uphoff, and E. A. Barnes, 2021: Neural
network attribution methods for problems in geoscience: A

VOLUME 1

novel synthetic benchmark dataset. arXiv, 2103.10005, https:/
arxiv.org/abs/2103.10005.

——, E. A. Barnes, and 1. Ebert-Uphoff, 2022: Investigating the
fidelity of explainable artificial intelligence methods for appli-
cations of convolutional neural networks in geoscience. ar-
Xiv, 2202.03407, https://arxiv.org/abs/2202.03407.

Martin, Z. K., E. A. Barnes, and E. D. Maloney, 2022: Using sim-
ple, explainable neural networks to predict the Madden—Julian
oscillation. J. Adv. Model. Earth Syst., 14, ¢2021MS002774,
https://doi.org/10.1029/2021MS002774.

Mayer, K. J., and E. A. Barnes, 2021: Subseasonal forecasts of op-
portunity identified by an explainable neural network. Geo-
phys. Res. Lett., 48, €2020GL092092, https://doi.org/10.1029/
2020GL092092.

McGovern, A., R. Lagerquist, D. J. Gagne, G. E. Jergensen, K. L.
Elmore, C. R. Homeyer, and T. Smith, 2019: Making the
black box more transparent: Understanding the physical im-
plications of machine learning. Bull. Amer. Meteor. Soc., 100,
2175-2199, https://doi.org/10.1175/BAMS-D-18-0195.1.

Montavon, G., W. Samek, and K.-R. Miiller, 2018: Methods
for interpreting and understanding deep neural networks.
Digital Signal Process., 73, 1-15, https://doi.org/10.1016/j.
dsp.2017.10.011.

National Academies of Sciences, Engineering, and Medicine,
2020: Earth system predictability research and development:
Proceedings of a workshop—In brief. National Academies
Press Doc., 12 pp., https:/doi.org/10.17226/25861.

Philander, S. G. H., 1983: El Nino Southern Oscillation phenom-
ena. Nature, 302, 295-301, https://doi.org/10.1038/302295a0.

Poli, P., and Coauthors, 2016: ERA-20C: An atmospheric reanaly-
sis of the twentieth century. J. Climate, 29, 4083-4097, https://
doi.org/10.1175/JCLI-D-15-0556.1.

Rasp, S., H. Schulz, S. Bony, and B. Stevens, 2019: Combining
crowd-sourcing and deep learning to understand meso-scale
organization of shallow convection. arXiv, 1906.01906, https:/
arxiv.org/abs/1906.01906.

Rudin, C., 2019: Stop explaining black box machine learning mod-
els for high stakes decisions and use interpretable models in-
stead. Nat. Mach. Intell., 1, 206-215, https://doi.org/10.1038/
$42256-019-0048-x.

Samek, W., G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R.
Miiller, 2021: Explaining deep neural networks and beyond:
A review of methods and applications. Proc. IEEE, 109, 247—
278, https://doi.org/10.1109/JPROC.2021.3060483.

Simonyan, K., and A. Zisserman, 2014: Very deep convolutional
networks for Large-Scale image recognition. arXiv, 1409.1556,
https://arxiv.org/abs/1409.1556.

Singh, G., and K.-C. Yow, 2021: These do not look like those: An
interpretable deep learning model for image recognition.
IEEE Access, 9, 41 482-41 493, https://doi.org/10.1109/ACCESS.
2021.3064838.

Sonnewald, M., and R. Lguensat, 2021: Revealing the impact of
global heating on North Atlantic circulation using transparent
machine learning. J. Adv. Model. Earth Syst., 13, https://doi.
0rg/10.1029/2021MS002496.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Sal-
akhutdinov, 2014: Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res., 15, 1929—
1958.

Toms, B. A., E. A. Barnes, and 1. Ebert-Uphoff, 2020: Physi-
cally interpretable neural networks for the geosciences:
Applications to earth system variability. J. Adv. Model.

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

https://doi.org/10.1029/2020MS002195
https://doi.org/10.1029/2020MS002195
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1103/PhysRevLett.126.098302
https://doi.org/10.48550/arXiv.1911.12116
https://doi.org/10.48550/arXiv.1911.12116
https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/adf7ee2dcf142b0e11888e72b43fcb75-Paper.pdf
https://doi.org/10.1029/2021GL093787
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1088/1748-9326/abe00a
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
https://arxiv.org/abs/2103.10005
https://arxiv.org/abs/2103.10005
https://arxiv.org/abs/2202.03407
https://doi.org/10.1029/2021MS002774
https://doi.org/10.1029/2020GL092092
https://doi.org/10.1029/2020GL092092
https://doi.org/10.1175/BAMS-D-18-0195.1
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.17226/25861
https://doi.org/10.1038/302295a0
https://doi.org/10.1175/JCLI-D-15-0556.1
https://doi.org/10.1175/JCLI-D-15-0556.1
https://arxiv.org/abs/1906.01906
https://arxiv.org/abs/1906.01906
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/JPROC.2021.3060483
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ACCESS.2021.3064838
https://doi.org/10.1109/ACCESS.2021.3064838
https://doi.org/10.1029/2021MS002496
https://doi.org/10.1029/2021MS002496

JuLy 2022 BARNES ET AL. 15
Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time

multivariate MJO index: Development of an index for moni-

——, K. Kashinath, Prabhat, and D. Yang, 2021: Testing toring and prediction. Mon. Wea. Rev., 132, 1917—1932,
the reliability of interpretable neural networks in geosci- https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>

ence using the Madden-Julian oscillation. Geosci. Model 2.0.CO;2.
Dev., 14, 4495-4508, https://doi.org/10.5194/gmd-14-4495- Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43,
2021. RG2003, https://doi.org/10.1029/2004RG000158.

Earth Syst., 12, e2019MS002002, https://doi.org/10.1029/
2019MS002002.

Unauthenticated | Downloaded 06/06/24 06:47 PM UTC

https://doi.org/10.1029/2019MS002002
https://doi.org/10.1029/2019MS002002
https://doi.org/10.5194/gmd-14-4495-2021
https://doi.org/10.5194/gmd-14-4495-2021
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1029/2004RG000158

