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The ultimate regularity of quantum mechanics creates a tension with the assumption
of classical chaos used in many of our pictures of chemical reaction dynamics.
Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov
exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford
have suggested a fundamental quantum bound for the rate of information scrambling,
which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we
use OTOCs to study model reactions based on a double-well reaction coordinate
coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling,
as one enters the tunneling regime where the reaction rate does not strongly depend
on temperature, the quantum Lyapunov exponent can approach the scrambling bound
and the effective reaction rate obtained from a population correlation function can
approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by
expanding the state space available to the system. The coupling of a dissipative con-
tinuum bath to the reaction coordinate reduces the scrambling rate obtained from the
early-time OTOC, thus making the scrambling bound harder to reach, in the same
way that friction is known to lower the temperature at which thermally activated
barrier crossing goes over to the low-temperature activationless tunneling regime.
Thus, chemical reactions entering the tunneling regime can be information scramblers
as powerful as the black holes to which the quantum Lyapunov exponent bound has
usually been applied.

path integral | quantum chaos | wavefunction | activation energy | black holes

Most discussions of chemical kinetics assume that quantum information about the reac-
tants is scrambled in the course of the reaction event. There are well-known exceptions
to this commonplace idea. In many gas-phase reactions involving small molecules, the
reaction cross-section depends on the specific initial vibrational excitation, not just the
total energy (1-4). Conversely, products are formed in specific excited states in chemical
lasers (5) and in bioluminescence (6). Whether quantum mechanical (QM) phase infor-
mation is crucial to the efficiency of photosynthesis remains a topic engendering debate
(7-12). These phenomena all require understanding and quantifying incomplete scram-
bling of quantum information by chemical reaction events.

The question of the extent of quantum information scrambling in chemical reactions
can be addressed using the out-of-time-order correlator (OTOC). OTOC:s provide a key
mathematical tool to quantify how quickly information is scrambled in quantum systems.
They have been employed in studies of black holes (13), many-body localized systems
(14), diatomic molecules (15), and most recently in studying quantum information scram-
bling in vibrating molecules (16) as well as in double-well-oscillator systems using approx-
imate quantum dynamics (17). The OTOC embodies the quantum analog of the Lyapunov
exponent employed to quantify the instability of chaotic classical dynamical systems (18).
The OTOC arises formally when we try to quantify the analogous instability to pertur-
bation in quantum mechanics by computing the expectation value of the square of a
commutator [A(0), B(t)]. This commutator in the classical limit would become a Poisson
bracket that measures how sensitively an observable B at time # depends on making an
initial change to A at time 0. The resulting square involves products of A4(0) and B(#) in
an order different from the usual one encountered in studying nonlinear responses of
quantum averages to perturbations where, once the operator product is written out explicitly,
the times follow each other sequentially. The OTOC gives an idea of how information
concerning A at an initial time determines the value of B at a later time in a quantum
system. In a classically chaotic system, the corresponding object, for a time, will grow
exponentially. This growth in quantum mechanics must stop once the wave packet starts
to sample the whole state space thoroughly at the resolution of the quantized levels. The
sum of the exponential growth rates (for a complete set of observables) provides the so-called
Kolmogorov-Sinai entropy (19, 20) or effective information spreading rate of an initial
packet of trajectories.
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Quantum mechanics suggests a thermodynamic bound on the
rate of information scrambling (21-27). In particular, Maldacena
etal. (21) argue that the scrambling rate for a system at temper-
ature 7 cannot exceed Ay, = 417k, T/, and we use their definition
here. As mentioned in our previous paper (16), the exact analog
to the classical Lyapunov exponent is '/,dIn(5)/dz, but here as well
as in ref. 16, we plot dln(s)/dt < Ay, as is customary in the quantum
scrambling community. The suggested bound has attracted much
interest in the theory of black holes whose size endows them with
a temperature (13) and in string theory (28). It also features in
the properties of “strange metals” (29). The bound is saturated for
black holes, which have been called out as being the most effective
possible information scramblers (30).

In this paper, we will explore quantum information scrambling
and reaction rates in simple models of a chemical reaction, where
a molecule passes over a potential barrier to form a product. To
approximate irreversible behavior, there must be additional vibra-
tional degrees of freedom into which the information can scram-
ble. In the model studied here, the calculations show that the rate
of scrambling decreases slightly as the temperature of the system
is lowered, while the reaction eventually switches from thermally
activated dynamics to a tunneling-dominated regime. Upon still
further cooling, the OTOC becomes oscillatory in small systems.
The onset of this quiescent regime, taking over from thermal acti-
vation, occurs when deep tunneling becomes the main mechanism
for the reaction. We study both of these regimes using basis set
wavefunction calculations and real-time path integral methods.

We will see that since the proposed bound for the quantum
scrambling rate decreases with decreasing temperature, it turns
out this bound can be nearly saturated by the scrambling rate in
the chemical reaction problem when the activation barrier and
temperatures are low enough, just as the tunneling regime is
entered upon cooling. In simple systems, tunneling dominates
when the unstable mode frequency at the barrier top exceeds &y 775
(31, 32). In such a case, the chemical reaction rate can approach
both the scrambling rate and Herzfeld’s limiting rate 4y = k3775
(33) if the barrier is sufficiently low.

Herzfeld’s limiting rate k3775 is, of course, quite familiar in
chemical physics, where it appears as the prefactor in transition
state theory (34). Transition state theory suggests that this limiting
reaction rate represents the maximum rate that can be found in
the presence of a very small barrier, when the barrier top is ther-
mally populated. Incidentally, 43774 had been identified years
before the development of modern quantum mechanics, let alone
transition state theory, by Herzfeld as the maximum rate of gaseous
atomic recombination (33).

Both the bound for the scrambling rate and Herzfeld’s limit for
the reaction rate ultimately can be traced back to the Heisenberg
uncertainty principle, which not only determines the size of the
smallest meaningful cell in phase space but also the interplay of
time and energy. When one approaches these quantum limits from
the classical regime, new phenomena inevitably occur. For exam-
ple, in electron transport in disordered materials, one reaches the
loffe-Regel limit when the mean free path of the electron comes
close to the electron thermal De Broglie wavelength (35, 36). In
this case, the electrons in disordered conductors begin to become
localized. As another example, at sufficiently low temperature, a
dilute gas of bosons stops being described at all by the classical
kinetic theory of randomly colliding individual particles and
becomes degenerate, undergoing Bose—Einstein condensation.
Bose condensation or Fermi degeneracy probably provides the
new physics in the atomic recombination example put forward
originally by Herzfeld. This phenomenon may have been observed
recently (37). Once in the strongly quantum regime, all these
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Fig. 1. Reaction model and reaction coordinate. (A) A sketch of the motif of
the proton transfer reaction model, illustrating the reaction coordinate g and
vibrational modes x; and x;. (B) The 1-D double-well potential used in this study
V(q) = aysech(q/q,) + o7,,,,(q/qw)4 along the reaction coordinate g and its
low-lying eigenstate energies. (a, = 3,420 cm™', g, = 0.175 A, a,, = 2,140 cm ™",
q,,=0.625 A; eigen-energies are 1,100 and 1,116 cm™" for the lowest tunneling
doublet, 2,363 and 2,501 cm™ for the next one, and 3,555 and 4,028 cm™ for
the states above the barrier top. For the reaction system, the 1-D double-well
potential is coupled to N, = 5 bath modes with mean frequency <w> = 202
cm™"). The bath modes are all coupled to one another by anharmonic couplings
typical of molecular bending or stretching resonances in organic systems. See
SI Appendix, Supplementary Material section A and Table S1 for details of the
parameters used in Figs. 2-6.

systems become more quiescent than the purely classical argu-
ments would have suggested and the quantum delocalized states
are less sensitive to local perturbations than the classical trajectories
would be.

Results and Discussion

lllustrative Results of Lyapunov Exponents and Reaction Rates.
In this section, for two illustrative examples, we compute the
quantum scrambling rate given by the Lyapunov exponents A,
obtained from the OTOCs and the effective reaction rates 4(7)
obtained from the Kubo-transformed population, or side-side
(38, 39), correlation function Cpp (which measures the time-
dependent correlation of the reactant well population, see
Methods). (31, 40-42) In our model, a molecule can pass over
(or through) a potential barrier along a reaction coordinate “4”,
such as an isomerization or proton transfer coordinate (Fig. 14),
to form a product (39, 40). The reaction coordinate is coupled
to five low-frequency vibrational (e.g., torsional) “bath” degrees
of freedom.

We shall see that tunneling expands the accessible state space
of the system, and that relatively low-frequency vibrations pro-
mote rapid growth of the OTOC early on, thus increasing scram-
bling even further than tunneling does on its own. As our first
example, the double-well potential along the reaction coordinate
is shown in Fig. 1B. We bilinearly couple it to IV, = 5 vibrational
bath degrees of freedom (see Methods and SI Appendix for param-

eters) with average bath mode frequency <w> ~ 202 cm’™, pical
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Fig. 2. Reaction rates and Lyapunov exponents for a proton transfer reaction
model with a modest barrier. (A) The computed reaction rate k(7) (blue data
points) at several different temperatures between 310 Kand 1,550 K, (vertical
axis on a logarithmic scale). The reaction rate in the thermal activation regime
obeys the Arrhenius law (red line) with an effective barrier height F=1,277
cm™'; (B) The largest quantum Lyapunov exponent A (black, Abath,1 @s defined in
the text) and the reaction rate k(7) (blue) as a function of reciprocal temperature
approaches, but remains below, the bound 4, = 4n2kBT/h (red curve). The rate
remains well below the Herzfeld limit k., = kg7/h (dashed red curve).

of low-frequency modes such as torsions, which we Couple anhar-
monically to each other with coupling strength V,, = V34", where
m is the quantum number difference between states, V3 =0.1 <w>
and 2 = 0.2 (see ref. 43 and Methods for details, SI Appendix,
Table S1 for full parameter list).

We computed the Kubo-transformed side-side correlation
function Cyp(2) (Methods), from which we extract the effective
reaction rate £(7) for this low-dimensional model at different
temperatures 7. Fig. 24 shows the reaction rate 4(7) on a loga-
rithmic vertical axis vs. f# = 1/ky 7. At high temperature, the rate
obeys the Arrhenius law £(7) = A ex| ( 1k T) with a fitted effec-
tive barrier height E= 1277 em™ Wthh is less than the total
classical barrier height. The small effective activation energy cor-
responds to the reaction occurring through the first excited dou-
blet of states seen in Fig. 1B. As the temperature is lowered, the
rate begins to level off.

To analyze the quantum scrambling in this multidimensional
model, we computed the thermally averaged quantum OTOC

2
matrix of the momenta and coordinates Lij(t) = < [xi(t), pj(O)] >,

from which we extracted the eigenvalues s(#) and quantum
Lyapunov exponents A; = dln(s;)/9z (see the Methods section and
ref. 16 for details). In Fig. 2B, we show the reaction rate #(7) and
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also the largest of the Lyapunov exponents A, ;(7) that reflects
the rate of scrambling in the bath modes (see SI Appendix,
Supplementary Material section B for details; in this case, the largest
Lyapunov exponent A corresponds to the bath coordinates). We
additionally display the quantum bound on information scram-
bling proposed by Maldacena, Shenker, and Stanford, 4,,(7). We
see that the scrambling rate A is significantly larger than the reac-
tion rate 4, and that the scrambling rate A(7) approaches 4(7)
at low temperature, while the reaction rate remains below the
Herzfeld limit 5 775. As will be discussed further in S7 Appendix,
Supplementary Material section C, A reflects all the scrambling
mechanisms, such as vibrational anharmonicity, while 4(7) pri-
marily depends on the barrier-crossing process via activated or
tunneling dynamics.

As a more extreme example, we computed results for a similar
6-D model with a narrower barrier (0.08 A) that promotes tun-
neling, along with a lower-frequency anharmonic bath that
reduces dissipation (Fig. 34). The reaction coordinate again is
coupled bilinearly to /V,;, = 5 bath modes with an average fre-

quency <w> =~ 40 cm™ typical of low-frequency modes in
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Fig.3. Lyapunov exponents and reaction rates for an isomerization or proton
transfer reaction with a low, narrow barrier and low-frequency bath. (A) The
double-well potential along the reaction coordinate q is coupled to N, = 5
bath modes with mean frequency <w> = 40 cm™", which corresponds to low-
frequency vibrational modes in proteins. The bath modes are coupled among
themselves by anharmonic couplings. See S/ Appendix, Supplementary Material
section A and Table S2, for details of the parameters used in Figs. 3 and 4.
(A) The double-well potential is V(q) = aysech®(q/qy) + aw(q/qw)4 along the
reaction coordinate g and its low-lying eigenstate energies are 639 and 702
cm™’ for the lowest tunnellng doublet, 1,795 and 2,016 cm™" for the next one
and 3,112 and 3,565 cm " for the states at the barrier top (a, = 3,420 cm™, q,,
=0.08 A, a,=2,140cm™, g,, = 0.625 A (B) Effective reaction rate k(T) from the
side-side correlation function (blue points) and Lyapunov exponent Ayu, 1(7)
(black points) at different temperatures from 62 Kto 310 K. For reference, we
also plot the quantum scrambling bound 4x°kgT/h (red curve) and Herzfeld
limiting rate kgT/h (dotted red curve). Below about 155 K, the correlation
function Cpp becomes oscillatory, so the rate becomes ill-defined (open circles).
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macromolecules such as proteins. The bath modes are still coupled
to each other via Fermi resonant couplings. Below 310 K, this
system is in the deep tunneling regime where >95% of the equi-
librium population can be found in the lowest tunneling doublet
(see SI Appendix, Table S2 for parameters).

In Fig. 3B, we show the effective reaction rate #(7) obtained
from the numerically computed side—side correlation function
Cpp(2). Strictly speaking, the correlation function (40-42) does
not unambiguously reach a plateau in this case (SI Appendix,
Fig. S1), owing to the small number of degrees of freedom. The
effective rate £(7) = 0.004 fs™' obtained in this way nevertheless
is approximately constant in the tunneling regime. The Eyring
expression for the rate of passage over the barrier classically at
T'=310 K, gives k= kyT1h exp[-E ke T] = 1.8 x 107 ns™!, which
is much smaller than the calculated rate. In Fig. 3B, we also show
the largest Lyapunov exponent characteristic of the bath modes
(see SI Appendix, Supplementary Material section B for discussion
of the full Lyapunov spectrum), along with the quantum bound
on scrambling. The reaction rate 4(7) now approaches the Herzfeld
limit. The reaction rate also approaches the largest bath Lyapunov
exponent Ay, (7), which therefore lies below the bound. At tem-
peratures below 62 K, the population correlation function Cpp
becomes oscillatory and thus an effective reaction rate can no
longer strictly be defined for this double well coupled to 5 bath

modes.

Effect of Temperature and Anharmonicity on the Lyapunov
Spectrum. For the same model as in Figs. 3 and 44 shows how
the anharmonic couplings between bath modes contribute to
quantum scrambling. We find that the eigenvector 7(z) of
the largest OTOC eigenvalue aligns well with the reaction
coordinate g, therefore, we denote this eigenvalue, which measures
scrambling along the reaction coordinate primarily, as 5,(z). The
remaining eigenvectors align well with the individual vibrational
bath modes so their eigenvalues are designated as s, (#), with
i =1 corresponding to the largest eigenvalue. If the anharmonic
coupling among bath modes is switched off, s, , initially remains
small, growing later as a result of coupling to the tunneling
system and indirect coupling to the other bath modes (44). As
the anharmonic couplings are increased, we see an earlier onset
of growth and a larger eigenvalue indicative of there being a
larger accessible state space. Recent work identified signatures of
chaotic dynamics in harmonic bath modes that couple strongly
to a system by means of indirect coupling through the reaction
coordinate (44). This scrambling of the bath modes makes it
possible to define an effective reaction rate 4(7) by fitting the
side-side correlation function (S Appendix, Fig. S1A), even
though the flux-side correlation function does not have a plateau
(SI Appendix, Fig. S1B). Such scrambling requires a sufficiently
high temperature; in our model, this happens at about 155 K.
SI Appendix;, Fig. S2 illustrates all the Lyapunov eigenvalues s, ;at
temperatures of 7'=31 Kand 7'= 465 K. At the lower temperature,
only s, shows a noticeable growth. In contrast, at the higher
temperature, all OTOC eigenvalues 5,4, ; show growth from which
a Lyapunov exponent can be fitted. ST Appendix, Fig. S3 shows
how the population correlation function Cpp, smooths out and
decays to 0.5 as 155 K is approached in the model of Fig. 3 and
SI Appendix, Fig. S4 illustrates how two initial conditions of the
simulation lead to thermalization of the bath mode energies.
For zero anharmonic couplings, Fig. 4B displays all the eigen-
values s5,(#) of the quantum thermal OTOC L. After the “bal-
listic time” 7,4, which is the time for the wave packet to sample a
well in the 1-D reaction coordinate (see blue trace in Fig. 4B), all
OTOC eigenvalues grow together by an order of magnitude before
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Fig. 4. The OTOC eigenvalues for the reaction in Fig. 3 (Model 2). (A) The
effect of anharmonic couplings on the bath OTOC eigenvalues sy, (i = 1,...,5)
(mostly along bath modes) at T= 155 K. We see the quantum scrambling rate
increases upon introducing the anharmonic couplings among the bath modes.
(B) The eigenvalues s, (eigenvector points mostly along the reaction coordinate)
and sy, (eigenvector points along a linear combination of bath modes) at
T=310 K. The OTOC eigenvalues s grow between the “ballistic time” 7,4 and
the “Ehrenfest time” z, and we fit them to an exponential model in that time
range to extract the Lyapunov exponents. (C) The slope of the eigenvalue s,
(which gives the Lyapunov exponent) from the quantum OTOC in panel (B)
in the presence of even a small N, = 5 bath (blue) matches the slope of the
classical 1-D result (black), in contrast to the 1-D quantum eigenvalue (red),
which oscillates.

leveling off. At the later “Ehrenfest time” 7, defined here as the
time when the quantum system reaches its maximum scrambling
consistent within the size of the accessible state space, the OTOC
eigenvalues start to level off.

To analyze how the bath modes affect scrambling along the
reaction coordinate ¢, we calculated the classical analog of s, for
1-D dynamics along the reaction coordinate by using the thermal

average L(r) = <|6q(t)/0q(0)|2> (ref. 16 and Methods). This

classical analog is calculated by averaging OTOC:s over 2,000 clas-
sical trajectories with initial thermal distribution at temperature
T (see Methods and SI Appendix, Supplementary Material section
B). In Fig. 4C, the 1-D classical (black) and 6-D quantum s, (blue)
have the same slope between 7,4 and 75, whereas the quantum
OTOC evaluated using only 1-D dynamics along the reaction
coordinate yields oscillatory behavior (red). Through coupling to
the small anharmonic bath, the quantum OTOC is allowed to
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Fig. 5. (A) The OTOC [x(¢), p(O)]2 in the 1-D potential from Fig. 34; (A) The
quantum OTOC (solid curves) and the classical OTOC (dashed curves) at
temperatures T = 620 K (blue) and 3,100 K (orange). (B) Computed thermal
Lyapunov exponent A(T) as a function of 1/T for the 1D double-well potentials
(black dots). For reference, we also plot the bound A, = 4n’k,T/h in red. See
SI Appendix, Supplementary Material section B for the fitting procedure.

grow such that the fitted quantum Lyapunov exponents are nearly
the same as those of its classical counterpart.

For the few-mode system that we studied in Figs. 3 and 4, we
see that coupling of the reaction coordinate to the five bath modes
allows the quantum OTOC to grow with a fitted Lyapunov expo-
nent A having a similar magnitude as the classical Lyapunov expo-
nent A, thereby restoring the quantum—classical correspondence
at all but the lowest temperatures, where tunneling allows
near-saturation of the bound (Fig. 3). This, however, is not the
only effect that coupling to bath modes can have on the OTOC.
We already surmised that the original rapid increase of the OTOC
is at least in part due to vibrational anharmonicity in the reactive
coordinate (Figs. 2 and 4C). We will examine this idea further by
considering as a limiting case the bare 1-D dynamics along the
reaction coordinate from Fig. 3. In Fig. 54, we compare the 1-D
QM and classical mechanical OTOC: for the bare 1-D potential
from Fig. 3A. At a temperature 7'= 3,100 K and time # < 12.5 fs,
before the quantum OTOC levels off, the quantum and classical
OTOCs grow at a similar rate, due mainly to 1-D anharmonicity
in the potential well because tunneling does not play a role in the
classical limit and at very early times. In Fig. 5B, the Lyapunov
exponent A = d(In(s))/0z calculated from the 1-D OTOC nearly
saturates the quantum scrambling bound as the temperature is
lowered (black points vs. red curve), until the OTOC becomes
oscillatory at low temperature and A can no longer be clearly
defined (gray area in Fig. 5B). This bound on the quantum scram-
bling rate in 1-D systems can be traced back to the Heisenberg
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uncertainty principle because it is not possible to scatter fully a
wave whose wavelength at low temperature exceeds the character-
istic length scale of the potential (23, 24). In SIAppendix,
Supplementary Material section C and Fig. S5, we illustrate this
point by studying how motions in different regions of the potential
surface along the reaction coordinate contribute to quantum
scrambling in the 1-D case.

The Damping Regime Due to a Continuum Bath. In a different
regime explored below, decoherence from baths with a wide
distribution of higher frequencies quenches OTOC growth,
thus damping the dynamics and restoring low scrambling rates,
leading ultimately to a stable state. This case is relevant when
strong coherences can be set up, as in the case of excitation energy
transfer in molecular dimers (45); in such a case, the motion
between the wells resembles spin relaxation in NMR spectroscopy.
To illustrate this regime, we studied a system having the quartic-
Eckart tunneling coordinate from Fig. 1B coupled to a continuum
bath of harmonic degrees of freedom with sufficient spectral
density at high frequencies relative to the tunneling splitting,
which is now set to 5 cm™, to significantly damp the reaction
coordinate (Methods). Continuous baths arise from the collective
motions of condensed phase and biological environments, and
their main effect on the reaction coordinate is to eventually lead
the reactant and product wells to equilibrium. In spite of their
simple form, harmonic bath models can often realistically capture
the effects of large environments (liquids and biological molecules)
whose interactions at the microscopic level may be complex and
strongly anharmonic (42, 46). Such behavior is a consequence of
the central limit theorem, which gives rise to Gaussian response.
Further, even in the absence of direct coupling between them, the
harmonic bath modes are able to exchange energy through indirect
coupling with the reaction coordinate (44).

Fig. 6 shows the results for such a continuum bath, obtained
by propagating the density matrix for the reaction coordinate
using the quasi-adiabatic propagator path integral (QuAPI) algo-
rithm (47, 48) (see SI Appendix, Table S3 for parameters).

In the absence of coupling to the bath, the OTOC for the
reaction coordinate (black curve, calculated by a wavefunction
approach as in Figs. 2-5) oscillates, much like the 1-D OTOC
shown in Fig. 4C. The slow oscillations (ca. 0.8 ps period) arise
from the tunneling doublet, while the superposed small-amplitude,

10
—— Nobath — ¢&=0.00646
8- — §=0.00323 — ¢ =0.00969
6-]
O
o
o 4
2-

0 500 1000 1500 2000 2500
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Fig. 6. Thermal OTOC at the temperature T = 620 K for a system-bath
Hamiltonian with a continuum harmonic bath. The system potential is shown
in Fig. 1B. The bath spectral density has the form J (o) = héw exp(-w/w,), with o,
=1,250 cm™" and & = 0.00323 to 0.00969. The thermal OTOC without the bath
(black curve) oscillates mainly due to tunneling, and is damped when coupled
with the bath (red, blue, and orange curve).
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high-frequency oscillations result from motion within each of the
two potential wells. When coupling to the harmonic bath is intro-
duced (colored curves), the slow tunneling oscillations of the
OTOC are gradually damped, while the high-frequency oscilla-
tions are only mildly affected. These effects are analogous to those
that govern the time evolution of the probability for a system
initially equilibrated within the reactant well. The oscillations are
gradually washed away in amplitude because the bath induces
dephasing (a “7,” effect) and because of energy loss from the
system into the continuum bath (a “77” effect). This classification
of behaviors is familiar from Redfield calculations, such as those
used for coherent reaction models of photosynthesis (49). Finally,
we observe that the 0.8 ps time period of tunneling oscillations is
slightly prolonged by the system—bath interactions. This is a typ-
ical signature of suppression of the system’s tunneling splitting by
high-frequency bath modes (50, 51).

Since the collective effect from an infinity of bath modes is
finite, each of the modes is weakly coupled to the reaction coor-
dinate. Recent work on a similar (nonadiabatic, rather than tun-
neling) model (44) showed that the quantum motion of bath
oscillators is “regular” in the weak coupling limit, i.e., similar to
that of classical systems that do not explore all of the phase space
available to them and which do not display a high sensitivity to
initial conditions. Thus, it is not surprising that such a bath does
not cause a rapid growth of the OTOC above the maximum value
attained through tunneling. In contrast, signatures of chaotic
motion were observed (44) in modes that are strongly coupled to
the system, indicative of exploration of a much larger state space
and consistent with the existence of Lyapunov exponents. Such
behavior is consistent with the rapid growth of the OTOC in
Fig. 4A in the case of five bath modes with sizable coupling to the
reaction coordinate, even when the anharmonic coupling among
the bath modes is set to zero.

Conclusions

Our calculations show that the reaction kinetics and quantum
information scrambling are indeed intimately related: Some degree
of scrambling is needed to establish even the basic phenomenology
of kinetics. Information flow rates and barrier crossing rates devi-
ate strongly from classical results when one enters a regime where
the quantum tunneling through the barrier, assisted by additional
low-frequency modes, starts to play a dominant role. As a function
of temperature, deviations begin to occur when the bound pro-
posed by Maldacena, Shenker, and Stanford for quantum scram-
bling is approached by the quantum Lyapunov exponent (Fig. 2).
The bound on the Lyapunov exponent is approached more closely
than the Herzfeld limit because the difficulty of barrier penetration
by tunneling prevents the rate from approaching the Herzfeld
limit in most cases. Nevertheless, reacting molecules having thin
or low barriers can be maximally effective information scramblers
whose quantum Lyapunov exponent nearly reaches the quantum
scrambling bound (Fig. 2). For these, the reaction rate can
approach the quantum Lyapunov exponent and the Herzfeld limit,
provided the barrier is thin (Fig. 3). Chemical reactions can scram-
ble information on a subpicosecond time scale, a rate which only
the smallest of black holes are likely to reach.

Here, we have analyzed several simple models of reactions with
isoenergetic reactants and products (e.g., isomerization, symmet-
ric proton transfer) using the tools of quantum Lyapunov expo-
nent analysis, accurate wavefunction calculations with a reaction
coordinate coupled to a few resonantly coupled modes, and
real-time path integral calculations for the case of a harmonic
continuum bath. A full phase diagram of scrambling and reaction
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rates for reactions with various degrees of exothermicity and cou-
plings that encompasses all limiting cases, such as in Figs. 2, 3,
and 6, remains to be constructed. We believe that the present
tools already can be applied to look at many specific molecular
systems, which may be accessed in the near future using spectro-
scopic methods (52).

Methods

Model Hamiltonian. The barrier-crossing process plays a central role in many
areas of physical science, from black holes absorbing particles to chemical reac-
tions absorbing a reactant. Here, we study a model quantum system that man-
ifests barrier crossing in a simple way-the 1-D double-well potential Vpy,. The
Hamiltonian can be expressed as H = p%/2m + Vy,(q), where

Vow(q) = aysech(q/q,) + aw(q/qw)4. (1]

The Eckart potential in the first term introduces a barrier with tunable height a,
and width g,, and the quartic potential in the second introduces an anharmonic
well with tunable width. g,, that allows a wavepacket to dephase (Fig. 14).

The OTOC of an isolated reaction coordinate can be studied using the 1-D
quantum system described above. To study the dynamics of polyatomic mole-
cules, additional modes can be included. The Hamiltonian for this system can
be expressed as

H=p2/2m 4 Vyy + Vi + V., + V,, [2a]
where
V, = Zp /2m+ mco 2, [2b]
q?
V.=") cgx, + —, [2¢]
; 4 mei2
and

= 3 TV (6)" 8" (2d)

The term V, describes the harmonic oscillators. V. is the bilinear coupling poten-
tial. V, is the anharmonic vibrational coupling operator. We truncated the anhar-
monic coupling constants V,, at 4th order. The m = {m}are integers that describe
the order of the anharmonic vibrational couplings, e.g., m¥ = 2andm> =1
describe a cubic resonance between modes 1 and 2. Here, we choose to include
only cubic coupling and quartic terms, by requiring the order of nonlinear cou-
plingm = Y. _(m* +m>) = 3ord.We use an average value of 10% of
the frequency (e.g., V; = 20 cm™" for a 200 cm™" mode), typical of molecular
anharmonicities of low-frequency vibrations. V, is 0.2 of V;, the average value
for small organic molecules (53).

We denote the coupling strength for oscillator i as c;, the coordinate along
the Eckart-quartic potential as g and the harmonic oscillator coordinates as
x;. For the model calculation here, the linear coupling strengths ¢; are set to
¢; = c+\/{w)w,.The frequencies of the five-mode bath are set proportional to
the frequencies of five normal modes of the bacteriochlorophyll molecule (54).
The bath modes can also couple to each other through an anharmonic coupling
V,, which facilitates scrambling between modes.

The continuous bath is described by a spectral density of the common Ohmic
form, where the spectral density is defined in general as

2
z G
J@)=73 Zma(w—w,). [3a]
And in our specific case, for an Ohmic bath, as
J(®) = héwe™/™:, (3b]
where & is a parameter that quantifies the system-bath coupling strength.
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Numerical Methods for OTOC Calculations. The regularized thermal OTOC
is given by

L9 (g, t) = —Te[[qt), ple "/ [q(t), pl e /Tr[e7]. (4]

For a system with a few degrees of freedom, the OTOC can be obtained either
by exact diagonalization of the Hamiltonian or by time-evolving an initial wave
packet. The method for computing the OTOC by exact diagonalization is straight-
forward and can be found in ref. 55.

The thermal average of the OTOC can be approximated by taking the expec-
tation values with respect to Haar random initial states using quantum typicality
(22,56-58).

_ SR (rlfq), ple P2 {qct), ple P2 r
T (rletHin) '

We generate the Haar random states by drawing each element of the wave
function It > from a Gaussian distribution. The error of this approximation can
be reduced by averaging over several initial Haar states. In practice, we find
thatthe average over R =5 random overall states gives reliable results (59). We
compute thermal OTOCs L"*¥(t) by propagating the time-dependent Schrédinger
equation forward and backward in time using the Chebyshev method (60).
0TOCs computed using the exact diagonalization and wave function method
agree with each other.

To analyze the scrambling in multidimensional models, we can compute

the quantum OTOC matrix Ly{t) = <[x,.(t), Pj]2> and classical OTOC matrix
L/.‘j(t) = <|ax,.(t)/axj )2> By diagonalizing T(t)and Tf(t), the time-dependent

19k (g, ) (5]

0TOC eigenvalues s{t) (or s¢(t)) and corresponding OTOC eigenvectors 7; (1) (or

V£ (t)) can be obtained. The eigenvalues s{t) characterize the scrambling
along directions given by OTOC eigenvectors ¥; (t). The Lyapunov exponent 4;
can be defined as A(t) = d(In(s,))/dt in the exponentially growing regime of s(t).
Note that here, we follow the convention in the literature to define the Lyapunov
exponent as the exponential growth rate of the OTOC eigenvalue or the square
of the classical sensitivity matrix. The Lyapunov exponent defined in this way
is two times of the Lyapunov exponent as often defined in classical dynamical
systems theory. This regime is short for small quantum systems, and we describe
ourfitting procedure in detail in S/ Appendix, Supplementary Material section B.
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0
where P'is the projection operator onto the reactant well, not to be confused with the
momentum operator p. In the system we studied here, the reactant population Cp(t)
exhibits effective rate behavior after an initial transient has died out. Cy(t) decays
according to the form Cop(t) = Gploo) + [Gopllexy) = Coploo)] exp(—k(t=t,y,)) (61), where
t.,, indicates the onset time of the exponential regime and ks the reaction rate. For
the symmetric double well, the system equilibrates at Cop(t — o) = 0.5. For the fast
reaction dynamics studied here, the lack of a clear separation of time scales between
transient dynamics and exponential decay time can cause the correlation function to
fail to display a plateau. In such cases, an effective rate k can still be obtained by fitting
to the function given above.
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