
DOI: 10.1111/risa.14245

OR IG INAL ART ICLE

Trust and trustworthy artificial intelligence: A research agenda
for AI in the environmental sciences

Ann Bostrom1 Julie L. Demuth2 Christopher D. Wirz2 Mariana G. Cains2

Andrea Schumacher2 Deianna Madlambayan1 Akansha Singh Bansal3

Angela Bearth4 Randy Chase5 Katherine M. Crosman6 Imme Ebert-Uphoff3

David John Gagne II7 Seth Guikema8 Robert Hoffman9 Branden B. Johnson10

Christina Kumler-Bonfanti11 John D. Lee12 Anna Lowe13 Amy McGovern5,14

Vanessa Przybylo15 Jacob T. Radford3 Emilie Roth16 Carly Sutter15

Philippe Tissot17 Paul Roebber18 Jebb Q. Stewart19 Miranda White17

John K. Williams20

1Evans School of Public Policy & Governance, University of Washington, Seattle, Washington, USA
2Mesoscale & Microscale Meteorology Lab, National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
3Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado, USA
4Consumer Behavior, Institute for Environmental Decisions, ETH Zürich, Zürich, Switzerland
5School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA
6Department of Marine Technology, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway
7Computational & Information Systems Lab, National Center for Atmospheric Research, Boulder, Colorado, USA
8Industrial & Operations Engineering, University of Michigan, Ann Arbor, Michigan, USA
9Institute for Human & Machine Cognition, Pensacola, Florida, USA
10Decision Research, Eugene, Oregon, USA
11Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
12Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
13Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina, USA
14School of Computer Science, University of Oklahoma, Norman, Oklahoma, USA
15Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York, USA
16Roth Cognitive Engineering, Brookline, Massachusetts, USA
17Conrad Blucher Institute for Surveying and Science, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
18School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
19Global Systems Laboratory, Oceanic and Atmospheric Research, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA
20The Weather Company, an IBM Business, Andover, Massachusetts, USA

Correspondence
Ann Bostrom, Evans School of Public Policy &
Governance, University of Washington, Seattle,
WA, USA.
Email: abostrom@uw.edu

Abstract
Demands to manage the risks of artificial intelligence (AI) are growing. These demands
and the government standards arising from them both call for trustworthy AI. In
response, we adopt a convergent approach to review, evaluate, and synthesize research
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on the trust and trustworthiness of AI in the environmental sciences and propose a
research agenda. Evidential and conceptual histories of research on trust and trust-
worthiness reveal persisting ambiguities and measurement shortcomings related to
inconsistent attention to the contextual and social dependencies and dynamics of trust.
Potentially underappreciated in the development of trustworthy AI for environmental
sciences is the importance of engaging AI users and other stakeholders, which human–
AI teaming perspectives on AI development similarly underscore. Co-development
strategies may also help reconcile efforts to develop performance-based trustworthiness
standards with dynamic and contextual notions of trust. We illustrate the importance of
these themes with applied examples and show how insights from research on trust and
the communication of risk and uncertainty can help advance the understanding of trust
and trustworthiness of AI in the environmental sciences.
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1 INTRODUCTION

In 2019, the US National Science and Technology Coun-
cil issued the National Artificial Intelligence Research and
Development Strategic Plan (NSTC, 2019), updated from
2016. The plan called for long-term investments in funda-
mental artificial intelligence (AI)1 research, with a particular
focus on developing trustworthy AI systems. Although the
plan did not define trustworthy, it mentioned factors rele-
vant to system design (e.g., reliability), ethics (e.g., fairness),
output (e.g., explainability, transparency), and performance
(e.g., accuracy). Accordingly, “Trustworthy AI” was one of
six high-priority themes identified in the National Science
Foundation (NSF) call for National Artificial Intelligence
Research Institutes (NSF, 2019). The NSF AI Institute for
Research on Trustworthy AI in Weather, Climate, and Coastal
Oceanography (AI2ES) responded to this call and was
selected for funding.

To develop and better understand trustworthy AI, AI2ES
engages expertise that integrates multiple disciplines, sec-
tors, industries, and environmental applications, to converge
across them. A major effort of the Institute is conducting con-
vergent research to identify factors that (a) influence trust
in and trustworthiness of AI for environmental professionals
who are applying AI to inform their decisions, (b) deter-
mine how AI trustworthiness influences risk perception and
use of AI for environmental sciences, and (c) inform the
design of trustworthy AI methods for improved environ-
mental decision-making. AI2ES focuses on machine learning
(ML) applications, which are a subset of AI. As part of
this effort, in August 2022, AI2ES hosted a virtual Work-
shop on Trust and Trustworthy AI, to review and evaluate
the state of conceptualization, measurement, and modeling
of trust and trustworthiness of AI systems for the environ-
mental sciences, focusing initially—but not exclusively—on

1 We adopt this working definition of AI from AI2ES: “Artificial Intelligence is the
science and engineering of building machines that perform tasks normally associated
with human intelligence.”

forecasting challenges in weather and coastal oceanography,
and on four themes: evidential and conceptual history, mea-
surement, context, and risk and uncertainty.2 As reflected
in this resulting synthesis, perspectives converged on some
topics but diverged on others.

A focus of this synthesis is the consideration of how
methodological and theoretical advances and challenges
identified in risk communication and judgment and decision-
making (e.g., Balog-Way et al., 2020; Fischhoff & Broomell,
2020) might augment how trust and trustworthiness are dis-
cussed and researched for AI. Although trust processes are
central in risk communication and in judgment and decision-
making under uncertainty (e.g., Earle, 2010; Padilla et al.,
2021; Siegrist, 2021; Slovic, 1993, 2000), to date, such
research appears to have only tangentially informed recent
national and international efforts to: (a) develop trustworthy
AI/ML standards and ethics (Broniatowski, 2021; EC,2020;
EC HLEG, 2019; Schwartz et al., 2022; Tabassi, 2023), (b)
increase awareness of the importance of trustworthy stan-
dards and ethics (Ammanath, 2022; Varshney, 2022), and (c)
develop research agendas (National Academies of Sciences,
Engineering, and Medicine [NASEM], 2022a).

Two questions underpinned many workshop participants’
perspectives across these themes and thus served as focal
points for the discussions: (a) How do people develop their
trustworthiness assessments or perceptions? and (b) How do
AI developers design systems that are (more) worthy of trust?
Importantly, these questions tended to be posed separately,
revealing differences in perspectives. Yet, there is also value
in posing these questions jointly, allowing them to iteratively
inform each other.

In the next section, we introduce the state of research
on trust in and trustworthiness of AI, explore the roots and

2 The workshop brought together 30 social, psychological, geophysical, and compu-
tational scientists with research and operational interests in trust, AI, and human–AI
teaming (as defined in NASEM, 2022a). All participants authored or co-authored
short thought pieces on trust and trustworthiness, written in advance of the workshop
through the lenses of the four themes, or wrote summaries of workshop discussions (see
Supporting Information). All workshop participants were invited to co-author this
synthesis and most agreed.
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evolution of trust research, and describe prevailing models
of trust and its antecedents. Section 3 dives into measure-
ment, considering first the conceptual ambiguities that have
exacerbated measurement challenges, and then the diverse
contextual dependencies that complicate measurement. Sec-
tion 4 explores the implications for trust of differences in
values, needs, and uses for AI. Section 5 characterizes the
contested notion of calibrating trust. Section 6 highlights
how meaningful communication of risk and uncertainty
underlies notions of explainable AI (XAI) and interpretable
AI. Sections 3 through 6 each close with research recommen-
dations. The concluding sections of the paper summarize our
research agenda for trust in and trustworthiness of AI in the
environmental sciences. To guide the reader, we summarize
those research needs and recommendations here:

1. There is a need for better ways of measuring trust in AI as
a dynamic, contingent process;

2. to accomplish this will require a better understanding of
which contingencies and contextual factors matter;

3. efforts to develop standards and “calibrate” trust deserve
close scrutiny and empirical evaluation;

4. these efforts can benefit from what has been learned in risk
and uncertainty communication studies of trust.

The paper closes with reflections on how to build a more
inclusive, interdisciplinary research community to pursue this
research agenda.

2 STATUS AND FOCUS OF RESEARCH
ON TRUST IN AND TRUSTWORTHINESS
OF AI

AI has been applied to weather forecasting for decades (e.g.,
Glahn & Dallavelle, 2000; Glahn & Im, 2011; Malone, 1955).
For example, AI has been used to forecast the probability
of tornadoes, hail, damaging wind, and hurricane intensity
(Billet et al., 1997; Demuth et al., 2006; Gagne et al., 2017;
Kitzmiller et al., 1995; McGovern et al., 2014; Williams,
2014; cf. McGovern et al., 2019). Yet end users often criticize
AI for being a “black box” because of the perceived inability
to understand how AI makes its predictions, an interpretabil-
ity problem that is broader than environmental sciences
(McGovern et al., 2019). The rapid advance of AI techniques
and applications has, if anything, increased interest in the
interpretability problem (e.g., Future of Life Institute, 2023).
AI systems often perform remarkably well but are limited in
terms of their ability to provide meaningful explanations for
their conclusions and decisions (Lipton, 2018; Rudin, 2019)
and are prone to biases and brittleness that can negatively
impact perceived trustworthiness (McGovern, Ebert-Uphoff,
et al., 2022).

2.1 Trust of AI in human–AI teaming

Addressing these and other challenges, the National
Academies produced a consensus report on human–AI team-

ing that summarized much of the emerging literature on
trust in and trustworthiness of AI (NASEM, 2022a). The
report builds from the evidence that effective human–human
teaming depends on having common ground—a common
understanding of the current situation and thus the cur-
rent goals and priorities—as well as a shared understanding
of the roles, capabilities, and limitations of multiple team
members (e.g., Klein et al., 2005). This conceptualization
of the human–AI relationship uses the term partnership to
engage human–human teaming literature and describe how
the human negotiates with the AI. The same need for estab-
lishing common ground is fundamental to the decision of
whether to trust an intelligent machine agent (i.e., AI partner)
in a particular situation, wherein user–expert dialogue (i.e.,
information exchanges between a human user and an expert
system, such as an AI model) is best viewed as a negotiation
process (Pollack et al., 1982). Consequently, there is a need to
support the cognitive work required to give the human partner
confidence that the AI partner is solving the right problem.
This requires (a) a shared representation of the current state
of the world and current goals and priorities, as well as con-
straints on a satisfactory solution; and (b) an ability for the
human partner to contribute to the AI partner’s representation
of the current state of the world, goals, and priorities (Roth
et al., 2018). Enabling this negotiation process requires con-
trols that allow the human partner to add to or correct the AI
partner’s representation of the situation and to communicate
any additional constraints that need to be respected as well as
any changes in goals and priorities.

Much AI design research has focused on developing visu-
alizations and controls that allow the human partner on the
scene and the AI partner to come to a common representation
of the situation being confronted and of the relevant goals,
constraints, and priorities to generate a solution that aligns
with the human partner’s objectives (NASEM, 2022a).

2.2 Models and antecedents of trust

Building on the above, this section provides a brief but
structured overview of research on modeling trust and its
antecedents, given the importance of understanding what
drives trusting. The section closes with cautions emerging
from empirical evidence on the context- and application-
specificity of such findings.

An important class of relevant models of trust in AI lists
dozens of causal factors that are believed to have a direct
causal influence on trust in automation (e.g., Muir, 1987;
Schaefer et al., 2016), including cultural differences, oper-
ator predispositions, personality, and knowledge about the
automation, and various contextual factors. A second class of
models includes process models designed to predict or esti-
mate trust judgments (cf. Seong & Bisantz, 2002; see Lee &
See, 2004). Hoffman (2017) presented over 40 diverse flavors
of trust in automation and machines, illustrating that trust is
legion (see also Dorton, 2022). There are also varieties of
mistrusting (not trusting a machine decision) and negative
trusting (i.e., distrusting—believing the machine will actually
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do something bad). Trust is emergent and evolving—not a
state or static—and is a property of the interactions between
humans and AI. This dynamism of trust in AI is especially
salient given the rapid evolution and increasing ubiquity of
AI. It follows that the delivery of an AI system (i.e., model) is
not a sufficient endpoint of the AI production cycle but rather
the beginning of a maintenance and improvement system to
maintain trustworthiness and manage trust processes with
end users. The recent in-depth review of human–AI teaming
research by NASEM (2022a) and systematic review of
antecedents of trust in otherware (intelligent and interactive
technological systems; Saßmannshausen et al., 2023) reach
similar conclusions.

An alternative approach to conceptualizing and modeling
trust in automation is to assume that humans anthropomor-
phize computers (even AI that is embedded and invisible
to the user) such that models of human–human trust apply
directly. In this vein, anthropomorphism has recently been
suggested to be an influential factor in trust in AI systems
(Kaplan et al., 2021). The Computers as Social Actors
(CASA) experimental paradigm developed at Stanford Uni-
versity has shown that many “social scripts” associated
with human–human interaction extend to human–computer
interaction (Reeves & Nass, 1996), leading to the conclusion
that humans treat computers as social actors. CASA findings
and similar work can be interpreted as evidence that trust, a
feature of human social interaction, is used in our interactions
with machines and automated systems (Lee & See, 2004;
Moon, 2000; Morkes et al., 1999; Nass et al., 1994). Lee
and See (2004) take this perspective and note that trust in
automation is likely a largely affective process.

The extent to which a computer is perceived as social may
also influence the extent of the social response (Morkes et al.,
1999). The role that trust plays may, however, vary with
the characteristics of the AI, including humanlike appear-
ance (de Visser et al., 2012, 2016, 2017), which may slow
declines in trust stemming from decreased AI reliability, and
humanlike communication style, which is associated with
greater perceived trustworthiness (Jensen et al., 2020), up
to a point (Kim et al., 2019). In general, characteristics of
a technological system that elicit perceptions of humanlike
or social qualities appear to influence users’ willingness to
be vulnerable to (i.e., to trust) that system. While social
responses to computers have been found to generalize across
levels of computer expertise (Reeves & Nass, 1996), whether
and how these findings might extend to professional users,
such as weather forecasters, is still unclear.

Three models from risk analysis and management research
offer promising additional insights for modeling trust in AI.
First, tests of the intuitive detection theorists (IDT) model
(White & Eiser, 2006; White & Johnson, 2010) building on
signal detection theory found evidence for three types of
judgments that predict assessments of risk managers’ trust-
worthiness: perceived competence (the ability to accurately
distinguish danger from safety), perceived care (the propen-
sity to act when danger or safety is uncertain), and perceived
openness and honesty. Second, the associationist model from
Poortinga and Pidgeon (2005, 2006) characterizes trust as

the outcome of a general positive or negative attitude toward
a technology (e.g., genetically modified food). Third, the
trust, confidence, and cooperation (TCC) model of Earle and
Siegrist (2006, 2008; Earle et al., 2010) posits that trust is
driven by judged sharing of salient values with the target,
as those unfamiliar with the target lack other cues, whereas
confidence is driven by the target’s past performance among
those familiar with the target. The TCC model posits that
trust influences judgments of both past performance and con-
fidence. The TCC model also admits other exogenous factors,
including general (interpersonal) trust. Empirically, the asso-
ciation between trust and confidence is high (Earle & Siegrist,
2006; Johnson & Rickard, 2023), leading to questions about
whether trust and confidence can be distinguished, conceptu-
ally or practically (see Section 3.1 for further discussion of
this).

As can be inferred from these three risk models of
trust, antecedents of trust probed in risk and social sci-
ences commonly describe two or three dimensions, primarily
the trustor’s perceptions of the trustee’s competence or
ability, honesty, and caring or benevolent attitudes toward
those affected by, or vulnerable to, the trustee’s decisions
(e.g., Johnson, 1999; Siegrist, 2021). These factors tend to
appear whether researchers are using measures of general
trust in people (e.g., see Poortinga & Pidgeon, 2003) or of
trust in specific individuals, groups, or institutions (e.g., see
Cvetkovich & Nakayachi, 2007). Approaches to labeling,
empirically measuring, and clustering these concepts vary
across disciplines and studies, which may obstruct a com-
mon understanding of trust antecedents (Johnson, 1999). The
emerging field of trustworthy AI has built on conceptual-
izations and findings from the rich kinds of literature on
interpersonal trust (Lewicki et al., 1998; Mayer et al., 1995;
Rousseau et al., 1998) and trust in automation (Hoff & Bashir,
2015; Muir, 1987), although some suggest that the analogy to
interpersonal trust is a misleading anthropomorphism (Wirz
et al., 2023), and others that trust in technologies is better
characterized as confidence (Siegrist, 2021).

Because computers are tools programmed by humans, our
trust in AI systems may stem in part from our perceptions of
the developers of those systems (e.g., Hoff & Bashir, 2015).
This could imply that users take a logical approach to their
interactions with technology, forming beliefs about techno-
logical systems that are based on evaluations of the credibility
and skill of the people who created the system (i.e., the devel-
opers’ past performance and authority). Or it could be a result
of our needing to interact with trusted experts in order to
achieve a satisfying mental model of how an AI system works
(Hoffman et al., 2021). Alternatively, social motivations such
as liking may drive interpersonal trust between users and
developers; people are more apt to engage in a behavior, such
as using a model, if others who share similar values engage in
or support that behavior or if the behavior benefits someone
we like (Contractor & DeChurch, 2014).

A recurrent theme across many studies is that trust and
trustworthiness are related to contextual factors and do not
operate the same way across differing AI applications (e.g.,
Ashoori & Weisz, 2019; Chiou & Lee, 2021; Glikson &
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Woolley, 2020; Lewis & Marsh, 2022). Within the context
of trust in automation (an umbrella term including artificially
intelligent agents), Chiou & Lee’s (2021) relational framing
of trust emphasizes AI responsivity—the ability to respond to
sudden environmental changes. Similarly, Lewis & Marsh’s
(2022) conceptual model for trust in AI emphasizes the
individual and subjective dimensions of trust and trustwor-
thiness. Others have identified the decision context (Ashoori
& Weisz, 2019) and task characteristics (Glikson & Woolley,
2020; Hoffman et al., 2018) associated with AI as important
points for understanding the trustworthiness of AI. Adding
nuance to “AI,” Glikson & Woolley (2020) broke down their
examination into more specific subcategories of AI (robotic,
virtual, and embedded; embedded AI is not visible to the
user); even this high-level distinction identified differences
among the different application types in findings regarding
trust and trustworthiness. Hence, it is paramount to engage
a context- and application-dependent conceptualization of
trustworthy AI, and of the usability and usefulness of AI, with
the latter two related, but not equivalent, to trustworthiness.

3 MEASUREMENT

Trust measurement has been studied for decades, with studies
of self-report measures, behavioral measures, and trust games
dating back to the mid-20th century (Bauer & Freitag, 2017 )
and including recent, diverse measures of trust in automation
and AI (Hoffman et al, 2018; Roth et al., 2022). Yet trust mea-
surement continues to be complicated by ongoing discussions
about the degree to which trust is subjective and distinct from
concepts such as confidence, credibility, and reliance, likely
reflecting the importance of context and application. The need
for better measures is widely recognized (NASEM 2022a, p.
54; Vereschak et al., 2021)

3.1 Measuring what? Trust, confidence,
and related concepts

The TCC model of trust makes a key distinction between con-
fidence as a function of reliability and competence and trust
as strongly influenced by perceived goal alignment and moti-
vations, although some of its authors have called for better
explanations of and distinctions between trust and confidence
(Siegrist, 2010). In the TCC model, trust is characterized as
“social and relational” and defined as “the willingness, in the
expectation of beneficial outcomes, to make oneself vulnera-
ble to another based on a judgment of similarity of intentions
or values,” whereas confidence is deemed “instrumental and
calculative” and defined as “the belief, based on experience or
evidence (e.g., past performance), that certain future events
will occur as expected” (Earle, 2009, p. 786). Similarly, in
the human factors literature, the distinction has been made
between an agent’s benevolence (alignment of its goals with
the user’s goals) and its competence (ability to perform a task;
Lee & See, 2004).

Both trust and confidence are dynamic and situational. For
instance, in the context of AI and weather, a forecaster can
trust a type of AI guidance as often skillful and therefore use-
ful in one weather situation but still have low confidence that
the guidance is skillful for a given prediction in some other
weather situation. Ensembles of weather predictions−which
can situationally generate a distribution of outcomes that are
more or less sharp and therefore with narrower or wider
confidence intervals−support this idea of confidence being
situational (see also Henderson et al., 2023).

Consistent with the distinction that confidence is a func-
tion of reliability and competence, and in contrast to other
views (cf. NASEM, 2022a), Siegrist (2021) concludes that
“trust is not an appropriate term to describe the reliance on
modern technology” (p. 484). Siegrist further identifies a lack
of causal research as inhibiting progress in understanding
the relationship between trust and risk perception, and the
distinction between trust and confidence, while acknowledg-
ing that these are hard to measure (Earle & Siegrist, 2006;
Johnson, 1999; Johnson & Rickard, 2023). Causal research
using validated measures might help distinguish judgments
based on past performance from those based on salient value
similarity and provide additional insights into how to mea-
sure these concepts. Judgments made on past performance
include confidence in the TCC model and discrimination abil-
ity and response bias in the IDT model. Judgments based on
salient value similarity include trust in the TCC model and
benevolence in communication and human factors models.

3.2 Measuring in what context? Contextual
dependencies

By implicitly overlooking contextual dependencies and
dynamics that are important in determining and measuring
trust, some trustworthy AI efforts shift the onus of trustwor-
thiness away from system designers alone to share it with
operators:

To achieve trust, AI system designers need to
create accurate, reliable systems with informa-
tive, user-friendly interfaces, while the operators
must take the time for adequate training to
understand system operation and limits of per-
formance. Complex systems that are widely
trusted by users, such as manual controls for
vehicles, tend to be transparent (the system oper-
ates in a manner that is visible to the user),
credible (the system’s outputs are accepted by
the user), auditable (the system can be eval-
uated), reliable (the system acts as the user
intended), and recoverable (the user can recover
control when desired). (NSTC, 2019, p 25).

Contextual dependency must be a consideration in any
analysis of complex cognitive work systems. The multiple
contextual dependencies of trust measurements may include:
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(1) attributes of the model user, such as expertise and biases;
(2) attributes of the modeler or others involved in the AI algo-
rithm production chain; (3) the complexity and specifics of
the problem being modeled and of the model itself, including
societal implications of the model application in a given situ-
ation; (4) time constraints and pressures for decision-making;
and (5) what complementary and redundant information is
simultaneously available for the problem at hand.

For instance, in the course of their work, forecasters
predicting severe convective weather (e.g., tornadoes, large
hail, strong winds) are likely to consult multiple sources
of numerical weather prediction (NWP) model guidance,
including several predictions of the same output, which is
often referred to as a “poor man’s ensemble” (Arribas et al.,
2005; Novak et al., 2008), probabilistic guidance, and tra-
ditional ensembles. They also consult multiple parameters
predicted by NWP guidance —including individual ingredi-
ents for severe convective weather (e.g., convective available
potential energy, shear) and proxies or storm “surrogates”
(e.g., updraft helicity tracks, see Sobash et al., 2016)—
and their corresponding magnitudes at multiple, successive
forecast valid times (e.g., 00,06,12,18 UTC). Furthermore,
forecasters face the constraints and challenges of systematic
forecast processes that are shaped by the operational setting,
including that new NWP guidance and observational data
(e.g., from radar, satellite, surface stations) are constantly
updating and made available to them, on timescales of min-
utes to hours. They also face time pressures to assess the
information they have, to determine hazardous weather risks,
and to issue either an event-driven product, like a watch or
warning, or one of dozens of other products (e.g., a freeform
forecast discussion) by their issuance time as mandated by
federal policy (NWS, 2022b).

Weather forecasters’ operational risk assessment and fore-
cast decision-making environments are complex, dynamic,
and extremely information-rich. Thus, when trust in new
AI guidance is developed or evaluated in operational set-
tings, interactions among these contextual factors may limit
researchers’ ability to draw conclusions about the AI that
generalize to other applications or settings. These contextual
factors also illustrate the numerous ways in which laboratory
experiments or testbeds may fall short. Together, this suggests
that systematic attention to contextual attributes and interac-
tions will be required to understand what observed behavior
may generalize for which AI models.

Box 1. Trustworthy for whom? AI/ML
model development for environmental
applications

In any given decision-making context, different groups
and individuals will interact with the subsequent
information value chain, including with the use of
AI therein. Take the example of zooplankton data

collected and analyzed with the use of AI. If the driv-
ing decision-making question is how to sustainably
develop and manage a zooplankton fishery, the ques-
tion (the initial stage of the information value chain)
is likely to be determined by public decision-makers
and those who influence them (legislators and/or fish-
eries agency personnel, fisheries industry groups).
Once the question is defined, much of the work
from metrics/measures through knowledge production
is done by technical and scientific experts (engineers,
biologists, and the like). From information to decision-
making, we will see further involvement of fisheries
managers; in many systems, fisheries stakeholders (lay
experts) are also likely to be involved at the decision-
making stage. Outcomes will be experienced by all, but
most immediately by fishers themselves—both fishers
of zooplankton and other operators affected by zoo-
plankton fishery development. Outcomes may also be
salient to the general public, particularly if there is
media attention that springs from novelty, controversy,
management failures, or some other source. Each of
the above groups (and individuals within each group)
will have different perceptions of the trustworthiness
of the technologies (including AI) used in the infor-
mation value chain, as well as different perceptions
of the trustworthiness of other groups and individuals
involved therein (Siegrist, 2021).

In a contrasting example from wildland firefight-
ing, a fire behavior analyst observes environmental
cues, discusses the interpretation of the fire weather
(AI) model output with the incident meteorologist,
determines what the fire activity will be, for example,
whether the wind will shift, and communicates this to
a supervisor and through to affected firefighting crews.
The expertise and experience of the incident meteorol-
ogist contribute to their reliance on and trust in the fire
weather model output and in turn to the meteorologist’s
interactions with the fire behavior analyst and their trust
and actions. In this example the ultimate outcomes may
be salient to firefighters, local communities, and the
broader public and affect their trust in AI.

3.3 Research recommendations: Measuring
trust and trustworthiness

Better definitions that distinguish trust and trustworthiness
from related concepts, such as confidence and reliability, are
needed to inform measurement. Additional research is needed
to develop a fuller theoretical understanding of the relation-
ship between trust and trustworthiness and their antecedents
(including contextual factors), moderators, and outcomes.
These challenges of measuring trust are amplified by the
dynamics of trusting. Better characterization of these dynam-
ics is needed for AI. What processes might influence trust
through time as AI guidance and real-world contexts for that
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1504 BOSTROM ET AL.

F IGURE 1 The iterative, value-driven artificial intelligence/machine learning (ML) model production cycle. Adapted from the Information Value Chain
(Abbasi et al., 2016) and the ML life cycle (Custis, 2022).

guidance evolve? The dynamics of trust are rarely the primary
focus of research; there is a need for studies measuring how
trust can influence post hoc evaluations of performance and
is in turn influenced by performance over time, taking into
account time pressures on AI use (Box 1). Intertwined with
this is the need for research on how diverse decision-making
strategies affect trust judgments. When and how does analytic
thinking influence trust in AI and AI use decisions? What are
the roles of heuristics in decision-making under uncertainty
with AI, including new heuristics that may be specific to AI?
Longitudinal process-tracing studies would be beneficial for
understanding how trusting and related cognitive and affec-
tive processes evolve over the (co-)development and use of
specific AI models or model types by professionals with simi-
lar expertise charged with different AI-related decision tasks,
as would multimethod, multidisciplinary efforts to validate
measures of trust, reliance, and related concepts.

4 THE CONTEXTUAL DEPENDENCIES
OF DIVERSE PERSPECTIVES ON TRUST
IN AI

Risk communication research shows there is likely to be a
variety of stakeholders with different motivations and men-
tal models that will impact their trust in a new technology
(Fischhoff et al., 1984; NRC, 1996). To design effective risk
communication about a technology or risk requires engag-
ing with and understanding the needs of diverse stakeholders
(e.g., Fischhoff, 1995; Morgan et al., 2002 ; Prior & Paton,
2008; Stanton & Jensen, 2021). Such stakeholders include
the technology developers themselves, the professional users
of the technology, and the larger set of vested or inter-
ested parties that may include funders, regulators, politicians,
as well as other users and affected groups. Further, stake-
holders’ needs and perspectives are shaped by individual,
institutional, and cultural social events and conditions (Renn,
2008a, 2008b). Respecting this heterogeneity of perspec-
tives is an important tenet of stakeholder engagement and
co-design. Co-design goes a step beyond human- or user-
centered design (HCD or UCD) to include those for whom
an AI model is being developed in an ongoing participa-
tory design process (Bjerknes & Bratteteig, 1995; Carroll,
1996). Accordingly, co-design and engagement across the
entire AI lifecycle (Figure 1) can be seen as fundamental for
developing trustworthy AI (see also Hoffman et al., 2010).

The perspectives of both developers and diverse users mat-
ter with regard to developing trustworthy AI. Involving both
in the design process has the benefit of increasing the robust-
ness and usability of the resulting AI (Singer et al., 2022).
The broader benefits of co-design include those identified
for UCD, such as more efficient, effective, and safe products
(Norman, 1988). However, there are outstanding questions
about the capacity and resources needed to develop, scale,
and sustain co-design processes. A particular concern is how
broadly the net should be cast in co-design processes with
regard to potential AI model users. In their examination of
UCD (e.g., with one-time consultation as one end of a con-
tinuum and participatory co-design processes as the other),
Abras et al. (2004) highlight that concomitant costs and
benefits of such processes differ across this continuum.3

Reflecting on these ideas of support for UCD but con-
cern about the degree of doing it, we note that users of AI
need to be involved in the development process, in order to
co-develop and co-design guidance and systems that are use-
ful, usable, and used by them, but this idea poses challenges
in practice. Who needs to be involved, to what extent, and
during which parts of the AI model development process?
There are challenges with having many different groups be
heard, including developers, decision-makers, and communi-
ties who may be affected. For many users, AI is only one
type of information for which their co-produced involvement
would be beneficial; this poses a threat of participant fatigue.
There are related ethical issues about asking for developers’
and users’ time: When and to what degree is it worthwhile for
a user to offer their input? Additionally, there are intertwined
research design and measurement limitations and challenges
with asking users to provide input and evaluate AI informa-
tion outside of their naturalistic environments. This approach
forces all parties involved to balance the benefits of co-
development with the increased demands it places on already
constrained time and resources in increasingly fast-paced and
competitive research environments.

The diversity of perspectives on trustworthy AI can be
simplified to illustrate the co-design challenge by thinking
about users (or audiences) as divided into “deep divers” and
“surface skimmers.” Deep divers are those who have at least
some AI expertise, are deeply interested in the modeling, and

3 In 2005, Norman cautioned that UCD can go too far, resulting in overly complicated
designs tailored for specific users, and called for technologies to be activity-centered
rather than user-centered per se (Norman, 2005).
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TRUST AND TRUSTWORTHY AI: A RESEARCH AGENDA 1505

are readily considered by developers and others (e.g., those
governing AI) as intended users/audiences. In contrast, “sur-
face skimmers,” soon to become the majority of AI users,
are those who would like to use the AI model and could
potentially benefit from its application but are not deeply
invested and have little to no AI expertise. While it may be
feasible to identify and recruit deep divers for co-design pro-
cesses, surface skimmers are by definition not easy to identify
reliably and may lack motivation to participate in co-design
processes. Even this categorization is simplified, however,
and may be context-dependent since a given user may, for
example, be a “deep diver” in one use context and a “surface
skimmer” in another.

Further complicating co-design of AI models, trust can be
influenced at any point in the iterative, value-driven AI model
production cycle (Figure 1). Some steps of this process, such
as data selection, may influence trust in AI models more
than they influence trust in other (non-AI) environmental
modeling efforts.

4.1 Research recommendations: Modeling
the role of humans in AI trust and
trustworthiness

The research summarized in this section points to a need
for better ways to effectively share knowledge among user
groups and research teams while balancing the needs and
demands of each group. It’s important to distinguish par-
ticipatory processes like co-design and co-production from
user-oriented or UCD and production; the former involves a
greater degree of interaction between developers and users,
whereas the latter may involve only periodic interactions
between developers and users, making it less costly and less
prone to over-complication but also potentially less informa-
tive. Models of human trust processes are needed that can
predict and inform such trade-offs in addition to informing
the goals of AI models. Analogizing with Fischhoff’s (1995)
stages of risk communication development, questions requir-
ing further research in AI development processes (Figure 1)
include: Who are the users and audiences that developers
should consider, what are their needs, and what effects do
differing approaches to engaging users have on trust and trust-
worthiness of AI? A systematic review of where and to what
extent AI models have been co-produced and the perceived
benefits and costs of such co-production processes would be
one way of advancing this research.

5 STANDARDS AND THE
SUBJECTIVITY OF TRUST

Although trust can be described as warranted or unwarranted
(Jacovi et al., 2021), whether trust can actually be cali-
brated to an external standard that defines trustworthiness
is debated. Many discussions of trustworthy AI are firmly
grounded in the notion that trustworthiness can or should be

characterized by standards or benchmarks. In contrast, trust
can also be described as inherently emotional and subjec-
tive (Section 5.2), for which reason it can be argued that
its appropriateness cannot and should not be judged solely
by AI performance standards (Wirz et al., 2023). Emphasis
on the importance of decision-makers’ goals and contextual
determinants of trust and trustworthiness has increased, as
is evident from recent considerations of “contracts” (Jacovi
et al., 2021), “off-label” use (i.e., outside the boundaries of
the situations the model was designed for, Schwartz et al.,
2022 p. 17), and model cards (e.g., Mitchell et al., 2019) to
signal the contextual determinants of model performance and
what constitutes appropriate use. These latter efforts attempt
to address the question of how to know and communicate
what is “within label” and what is “off-label.” To date, there
has been little explicit effort to reconcile these ways of think-
ing (i.e., contracts, on/off-label use, model cards) about how
to signal what constitutes appropriate use of an AI model,
although risk management and standard-setting efforts do
reference them (e.g., the NIST Risk Management Frame-
work mentions reviewing uses of AI systems for “off-label”
purposes [MAP1.5]; Schwartz et al., 2022).

5.1 What does it mean to calibrate trust?

National discussions of AI strategy explicitly ground the
notion of trustworthiness in performance standards. The
NSTC 2019 update notes that “assessing, promoting, and
assuring all aspects of AI trustworthiness requires measuring
and evaluating AI technology performance through bench-
marks and standards. Beyond being safe, secure, reliable,
resilient, explainable, and transparent, trustworthy AI must
preserve privacy while detecting and avoiding inappropriate
bias” (NSTC 2019, p. 33), thereby emphasizing performance,
privacy, and lack of bias as bases for trustworthiness.

It could be argued that the point of standards is to provide
ratings of how well AI systems perform on given criteria and
make that information available to potential users. Accord-
ingly, minimum thresholds for acceptability that apply across
all criteria or observers need not be set or applied. It appears
that governmental and professional organizations are doing
just that, however, as they have created lists of criteria to
assess and measure the trustworthiness of AI (e.g., Tabassi
et al, 2023; EC AI HLEG, 2019, 2022; White House OSTP;
and Exec. Order No. 13960, 2020).

If trustworthiness standards apply, measurements can be
made with respect to those standards. In apparent direct con-
tradiction to those who argue trust is inherently subjective
and its appropriateness should not be determined by refer-
ence to standards, others have called for assessing whether
trust in a model is well-calibrated (warranted) according to
standards, or is biased high (over-trust, unwarranted) or low
(under-trust, unwarranted). In this view, trust is termed cal-
ibrated to the extent that it matches trustworthiness (Lee &
See, 2004). Both under- and over-trust can undermine the
potential for AI to support and enhance decision-making. Fur-

 15396924, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.14245, W

iley O
nline Library on [06/06/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



1506 BOSTROM ET AL.

ther, from a measurement perspective, the wider the range
of trustworthiness perceived as similar, the poorer the res-
olution of trust, and the less clear it will be whether it is
well-calibrated according to some standard.

From the perspective of calibrating trust to standards, both
performance and purpose can be used to describe the bases
for trustworthy AI (Lee & Moray, 1992), contingent on con-
text. Performance contributes to trustworthiness only to the
extent the AI can contribute usefully in a specific context con-
sistent with the decision-maker’s goals. Purpose refers to why
the AI was developed, corresponding to the designer’s intent
(Lee & See, 2004). Using AI as intended is more likely to
lead to the trustworthiness of a system than if it is used for
an “off-label” purpose. This can be compared to the notion
of a contract in Jacovi et al. (2021), and similarly implies a
need for metadata (information about the model) indicating
when AI model use might be “off-label,” making the model
less trustworthy.

5.2 On the insufficiency of the idea of
calibrating trust

Because trust involves an attitudinal dimension with an
affective component, trustworthiness based on standards and
criteria only partially determines trust. People filter trust-
relevant information through a lens of emotion: people not
only think about trust, they also feel it (Fine & Holyfield,
1996). Feelings can cause trust to spread across time and
system components in a way that changes in context would
not predict (Loewenstein et al., 2001; Schwarz & Clore,
2003; Wormwood et al., 2019). As noted previously, trust-
ing is dynamic, and depends on the context of the person,
AI, situation, and temporal sequence of interactions (Chiou &
Lee, 2021), with each interaction between the person and AI
shaped by previous interactions (Chiou & Lee, 2021; Klein
et al., 2006).

Further, trustworthiness is also social. Developers and
users may change with time, with concomitant changes in
trust. AI in the environmental sciences is usually applied in
a larger social context. For example, in severe weather pre-
diction, multiple people may be interacting with the AI, other
model guidance, and one another, across varying decision
contexts. Organizations also shape trust in and the trustwor-
thiness of AI, in that they have purposes and shape social
networks, which in turn shape interactions between people
and AI systems.

5.3 Research recommendations: Goal
alignment, calibration, and standard setting

Reconciling notions of trust calibration and trust as subjec-
tive is a work in progress. Proposed models of the calibration
of trust and perceived needs to calibrate goals for and trust
in AI models treat calibration as feasible and useful. From
the developer’s perspective, finding better ways to align the

expectations and use of AI within the bounds of the sys-
tem’s competencies, or what the model can do well, remains
a challenge. From the regulator’s perspective, calls for risk
management have been interpreted as a demand for stan-
dards. From the user perspective, standards may enhance the
possibility of trust and appropriate use of AI, but do not nec-
essarily determine trust; rather, a gap between perceived trust
and trustworthiness as defined by standards might be diag-
nostic of opportunities for interventions. Some opportunities
may reflect conditions that are easier to change (e.g., stan-
dards that omit important factors in trust) than others (e.g.,
the gap is due to contextual variation).

Differences among outcomes and actors that might be
identified as requiring calibration carry diverging implica-
tions for research moving forward in this space. For example,
even if levels of trust are calibrated between developers and
users of a specific AI model, that calibration process may
not necessarily lead to increased use of the model within its
competencies. Relatedly, the alignment of goals among users
and with an AI model, or with the model’s developer(s), may
not necessarily foster trust in the model. Although calibration
and/or alignment might have been pursued in individual AI
studies, these nuances highlight the need to more systemati-
cally examine calibration and alignment in ways that clearly
identify the specific concepts of interest, as well as the actors
engaged in calibration and alignment of AI models for the
environmental sciences, and weather forecasting in particular.

One potential way to facilitate calibration might be through
the use of checklists, as has been done in the risk domain
(e.g., Haynes et al., 2015). The general idea is to use check-
lists to identify important dimensions of the outcome to be
calibrated (e.g., trust, confidence, expectations, reliance, use)
in order to help assess how closely two groups are (or are
not) aligned. Checklists can be flexible and adaptive—the
specific items could be highly subjective or more objective
depending on needs. However, if checklists were used, they
would require some level of co-development as discussed in
the previous section.

For those looking for guidance on how to design trustwor-
thy AI that goes beyond performance standards like accuracy
and reliability, a complementary approach is increasing the
responsiveness of the AI (Chiou & Lee, 2021). This has been
suggested as a promising path to increasing the joint perfor-
mance of the person and AI. The multiple pathways for the
person and AI to interact, both directly and through the sit-
uation (through observations, actions, influences, and signs),
provide methods to better align the goals of the AI and the
person applying it. These interactions go well beyond older
conceptions of AI that relegated people to entering the initial
information and acting on the resulting AI decisions (Roth
et al, 1987). In this view, the person would be enhancing
the trustworthiness of the AI, and the AI might enhance the
trustworthiness of the person. Research on interactivity could
facilitate both goal alignment as articulated by the human–AI
teaming notion and explainability as interactivity and inter-
rogation. Evaluating these psychological mechanisms as well
as how trust changes over time in actual work contexts along
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TRUST AND TRUSTWORTHY AI: A RESEARCH AGENDA 1507

with the outcomes of trust, trustworthiness, and use would be
important.

In risk research, it is valuable to characterize risks and
set some standards, such as exposure standards, but also to
recognize that some subpopulations may be more vulnerable.
For example, children can react adversely to some exposures
(e.g., drug doses) that might not harm adults. Analogously,
AI model performance that informs decisions with few or no
consequences in some contexts may risk causing unaccept-
able harm in other contexts. Further, it is well known that risk
preferences and decisions regarding technology are a func-
tion of factors beyond the probabilities and sizes of adverse
consequences; they depend also, for example, on perceptions
of how familiar or dreaded the technology is (a.k.a. psycho-
metric factors; Fischhoff et al., 1984; Slovic, 2000). Thus,
for risk management, it is imperative to understand decision
context-specific risk perceptions and attitudes of decision-
makers and those who influence or are affected by their
decisions. Analogously, it will be important to understand
whether trust and trustworthiness of AI have psychometric
properties that are not captured by standard AI performance
metrics.

6 TRUST, RISK, AND SCIENTIFIC
UNCERTAINTY

6.1 Communicating risk and scientific
uncertainty for understanding and trust

Both explainability and interpretability of ML models have
been lauded as essential for trustworthy AI and listed as cri-
teria for trustworthy AI systems (e.g., Tabassi, 2023). Rudin
et al. (2022) have, for example, offered five principles for
creating a predictive AI model that is not a black box. In
their terms, interpretability is achieved to the extent that the
AI obeys a domain-specific set of constraints that allow it to
be more easily understood by humans (Principle 1). Rudin
et al. emphasize that interpretable models can create or enable
trust or distrust but do not necessarily do so; rather, they per-
mit a decision of trust than create trust itself (Principle 2).
The fifth of their principles is that for high-stakes decisions,
interpretable models are preferable to “explained” black box
models.

As illustrated by the first of Rudin et al.’s principles, def-
initions of interpretability and explainability point to several
ways in which research on judgment and decision-making—
and risk communication research in particular—can provide
insights into trust in AI. Trust in AI, and the extent to which
AI is deemed trustworthy, is contingent on communications
processes and products in AI, such as model or XAI out-
puts, or interfaces for imposing constraints on AI models; the
visual presence of AI tends to increase trust in AI (Gilkson &
Woolley, 2020). Many studies have called for or investigated
explanations and XAI (McGovern, Bostrom, et al., 2022) as
an approach to increasing trust (e.g., Hoffman et al., 2018;
Lockey et al., 2021; Miller, 2019; Mueller et al., 2019; Tulio

et al., 2007), while such explanations have often relied on
visualizations (McGovern et al., 2019).

Risk communication research (e.g., MacEachren et al.,
2012; Padilla et al., 2018, 2023; Spiegelhalter, 2017; van
der Bles et al., 2019, 2020) shows, however, that the effects
of visualizations and other communications of uncertainty
on trust are likely to depend on the quality and context
of communication (see also Box 2). Thus, there is a need
for meaningful and useful information rather than just more
information.

6.2 Research recommendations: The role of
communicating risk and uncertainty in AI trust

In the last few decades, more systematic studies of sci-
ence and risk communication have begun to chart a course
toward a cumulative understanding of risk communication
as a dynamic system (e.g., NASEM, 2017). In this system,
behavior is driven by human social motives: the need for
accuracy—which can be influenced by social proof (what
others are doing, whether scientific evidence supports the
behavior) and authority (including scientific authority)—and
the need for social belonging and affiliation. Social interac-
tions are based on liking (acting similarly to those one likes),
reciprocity, consistency, and accountability (Contractor &
DeChurch, 2014). Contractor and DeChurch demonstrate
empirically how risk communication can capitalize on this by
pairing sources of peer influence (based on social networks)
with social interactions (based on social motives), in a struc-
tured influence process (SIP). Translating and testing the SIP
framework and findings from other research on communicat-
ing risk and uncertainty for embedded AI contexts such as
environmental forecasting is not trivial but might be fruitful.

Box 2. Trust processes in weather
applications of AI models

AI models developed for predicting power outages
from extreme weather events such as hurricanes have
been implemented and used in-house by major utili-
ties spanning the United States, in some cases, being
run with every weather forecast update to support deci-
sions on power restoration crew allocation (Guikema
et al., 2014; Kabir et al., 2019; Li et al., 2010; Quir-
ing et al., 2014; Singhee et al., 2016). The outputs
of these models have also been used in real-time by
the Federal Emergency Management Agency (FEMA)
and the Department of Defense (DoD) to support
hurricane preparation decision-making. The models
themselves are probabilistic supervised ML models,
with some being complicated Bayesian model averag-
ing ensembles. The challenge of balancing consistency
and accuracy through iterative model update rounds,
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1508 BOSTROM ET AL.

and the challenge of conveying the (sometimes very
large) uncertainty in the model predictions without los-
ing trust in the model, have made the importance of
model stability and clear communication of uncertainty
and model limitations obvious. These experiences have
demonstrated to model developers that gaining trust
requires being honest about what the model can and
cannot do and what the uncertainties are in the model
predictions. This has to be done in a way that model
users without expertise in AI can truly understand and
internalize.

The Weather Company (TWC) is one of the most
trusted brands in the United States (Morning Con-
sult, https://morningconsult.com/most-trusted-brands-
2022/). Although TWC may be associated by some
with certain TV personalities, trust in a brand seems
different than trust in a person, or even a system.
Many TWC users presumably do not know that TWC
uses a combination of automated AI and humans over
the loop in creating its forecasts or that it has been
independently evaluated as the world’s most accurate
forecaster (ForecastWatch, 2021). Rather, their trust is
more plausibly a consequence of the longevity, ubiq-
uity, depth of content, and always-on nature of TWC
forecast products—and perhaps its reputation for sci-
entific integrity in its editorial pieces. Familiarity and
experience with a brand appear to breed trust over
time; “being there” for the ordinary days seems to lend
credence to more extreme, impactful, or actionable
forecasts and messages. AI does most of the routine
work of making the TWC forecast, but the fact that the
humans are there to provide guard rails and improve-
ments to the AI, plus communicate unusual weather
stories via alerts, insights and videos, and in phone
calls and reports to commercial customers, seems to
give users more trust in TWC forecasts. TWC com-
municates uncertainty for some variables, as with the
probability of precipitation, and generally takes care
to not use overly definitive language in forecast sum-
maries. Although there is some evidence that people
trust a forecast more when the provider supplies infor-
mation about its uncertainty, doing so in a broad,
quantitative yet easily digestible manner remains an
unsolved challenge.

Communicating uncertainty can be seen as important for
scientific, ethical, and practical purposes. Recent research
marks progress in our understanding of methods and effects
of communicating uncertainty (e.g., Gulacsik et al., 2022;
Padilla et al., 2018; Spiegelhalter, 2017; van der Bles et al.,
2019, 2020; see also NASEM, 2018). But for AI models, for
which uncertainties can be difficult to obtain, this is relatively
uncharted territory. A necessary first step will be to assess
whether findings to date about the communication of uncer-
tainty hold in the context of communicating uncertainties of
AI model outputs.

7 ADVANCING RESEARCH ON TRUST
IN AI

Summarizing, the workshop yielded recommendations per-
taining to four intersectional research foci that are important
to advance our understanding of the trust in and trustworthi-
ness of AI (Table 1). Note that context is a key consideration
within each research focus.

These four research foci echo prior calls for attention to
context and dynamics in trust research (e.g., Rousseau et al.,
1998). They also align with recommendations from NASEM
(2022a) but with greater emphasis on understanding the goals
and roles of AI users and stakeholders in dynamic, context-
specific trust processes, and on how interactions with AI and
communications about model performance and uncertainties
(e.g., XAI) might influence these.

The desire for a set of best practices that will engender trust
in AI is reflected in the many current efforts to develop stan-
dards for trustworthy AI. Developers want to know how to
design and validate systems that are more worthy of trust by
professionals or lay end users who are applying those mod-
els in their decision-making but also by potentially affected
communities. Ideally, developers would like to be able to
anticipate what will increase perceptions of trustworthiness.
AI modelers as well as some of the others attending the work-
shop came into the workshop with the supposition that the
trustworthiness of AI models in the environmental sciences
could be equated with high performance, reliability, reliance,
and confidence. In light of this together with the evidence
cited earlier that these are not the only determinants of trust-
worthiness and are contingent on, for example, contextual
factors, there is a need for additional research mapping out
how notions of performance, reliability, reliance, and confi-
dence correspond to, predict, or are distinct from trust and
trustworthiness.

Further, there is a need to move beyond “developing trust”
as the goal; developing toward a trust ideal can be a trap
(Hoffman et al., 2013) since trust is dynamic—an activity
that occurs over time—rather than a state. Similar to the
asymmetry of trust found in other risk contexts (Poortinga &
Pidgeon, 2004; Slovic, 1993), the limited research that exists
on trust in embedded AI finds a clear asymmetry in trust pro-
cesses: errors (i.e., low reliability) of embedded AI reduce
trust sharply, while restoring such lost trust is slow and dif-
ficult (Glikson & Woolley, 2020). Trust discussions include
numerous related objectives and outcomes of interest—such
as reliance, confidence, and use—that trust alone may not
predict. Additional research is needed to determine how trust
research agendas might be expanded to measure a broader
utility of AI.

Such efforts should build on earlier related efforts
(NASEM, 2018, 2021, 2022a, 2022b; NOAA SAB, 2021)
but will require deeper interdisciplinary interactions (Peek
& Guikema, 2021), including additional workshops and
interdisciplinary sessions at AI conferences, and confer-
ences focusing on risk, judgment and decision-making, and
communications, as well as on weather, climate, and other
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TABLE 1 Research recommendations to advance understanding of trust in and trustworthiness of artificial intelligence (AI).

Research focus Information needs Research questions

User-oriented development
and co-development

How to effectively exchange knowledge
between user groups and research teams
while balancing their respective needs and
demands, considering resource (time and
funds) limitations
How to ensure user-relevant AI models and
systems that yield actionable output

Which users and audiences, and their needs, should
developers consider across different decision contexts?
When should developers start interacting with users?
Practically, how often should developers and users
interact during the development process? This will
depend on the AI model or system being developed, but
specific guidance would be useful
What effects do differing ways to engage users (e.g.,
user-oriented development, participatory processes) have
on users’ trust in AI?

Understanding and measuring
trust and trustworthiness

Fuller theoretical understanding of the
relationship between trust and
trustworthiness, and among their
antecedents, moderators, and outcomes
Better measurements of how trust affects
evaluations of prior performance and is in
turn influenced by performance over time
Better measurements of the dynamics of
trust in AI and the contextual dependencies
of trust and trustworthiness

How do diverse decision-making strategies affect trust
judgments?
When and how does analytic thinking influence trust in
AI and AI use decisions?
What are the roles of heuristics in decision-making with
AI, including new heuristics that may be specific to AI?
How does trust relate to confidence, and how do these
concepts influence decision-making?
What factors influence users’ decisions to trust, rely on,
or use AI across different contexts?

Goal alignment, calibration,
and standard setting

Better understanding of the strengths and
limitations of trustworthiness standards for
AI

How do standards influence trust? Can deficits in trust
signpost how to improve standards for AI
trustworthiness?
Do trust and trustworthiness of AI have psychometric
properties not captured by standard AI performance
metrics?
How can we better align the goals of users and
developers, as well as of others influenced by the AI, in
order to better align the AI with users?

Integrating risk and
uncertainty communication
research with research on
trust in AI

Causal understanding of how social
relationships influence trust in contexts
where embedded AI is used
Frameworks for developing and testing
strategies for communicating uncertainties
of AI model outputs

Do findings about communication of uncertainty and its
effects on trust in information hold up in the context of
communicating uncertainties of AI model outputs?
What AI-specific types or sources of uncertainty could
be communicated, and how do these affect
trustworthiness and trust?

environmental sciences. This research agenda also requires
revisiting mechanisms for co-production, co-design, and
co-development of AI models of environmental processes,
including systematic research conducted by social and
behavioral scientists and engineers in HCD, but also new
ways of involving users and eliciting their feedback. Possi-
bilities include research-to-operations testbeds and similar
mechanisms, visitor exchange programs between developers
and users, and liaison programs, such as the satellite liaisons
program (Goodman et al., 2012; Satellite Liaisons, 2013).
These may require creating infrastructure for knowledge
transfer and cross-training across disciplines and domains
throughout all career stages and for involving actors through-
out all phases of the value-driven AI model production
cycle.

8 CONCLUSION AND SUMMARY

In early 2023, the public release of ChatGPT4 amplified
public debates about AI risks, with calls for immediate,
precautionary risk management to make AI systems more
“accurate, safe, interpretable, transparent, robust, aligned,

trustworthy, and loyal” (Future of Life Institute, 2023). Yet
what it means to manage AI risks and make AI systems
trustworthy remains far from obvious.

The understanding of trust in and trustworthiness of AI
has advanced on several fronts over the last few decades
(Hoffman, 2017; NASEM, 2022a; Vereschak et al., 2021).
Yet, the accelerating pace of progress on AI makes concerted
investments in convergent research on trust in AI urgent, if
applications and policies are to be informed by and benefit
from insights from the risk and social sciences.

We offer focused research recommendations to advance
the field, informed by recent progress in risk communi-
cation. These recommendations are grounded in specific
considerations of how to develop trustworthy AI for envi-
ronmental sciences. Our recommendations explicitly address
the engagement of both AI developers and those who use
and are affected by AI in this research across diverse deci-
sion contexts. To advance this research agenda will require
engaging a broader set of scientists, regulators, policymak-
ers, and users in research on trustworthy AI, dedicating more
of the resources being invested in AI to this convergent
research agenda and developing new research methods and
infrastructure to enable progress.
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