Downloaded via RICE UNIV on June 6, 2024 at 18:44:05 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JOURNAL OF
CHEMICAL INFORMATION
AND MODELING

JCIM

pubs.acs.org/jcim

ELViM: Exploring Biomolecular Energy Landscapes through

Multidimensional Visualization

Rafael Giordano Viegas, Ingrid B. S. Martins, Murilo Nogueira Sanches, Antonio B. Oliveira Junior,
Juliana B. de Camargo, Fernando V. Paulovich, and Vitor B. P. Leite™

Cite This: J. Chem. Inf. Model. 2024, 64, 3443-3450

I: I Read Online

ACCESS |

[l Metrics & More ’

Article Recommendations |

Q Supporting Information

ABSTRACT: Molecular dynamics (MD) simulations provide a
powerful means of exploring the dynamic behavior of biomolecular
systems at the atomic level. However, analyzing the vast data sets
generated by MD simulations poses significant challenges. This
article discusses the energy landscape visualization method
(ELViIM), a multidimensional reduction technique inspired by
the energy landscape theory. ELVIM transcends one-dimensional
representations, offering a comprehensive analysis of the effective
conformational phase space without the need for predefined
reaction coordinates. We apply the ELViM to study the folding
landscape of the antimicrobial peptide Polybia-MP1, showcasing its
versatility in capturing complex biomolecular dynamics. Using
dissimilarity matrices and a force-scheme approach, the ELVIiM
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provides intuitive visualizations, revealing structural correlations and local conformational signatures. The method is demonstrated
to be adaptable, robust, and applicable to various biomolecular systems.

B INTRODUCTION

In recent decades, molecular dynamics (MD) simulations have
emerged as a potent tool for unraveling molecular systems’
intricate kinetics and dynamics at the atomic level.' These
simulations owe their robustness to significant strides in
computational capabilities, modeling techniques, and sampling
methods.”” These advancements have extended simulation
time scales and enabled the modeling of larger and more
complex systems. However, analyzing the extensive data sets
generated by MD simulations remains a formidable challenge.
Researchers often rely on identifying meaningful reaction
coordinates or collective variables to extract biophysically
relevant information from molecular trajectories. Moreover, in
recent years, machine learning techniques have also emerged as
valuable tools for analyzing molecular trajectories.”
Analyzing molecular trajectories encounters several difficul-
ties due to the large number of degrees of freedom, leading to a
high-dimensional phase space. Each configuration in an MD
trajectory can be conceptualized as a vector in a high-
dimensional space. To illustrate, consider the description of the
configurational space using only the alpha carbons of a protein
with N residues; each conformation then exists as a vector
within a multidimensional space encompassing 3N dimensions.
Extracting meaningful features from this multidimensional
space becomes arduous due to the so-called “curse of
dimensionality”. In such high-dimensional spaces, data points
representing protein configurations are notably sparse, making
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fundamental analyses such as clustering exceptionally challeng-
ing.(”9

Various strategies have been employed to tackle these
challenges, with dimensionality reduction (DR) techniques
standing out. These methods aim to reduce the dimensionality
of the configurational space, enabling a more manageable
analysis and visualization. The difficulty relies in finding a good
set of reaction coordinates. Another approach involves using
DR techniques to map the multidimensional space onto a
more manageable, lower-dimensional space. When the lower-
dimensional space comprises only two or three dimensions, it
facilitates the visualization of an MD trajectory using scatter
maps, where each sampled conformation is represented by a
data point. The underlying assumption is that the lower-
dimensional representation can eliminate noise and redundant
information while preserving only the relevant features of the
multidimensional space.”®

The first DR technique applied to MD trajectories was the
principal component analysis (PCA),'”"* a linear technique
that works by diagonalizing a covariance matrix and projecting
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the data along the eigenvectors that retain the largest data
variance, and it has been widely applied to several biological
and chemical systems. Multidimensional scaling (MDS)"* ¢ s
a set of methods that aim to preserve pairwise distances or
dissimilarities estimated in the high-dimensional space in the
low-dimensional space. MDS methods differ in how distances
are estimated and in how the optimization is carried out to
represent these distances on the plane. However, both PCA
and MDS are linear methodologies that rely on the hypothesis
that most of the variance in the multidimensional data can be
captured by a hyperplane.” Addressing limitations of these
linear methods, recent advancements have introduced non-
linear methods such as kernel PCA,"” Diffusion maps,18
Isomap,'® t-SNE,*° UMAP,” Sketch—map,22 and Encoder-
Map.”> While some methods seek a mapping between the
high- and low-dimensional spaces, others are developed to
visualize the data by optimizing the positions of points in the
low-dimensional space to satisfy some cost function.

Another approach, inspired by statistical mechanics and spin
glass sZstems principles, is the energy landscape theory
(ELT),”* which has been primarily used to describe the
folding process. This theory depicts a funnel-shaped free-
energy landscape biased toward the native state of a protein. In
this representation, an ensemble of unfolded structures
populates the high-energy portion of the landscape, which
funnels toward the native structure. While this approach is not
restricted to studying folding, it can be applied to a wide range
of biomolecular systems and functions. Even though these
processes are intrinsically multidimensional, it is often feasible
to describe the kinetic and thermodynamic properties in terms
of a few key quantities. However, one limitation of these
techniques is that they require predefined reaction coordinates,
potentially masking the richness and details of the problem.

This article elaborates on the energy landscape visualization
method (ELViM), inspired by the ELT. Initially devised for
visualizing the protein folding funnel,>>*° ELViM represents a
significant advancement by transcending the one-dimensional
representation. ELViIM is a multidimensional reduction
method based on internal distances between pairs of structural
conformations of the entire analyzed data set. Moreover, the
method does not depend on reference structures or any other
reaction coordinate. Through an iterative process, the method
seeks to project an ensemble of conformations into two
optimal dimensions, facilitating an intuitive visual analysis of
the energy landscape. ELViM has been successfully applied in
the study of various biomolecular systems, including an RNA
tetraloop,27 ordered proteins,%’zg_‘?’0 and intrinsically disor-
dered peptides”"* and proteins.”> We begin by discussing the
general aspects of the method, subsequently delving into its
intricacies, such as the dissimilarity metric, code details,
iteration steps, and auxiliary tools, which are available at
GitHub (https: //github.com/VLeiteGroup/ ELViM). We illus-
trate the method using the folding of the MP1 peptide and
deliberate on ELViM’s potential and caveats.

B METHODS

Energy Landscape Visualization Method. Given an
ensemble of conformations, the analysis using ELViIM
comprises two fundamental steps for generating lower-
dimensional visualizations of the data set:

o Dissimilarity matrix calculation: In the first step, ELVIM
calculates a dissimilarity matrix. This matrix contains
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estimates of pairwise structural distances between the
conformations in the data set.

Multidimensional projection: In this process, each
conformation from the molecular trajectory is repre-
sented as a data point in a two-dimensional space. This
lower-dimensional representation is referred to as the
“effective phase space” or simply the “ELViM projec-
tion”.

In the upcoming sections, we provide detailed information
regarding the main steps.

Dissimilarity Matrix. The initial implementation of
ELViM was for lattice systems,”” and a dissimilarity metric
based on the ratio between the Jaccard index and the Jaccard
distance was introduced. For out-of-lattice biomolecular
systems, Oliveira et al.”® proposed a novel dissimilarity metric
based on the order parameter Q,.°**° Considering two
conformations, denoted as k and I, the similarity between
them is defined as follows

k 1\2
ki 1 Z —(ry = 1))
W 2
NP i,jEpairs 26’71 (1)
where r, X and r,! are the distances between the a-carbon of

j ij
residues i and j from conformations k and ], respectively. N, is
a normalization constant equal to the number of a@-carbon
pairs, and o;; sets the similarity resolution of the metric and is

defined by

;= opli —jI° (2)
typically, the values of 6, and € are set to 1 A and 0.1,
respectively.”” However, these parameters can be adjusted to
fine-tune the dissimilarity metrics for different systems. The
dissimilarity between the pair of conformations k and [ is
defined by

O =1~ ‘L’:l (3)
this dissimilarity measure is unitless and falls within the range 0
< 6y < 1. A dissimilarity value equal to zero is only achieved
when the two conformations are identical. Notably, this
dissimilarity measure only relies on internal distances, not
requiring structural alignment. While it is usual to consider
only a-carbons for protein systems, this metric can be adapted
to incorporate information from all atoms or other coarse-
grained representations. After calculating dissimilarity values
between every pair of conformations, these computed values
are subsequently stored in a dissimilarity matrix used as input
by the multidimensional projection technique. When there is a
reference conformation (r), such as a native state, one can
define a reaction coordinate with respect to this structure Q,,
such that Q, = ¢, Q,, values can be used to color the data
points and provide insights into the overall energy landscape.

Multidimensional Projection. The dissimilarity matrix
provides information regarding the structural distances or
dissimilarities between every pair of conformations. ELVIM
uses this dissimilarity matrix to perform a multidimensional
projection procedure, which aims to project the data from the
multidimensional conformational phase space onto a two-
dimensional space while preserving as well as possible the
relevant information. The outcome is a two-dimensional
mapping, where each data point corresponds to a protein
conformation, and the pairwise Euclidean distances in this
reduced space are optimized to closely approximate the
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Figure 1. MD Trajectory. (a) Reaction coordinate, Q,, and rmsd were both calculated using C, coordinates and taking as reference the
conformation that minimizes the energy of the a-helical structure. (b) 2D projection of the free-energy landscape as a function of the rmsd and Q,,.

dissimilarity values calculated within the multidimensional
space. This mapping provides accessible and intuitive visual-
izations of structural correlations among the biological
macromolecular conformations.

In ELViM, the multidimensional pro]ectlon optimization is
performed using the force scheme technique.*® This algorithm,
introduced by Tejada et al, is a standard method for
multidimensional projection, offering a balance between
precision and computational efficiency. It is referred to as a
force approach or a force-directed method because it treats
data points as masses interconnected by springs. This analogy
captures how data points are “attracted to” or “repelled by”
each other to optimize their pairwise distances to approximate
the original dissimilarity. In this algorithm, each conformation
k with coordinates %, in the multidimensional phase space is
projected to a data point x;’, represented in the Cartesian
plane by the coordinates %/. The projection begins with a
random arrangement of data points to form the initial
projection (X,).

In each step, a conformation k acts as a reference, and the
projected positions of all other conformations I (I # k) are
slightly perturbed to adjust the distance in the plane d (x;’,x;")
with the dissimilarity estimated in the multidimensional phase
space & /(x;, x7). This adjustment is always carried out in the
direction of the vector ¥, ; = (%]

the difference between the dissimilarity and the Euclidean
distance (6;; — dy ). Using a gradient-descent-like method, the
cost function to be minimized is given by

E= )15, —d|

(k,1)

— %) and is proportional to

(4)

the degree of perturbation is controlled by a learning rate
parameter, L, which may vary from an initial value to a
predetermined minimum value L, , both specified by the user.

The learning rate for the i-th iteration is set to be

D
I

14+ ——

L[i] = max{L, [
max;

(s)
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where L is the initial learning rate value, D is the decay

exponent, and L, is the minimum learning rate value. Note

that combining the maximum function and the parameter L,

allows the combination of an initial annealing of the learning

rate, followed by constant learning rate steps. Typical value

ranges are 1/8 < L, < 05,095 <D <3,and0<L, <1/8.
The algorithm used in ELViM is detailed as follows:

Algorithm 1 ELViM-Force Scheme Algorithm
1: Initialize a projection X, with points randomly located.
2: while i < maz;; do
3: for each randomly selected z}, do

4 for each 7, do

5 Opg  O(zp, 1) > ELVIM dissimilarity
6: diy + ||Z5 — & > Euclidean distance
7 Ty &)= Ly x (0ky — diy) * (T4, — T /177 — @]l > vector from z}, to ]
8 end for

9. end for

10: end while

ELVIM Code Details. The ELViM main program is
implemented in Python 3. It is based on the force scheme
routine authored by F.V. Paulovich (https://github.com/
fpaulovich/dimensionality-reduction). To handle molecular
trajectories and extract the C, coordinates for evaluating the
dissimilarity matrix, the program utilizes MDtraj,”” a Python
library for molecular dynamics analysis. Additionally, the
program benefits from parallel processing on CPU cores using
Numba,”® which optimizes Python code and executes it
efficiently on CPU hardware.

ELVIM accepts input molecular trajectory files in various
formats recognized by MDTraj, including single trajectory files
(e.g., PDB) or binary trajectories (e.g., XT'C, DCD) along with
a reference topology file (e.g, PDB). ELVIM also offers the
option to save the calculated dissimilarity matrix in a Python
binary format for future use with different projection
parameters. Alternatively, it allows the use of precomputed
dissimilarity matrices. The program’s output consists of a text
file containing Cartesian coordinates representing the position
of the biomolecular conformations within the effective phase
space.

Simulation Details. To illustrate the utility of ELViM in
analyzing the structural properties of a biomolecular system,
we conducted the analysis with the antimicrobial peptide
Polybia-MP1 (or MP1).”” The MP1 peptide was constructed

https://doi.org/10.1021/acs.jcim.4c00034
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Figure 2. ELViM projection. Each conformation is represented by a dot. The x- and y-axes have been omitted since only pairwise distances provide
meaningful information. A heatmap is employed to show the values of (a) reaction coordinate Q,,, (b) radius of gyration (Rg), and (c) helix content
percentage for each conformation. Some conformations were selected from regions indicated by arrows and shown in carton with N-terminus in
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Figure 3. Density of states, free energy, and LCS. (a) The density of states is calculated using a Gaussian Kernel (KDE). The density is indicated by
the colormap and contour plot superimposed to the ELViM projection dots in gray. (b) Free energy 2D profile estimated from the density of states
is shown as a contour plot. (c) Data points from eight regions were manually selected, and 10 representative structures (LCS) of each region are

depicted superimposed.

on an « helix configuration on VMD plugin Molefacture,
solvated in a water box measuring 55 X 55 X S5 A, containing
NaCl ions in order to neutralize the system and also have 150
mM salt concentration. The system was equilibrated with
10,000 steps of conjugate gradient energy minimization and 10
ns of equilibrium MD with backbone restraint. The simulations
were performed in the NPT ensemble, at 330 K, with a 2 fs
time-step and periodic boundary conditions, using the software
NAMD.* Temperature and pressure were modulated by
Langevin thermostat'' and Langevin piston,* respectively.
The SHAKE algorithm*® was used to constrain the lengths of
covalent bonds, and the geometry of water molecules was
preserved using the SETTLE algorithm.** The van der Waals
interactions were calculated with a cutoff of 12 A with a
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switching distance of 10 A, and the long-range interaction was
treated using the Particle Mesh Ewald method.*®

B RESULTS

In this example, we employed the ELVIM to project an
effective conformational phase space of the MP1 peptide
sampled from an all-atom MD simulation. Along 600 ns of MD
trajectory, we observed folding/unfolding events, when the
peptide structure fluctuates between a-helix and random coil
conformations. Figure 1 a displays the time evolution of the
reaction coordinate, Q,, and the root-mean-square deviation
(rmsd), both calculated having as a reference the conformation
that minimizes the energy of the a-helical structure. In this
case, Q,, equals 1 for an ideal a-helix and reached 0.2 for
unfolded conformations.

https://doi.org/10.1021/acs.jcim.4c00034
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A common approach to comprehensively describe the
sampled conformational phase space involves projecting the
free-energy landscape onto a plane defined by order
parameters or reaction coordinates of biological significance.
In Figure 1 b, a free-energy estimation is presented through the
projection of the rmsd and Q,,. Analysis of this surface reveals a
predominant basin of partially folded conformations (with Q =
0.65), accompanied by two smaller basins: one representing
the folded state, characterized by high values of Q,, and low
rmsd values, and the other representing the unfolded state,
characterized by low Q,, values and high rmsd values. Although
this analysis is valuable, particularly in tasks such as estimating
free energy barriers and discerning intermediate or metastable
states, it does have limitations. Notably, this analysis does not
offer detailed structural mapping, primarily due to the
degeneracy associated with these order parameters, which
would provide atomistic insights into molecular mechanisms.

The results of applying ELVIiM to analyze the MP1-MD
trajectory are depicted in Figure 2. Dissimilarity was computed
by using a 6, value of 1 A. The learning rate varied from 0.3 to
0 with a decay of 0.95. In this representation of the landscape,
each dot corresponds to a conformation. The axes have been
omitted since only pairwise distances provide meaningful
information. Data points that are projected near each other
correspond to structurally similar conformations. Rotations
and reflections about arbitrary axes can be performed without
altering the global structure of the effective phase space.

In Figure 2a, the dots are color-coded based on their Q,
values, and we provide four representative structures. In this
depiction, unfolded conformations are colored dark blue, while
folded conformations are colored dark red. By coloring the
dots according to various biophysically relevant variables, we
can obtain different insights into the system. As additional
examples, we have also colored the ELViM projection based on
the radius of gyration R, (Figure 2b) and the content of a-helix
(Figure 2c).

To gain further insights into the folding landscape, it is
essential to analyze how the density of data points varies
throughout the effective conformational phase space. This
measure estimates the density of states in the ELVIM
projection and allows for identifying basins formed by similar
structures frequently visited during the simulation. Here, the
probability density, p, is calculated using a Gaussian kernel
density estimate (KDE) method, as implemented in scipy.*’
The results are depicted in Figure 3a, where we label some of
the higher-density regions from (i) to (viii). Considering that
we are analyzing a single-temperature classical MD simulation,
the free energy two-dimensional (2D) profile of the projection
can be calculated as

F = —k;T In(p) (6)
where the minimum value was set to zero. The resulting free
energy surface (Figure 3b) shows that all local minima can be
reached within the range of 2k,T.

Figure 3c presents representative structures from these
selected regions, termed local conformational signatures
(LCSs). To identify an LCS, we manually select an arbitrarg
region and calculate a matrix of distance—rmsd (drmsd)*
values to find a reference conformation, which is defined as the
conformation that minimizes the average drmsd. The LCS
displays this conformation superimposed to its n closest
neighbors according to drmsd values. It is noteworthy that this
method is not a clustering analysis; rather, it is a visualization
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tool designed to provide a structural signature of conforma-
tions from arbitrarily selected regions. The representative
structures from all high-density regions grant a broader
perspective of the effective phase space. Furthermore, this
approach allows us to compute contact maps and other
biophysically relevant variables for conformations in an LCS.
In cases where the data originate from unbiased simulations,
high-density regions likely indicate local free energy minima
within the overall free-energy landscape. Consequently, this
analysis can provide essential insights, revealing atomistic
details of these basins.

B DISCUSSION

The ELViM algorithm starts with a random initialization of the
projection and then optimizes distances to minimize the cost
function (eq 4). To prevent dependencies on iteration order,
points are randomly selected during optimization. Conse-
quently, different runs produce different projections for the
same set of parameters. If the complexity of the system is not
too high, the projection stabilizes, and the different run
outcomes are slightly different from each other, but the global
structure of the effective phase space is maintained. As an
example, we have generated three independent projections for
the effective space of MP1 and compared them in Figure S1 of
the Supporting Information. As previously discussed, only
pairwise distances are meaningful in the ELViM projection,
and rotations and reflections about arbitrary axes can be
performed without changing the global structure of the
effective phase space. As shown in Figure S1, we also arbitrarily
selected seven local groups and showed how their position and
composition are maintained throughout different replicas of
the projection.

Based on our experience, a number of iterations equal to the
square root of the number of conformations used in the
projection typically suffices to achieve convergence. However,
complex systems may require a larger number of iterations. To
ensure the convergence of the projection with consistent global
features, it is advisable to run and compare multiple
projections. Consistency in the relative positioning of main
basins is also a good indicator of convergence.

In the ELVIiM implementation, certain parameters can be
adjusted to fine-tune the projection results. For instance, users
can specify the parameters in o;; (eq 2), which determine the
dissimilarity resolution. While the ELViM projections are
usually robust when using the typical o;; parameter values
indicated in the Methods section, extreme values may distort
the projection. A small value tends to excessively increase the
dissimilarity between data pairs, making it challenging to
represent all the data points onto the plane. Conversely, a value
that is too large may result in lower dissimilarity for very
different structures, causing them to be placed within
neighboring regions of the projection. To illustrate this
dependency, we provide in the Supporting Information two
ELViM projections for the MP1 system using different o
parameters (Figure S2).

Initially, our implementation considered only C, carbons as
dissimilarity metrics. However, the code can be easily adapted
to include other representations, such as using distances
between all heavy atoms, as demonstrated in our RNA
tetraloop study.”” When atom indices differ from residue
indices, adjustments to the o;; definition may be necessary.
Modifications to the cost function (eq 4) can also be explored,
such as squaring the residuals’ differences between the

https://doi.org/10.1021/acs.jcim.4c00034
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dissimilarities and projected distances in eq 4. However, these
modifications should be carefully evaluated for each system
studied.

The learning rate parameter (eq S) comprises three
adjustable constants: the initial value L, the final value
Liv and an exponent controlling the decay rate D, as
discussed in the Methods section. This parameter acts as a
scaling factor, which multiplies the residual difference between
dissimilarities and distances, setting the size of the perturbation
applied to every point in each iteration step. In this way, these
parameters influence both convergence and the final projection
outcome. Using excessively small learning rate values may
confine data points within incorrect neighborhoods and
significantly increase the required number of iterations to
achieve convergence. Conversely, an excessively high learning
rate may lead to an unstable projection. Large values of L,
may result in isolated structures resembling islands if they are
considerably dissimilar from their nearest neighbors. An
example of such behavior is provided in Supporting
Information, Figure S3.

For projections with sufficient statistics, the probability
density of each region in the projection phase space is
associated with its free energy, as depicted in Figure 3. ELVIM
can offer an intuitive representation of the free-energy
landscape as sampled during a simulation. The density of
data points in the projection can be estimated by using a two-
dimensional histogram or KDE, which can then be used to
calculate free energy differences. In cases in which sampled
conformations originate from enhanced sampling simulations
or different conditions, data points may no longer carry the
same weight. In such instances, ELViM can still provide a
useful representation of the configurational space for visual-
ization, but calculation of free energies may necessitate a
reweighting procedure. For detailed examples, refer to our
previous works.”"*?

Finally, the occurrence of projection errors or distortions in
dimensionality reduction and multidimensional visualization
techniques should be acknowledged. These distortions are
caused by data points misplaced in the projection.”** These
errors may be due to inherent mathematical limitations of
projecting high-dimensional data onto a two-dimensional
space.” In this context, some quality metrics have been
proposed to quantify the extent to which distances or
neighborhood relationships are preserved in the projec-
tion.””*° However, it is important to note that these metrics
primarily assess the effectiveness of the optimization procedure
but do not directly measure the method’s capability to
represent the unknown topology of the multidimensional
phase space.”

When the ELViM projection was analyzed, misplaced points
would behave as structural noise in a narrow neighborhood. In
this sense, we suggest that the projection may be interpreted
based on the prevalent structure signatures within a local
neighborhood. We provide the LCSs tool to address this
purpose, which identifies prevalent conformations within an
arbitrarily selected region. By analyzing various LCSs
comprising all of the high-density regions of the projection,
it is possible to picture how representative conformational
states are distributed throughout the projection. As previously
stated, this tool provides a qualitative analysis, aiming at an
intuitive interpretation of the projection. However, maintain-
ing awareness of misplaced data points remains important to
ensure the quality of the projection.

One intrinsic limitation of ELViM is the size and complexity
of the investigated system. From a mathematical standpoint,
multidimensional projection can be considered an ill-posed
problem. The projection iteration procedure may converge to
qualitatively different degenerate solutions, which may be
viewed as alternate descriptions of the landscape. The limits of
applicability of ELVIiM in terms of the size and complexity of a
studied system have yet to be tackled. The complexity can be
attributed to different factors, such as topology, types of
secondary and tertiary structures, and folding mechanisms,
which can lead to challenging representations of energy
landscapes.

B CONCLUSIONS

In conclusion, ELViM emerges as a valuable tool for unraveling
the intricacies of biomolecular energy landscapes. Its ability to
navigate high-dimensional configurational spaces and provide
intuitive visualizations makes it a versatile choice for analyzing
MD trajectories and structural ensembles. By eliminating the
reliance on predefined reaction coordinates, ELVIM allows for
a more comprehensive exploration of the conformational phase
space. Applying ELViM to the folding landscape of Polybia-
MP1 demonstrates its efficacy in capturing dynamic transitions
and revealing structural nuances. With its adaptable parameters
and robust optimization scheme, ELViM stands as a promising
method for researchers seeking a deeper understanding of
biomolecular dynamics and functional mechanisms.

B ASSOCIATED CONTENT

Data Availability Statement

Details for the MD simulation and the ELViM protocol are
provided in the Materials and Methods section. A MD
trajectory file and the Python script used to generate the
ELViM projection are available on GitHub (https://github.
com/VLeiteGroup/ ELViM). PyMOL51 was used for structural
visualization.
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