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Quantum information scrambling and chemical reactions
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The ultimate regularity of quantum mechanics creates a tension with the assumption 
of classical chaos used in many of our pictures of chemical reaction dynamics. 
Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov 
exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford 
have suggested a fundamental quantum bound for the rate of information scrambling, 
which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we 
use OTOCs to study model reactions based on a double-well reaction coordinate 
coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling, 
as one enters the tunneling regime where the reaction rate does not strongly depend 
on temperature, the quantum Lyapunov exponent can approach the scrambling bound 
and the effective reaction rate obtained from a population correlation function can 
approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by 
expanding the state space available to the system. The coupling of a dissipative con-
tinuum bath to the reaction coordinate reduces the scrambling rate obtained from the 
early-time OTOC, thus making the scrambling bound harder to reach, in the same 
way that friction is known to lower the temperature at which thermally activated 
barrier crossing goes over to the low-temperature activationless tunneling regime. 
Thus, chemical reactions entering the tunneling regime can be information scramblers 
as powerful as the black holes to which the quantum Lyapunov exponent bound has 
usually been applied.

path integral | quantum chaos | wavefunction | activation energy | black holes

Most discussions of chemical kinetics assume that quantum information about the reac-
tants is scrambled in the course of the reaction event. There are well-known exceptions 
to this commonplace idea. In many gas-phase reactions involving small molecules, the 
reaction cross-section depends on the specific initial vibrational excitation, not just the 
total energy (1–4). Conversely, products are formed in specific excited states in chemical 
lasers (5) and in bioluminescence (6). Whether quantum mechanical (QM) phase infor-
mation is crucial to the efficiency of photosynthesis remains a topic engendering debate 
(7–12). These phenomena all require understanding and quantifying incomplete scram-
bling of quantum information by chemical reaction events.

The question of the extent of quantum information scrambling in chemical reactions 
can be addressed using the out-of-time-order correlator (OTOC). OTOCs provide a key 
mathematical tool to quantify how quickly information is scrambled in quantum systems. 
They have been employed in studies of black holes (13), many-body localized systems 
(14), diatomic molecules (15), and most recently in studying quantum information scram-
bling in vibrating molecules (16) as well as in double-well-oscillator systems using approx-
imate quantum dynamics (17). The OTOC embodies the quantum analog of the Lyapunov 
exponent employed to quantify the instability of chaotic classical dynamical systems (18). 
The OTOC arises formally when we try to quantify the analogous instability to pertur-
bation in quantum mechanics by computing the expectation value of the square of a 
commutator [A(0), B(t)]. This commutator in the classical limit would become a Poisson 
bracket that measures how sensitively an observable B at time t depends on making an 
initial change to A at time 0. The resulting square involves products of A(0) and B(t) in 
an order different from the usual one encountered in studying nonlinear responses of 
quantum averages to perturbations where, once the operator product is written out explicitly, 
the times follow each other sequentially. The OTOC gives an idea of how information 
concerning A at an initial time determines the value of B at a later time in a quantum 
system. In a classically chaotic system, the corresponding object, for a time, will grow 
exponentially. This growth in quantum mechanics must stop once the wave packet starts 
to sample the whole state space thoroughly at the resolution of the quantized levels. The 
sum of the exponential growth rates (for a complete set of observables) provides the so-called 
Kolmogorov–Sinai entropy (19, 20) or effective information spreading rate of an initial 
packet of trajectories.
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Quantum mechanics suggests a thermodynamic bound on the 
rate of information scrambling (21–27). In particular, Maldacena 
et al. (21) argue that the scrambling rate for a system at temper-
ature T cannot exceed λM = 4π2kBT/h, and we use their definition 
here. As mentioned in our previous paper (16), the exact analog 
to the classical Lyapunov exponent is 1/2∂ln(s)/∂t, but here as well 
as in ref. 16, we plot ∂ln(s)/∂t ≤ λM, as is customary in the quantum 
scrambling community. The suggested bound has attracted much 
interest in the theory of black holes whose size endows them with 
a temperature (13) and in string theory (28). It also features in 
the properties of “strange metals” (29). The bound is saturated for 
black holes, which have been called out as being the most effective 
possible information scramblers (30).

In this paper, we will explore quantum information scrambling 
and reaction rates in simple models of a chemical reaction, where 
a molecule passes over a potential barrier to form a product. To 
approximate irreversible behavior, there must be additional vibra-
tional degrees of freedom into which the information can scram-
ble. In the model studied here, the calculations show that the rate 
of scrambling decreases slightly as the temperature of the system 
is lowered, while the reaction eventually switches from thermally 
activated dynamics to a tunneling-dominated regime. Upon still 
further cooling, the OTOC becomes oscillatory in small systems. 
The onset of this quiescent regime, taking over from thermal acti-
vation, occurs when deep tunneling becomes the main mechanism 
for the reaction. We study both of these regimes using basis set 
wavefunction calculations and real-time path integral methods.

We will see that since the proposed bound for the quantum 
scrambling rate decreases with decreasing temperature, it turns 
out this bound can be nearly saturated by the scrambling rate in 
the chemical reaction problem when the activation barrier and 
temperatures are low enough, just as the tunneling regime is 
entered upon cooling. In simple systems, tunneling dominates 
when the unstable mode frequency at the barrier top exceeds kBT/h 
(31, 32). In such a case, the chemical reaction rate can approach 
both the scrambling rate and Herzfeld’s limiting rate kH = kBT/h 
(33) if the barrier is sufficiently low.

Herzfeld’s limiting rate kBT/h is, of course, quite familiar in 
chemical physics, where it appears as the prefactor in transition 
state theory (34). Transition state theory suggests that this limiting 
reaction rate represents the maximum rate that can be found in 
the presence of a very small barrier, when the barrier top is ther-
mally populated. Incidentally, kBT/h had been identified years 
before the development of modern quantum mechanics, let alone 
transition state theory, by Herzfeld as the maximum rate of gaseous 
atomic recombination (33).

Both the bound for the scrambling rate and Herzfeld’s limit for 
the reaction rate ultimately can be traced back to the Heisenberg 
uncertainty principle, which not only determines the size of the 
smallest meaningful cell in phase space but also the interplay of 
time and energy. When one approaches these quantum limits from 
the classical regime, new phenomena inevitably occur. For exam-
ple, in electron transport in disordered materials, one reaches the 
Ioffe–Regel limit when the mean free path of the electron comes 
close to the electron thermal De Broglie wavelength (35, 36). In 
this case, the electrons in disordered conductors begin to become 
localized. As another example, at sufficiently low temperature, a 
dilute gas of bosons stops being described at all by the classical 
kinetic theory of randomly colliding individual particles and 
becomes degenerate, undergoing Bose–Einstein condensation. 
Bose condensation or Fermi degeneracy probably provides the 
new physics in the atomic recombination example put forward 
originally by Herzfeld. This phenomenon may have been observed 
recently (37). Once in the strongly quantum regime, all these 

systems become more quiescent than the purely classical argu-
ments would have suggested and the quantum delocalized states 
are less sensitive to local perturbations than the classical trajectories 
would be.

Results and Discussion

Illustrative Results of Lyapunov Exponents and Reaction Rates. 
In this section, for two illustrative examples, we compute the 
quantum scrambling rate given by the Lyapunov exponents λi 
obtained from the OTOCs and the effective reaction rates k(T) 
obtained from the Kubo-transformed population, or side–side 
(38, 39), correlation function CPP (which measures the time-
dependent correlation of the reactant well population, see 
Methods). (31, 40–42) In our model, a molecule can pass over 
(or through) a potential barrier along a reaction coordinate “q”, 
such as an isomerization or proton transfer coordinate (Fig. 1A), 
to form a product (39, 40). The reaction coordinate is coupled 
to five low-frequency vibrational (e.g., torsional) “bath” degrees 
of freedom.

We shall see that tunneling expands the accessible state space 
of the system, and that relatively low-frequency vibrations pro-
mote rapid growth of the OTOC early on, thus increasing scram-
bling even further than tunneling does on its own. As our first 
example, the double-well potential along the reaction coordinate 
is shown in Fig. 1B. We bilinearly couple it to Nbath = 5 vibrational 
bath degrees of freedom (see Methods and SI Appendix for param-
eters) with average bath mode frequency <ω> ≈ 202 cm−1, typical 

Fig. 1.   Reaction model and reaction coordinate. (A) A sketch of the motif of 
the proton transfer reaction model, illustrating the reaction coordinate q and 
vibrational modes xi and xj. (B) The 1-D double-well potential used in this study 
V
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4   along the reaction coordinate q and its 
low-lying eigenstate energies. (ab = 3,420 cm−1, qb = 0.175 Å, aw = 2,140 cm−1, 
qw = 0.625 Å; eigen-energies are 1,100 and 1,116 cm−1 for the lowest tunneling 
doublet, 2,363 and 2,501 cm−1 for the next one, and 3,555 and 4,028 cm−1 for 
the states above the barrier top. For the reaction system, the 1-D double-well 
potential is coupled to Nb = 5 bath modes with mean frequency <ω> ≈ 202 
cm−1). The bath modes are all coupled to one another by anharmonic couplings 
typical of molecular bending or stretching resonances in organic systems. See 
SI Appendix, Supplementary Material section A and Table S1 for details of the 
parameters used in Figs. 2–6.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

"R
IC

E 
U

N
IV

ER
SI

TY
, F

O
N

D
R

EN
 L

IB
R

A
R

Y
/M

S 
23

5"
 o

n 
Ju

ne
 6

, 2
02

4 
fr

om
 IP

 a
dd

re
ss

 1
68

.5
.3

1.
96

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2321668121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2321668121#supplementary-materials


PNAS  2024  Vol. 121  No. 15  e2321668121� https://doi.org/10.1073/pnas.2321668121   3 of 8

of low-frequency modes such as torsions, which we couple anhar-
monically to each other with coupling strength Vm = V3a

m-3, where 
m is the quantum number difference between states, V3 = 0.1 <ω> 
and a = 0.2 (see ref. 43 and Methods for details, SI Appendix, 
Table S1 for full parameter list).

We computed the Kubo-transformed side–side correlation 
function CPP(t) (Methods), from which we extract the effective 
reaction rate k(T) for this low-dimensional model at different 
temperatures T. Fig. 2A shows the reaction rate k(T) on a loga-
rithmic vertical axis vs. β = 1/kBT. At high temperature, the rate 
obeys the Arrhenius law k(T) = A exp(−E‡/kBT) with a fitted effec-
tive barrier height E‡= 1,277 cm−1 which is less than the total 
classical barrier height. The small effective activation energy cor-
responds to the reaction occurring through the first excited dou-
blet of states seen in Fig. 1B. As the temperature is lowered, the 
rate begins to level off.

To analyze the quantum scrambling in this multidimensional 
model, we computed the thermally averaged quantum OTOC 

matrix of the momenta and coordinates Lij(t) = 
⟨

[

xi(t ), pj(0)
]2
⟩

   , 

from which we extracted the eigenvalues si(t) and quantum 
Lyapunov exponents λi = ∂ln(si)/∂t (see the Methods section and 
ref. 16 for details). In Fig. 2B, we show the reaction rate k(T) and 

also the largest of the Lyapunov exponents λbath,1(T) that reflects 
the rate of scrambling in the bath modes (see SI Appendix, 
Supplementary Material section B for details; in this case, the largest 
Lyapunov exponent λ corresponds to the bath coordinates). We 
additionally display the quantum bound on information scram-
bling proposed by Maldacena, Shenker, and Stanford, λM(T). We 
see that the scrambling rate λ is significantly larger than the reac-
tion rate k, and that the scrambling rate λ(T) approaches λM(T) 
at low temperature, while the reaction rate remains below the 
Herzfeld limit kBT/h. As will be discussed further in SI Appendix, 
Supplementary Material section C, λ reflects all the scrambling 
mechanisms, such as vibrational anharmonicity, while k(T) pri-
marily depends on the barrier-crossing process via activated or 
tunneling dynamics.

As a more extreme example, we computed results for a similar 
6-D model with a narrower barrier (0.08 Å) that promotes tun-
neling, along with a lower-frequency anharmonic bath that 
reduces dissipation (Fig. 3A). The reaction coordinate again is 
coupled bilinearly to Nbath = 5 bath modes with an average fre-
quency <ω> ≈ 40 cm−1 typical of low-frequency modes in 

Fig. 2.   Reaction rates and Lyapunov exponents for a proton transfer reaction 
model with a modest barrier. (A) The computed reaction rate k(T) (blue data 
points) at several different temperatures between 310 K and 1,550 K, (vertical 
axis on a logarithmic scale). The reaction rate in the thermal activation regime 
obeys the Arrhenius law (red line) with an effective barrier height E‡ = 1,277 
cm−1; (B) The largest quantum Lyapunov exponent λ (black, λbath,1 as defined in 
the text) and the reaction rate k(T) (blue) as a function of reciprocal temperature 
approaches, but remains below, the bound λM = 4π2kBT/h (red curve). The rate 
remains well below the Herzfeld limit kH = kBT/h (dashed red curve).

Fig. 3.   Lyapunov exponents and reaction rates for an isomerization or proton 
transfer reaction with a low, narrow barrier and low-frequency bath. (A) The 
double-well potential along the reaction coordinate q is coupled to Nb = 5 
bath modes with mean frequency <ω> = 40 cm−1, which corresponds to low-
frequency vibrational modes in proteins. The bath modes are coupled among 
themselves by anharmonic couplings. See SI Appendix, Supplementary Material 
section A and Table S2, for details of the parameters used in Figs. 3 and 4. 
(A) The double-well potential is V
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4   along the 
reaction coordinate q and its low-lying eigenstate energies are 639 and 702 
cm−1 for the lowest tunneling doublet, 1,795 and 2,016 cm−1 for the next one, 
and 3,112 and 3,565 cm−1 for the states at the barrier top (ab = 3,420 cm−1, qb 
= 0.08 Å, aw = 2,140 cm−1, qw = 0.625 Å (B) Effective reaction rate k(T) from the 
side–side correlation function (blue points) and Lyapunov exponent λbath,1(T) 
(black points) at different temperatures from 62 K to 310 K. For reference, we 
also plot the quantum scrambling bound 4π2kBT/h (red curve) and Herzfeld 
limiting rate kBT/h (dotted red curve). Below about 155 K, the correlation 
function CPP becomes oscillatory, so the rate becomes ill-defined (open circles).D
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macromolecules such as proteins. The bath modes are still coupled 
to each other via Fermi resonant couplings. Below 310 K, this 
system is in the deep tunneling regime where >95% of the equi-
librium population can be found in the lowest tunneling doublet 
(see SI Appendix, Table S2 for parameters).

In Fig. 3B, we show the effective reaction rate k(T) obtained 
from the numerically computed side–side correlation function 
CPP(t). Strictly speaking, the correlation function (40–42) does 
not unambiguously reach a plateau in this case (SI Appendix, 
Fig. S1), owing to the small number of degrees of freedom. The 
effective rate k(T) ≈ 0.004 fs−1 obtained in this way nevertheless 
is approximately constant in the tunneling regime. The Eyring 
expression for the rate of passage over the barrier classically at 
T = 310 K, gives k ≈ kBT/h exp[−E‡/kBT] = 1.8 × 10−3 ns−1, which 
is much smaller than the calculated rate. In Fig. 3B, we also show 
the largest Lyapunov exponent characteristic of the bath modes 
(see SI Appendix, Supplementary Material section B for discussion 
of the full Lyapunov spectrum), along with the quantum bound 
on scrambling. The reaction rate k(T) now approaches the Herzfeld 
limit. The reaction rate also approaches the largest bath Lyapunov 
exponent λbath,1(T), which therefore lies below the bound. At tem-
peratures below 62 K, the population correlation function CPP 
becomes oscillatory and thus an effective reaction rate can no 
longer strictly be defined for this double well coupled to 5 bath 
modes.

Effect of Temperature and Anharmonicity on the Lyapunov 
Spectrum. For the same model as in Figs. 3 and 4A shows how 
the anharmonic couplings between bath modes contribute to 
quantum scrambling. We find that the eigenvector �⃗v 0(t )   of 
the largest OTOC eigenvalue aligns well with the reaction 
coordinate q, therefore, we denote this eigenvalue, which measures 
scrambling along the reaction coordinate primarily, as sr(t). The 
remaining eigenvectors align well with the individual vibrational 
bath modes so their eigenvalues are designated as sbath,i(t), with 
i = 1 corresponding to the largest eigenvalue. If the anharmonic 
coupling among bath modes is switched off, sbath,1 initially remains 
small, growing later as a result of coupling to the tunneling 
system and indirect coupling to the other bath modes (44). As 
the anharmonic couplings are increased, we see an earlier onset 
of growth and a larger eigenvalue indicative of there being a 
larger accessible state space. Recent work identified signatures of 
chaotic dynamics in harmonic bath modes that couple strongly 
to a system by means of indirect coupling through the reaction 
coordinate (44). This scrambling of the bath modes makes it 
possible to define an effective reaction rate k(T) by fitting the 
side–side correlation function (SI  Appendix, Fig.  S1A), even 
though the flux-side correlation function does not have a plateau 
(SI Appendix, Fig. S1B). Such scrambling requires a sufficiently 
high temperature; in our model, this happens at about 155 K. 
SI Appendix, Fig. S2 illustrates all the Lyapunov eigenvalues sbath,I at 
temperatures of T = 31 K and T = 465 K. At the lower temperature, 
only sbath,1 shows a noticeable growth. In contrast, at the higher 
temperature, all OTOC eigenvalues sbath,i show growth from which 
a Lyapunov exponent can be fitted. SI Appendix, Fig. S3 shows 
how the population correlation function CPP smooths out and 
decays to 0.5 as 155 K is approached in the model of Fig. 3 and 
SI Appendix, Fig. S4 illustrates how two initial conditions of the 
simulation lead to thermalization of the bath mode energies.

For zero anharmonic couplings, Fig. 4B displays all the eigen-
values si(t) of the quantum thermal OTOC Lij(t). After the “bal-
listic time” τ1d, which is the time for the wave packet to sample a 
well in the 1-D reaction coordinate (see blue trace in Fig. 4B), all 
OTOC eigenvalues grow together by an order of magnitude before 

leveling off. At the later “Ehrenfest time” τE, defined here as the 
time when the quantum system reaches its maximum scrambling 
consistent within the size of the accessible state space, the OTOC 
eigenvalues start to level off.

To analyze how the bath modes affect scrambling along the 
reaction coordinate q, we calculated the classical analog of sr for 
1-D dynamics along the reaction coordinate by using the thermal 
average Lc (t ) =

⟨

|

|

�q(t )∕�q(0)|
|

2
⟩

   (ref. 16 and Methods). This 
classical analog is calculated by averaging OTOCs over 2,000 clas-
sical trajectories with initial thermal distribution at temperature 
T (see Methods and SI Appendix, Supplementary Material section 
B). In Fig. 4C, the 1-D classical (black) and 6-D quantum sr (blue) 
have the same slope between τ1d and τE, whereas the quantum 
OTOC evaluated using only 1-D dynamics along the reaction 
coordinate yields oscillatory behavior (red). Through coupling to 
the small anharmonic bath, the quantum OTOC is allowed to 

Fig.  4.   The OTOC eigenvalues for the reaction in Fig. 3 (Model 2). (A) The 
effect of anharmonic couplings on the bath OTOC eigenvalues sbath,i (i = 1,…,5) 
(mostly along bath modes) at T = 155 K. We see the quantum scrambling rate 
increases upon introducing the anharmonic couplings among the bath modes. 
(B) The eigenvalues sr (eigenvector points mostly along the reaction coordinate) 
and sbath,i (eigenvector points along a linear combination of bath modes) at 
T = 310 K. The OTOC eigenvalues s grow between the “ballistic time” �

1d
 and 

the “Ehrenfest time” �
E
 , and we fit them to an exponential model in that time 

range to extract the Lyapunov exponents. (C) The slope of the eigenvalue sr 
(which gives the Lyapunov exponent) from the quantum OTOC in panel (B) 
in the presence of even a small Nbath = 5 bath (blue) matches the slope of the 
classical 1-D result (black), in contrast to the 1-D quantum eigenvalue (red), 
which oscillates.
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grow such that the fitted quantum Lyapunov exponents are nearly 
the same as those of its classical counterpart.

For the few-mode system that we studied in Figs. 3 and 4, we 
see that coupling of the reaction coordinate to the five bath modes 
allows the quantum OTOC to grow with a fitted Lyapunov expo-
nent λ having a similar magnitude as the classical Lyapunov expo-
nent λC, thereby restoring the quantum–classical correspondence 
at all but the lowest temperatures, where tunneling allows 
near-saturation of the bound (Fig. 3). This, however, is not the 
only effect that coupling to bath modes can have on the OTOC. 
We already surmised that the original rapid increase of the OTOC 
is at least in part due to vibrational anharmonicity in the reactive 
coordinate (Figs. 2 and 4C). We will examine this idea further by 
considering as a limiting case the bare 1-D dynamics along the 
reaction coordinate from Fig. 3. In Fig. 5A, we compare the 1-D 
QM and classical mechanical OTOCs for the bare 1-D potential 
from Fig. 3A. At a temperature T = 3,100 K and time t < 12.5 fs, 
before the quantum OTOC levels off, the quantum and classical 
OTOCs grow at a similar rate, due mainly to 1-D anharmonicity 
in the potential well because tunneling does not play a role in the 
classical limit and at very early times. In Fig. 5B, the Lyapunov 
exponent λ = ∂(ln(s))/∂t calculated from the 1-D OTOC nearly 
saturates the quantum scrambling bound as the temperature is 
lowered (black points vs. red curve), until the OTOC becomes 
oscillatory at low temperature and λ can no longer be clearly 
defined (gray area in Fig. 5B). This bound on the quantum scram-
bling rate in 1-D systems can be traced back to the Heisenberg 

uncertainty principle because it is not possible to scatter fully a 
wave whose wavelength at low temperature exceeds the character-
istic length scale of the potential (23, 24). In SI Appendix, 
Supplementary Material section C and Fig. S5, we illustrate this 
point by studying how motions in different regions of the potential 
surface along the reaction coordinate contribute to quantum 
scrambling in the 1-D case.

The Damping Regime Due to a Continuum Bath. In a different 
regime explored below, decoherence from baths with a wide 
distribution of higher frequencies quenches OTOC growth, 
thus damping the dynamics and restoring low scrambling rates, 
leading ultimately to a stable state. This case is relevant when 
strong coherences can be set up, as in the case of excitation energy 
transfer in molecular dimers (45); in such a case, the motion 
between the wells resembles spin relaxation in NMR spectroscopy. 
To illustrate this regime, we studied a system having the quartic-
Eckart tunneling coordinate from Fig. 1B coupled to a continuum 
bath of harmonic degrees of freedom with sufficient spectral 
density at high frequencies relative to the tunneling splitting, 
which is now set to 5 cm−1, to significantly damp the reaction 
coordinate (Methods). Continuous baths arise from the collective 
motions of condensed phase and biological environments, and 
their main effect on the reaction coordinate is to eventually lead 
the reactant and product wells to equilibrium. In spite of their 
simple form, harmonic bath models can often realistically capture 
the effects of large environments (liquids and biological molecules) 
whose interactions at the microscopic level may be complex and 
strongly anharmonic (42, 46). Such behavior is a consequence of 
the central limit theorem, which gives rise to Gaussian response. 
Further, even in the absence of direct coupling between them, the 
harmonic bath modes are able to exchange energy through indirect 
coupling with the reaction coordinate (44).

Fig. 6 shows the results for such a continuum bath, obtained 
by propagating the density matrix for the reaction coordinate 
using the quasi-adiabatic propagator path integral (QuAPI) algo-
rithm (47, 48) (see SI Appendix, Table S3 for parameters).

In the absence of coupling to the bath, the OTOC for the 
reaction coordinate (black curve, calculated by a wavefunction 
approach as in Figs. 2–5) oscillates, much like the 1-D OTOC 
shown in Fig. 4C. The slow oscillations (ca. 0.8 ps period) arise 
from the tunneling doublet, while the superposed small-amplitude, 

Fig.  5.   (A) The OTOC [x(t), p(0)]2 in the 1-D potential from Fig.  3A; (A) The 
quantum OTOC (solid curves) and the classical OTOC (dashed curves) at 
temperatures T = 620 K (blue) and 3,100 K (orange). (B) Computed thermal 
Lyapunov exponent λ(T) as a function of 1/T for the 1D double-well potentials 
(black dots). For reference, we also plot the bound λM = 4π2kBT/h in red. See 
SI Appendix, Supplementary Material section B for the fitting procedure.

Fig.  6.   Thermal OTOC at the temperature T = 620 K for a system–bath 
Hamiltonian with a continuum harmonic bath. The system potential is shown 
in Fig. 1B. The bath spectral density has the form J (ω) = hξω exp(−ω/ωc), with ωc 
= 1,250 cm−1 and ξ = 0.00323 to 0.00969. The thermal OTOC without the bath 
(black curve) oscillates mainly due to tunneling, and is damped when coupled 
with the bath (red, blue, and orange curve).
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high-frequency oscillations result from motion within each of the 
two potential wells. When coupling to the harmonic bath is intro-
duced (colored curves), the slow tunneling oscillations of the 
OTOC are gradually damped, while the high-frequency oscilla-
tions are only mildly affected. These effects are analogous to those 
that govern the time evolution of the probability for a system 
initially equilibrated within the reactant well. The oscillations are 
gradually washed away in amplitude because the bath induces 
dephasing (a “T2” effect) and because of energy loss from the 
system into the continuum bath (a “T1” effect). This classification 
of behaviors is familiar from Redfield calculations, such as those 
used for coherent reaction models of photosynthesis (49). Finally, 
we observe that the 0.8 ps time period of tunneling oscillations is 
slightly prolonged by the system–bath interactions. This is a typ-
ical signature of suppression of the system’s tunneling splitting by 
high-frequency bath modes (50, 51).

Since the collective effect from an infinity of bath modes is 
finite, each of the modes is weakly coupled to the reaction coor-
dinate. Recent work on a similar (nonadiabatic, rather than tun-
neling) model (44) showed that the quantum motion of bath 
oscillators is “regular” in the weak coupling limit, i.e., similar to 
that of classical systems that do not explore all of the phase space 
available to them and which do not display a high sensitivity to 
initial conditions. Thus, it is not surprising that such a bath does 
not cause a rapid growth of the OTOC above the maximum value 
attained through tunneling. In contrast, signatures of chaotic 
motion were observed (44) in modes that are strongly coupled to 
the system, indicative of exploration of a much larger state space 
and consistent with the existence of Lyapunov exponents. Such 
behavior is consistent with the rapid growth of the OTOC in 
Fig. 4A in the case of five bath modes with sizable coupling to the 
reaction coordinate, even when the anharmonic coupling among 
the bath modes is set to zero.

Conclusions

Our calculations show that the reaction kinetics and quantum 
information scrambling are indeed intimately related: Some degree 
of scrambling is needed to establish even the basic phenomenology 
of kinetics. Information flow rates and barrier crossing rates devi-
ate strongly from classical results when one enters a regime where 
the quantum tunneling through the barrier, assisted by additional 
low-frequency modes, starts to play a dominant role. As a function 
of temperature, deviations begin to occur when the bound pro-
posed by Maldacena, Shenker, and Stanford for quantum scram-
bling is approached by the quantum Lyapunov exponent (Fig. 2). 
The bound on the Lyapunov exponent is approached more closely 
than the Herzfeld limit because the difficulty of barrier penetration 
by tunneling prevents the rate from approaching the Herzfeld 
limit in most cases. Nevertheless, reacting molecules having thin 
or low barriers can be maximally effective information scramblers 
whose quantum Lyapunov exponent nearly reaches the quantum 
scrambling bound (Fig. 2). For these, the reaction rate can 
approach the quantum Lyapunov exponent and the Herzfeld limit, 
provided the barrier is thin (Fig. 3). Chemical reactions can scram-
ble information on a subpicosecond time scale, a rate which only 
the smallest of black holes are likely to reach.

Here, we have analyzed several simple models of reactions with 
isoenergetic reactants and products (e.g., isomerization, symmet-
ric proton transfer) using the tools of quantum Lyapunov expo-
nent analysis, accurate wavefunction calculations with a reaction 
coordinate coupled to a few resonantly coupled modes, and 
real-time path integral calculations for the case of a harmonic 
continuum bath. A full phase diagram of scrambling and reaction 

rates for reactions with various degrees of exothermicity and cou-
plings that encompasses all limiting cases, such as in Figs. 2, 3, 
and 6, remains to be constructed. We believe that the present 
tools already can be applied to look at many specific molecular 
systems, which may be accessed in the near future using spectro-
scopic methods (52).

Methods

Model Hamiltonian. The barrier-crossing process plays a central role in many 
areas of physical science, from black holes absorbing particles to chemical reac-
tions absorbing a reactant. Here, we study a model quantum system that man-
ifests barrier crossing in a simple way—the 1-D double-well potential VDW. The 
Hamiltonian can be expressed as H = p2/2m + VDW(q), where

	 [1]

The Eckart potential in the first term introduces a barrier with tunable height ab 
and width qb, and the quartic potential in the second introduces an anharmonic 
well with tunable width. qw that allows a wavepacket to dephase (Fig. 1A).

The OTOC of an isolated reaction coordinate can be studied using the 1-D 
quantum system described above. To study the dynamics of polyatomic mole-
cules, additional modes can be included. The Hamiltonian for this system can 
be expressed as

	 [2a]

where

	 [2b]

	 [2c]

and

	 [2d]

The term VH describes the harmonic oscillators. Vc is the bilinear coupling poten-
tial. Va is the anharmonic vibrational coupling operator. We truncated the anhar-
monic coupling constants Vm at 4th order. The m = {mα} are integers that describe 
the order of the anharmonic vibrational couplings, e.g., m+

1
= 2   and m−

2
= 1   

describe a cubic resonance between modes 1 and 2. Here, we choose to include 
only cubic coupling and quartic terms, by requiring the order of nonlinear cou-
pling m =

∑

�

�

m+
�
+ m−

�

�

= 3 or 4   . We use an average value of 10% of 
the frequency (e.g., V3 = 20 cm−1 for a 200 cm−1 mode), typical of molecular 
anharmonicities of low-frequency vibrations. V4 is 0.2 of V3, the average value 
for small organic molecules (53).

We denote the coupling strength for oscillator i as ci   , the coordinate along 
the Eckart-quartic potential as q and the harmonic oscillator coordinates as 
xi   . For the model calculation here, the linear coupling strengths ci   are set to 
ci = c

√

⟨�⟩�i
   . The frequencies of the five-mode bath are set proportional to 

the frequencies of five normal modes of the bacteriochlorophyll molecule (54). 
The bath modes can also couple to each other through an anharmonic coupling 
Va, which facilitates scrambling between modes.

The continuous bath is described by a spectral density of the common Ohmic 
form, where the spectral density is defined in general as

	 [3a]

And in our specific case, for an Ohmic bath, as

	 [3b]

where ξ is a parameter that quantifies the system–bath coupling strength.

VDW
(

q
)

= absech
2(
q∕qb

)

+ aw
(

q∕qw
)4
.

H = p2∕2m + VDW + VH + Vc + Va,

VH =
∑

i= 1

p2
i
∕2m +

1

2
m�2

i
x2
i
,

Vc =
∑

i= 1

ciqxi +
c2
i
q2

2m�2
i

,

Va =
∑

m

∏

i

Vm
(

b†
i

)m+
i b

m−
i

i
.

J(�) =
�

2

∑

i

c2
i

mi�i

�
(

� − �i

)

.

J(�) = h��e−�∕�c ,
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Numerical Methods for OTOC Calculations. The regularized thermal OTOC 
is given by

	 [4]

For a system with a few degrees of freedom, the OTOC can be obtained either 
by exact diagonalization of the Hamiltonian or by time-evolving an initial wave 
packet. The method for computing the OTOC by exact diagonalization is straight-
forward and can be found in ref. 55.

The thermal average of the OTOC can be approximated by taking the expec-
tation values with respect to Haar random initial states using quantum typicality 
(22, 56–58).

	 [5]

We generate the Haar random states by drawing each element of the wave 
function |r > from a Gaussian distribution. The error of this approximation can 
be reduced by averaging over several initial Haar states. In practice, we find 
that the average over R = 5 random overall states gives reliable results (59). We 
compute thermal OTOCs Lreg(t) by propagating the time-dependent Schrödinger 
equation forward and backward in time using the Chebyshev method (60). 
OTOCs computed using the exact diagonalization and wave function method 
agree with each other.

To analyze the scrambling in multidimensional models, we can compute 
the quantum OTOC matrix Lij (t) =

⟨

[

xi(t), pj
]2
⟩

 and classical OTOC matrix 

Lc
ij
(t) =

⟨

|

|

|

�xi(t)∕�xj
|

|

|

2
⟩

 . By diagonalizing ̂L(t) and ̂Lc(t) , the time-dependent  

OTOC eigenvalues si(t) (or sc
i
(t) ) and corresponding OTOC eigenvectors �⃗vi (t) (or 

��⃗vi
c (t) ) can be obtained. The eigenvalues si(t) characterize the scrambling 

along directions given by OTOC eigenvectors �⃗vi (t) . The Lyapunov exponent λi 
can be defined as λi(t) = ∂(ln(si))/∂t in the exponentially growing regime of si(t). 
Note that here, we follow the convention in the literature to define the Lyapunov 
exponent as the exponential growth rate of the OTOC eigenvalue or the square 
of the classical sensitivity matrix. The Lyapunov exponent defined in this way 
is two times of the Lyapunov exponent as often defined in classical dynamical 
systems theory. This regime is short for small quantum systems, and we describe 
our fitting procedure in detail in SI Appendix, Supplementary Material section B.

Kubo Transformed Projection Operator Correlation Functions and Reaction 
Rates. To study the rates in reactive systems, we compute the Kubo-transformed side–

side correlation function Cpp(t) = Tr

[

1

� ∫
�

0

e
−(�−�� )H P̂e−�

�H P̂d��

]

∕Tr
[

e
−�HP̂

]

 , 

where ̂P is the projection operator onto the reactant well, not to be confused with the 
momentum operator p. In the system we studied here, the reactant population CPP(t) 
exhibits effective rate behavior after an initial transient has died out. CPP(t) decays 
according to the form CPP(t) = CPP(∞) + [CPP(texp) − CPP(∞)] exp(−k(t−texp)) (61), where 
texp indicates the onset time of the exponential regime and k is the reaction rate. For 
the symmetric double well, the system equilibrates at CPP(t → ∞) = 0.5. For the fast 
reaction dynamics studied here, the lack of a clear separation of time scales between 
transient dynamics and exponential decay time can cause the correlation function to 
fail to display a plateau. In such cases, an effective rate k can still be obtained by fitting 
to the function given above.

Numerical Path Integral Methods for the Continuous Bath Hamiltonian. 
We calculate the regularized thermal OTOC using an extension of the numer-
ically exact QuAPI method (47, 48). The propagators and influence functional 
are evaluated in a discrete variable representation of the path integral expres-
sion (62). Since the OTOC comprises two sets of forward and backward time 
evolution operators separated by noncommuting operators, as well as 
two Boltzmann factors, the time contour of the path integral contains two 
branches, encompassing real- and imaginary-time components. The effect 
of the bath is included in the QuAPI-discretized influence functional, which 
is expressed in terms of coefficients evaluated from numerical integration 
of analytically obtained expressions that involve the spectral density (63, 
64). The iterative QuAPI algorithm captures non-Markovian effects at finite 
temperatures.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.

ACKNOWLEDGMENTS. C.Z. and M.G. were supported by the James R. Eiszner 
Chair in Chemistry. Computations were supported on Delta, funded by NSF grant 
ACI-1548562. C.Z. and M.G. are grateful to the School of Chemical Sciences 
Computing for support and access to the SCS HPC Cluster. P.G.W. was supported 
by the Center for Theoretical Biological Physics, NSF grant PHY- 2019745. 
Additionally, P.G.W. wishes to recognize the D. R. Bullard Welch Chair at Rice 
University, Grant C-0016. S.K. and N.M. were supported by the NSF under 
CHE-1955302.

1.	 F. F. Crim, State- and bond-selected unimolecular reactions. Science 249, 1387 (1990).
2.	 A. Sinha, M. C. Hsiao, F. F. Crim, Controlling bimolecular reactions: Mode and bond selected reaction 

of water with hydrogen atoms. J. Chem. Phys. 94, 4928 (1991).
3.	 F. F. Crim, Chemical dynamics of vibrationally excited molecules: Controlling reactions in gases and 

on surfaces. Proc. Natl. Acad. Sci. U.S.A. 105, 12654 (2008).
4.	 Y. S. Choi, C. B. Moore, State-specific unimolecular reaction dynamics of HFCO. I. Dissociation rates. 

J. Chem. Phys. 97, 1010 (1992).
5.	 J. V. V. Kasper, G. C. Pimentel, HCl chemical laser. Phys. Rev. Lett. 14, 352 (1965).
6.	 E. H. White, E. Rapaport, T. A. Hopkins, H. H. Seliger, Chemi- and bioluminescence of firefly luciferin. 

J. Am. Chem. Soc. 91, 2178 (1969).
7.	 J. Cao et al., Quantum biology revisited. Sci. Adv. 6, eaaz4888 (2020).
8.	 G. D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle, Lessons from nature about solar light 

harvesting. Nat. Chem. 3, 10 (2011).
9.	 A. Chenu, G. D. Scholes, Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 

66, 69 (2015).
10.	 M. B. Plenio, S. F. Huelga, Dephasing-assisted transport: Quantum networks and biomolecules.  

N. J. Phys. 10, 113019 (2008).
11.	 M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, Environment-assisted quantum walks in 

photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).
12.	 S. Kundu, R. Dani, N. Makri, Tight inner ring architecture and quantum motion of nuclei enable 

efficient energy transfer in bacterial light harvesting. Sci. Adv. 8, eadd0023 (2022).
13.	 S. H. Shenker, D. Stanford, Black holes and the butterfly effect. J. High Energ. Phys. 2014, 67 (2014).
14.	 R.-Q. He, Z.-Y. Lu, Characterizing many-body localization by out-of-time-ordered correlation. Phys. 

Rev. B 95, 054201 (2017).
15.	 H. Li, E. Halperin, R. R. W. Wang, J. L. Bohn, Out-of-time-order correlator for the van der waals 

potential. Phys. Rev. A 107, 032818 (2023).
16.	 C. Zhang, P. G. Wolynes, M. Gruebele, Quantum information scrambling in molecules. Phys. Rev. A 

105, 033322 (2022).
17.	 V. G. Sadhasivam, L. Meuser, D. Reichman, S. C. Althorpe, Instantons and the quantum bound to 

chaos. Proc. Natl. Acad. Sci. U.S.A. 120, e2312378120 (2023).
18.	 H. Gharibyan, M. Hanada, B. Swingle, M. Tezuka, Quantum lyapunov spectrum. J. High Energ. Phys. 

2019, 82 (2019).
19.	 I. Hamilton, P. Brumer, Intramolecular relaxation in N =2 Hamiltonian systems: The role of the  

K entropy. J. Chem. Phys. 78, 2682 (1983).

20.	 P. Brumer, M. Shapiro, “Chaos and reaction dynamics” in Advances in Chemical Physics, I. Prigogine, 
S. A. Rice, Eds. (John Wiley & Sons Inc, Hoboken, NJ, 2007), pp. 365–439.

21.	 J. Maldacena, S. H. Shenker, D. Stanford, A bound on chaos. J. High Energ. Phys. 2016, 106 
(2016).

22.	 B. Kobrin et al., Many-body chaos in the Sachdev-Ye-Kitaev Model. Phys. Rev. Lett. 126, 030602 
(2021).

23.	 S. Pappalardi, J. Kurchan, Low temperature quantum bounds on simple models. SciPost Phys. 13, 
006 (2022).

24.	 J. Kurchan, Quantum bound to chaos and the semiclassical limit. J. Stat. Phys. 171, 965 (2018).
25.	 S. Pappalardi, L. Foini, J. Kurchan, Quantum bounds and fluctuation-dissipation relations. SciPost 

Phys. 12, 130 (2022).
26.	 C. Murthy, M. Srednicki, Bounds on chaos from the eigenstate thermalization hypothesis. Phys. Rev. 

Lett. 123, 230606 (2019).
27.	 N. Tsuji, T. Shitara, M. Ueda, Bound on the exponential growth rate of out-of-time-ordered 

correlators. Phys. Rev. E 98, 012216 (2018).
28.	 S. H. Shenker, D. Stanford, Stringy effects in scrambling. J. High Energ. Phys. 2015, 132 (2015).
29.	 P. W. Phillips, N. E. Hussey, P. Abbamonte, Stranger than metals. Science 377, eabh4273 (2022).
30.	 Y. Sekino, L. Susskind, Fast scramblers. J. High Energy Phys. 2008, 065 (2008).
31.	 P. G. Wolynes, Quantum theory of activated events in condensed phases. Phys. Rev. Lett. 47, 968 

(1981).
32.	 H. Grabert, U. Weiss, Crossover from thermal hopping to quantum tunneling. Phys. Rev. Lett. 53, 

1787 (1984).
33.	 K. F. Herzfeld, Zur Theorie der Reaktionsgeschwindigkeiten in Gasen. Ann. Phys. 364, 635 (1919).
34.	 H. Eyring, The activated complex in chemical reactions. J. Chem. Phys. 3, 107 (1935).
35.	 A. F. Ioffe, A. R. Regel, Non-crystalline amorphous, liquid electronic semiconductors. Prog. Semicond. 

4, 237–291(1960).
36.	 D. E. Logan, P. G. Wolynes, Dephasing and anderson localization in topologically disordered systems. 

Phys. Rev. B 36, 4135 (1987).
37.	 Z. Zhang, S. Nagata, K.-X. Yao, C. Chin, Many-body chemical reactions in a quantum degenerate gas. 

Nat. Phys. 19, 1446–1470 (2023).
38.	 W. H. Miller, S. D. Schwartz, J. W. Tromp, Quantum mechanical rate constants for bimolecular 

reactions. J. Chem. Phys. 79, 4889 (1983).
39.	 R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple 

applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957).

L{reg}(� , t) = − Tr
[[

q(t), p
]

e−�H∕2
[

q(t), p
]

e−�H∕2
]

∕Tr
[

e−�H
]

.

L̂{reg}(�, t)≈ −

∑R

r=1

�

r�
�

q(t), p
�

e−�H∕2
�

q(t), p
�

e−�H∕2�r
�

∑R

r=1
⟨r�e−�H�r⟩

.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

"R
IC

E 
U

N
IV

ER
SI

TY
, F

O
N

D
R

EN
 L

IB
R

A
R

Y
/M

S 
23

5"
 o

n 
Ju

ne
 6

, 2
02

4 
fr

om
 IP

 a
dd

re
ss

 1
68

.5
.3

1.
96

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2321668121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2321668121#supplementary-materials


8 of 8   https://doi.org/10.1073/pnas.2321668121� pnas.org

40.	 T. Yamamoto, Quantum statistical mechanical theory of the rate of exchange chemical reactions in 
the gas phase. J. Chem. Phys. 33, 281 (1960).

41.	 W. H. Miller, Quantum mechanical transition state theory and a new semiclassical model for 
reaction rate constants. J. Chem. Phys. 61, 1823 (1974).

42.	 D. Chandler, Statistical mechanics of isomerization dynamics in liquids and the transition state 
approximation. J. Chem. Phys. 68, 2959 (1978).

43.	 D. Madsen, R. Pearman, M. Gruebele, Approximate factorization of molecular potential surfaces.  
I. Basic approach. J. Chem. Phys. 106, 5874 (1997).

44.	 S. Kundu, N. Makri, Time evolution of bath properties in spin-boson dynamics. J. Phys. Chem. B 
125, 8137 (2021).

45.	 S. Kundu, N. Makri, Intramolecular vibrations in excitation energy transfer: Insights from real-time 
path integral calculations. Annu. Rev. Phys. Chem. 73, 349 (2022).

46.	 N. Makri, The linear response approximation and its lowest order corrections: An influence 
functional approach. J. Phys. Chem. 103, 2823-2829 (1999).

47.	 N. Makri, Improved feynman propagators on a grid and non-adiabatic corrections within the path 
integral framework. Chem. Phys. Lett. 193, 435 (1992).

48.	 N. Makri, D. E. Makarov, Tensor propagator for iterative quantum time evolution of reduced density 
matrices. I. Theory. J. Chem. Phys. 102, 4600 (1995).

49.	 J. N. Onuchic, P. G. Wolynes, Classical and quantum pictures of reaction dynamics in condensed 
matter: Resonances, dephasing, and all that. J. Phys. Chem. 92, 6495 (1988).

50.	 A. J. Leggett et al., Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1 (1987).
51.	 R. Silbey, R. A. Harris, Variational calculation of the dynamics of a two level system interacting with a 

bath. J. Chem. Phys. 80, 2615 (1984).
52.	 S. Asban, K. E. Dorfman, S. Mukamel, Interferometric spectroscopy with quantum light: Revealing 

out-of-time-ordering correlators. J. Chem. Phys. 154, 210901 (2021).

53.	 R. Pearman, M. Gruebele, On the importance of higher order anharmonic molecular couplings.  
J. Chem. Phys. 108, 6561 (1998).

54.	 C. Zhang, M. Gruebele, D. E. Logan, P. G. Wolynes, Surface crossing and energy flow  
in many-dimensional quantum systems. Proc. Natl. Acad. Sci. U.S.A. 120, e2221690120  
(2023).

55.	 K. Hashimoto, K. Murata, R. Yoshii, Out-of-time-order correlators in quantum mechanics. J. High 
Energ. Phys. 2017, 138 (2017).

56.	 S. Goldstein, J. L. Lebowitz, R. Tumulka, N. Zanghì, Canonical typicality. Phys. Rev. Lett. 96, 050403 
(2006).

57.	 R. Steinigeweg, J. Gemmer, W. Brenig, Spin-current autocorrelations from single pure-state propagation. 
Phys. Rev. Lett. 112, 120601 (2014).

58.	 D. J. Luitz, Y. Bar Lev, Information propagation in isolated quantum systems. Phys. Rev. B 96, 020406 
(2017).

59.	 J. Schnack, J. Richter, R. Steinigeweg, Accuracy of the finite-temperature lanczos method compared 
to simple typicality-based estimates. Phys. Rev. Res. 2, 013186 (2020).

60.	 H. Tal-Ezer, R. Kosloff, An accurate and efficient scheme for propagating the time dependent 
schrödinger equation. J. Chem. Phys. 81, 3967 (1984).

61.	 A. Bose, N. Makri, Non-equilibrium reactive flux: A unified framework for slow and fast reaction 
kinetics. J. Chem. Phys. 147, 152723 (2017).

62.	 M. Topaler, N. Makri, System-specific discrete variable representations for path integral calculations 
with quasi-adiabatic propagators. Chem. Phys. Lett. 210, 448 (1993).

63.	 N. Makri, Numerical path integral techniques for long time dynamics of quantum dissipative 
systems. J. Math. Phys. 36, 2430 (1995).

64.	 J. Shao, N. Makri, Iterative path integral formulation of equilibrium correlation functions for 
quantum dissipative systems. J. Chem. Phys. 116, 507 (2002).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

"R
IC

E 
U

N
IV

ER
SI

TY
, F

O
N

D
R

EN
 L

IB
R

A
R

Y
/M

S 
23

5"
 o

n 
Ju

ne
 6

, 2
02

4 
fr

om
 IP

 a
dd

re
ss

 1
68

.5
.3

1.
96

.


	Quantum information scrambling and chemical reactions
	Significance
	Results and Discussion
	Illustrative Results of Lyapunov Exponents and Reaction Rates.
	Effect of Temperature and Anharmonicity on the Lyapunov Spectrum.
	The Damping Regime Due to a Continuum Bath.

	Conclusions
	Methods
	Model Hamiltonian.
	Numerical Methods for OTOC Calculations.
	Kubo Transformed Projection Operator Correlation Functions and Reaction Rates.
	Numerical Path Integral Methods for the Continuous Bath Hamiltonian.

	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 23



