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ABSTRACT: Coarse-grained models allow computational inves-
tigation of biomolecular processes occurring on long time and
length scales, intractable with atomistic simulation. Traditionally,
many coarse-grained models rely mostly on pairwise interaction
potentials. However, the decimation of degrees of freedom should,
in principle, lead to a complex many-body effective interaction
potential. In this work, we use experimental data on mutant stability
to parametrize coarse-grained models for two proteins with and
without many-body terms. We demonstrate that many-body terms
are necessary to reproduce quantitatively the effects of point
mutations on protein stability, particularly to implicitly take into

account the effect of the solvent.

Bl INTRODUCTION

Recent advances in software and hardware for molecular
dynamics simulation and enhanced sampling techniques have
significantly increased the time and length scale of
biomolecular processes, which are amenable to computational
investigation. Nevertheless, the characterization of many
biomedically relevant molecular processes that take place on
a time scale beyond milliseconds remains a daunting task, if
not intractable, as computation involves time propagation of
billions of degrees of freedom.

However, it is reasonable to ask whether all of the degrees of
freedom are essential to elucidate slow processes in
biomolecular dynamics or if some coarser representations
can be used. Evidence exists that long-term conformational
dynamics of a biomolecular system can be described by a small
set of collective variables instead of the entire set of degrees of
freedom.'~* Consequently, less informative degrees of freedom
can be integrated out, and groups of atoms can be merged into
effective beads, i.e,, the system can be coarse grained. Indeed,
coarse-grained models are popular tools to explore long time
scale processes in biomolecular systems, well beyond what is
possible with atomistic simulations.”™”

The design of a coarse-grained (CG) model involves two
main steps. First, one must determine how the detailed, all-
atom representation of the system is mapped into a set of
effective interaction sites. Second, an effective interaction
potential between these sites needs to be defined. Since the
first protein CG model, introduced by Levitt and Warshel,'’
many protein coarse-grained models have been developed, and
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their design principles can broadly be categorized as “bottom
up”, “top down”, or “knowledge based”.'' In bottom-up
approaches, the coarse-grained potential of mean force (PMF)
that governs the time evolution of the coarse-grained system is
derived to match given properties of a reference all-atom
model.””™"® In principle, a bottom-up method provides a
rigorous bridge between atomistic and coarse-grained force
fields and demonstrates that integrating out degrees of freedom
results in an increasingly complex multibody potential of mean
force.'> This complexity means that, in practice, a rigorous
treatment is possible only for simple systems, while for
practical applications, additional approximations should be
made, such as a basis set for the approximation of the PMF."!
Alternatively, top-down approaches do not rely on the
underlying fine-grained representation. Instead, physicochem-
ical considerations are used to define the interaction potential
parametrized to match experimentally measured macro- or
microscopic observables. Together with knowledge-based
models that take advantage of the known structural
information,””° top-down approaches”' ™ constitute the
majority of the protein coarse-grained models that are
currently used in practice. Despite their simplicity, such
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minimalistic models can provide valuable insights into
biomolecular processes, such as protein folding and aggrega-
tion,”*"*® and can be used to understand the fundamental
principles that govern them. However, one should be careful
when interpreting results obtained with a coarse-grained
model, as the effects of the approximations introduced are
not always well understood.

One of the ways to mitigate these effects involves
incorporating increasingly more experimental data in a newly
designed or already existing model. Several approaches that
solve this task have been suggested. A widely used approach
involves minimization of information that should be added to
achieve an agreement with the experimental data, i.e., maximize
entropy.zg_31 This approach was used, for example, to
parametrize a force field for intrinsically disordered proteins
(IDPs) using the radii of gyration as experimental
constraints.”” Clementi and Matysiak developed another
approach that allows refining a structure-based model by
using measurements of free energy differences upon mutations
(AAG) as experimental data”* The suggested algorithm
exploited the explicit dependence of AAG on the model
parameters and was successfully used to optimize a CG model
for the investigation of the role of mutations in misfolding and
aggregation of ribosomal protein S6.”> Norgaard et al.””
free energy perturbation method’ to find optimal parameters
on nonbonded interactions by maximizing the likelihood of
reproducing experimental data given the model parameters.
Chen et al.’® extended this approach and suggested a
framework for the observable-driven design of effective
molecular models (ODEM) that allows the parametrization
of models incorporating any type of thermodynamic average. A
similar approach was recently used in combination with neural
network potentials.*®

Nevertheless, no amount of experimental data can “save” a
model if the interaction potential used is a priori restricted to a
functional form that cannot capture a process of interest, for
example, multibody effects. Traditionally, CG force fields use
the same functional form for the effective potential energy as in
atomistic simulation, with nonbonded interactions represented
only by pairwise terms. However, it is well known that CG
force fields should contain many-body terms,”” > for instance,
to adequately describe the structural properties of water'® and
the folding free energy landscape of small proteins.”’ At the
same time, CG force fields for methanol*® and biomolecular
phase separation®” demonstrate satisfactory performance with
pairwise potentials only.

In this work, we use a top-down approach to demonstrate
the effect of many-body interactions on a protein CG force
field’s ability to describe mutations’ effects on protein stability.
We optimize a structure-based coarse-grained force field for
two proteins, ubiquitin and the Bl domain of protein G
(GB1), using experimentally measured free energy differences
upon mutations, AAG, as reference observables. We show that
while for ubiquitin the experimental data can be reproduced
using only two-body nonbonded interactions, the full set of
observables for protein G cannot be adequately reproduced
without many-body terms. The addition of a many-body term
to take into account solvation effects in the CG energy
function allows us to satisfactorily recover the experimental
data for both proteins.

used a
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B METHODS

Optimization Procedure. Our goal is to optimize the
parameters of a CG force field using experimental data as a
reference. We use a previously proposed method, the
observable-driven design of effective molecular models
(ODEM). In the following, we briefly summarize the ODEM
procedure’s main steps and then discuss each one in more
detail.

ODEM Algorithm. The ODEM framework is described in
Figure 1.

Generate a trajectory with H(r,e,)

|

Discretize trajectory
and estimate equilibrium distribution 7,

|

Make a step de and reweight m,

|

Compute observables e (€, );
compare with experimental fj
using likelihood Q (Eq. 4)

|

Find €,4; = arg max(Q)

Figure 1. ODEM workflow at iteration n.

The method requires the initial definition of a trial coarse-
grained Hamiltonian H(€,) with an initial set of parameters
{€,}. Molecular dynamics simulation can be cheaply performed
with H(ep). The sampled conformational space is then
partitioned into a set of N discrete microstates {S;}, i € 1, ...,
N, and a Markov state model* is built that allows estimating
the equilibrium probability distribution 7z° associated with
H(e,).

A new set of parameters {€} can be considered a
perturbation of the original ones, ie, € = €, + de. For a
model with a set of parameters {e}, the equilibrium
distribution can be estimated from the knowledge of the
distribution with a previous set of parameters {¢,} as

0
5= Ay X expl=pIH(, ©) — H(x, €)])

ires;

(1)
where n; is the number of frames that belong to microstate S;
and Ay is a normalizing constant

-1

0
Ay = Z %Zres, exp{ —p[H(r, €) — H(r, €)1}
(2)

In general, a macroscopic observable e, can be estimated
from simulation as an ensemble average of the corresponding
quantity g (r) calculated for each sampled configuration r

o= XY g

i ires,

3)
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Together, eqs 1 and 3 introduce a functional dependence of
the value of the observable on the model parameters. The
agreement between the calculated values of the observables
and the experimental data can be quantified via the likelihood
Q of obtaining results consistent with experimental values
given the model parameters. Assuming that the errors in the
measurement of the observables are independent and normally
distributed, such a likelihood can be defined as

R O A 2
k

2 Ukz (4)

where f; and o} correspond to the experimental value of the
observable ¢, and the corresponding uncertainty. An updated
set of parameters can be obtained by minimizing with
minibatch gradient descent** a loss function defined as

L(e) = ~In Q(e) + a(lle — &) ()

The regularization parameter a in eq S controls the strength
of the perturbation by preventing large differences between the
initial set of parameters €, and the updated parameters € in
order to maintain a significant overlap between the relevant
configurational space sampled by the corresponding models
(see SI for a discussion on the robustness of the results in a
range of values for the parameter «). Since the perturbation
needs to be small, the procedure delineated above is repeated
multiple times until convergence in the likelihood Q is reached.

Choice of Model. As a starting point, we use a C,
structure-based coarse-grained model, where each residue is
represented by a single bead, placed in the position of C,
atom.”’

The model Hamiltonian is defined by the equation

H(l‘) = Hbonded(r) + Hnonbonded(r) (6)

where the Hpg,4.q(r) term represents local interactions,
namely, bonds, angles, and dihedral angles, between consec-
utive CG beads. In this work, the parametrization of these
terms remains fixed (see SI for details). Following refs 20 and

45, Hponponded is @ sum over all interactions V;; between every
pair of residues i and j with functional form defined as
12 o2
0 G, —( — 1y
Vi/'(rip Tij» ei]‘) == + € 1 —expl ———|| — €;
% 20,
(7)
for attractive interactions and as
12 o 4
o 1 v — 1 O
Vi.(r.., r.(.), ¢)=|—=| — —e;tanh J J +1
i T 5
7 O
(8)

for repulsive interactions. Parameters o,,, 0, and o, are kept
fixed and set to the same value for all of the beads. The
parameters ¢, and o, control the width of the repulsive or
attractive interaction and are taken to be o, = 6, = 0.0S nm.
The parameter o,, represents the excluded volume and is set to
0.4 nm. The variable r; denotes the distance between beads i
and j.

The strength of the interaction between beads is defined by
the parameter €;; > 0 for attractive interactions and ¢;; < 0 for
repulsive ones. Each pair of beads has its own independent
parameter that is optimized in the ODEM framework.

To initialize the optimization procedure, all of the pairwise
interactions are divided into two groups: native and nonnative
interactions. To determine the native contacts, we used the
“shadow contact map”.*® For native contacts, rJ in eqs 7 and 8
is taken to be the distance between the C, atoms in the native
structure. For nonnative pairs, rg is defined as rg =0, + 0.2 nm
as in previous work.” At the first step of the optimization, the
contact strength ¢; is set to 1 for native interactions and to 0
for non-native interactions. During the ODEM optimization,
the parameters can freely adjust, and the character of the
potential (attractive or repulsive) is changed accordingly.

This functional form (eqs 7 and 8) has been used in several
previous studies with C, models.”** In order to rule out the
limited expressivity of the functional form of the 2-body
interactions as the cause of disagreement between the
observables experimentally measured and those estimated
from simulations, we also perform an additional optimization
according to the following procedure. After a converged
optimization of the parameters for the potential given by eqs 7
and 8, each nonbonded interaction is represented as

1 Ny

2
o,
‘/ij == + Z Can(rij)

ij n=0 (9)
where B, is a cubic B-spline and ¢, are the corresponding
adjustable coefficients. Such a representation is much more
flexible and allows representing 2-body interaction potentials
of arbitrary complexity.

The initial values of c, are set to reproduce the optimized
potential given by eqs 7 and 8. The spline representation (e
9) is then further optimized by adjusting the ¢, coefficients”
following the ODEM procedure (see Figure 1).

As reference structures for constructing the structure-based
models, crystal structures 1UBQ™® and 1PGB* are used for
ubiquitin and protein G, respectively. The parameters for the
bonded interactions and the contact map were generated with
the SMOG Web server.*’

To investigate the importance of multibody effects, once the
two-body model is fully optimized, an additional multibody
term is incorporated and an additional optimization of the 2-
and many-body nonbonded interactions together is performed.
In order to model the effect of the solvent, the multibody term
is taken to be in the form of the burial term used in the
AWSEM force field*’

N 3
1

Vinultibody = _Eiburialz Z Youria (@i 10 (2 1)

i=1 pu=1 (10)

where
f(p, u) = tanh[n(p, — pk )1 + tanh[n(p? —p)1  (11)

and p; is the number of residues in direct contact defined as

N

p=2 [i(l + tanh[n(r; — 1)1

j=1

(1 + tanh[n (e — 7)1) (12)

The parameters 7, .y Tmin Pin Poaw a0d Ay are fixed
and given in the SI, while the parameters yyua(a, #) are
adjusted during the optimization.
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Figure 2. Optimization of the coarse-grained model of ubiquitin. (A) Correlation between the calculated and the experimental AAGs. (Blue)
Uniform structure-based CG model, where all native contacts have strength 1 and nonnative interactions have strength 0. (Orange) Optimized
model with 2-body potential only. (Green) Optimized model with 2- and many-body potential terms. Error bars represent one standard deviation
over S independent optimization runs. (B) Absolute error in AAG, shown for the initial model (top left), the model optimized with 2-body
interactions only (bottom middle), and the model with a many-body correction (top right).
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Figure 3. Optimization of the coarse-grained model of the domain B1 protein G. (A) Correlation between the calculated and the experimental
AAGs. (Blue) Uniform structure-based CG model, where all native contacts have uniform strength and nonnative interactions have strength 0.
(Orange) Optimized model with a 2-body spline-based potential. (Green) Optimized model with 2- and many-body potential. Error bars represent
one standard deviation over S independent optimization runs. (B) Absolute error in AAG, shown for the initial model (top left), the model
optimized with 2-body interactions only (bottom middle), and the model with a many-body correction (top right). Results for mutations D46G

and TS1G, which involve surface residues, are highlighted.

Reference Observables. For each protein, we use as
reference observables a set of experimentally determined free
energy differences upon mutation, AAGs, from the work by
Nisthal et al. for GB1°" and Went et al. for ubiquitin.”” For
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optimization, the experimental values of AAGs are extrapo-
lated to zero concentration of denaturant and rescaled to the
protein folding temperature as described in ref 24 (see SI for

details on data preparation).
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Table 1. Optimization Results for 1GB1 Mutants, Where Absolute Error for 2-Body Spline Model Exceeds 1.5 RT Units

AAG, RT units (absolute error wrt experiment, RT units)

mutant experimental AAG, RT units initial
D46G 433 0.11 (—4.22)
YO3L 537 226 (=3.11)
YO3F —0.89 1.32 (221)
F30L 0.78 2.52 (1.74)
TI18A -0.36 0.98 (1.34)
106V ~0.79 032 (1.11)
TSIG 403 1.15 (-2.88)

2 body 2 body, spline many body
0.26 (—4.07) 0.51 (-3.82) 2.70 (—1.63)
2.36 (—3.10) 2.67 (—2.69) 321 (=2.15)
1.25 (2.14) 1.20 (2.09) —0.73 (0.16)
2.59 (1.81) 2.63 (1.84) 1.92 (1.14)
1.18 (1.54) 1.32 (1.68) 1.02 (1.38)
0.86 (1.65) 0.85 (1.65) —0.37 (0.43)
2.36 (—1.66) 2.44 (—1.59) 3.56 (—0.47)

From the coarse-grained simulation, values of AAG can be
calculated by treating the effects of the mutation of the kth
residue as a perturbation SH(k) to the wild-type Hamiltonian
H>** If we assume that the perturbation does not
significantly change the density of states, the effect of the
mutation on the free energy landscape can be estimated as

(exp(—dH(k)))y

(exp(=6H(k)))r (13)
where the angular brackets represent the canonical average
over the folded (F) or unfolded (U) state ensemble of the

unperturbed system.
For the 2-body potential, the perturbation is

k _ 0 Kk 0
SH} gy = 2 Vil 1y €) = X Vil 1y €
¥ ¥

BAAG(K) = In

(14)
where the strength of the pairwise interaction e~

j in the mutant
k is obtained by rescaling the strength of the corresponding
interaction parameter in the wild-type protein ef-‘i: 56,-}-, and the
rescaling factor 0 < 5 < 1 is calculated as the fraction of native
contacts deleted by the mutation in the native structure of the
wild-type protein. In our analysis, we include only mutants for
which f{j # 0. The change in the multibody contribution to the
Hamiltonian (eq 10) as a result of a point mutation is
calculated for each multibody term as

3
k 1 /
5Hmany—body = _zj’burialz (yburial(ak’ /’t) - yburial(ak’ /'4))
p=1

f(p,; /’t) (15)

Here, a; represents the identity of the mutated residue in the
wild-type protein, and a; represents the amino acid residue in
the mutant.

B RESULTS

For both ubiquitin and GBI, the optimization procedure was
repeated five times, and the corresponding aggregated data are
presented in Figures 2 and 3. First, the parameters of the
pairwise potential are optimized until convergence, starting
from the “vanilla” structure-based model with 2-body non-
bonded interactions only.

For ubiquitin (Figure 2), the convergence of the root-mean-
square-error (RMSE) for the observables is reached within
10—15 iterations, producing good agreement with the
experimental results even with a fixed functional form (eqs 7
and 8) with a final RMSE of 0.42 + 0.03 RT units.

In the case of GB1 (Figure 3), the optimization with a fixed-
form 2-body potential takes 80—90 iterations and converges to
a significantly higher value of RMSE, 1.002 + 0.003 RT units

6924

(starting from a value of 1.276 + 0.002 RT in the structure-
based model). To account for possible limitations of the
functional form used to represent 2-body nonbonded
interactions, we have additionally optimized a spline-based 2-
body model (eq 9) using the optimized 2-body model with
fixed functional form as a starting point (as discussed in the
previous section). The increased expressivity of the 2-body
interaction potential provides only a minimal improvement in
the agreement with experimental results and achieves an
RMSE of 0.94 RT units with the absolute error of 7 out of 95
considered mutations still exceeding 1.5 RT units (see Table
1).

For both systems, the optimized two-body model producing
the lowest RMSE is selected for further analysis. An additional
multibody term is then added to the selected model, and the
optimization is continued by tuning both the two-body and the
multibody parameters together. The incorporation of multi-
body interactions in the model for GBI significantly improves
the overall agreement with experimental data (RMSE of 0.69
RT units) and corrects the most prominent outliers (see Figure
3).

It is worth noting that in the 2-body part of the potential an
individual parameter is assigned for each pair of residues, not
per pair of residue types. This choice gives a more flexible
potential, suitable for our task of proving the limitation of 2-
body interactions; however, it makes the model parameters
depend on both the type and the position of the residues and
does not allow a direct comparison of parameters between
different proteins or with other knowledge-based potentials,
where the parameters depend only on the residue types
involved.

B DISCUSSION AND CONCLUSIONS

In the case of the GBI, the largest deviation from the
experimental value of AAG is observed for the mutant D46G
(Table 1): the standard structure-based model underestimates
the destabilizing effect of this mutation by 4.3 RT units. The
optimization using a fixed function 2-body potential reduces
this error slightly to 4.1 RT units, and increasing the
expressivity of the 2-body potential with the spline model
only slightly decreases the error to 3.8 RT units. However, the
incorporation of many-body effects decreases the error more
than twice to 1.6 RT units. For each mutant, we calculated the
€ angle as a metric of side-chain orientation, as defined by Yan
and Jernigan.”> Among the seven mutations reported in Table
1, all but F30L and T18A involve residues where the side
chains point outward from the surface (cos(€2) < 0) in the
crystal structure. D46 and 106 are significantly exposed to the
solvent with a solvent-accessible area of 70.06 and 68.22 A?,
respectively. Additionally, except for F30 and 106, all of the
other mutations are polar or charged residues that can

https://doi.org/10.1021/acs.jpcb.3c04493
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participate in specific interactions. We interpret these results as
indicating that, at least for this protein, multibody terms are
needed to account for the solvent degrees of freedom that are
implicit in the CG model. This is in agreement with previous
results, suggesting that while for short chains without specific
interactions a solvation potential can be reliably approximated
as a sum of pairwise potentials,”* multibody terms cannot be
neglected for more complicated systems.”

Ubiquitin has a size and topology similar to GB1, and the
performance of the original zeroth-order structure-based model
is also similar (with RMSE 1.54 RT compared to the initial
RMSE 1.28 RT in the case of GB1). The optimization yields a
remarkably good agreement with experimental data already
with a simple 2-body model with a final RMSE 0.42 + 0.03
RT. Even the effects of mutation of polar/charged residues,
such as K27A and Q41A, are reproduced relatively well
Further addition of many-body terms does not significantly
improve the model, and the overall model performance is
comparable (see Figure 2).

We speculate that this result reflects the properties of
ubiquitin compared to the GB1 and the position of the
considered mutations. Our results suggest that for ubiquitin,
many-body effects do not play a major role in the change of
stability AAGs for the available mutants. As shown in Figure
2B, most of the mutated residues are buried inside the protein,
and solvent effects on the stability may be limited. An
analogous result is known for CG models of liquids: While for
liquid methanol two-body interactions in a CG model are
sufficient to reproduce the structural features obtained with an
atomistic system, a two-body-only representation is inadequate
to describe the same properties of liquid water.”” Our
conclusions on the importance of multibody terms are
consistent with the findings of Wang et al,*' who, by using a
bottom-up approach, showed that multibody terms are needed
for small proteins to reproduce the folding free energy
landscape of atomistic simulations correctly. For this reason
and to allow a more expressive functional form for the
multibody terms, recent advances in the development of
protein CG models make use of neural networks to represent
nonbonded interaction potentials,**~%*
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