

1 **Hybrid photoiniferter and ring-opening polymerization yields one-pot anisotropic**
2 **nanorods**

3 Paul Joshua Hurst,¹ Junsik Yoon,¹ Riya Singh,¹ Mohammed Faris Abouchaleh,¹ Kevin
4 A. Stewart,² Brent S. Sumerlin,² Joseph P. Patterson.*^{1,3}

5 **Affiliations**

6 1. Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, United States
7 2. George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science &
8 Engineering, Department of Chemistry, University of Florida, Gainesville, FL, 32611, United States
9 3. Department of Materials Science and Engineering, Irvine, Irvine, CA, 92697, United States

10 *Corresponding author email: patters3@uci.edu

11

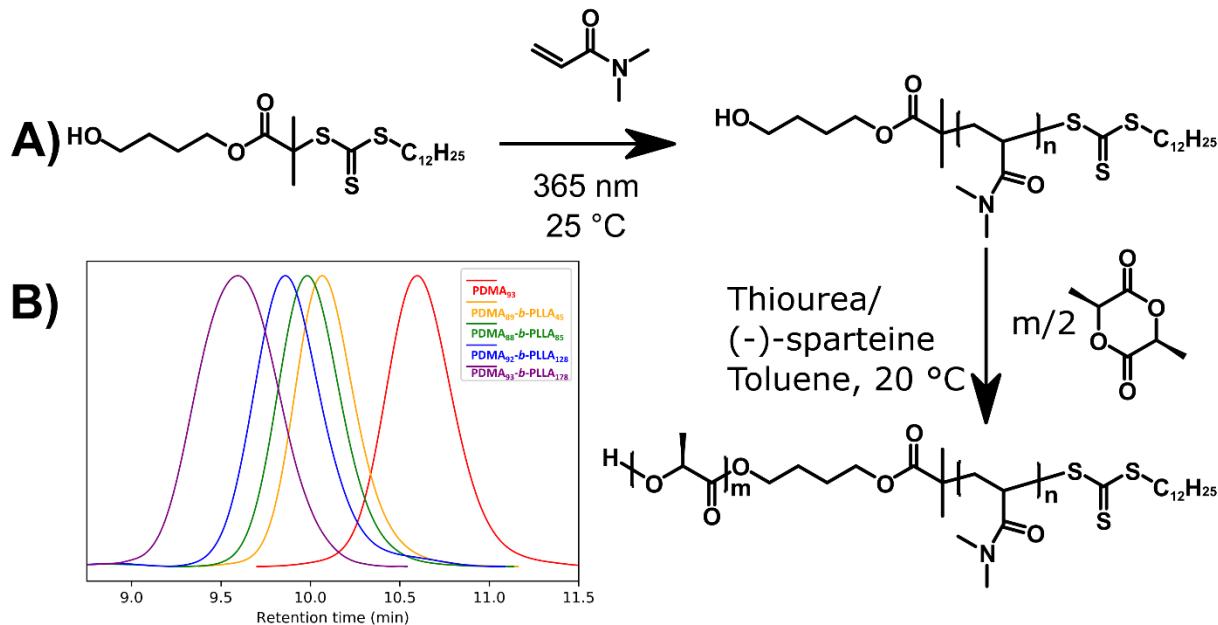
12 **Abstract**

13 Polymerization-induced self-assembly (PISA) has emerged as a scalable one-pot
14 technique to prepare block copolymer nanoparticles. Recently, we developed a PISA
15 process that resulted in poly(L-lactide)-*b*-poly(ethylene glycol) block copolymer
16 nanoparticles coined ring-opening polymerization-induced crystallization-driven self-
17 assembly (ROPI-CDSA). The resulting nanorods demonstrated a strong propensity for
18 aggregation, resulting in the formation of 2D sheets and 3D networks. Here, we report the
19 synthesis of poly(*N,N*-dimethyl acrylamide)-*b*-poly(L-lactide) block copolymer
20 nanoparticles by ROPI-CDSA utilizing a two-step, one-pot approach. A dual-
21 functionalized photoiniferter was first used for controlled radical polymerization of the
22 acrylamido-based monomer, and the resulting polymer served as a macroinitiator for
23 organocatalyzed ring-opening polymerization to form the solvophobic polyester block.
24 The resulting nanorods are highly stable and display anisotropy at higher molecular
25 weights (>12k Da) and concentrations (>20% solids) than our previous report. This
26

27 development expands the chemical scope of ROPI-CDSA block copolymers and provides
28 readily accessible nanorods made with biocompatible materials.

29 **Introduction**

30 Polymerization-induced self-assembly (PISA) has revolutionized the field of block
31 copolymer self-assembly as it enables the reproducible and scalable production of
32 nanoparticles.^{1–3} In PISA, a macromolecular stabilizing block is chain extended with
33 monomer that forms a solvophobic block. PISA can be conducted in solutions ranging
34 from 10 to 50% solids wt in contrast to traditional methods, which typically yield
35 nanoparticle solutions around 1% solids wt.^{1,3,4} PISA has been developed for a wide
36 range of polymerization techniques,^{2,4–7} including for crystalline and semicrystalline
37 polymers, termed polymerization-induced crystallization-driven self-assembly (PI-
38 CDSA).⁸ PI-CDSA has allowed for the scaled-up production of anisotropic nanostructures
39 such as rods and lamellae.^{8–12}


40 Recently, we developed PI-CDSA for the ring-opening polymerization (ROP) of
41 semicrystalline polyesters, termed ring-opening polymerization-induced crystallization-
42 driven self-assembly (ROPI-CDSA).^{11–13} ROPI-CDSA is one of the earliest examples of
43 PISA for ROP.^{11–21} In this process, the poly(ethylene glycol) (PEG) macroinitiator was
44 chain extended with L-lactide in toluene using various organocatalytic systems. The
45 resulting poly(L-lactide)-block-pol(ethylene glycol) (PLLA-*b*-PEG) particle morphology
46 varied from 1-D nanorods to 2-D lamellae, including 3-D stacked lamellae. However, the
47 majority of nanoparticle dispersions displayed mixed morphologies, and we were not able
48 to solely obtain well-defined nanorods.^{11–13} Poly(*N,N*-dimethyl acrylamide)-*block*-poly(L)-
49 lactide (PDMA-*b*-PLLA) is an excellent block copolymer (BCP) for controlled

50 crystallization-driven self-assembly of anisotropic nanorods and lamellae (CDSA), as
51 demonstrated by O'Reilly et al.^{22,23} In these studies, uniform morphologies were obtained.
52 We reasoned that substitution of PEG for a polyacrylamido block such as PDMA would
53 improve the uniformity and anisotropy of the assemblies resulting from ROPI-CDSA.
54 Developing a PISA process for PDMA-*b*-PLLA would necessitate a controlled radical
55 polymerization technique, followed by ROP. Hedrick et al. performed nitroxide-mediated
56 polymerization of DMA using a nitroxide with a hydroxyl group followed by the ROP of L-
57 lactide to synthesize PDMA-*b*-PLLA.^{24,25} As far as we know, this is the sole example of
58 PDMA-*b*-PLLA synthesis in a two-pot, two-step manner.²⁴⁻²⁶

59 Recently, Xia et al.²⁷ showed that photoiniferter polymerization and organocatalytic ROP
60 could be performed stepwise or synchronously using a hydroxy-functionalized
61 trithiocarbonate (TTC) dual-initiator for the one-pot production of polyacrylamido-*b*-
62 polyether BCPs. Photoiniferters enable the polymerization of vinyl monomers with
63 predictable molecular weights, low dispersity (D), and high end-group fidelity with the
64 advantage of being performed at ambient conditions.²⁸⁻³² Organocatalytic ROP of lactides
65 and lactones can be conducted using various catalysts and is typically performed under
66 ambient conditions.^{33,34} However, these ROPs are typically performed in solvents at
67 monomer concentrations of around 1.0 M,^{25,35} whereas the photoiniferter polymerization
68 of polyacrylamides is carried out at higher monomer concentrations.²⁷

69 Here, we describe a two-step, one-pot process to produce PDMA-*b*-PLLA based
70 nanostructures. A TTC dual initiator-photoiniferter is first used to polymerize *N,N*-dimethyl
71 acrylamide with the resultant macroinitiator being used for organocatalytic ROP of L-
72 lactide in toluene to generate uniform BCP self-assemblies. Block lengths of the

73 solvophilic corona and solvophobic core were modified and studied by cryogenic
 74 transmission electron microscopy (cryoEM) to examine how block length impacts the
 75 resulting core and corona thickness.

Figure 1: Synthesis of PDMA-b-PLLA. A) Scheme showing the photoiniferter polymerization of DMA (Step 1) followed by the polymerization of L-lactide to yield PDMA-b-PLLA (Step 2). The second step is carried out in toluene, which leads to self-assembly. B) Gel permeation chromatography in DMF showing the chain extension of the PDMA macroinitiator during the polymerization of LLA at varying degrees of polymerization.

76 **Results and Discussion**

77 As previously mentioned, photoiniferter polymerization of acrylamides and ROP of
 78 lactides and lactones are performed at different monomer concentrations, necessitating
 79 a sequential, one-pot approach. For the photoiniferter polymerization, we first synthesized

80 PDMA using previously optimized synthetic conditions.²⁷ Next, we developed and
81 optimized the synthetic conditions for the second step of organocatalytic ROP. Initially,
82 we used diazabicyclodecene (DBU), an excellent catalyst for the ROP of L-lactide, but
83 the resulting PDMA-*b*-PLLA BCPs had dispersity values over 1.1 (Figure S1). Therefore,
84 we switched to a milder and slower catalytic system based on thiourea (TU) and (-)-
85 sparteine (Figure 1, Table 1).³⁵ Additionally, we reasoned that this slower reaction rate
86 would lead to more control over self-assembly.¹² Keeping L-lactide concentration at 10%
87 solids resulted in low dispersity (<1.1) while maintaining reasonable conversions (>66-
88 95%) after four days of stirring at room temperature (~20 °C). A consequence of
89 maintaining L-lactide concentration at 10% solids is that the total polymer concentration
90 varies widely as target block lengths of the PDMA and PLLA blocks change. This variation
91 leads to reactions targeting higher degrees of polymerization (DP) of PDMA being more
92 concentrated. The target DP of both PDMA and PLLA was varied from 50-200 to produce
93 a library of BCPs (Table S1 with select samples in Table 1). All polymers had low
94 dispersity (<1.1) with shorter PDMA blocks giving higher conversion. Most of the resulting
95 copolymer dispersions also became turbid, indicative of in-situ self-assembly.

96 **Table 1:** Synthetic parameters and results for select two-step, one-pot PDMA-*b*-PLLA
97 synthesis.

S T P T P Polymer	<i>D</i> ^b	M Polymer wt. %
a a D a L Structur	n	
n r N r L e	a	
p g A g A	(
l e C e C	g	
e t o t o	/	
l P n P n	n	
D D v L v	o	
N e L e	l	
A r A r)	

D	s	D	s
P	i	P	i
o	o		
n	n		
((
%	%		
))		
a	a		

1 1 9 1 8 PDMA₉₂₋ 1.06 1 19.1

0 2 5 5 *b*- 8
0 0 PLLA₁₂₈ 3
0
0

2 1 9 1 7 PDMA₁₃ 1.06 1 30.6

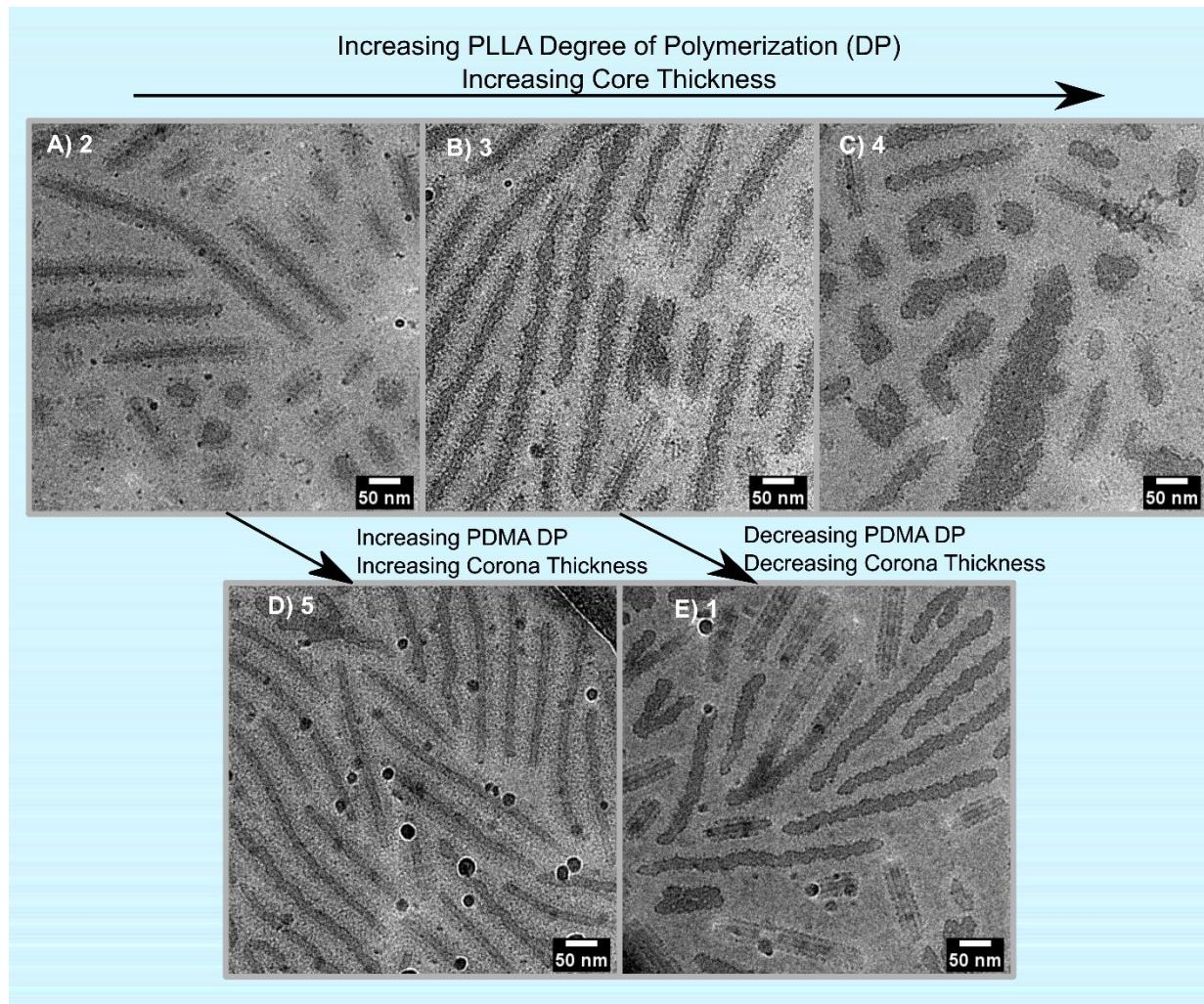
5 0 0 3 *5-b*- 8
0 0 PLLA₇₃ 6
0
0

3 1 9 1 7 PDMA₁₄ 1.07 2 23.8

5 5 5 1 *2-b*- 1
0 0 PLLA₁₀₇ 8
0
0

4 1 9 2 7 PDMA₁₃ 1.07 2 20.3

5 3 0 0 *9-b*- 3
0 0 PLLA₁₄₀ 9
0
0


5 2 9 1 7 PDMA₁₇ 1.07 2 37.5

0 0 0 4 *9-b*- 3
0 0 PLLA₇₄ 1
0
0

98 CryoEM was used to determine the morphology of the PDMA-*b*-PLLA dispersions (Figure
99 2). The nanoparticles were extracted into excess water from toluene to yield
100 concentrations around 0.25-5 mg/mL.¹¹ The PLLA crystallinity serves as a kinetic trap at
101 room temperature, allowing the morphology to be retained upon transfer to water.¹¹
102 CryoEM images show both the core and the corona blocks. While polymeric coronas are

103 often not visible in cryoEM, direct visualization has been demonstrated previously,³⁶ in
104 particular with acrylamido-based amphiphilic homopolymers.³⁷

105 All BCP dispersions consisted primarily of nanorods, with no appreciable lamellar
106 nanostructures. Wide-angle X-ray scattering (WAXS) confirmed the semicrystalline
107 nature of the PLLA blocks (Figure S2). BCP dispersions **2** and **5** were entirely nanorods,
108 while **3** and **1** contained a few lamellar aggregates that appear to result from rod fusion,
109 and **4** contained larger lamellar aggregates. BCP dispersions **2** and **5** varied corona block
110 length with PDMA DPs of 135 and 179, respectively, and PLLA DPs of 73 and 74,
111 respectively. Corona thickness, measured as the total thickness of the nanorods after
112 subtracting the thickness of the core, was 27.1 ± 2.8 nm for **2** and 35.6 ± 2.6 nm for **5**.
113 These results are expected, as core and corona thickness should increase with increasing
114 DP of PLLA and PDMA, respectively.³⁸ This trend was also observed for BCP dispersions
115 **3** and **1**, where the PDMA DPs were 142 and 92, respectively, and the PLLA DPs were
116 107 and 128, respectively (Figure 3, Table 2).

Figure 2: CryoEM images of select PDMA-b-PLLA BCPs. Images are labeled with the representative sample number (Table 1). Images **A-C** show the effect on core thickness and morphology with increasing PLLA chain length. Images **D-E** show the effect on corona thickness with changes in the PDMA chain length, with **D** having a longer PDMA chain than **A** with similar PLLA lengths and **E** having a shorter PDMA chain than **B** with similar PLLA lengths. Dark spheres present in these images are ice contamination, an artifact of cryoEM sample handling.

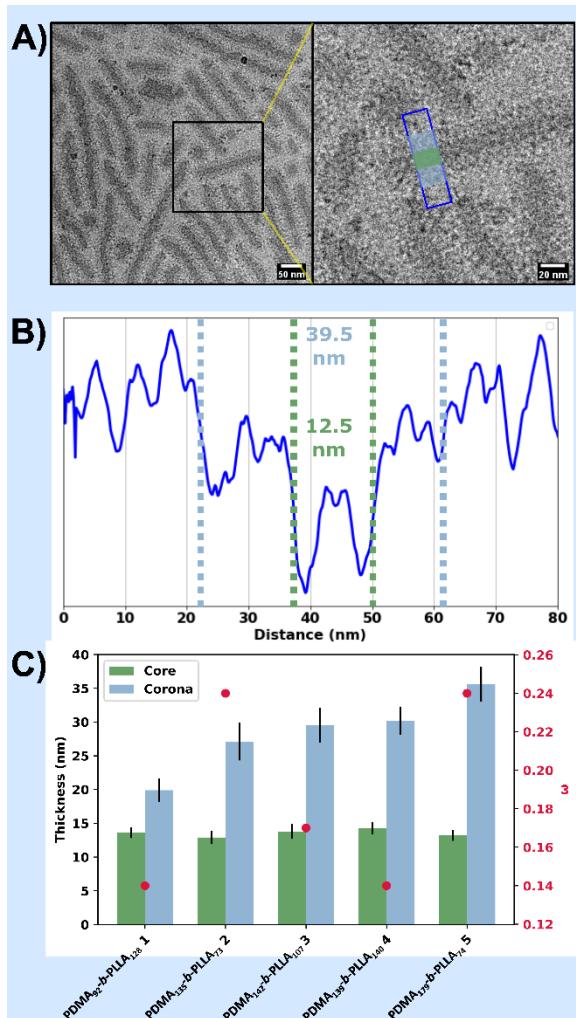


Figure 3: CryoEM core and corona nanorod measurements for PDMA-*b*-PLLA BCP dispersions. A) Representative cryoEM of **2** (left) with inset (right) with the line profile area in the blue box. B) Line profile of nanorod in A showing the measurement of the thickness of the core (green) and the total rod thickness (blue). Corona thickness is calculated by subtracting total thickness from the core thickness. C) Plot of core and corona thickness and the degree of polymer chain stretching (ω) for samples **1-5**.

117 **Table 2:** CryoEM core and corona nanorod measurements for PDMA-*b*-PLLA BCP
118 dispersions. Results are graphically represented in Figure 3C.

Sample ID	Polymer Structure	Total thickness (nm)	Core thickness (nm)	ω^*	Corona thickness (nm)
-----------	-------------------	----------------------	---------------------	------------	-----------------------

1	PDMA ₉₂ - <i>b</i> - PLLA ₁₂₈	33.5 ± 1.5	13.6 ± 0.8	0.14	19.9 ± 1.7
2	PDMA ₁₃₅ - <i>b</i> -PLLA ₇₃	40.0 ± 2.6	12.9 ± 1.0	0.24	27.1 ± 2.8
3	PDMA ₁₄₂ - <i>b</i> -PLLA ₁₀₇	43.3 ± 2.4	13.8 ± 1.1	0.17	29.5 ± 2.6
4	PDMA ₁₃₉ - <i>b</i> -PLLA ₁₄₀	44.5 ± 2.2	14.3 ± 0.9	0.14	30.2 ± 2.1
5	PDMA ₁₇₉ - <i>b</i> -PLLA ₇₄	48.8 ± 2.5	13.2 ± 0.8	0.24	35.6 ± 2.6

119 * ω = degree of polymer chain stretching (core block only)

120 BCP dispersions **2**, **3**, and **4**, representing PDMA₁₃₅-*b*-PLLA_n polymers with n (DP) = 73,
121 107, and 140, respectively, showed a clear trend in nanorod core thickness increasing
122 with PLLA block length from 12.9 ± 1.0 nm core thickness in **2**, 13.8 ± 1.0 nm in **3**, and
123 14.3 ± 0.9 nm in **4** (Table 2). This series also shows an interesting morphology transition
124 from nanorods with a uniform core thickness (**2**) to nanorods with a rough (jagged) core-
125 corona interface (**3**) to a more complex mixture of nanorods and lamellae morphology (**4**).
126 To better understand this transition, we calculate the degree of core polymer chain
127 stretching (ω) as the ratio of the nanorod core radius (r) to the maximum theoretical length
128 of the core polymer chain (L_{max}) (Eq. 1, Figure 3C, Table 2).^{11,39}

129
$$\omega = \frac{r}{L_{max}} \quad (1)$$

130 Using an L_{max} of 3.69 Å * PLLA DP,¹¹ ω changes from 0.24 in **2** to 0.17 in **3** to 0.14 in **4**,
131 indicating that the PLLA core is more highly folded at higher PLLA DP, resulting in a
132 reduced corona density. This reduction in density is also supported by the apparent
133 reduction in corona contrast from **2** to **3** to **4**. As the corona density decreases, the growth
134 mechanism may shift from unimer growth to a hybrid unimer growth/particle aggregation
135 mechanism.¹¹ Additionally, **5**, with the same PLLA DP as **2**, also had an ω of 0.24 despite

136 a longer corona block. Therefore, ω may have stronger dependence on the PLLA DP
137 than the molar ratio of PLLA to PDMA.

138 **Conclusion**

139 In conclusion, we demonstrate a new synthetic approach to well-defined polyacrylamido-
140 *block*-polyester nanoparticles by leveraging a dual photoiniferter, ROPI-CDSA approach.
141 The resulting nanoparticles of the PDMA-*b*-PLLA synthesis showed excellent anisotropy
142 and uniformity when compared to the PLLA-*b*-PEG assemblies from our previous work.
143 Lower PLLA DP nanorods are particularly anisotropic due to their higher corona densities
144 compared to that of the than higher PLLA DP nanorods. This work represents a scalable
145 technique for obtaining uniform nanorods made from biocompatible materials.

146 **Experimental Section:**

147 Materials: *N,N*-Dimethylacrylamide (DMA, Sigma Aldrich) was dried using calcium
148 hydride and vacuum distilled and stored under 4 Å molecular sieves. 4-Hydroxybutyl 2-
149 ((dodecylthiocarbonothioyl)thio)-2-methylpropanoate was synthesized according to
150 previous literature procedures.²⁷ L-Lactide (TCI) was recrystallized three times from
151 toluene. Anhydrous toluene (99.8%), DBU, and (–)-sparteine were obtained from Sigma-
152 Aldrich and stored under 4 Å molecular sieves. Benzoic acid (Fisher Chemical) was used
153 without further purification. Thiourea (TU) derived from cyclohexylamine (Sigma-Aldrich)
154 and 3,5-bis(trifluoromethyl)phenyl isothiocyanate (TCI) was synthesized following
155 established literature procedures.³⁵ Chemicals were stored in a dry-N₂ atmosphere
156 glovebox. Reactions were performed in a N₂ glovebox.

157 Synthetic Procedures: Photoiniferter polymerization of DMA (Step 1): DMA (208 mg, 2.1
158 mmol, target DP = 150) and 0.1 mL stock solution of 4-Hydroxybutyl 2-
159 ((dodecylthiocarbonothioyl)thio)-2-methylpropanoate in toluene (6.0 mg, 1.4 × 10-2
160 mmol) were charged to an 8-mL vial. The vial was sealed with a chemically inert screw
161 cap and irradiated with UV light (365 nm, 3.5 mW cm⁻²) for 8 h under stirring at room
162 temperature (25 °C with light source).

163 Ring-opening polymerization of L-lactide (Step 2): L-Lactide (151 mg, 1.1 mmol, target
164 DP = 150) was added to a solution of hydroxy functionalized PDMA from Step 1 (214 mg,
165 1.4 × 10-2 mmol mmol) and 10% mol TU (35 mg, 103 µmol) in 1.16 mL of toluene (10%
166 L-lactide w/w). Next, 10% mol (–)-sparteine (24 µL, 103 µmol) was added. The solution
167 was stirred for 4 days at 400 rpm at room temperature (20 °C) and subsequently
168 quenched with 0.05 mL of saturated benzoic acid toluene solution.

169 Structural characterization: Proton nuclear magnetic resonance (¹H NMR) spectra were
170 collected on a 500 MHz Bruker Avance spectrometer in CDCl₃ (Figure S3). Chemical
171 shifts are given in ppm, calibrated from residual CHCl₃. Conversion was calculated for
172 DMA polymerization by comparing the monomer peaks (5.7, 6.3, 6.6) ppm to the end
173 group 0.95 ppm. Conversion was calculated for L-lactide polymerization by comparing
174 the peak area of the PLLA peak at 5.16 ppm to the L-lactide monomer peak at 5.03 ppm.
175 Size exclusion chromatography (SEC) was performed in DMF using an Agilent 1100
176 chromatograph equipped with RID detector and a PL gel 5 µm 300 × 7.5 mm mixed
177 column at 40 °C. Samples were calibrated against polystyrene standards.

178 Wide-angle X-ray Scattering (WAXS) were measured using lyophilized polymer samples
179 on a Rigaku Smart lab X-ray diffractometer in Bragg–Brentano diffraction mode utilizing

180 X-rays generated at 40 kV and 44 mA with Cu K α irradiation (step size 0.02°, speed 1.0,
181 IS 0.5°, RS1 4.0°, RS2 13 mm).

182 Cryogenic-transmission electron microscopy (cryoEM) samples were prepared on
183 Quantifoil grids (R 2/2 40 Mesh, Electron Microscopy Sciences) from original samples
184 that were extracted into excess water from toluene giving final concentrations of \approx 0.1
185 μ g/mL. Extraction was performed by diluting a small volume of the reaction mixture (~5–
186 10 μ L) into an uncapped vial of excess water (~2 mL) and vortexing the solution briefly
187 followed by gentle sonication for 5 minutes. The vials were capped after several hours,
188 allowing the toluene to evaporate.¹³ Vitrification was carried out by an Automatic Plunge
189 Freezer ME GP2 (Leica Microsystems) with 3 μ L of sample. Grid preparation was
190 performed at >95% humidity and the grids were blotted for 3 s prior to plunging into liquid
191 nitrogen. CryoEM samples were then placed on a Gatan cryoEM holder and imaged on
192 a JEOL 2100F transmission electron microscope using a Schottky type field emission gun
193 operating at 200 keV. Images were recorded using SerialEM software in low dose imaging
194 mode with a Gatan OneView CMOS camera at 4k \times 4k resolution.

195 **Acknowledgements:** This material is primarily funded by the National Science
196 Foundation (NSF) grant DMR-22238834. Secondary support by DMR-1904631. The
197 authors acknowledge the use of facilities and instrumentation at the UC Irvine Materials
198 Research Institute (IMRI) supported in part by the NSF Materials Research Science and
199 Engineering Center program through the UC Irvine Center for Complex and Active
200 Materials (DMR-2011967).

201

202 **References:**

203 (1) Canning, S. L.; Smith, G. N.; Armes, S. P. A Critical Appraisal of RAFT-Mediated
204 Polymerization-Induced Self-Assembly. *Macromolecules* **2016**, *49* (6), 1985–2001.
205 <https://doi.org/10.1021/acs.macromol.5b02602>.

206 (2) Cao, J.; Tan, Y.; Chen, Y.; Zhang, L.; Tan, J. Expanding the Scope of
207 Polymerization-Induced Self-Assembly: Recent Advances and New Horizons.
208 *Macromol. Rapid Commun.* **2021**, *42* (23), 2100498.
209 <https://doi.org/10.1002/marc.202100498>.

210 (3) Phan, H.; Cossutta, M.; Houppe, C.; Le Cœur, C.; Prevost, S.; Cascone, I.; Courty,
211 J.; Penelle, J.; Couturaud, B. Polymerization-Induced Self-Assembly (PISA) for in
212 Situ Drug Encapsulation or Drug Conjugation in Cancer Application. *J. Colloid
213 Interface Sci.* **2022**, *618*, 173–184. <https://doi.org/10.1016/j.jcis.2022.03.044>.

214 (4) Liu, C.; Hong, C.-Y.; Pan, C.-Y. Polymerization Techniques in Polymerization-
215 Induced Self-Assembly (PISA). *Polym. Chem.* **2020**, *11* (22), 3673–3689.
216 <https://doi.org/10.1039/D0PY00455C>.

217 (5) Zhao, Z.; Lei, S.; Zeng, M.; Huo, M. Recent Progress in Polymerization-Induced
218 Self-Assembly: From the Perspective of Driving Forces. *Aggregate* **2024**, *5* (1),
219 e418. <https://doi.org/10.1002/agt2.418>.

220 (6) Zhu, C.; Nicolas, J. (Bio)Degradable and Biocompatible Nano-Objects from
221 Polymerization-Induced and Crystallization-Driven Self-Assembly.
222 *Biomacromolecules* **2022**, *23* (8), 3043–3080.
223 <https://doi.org/10.1021/acs.biomac.2c00230>.

224 (7) Zhang, S.; Li, R.; An, Z. Degradable Block Copolymer Nanoparticles Synthesized by
225 Polymerization-Induced Self-Assembly. *Angew. Chem.* **2024**, *136* (12),
226 e202315849. <https://doi.org/10.1002/ange.202315849>.

227 (8) Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Scalable
228 and Uniform 1D Nanoparticles by Synchronous Polymerization, Crystallization and
229 Self-Assembly. *Nat. Chem.* **2017**, *9*, 785. <https://doi.org/10.1038/nchem.2721>.

230 (9) Sha, Y.; Rahman, M. A.; Zhu, T.; Cha, Y.; McAlister, C. W.; Tang, C. ROMPI-CDSA:
231 Ring-Opening Metathesis Polymerization-Induced Crystallization-Driven Self-
232 Assembly of Metallo-Block Copolymers. *Chem. Sci.* **2019**, *10* (42), 9782–9787.
233 <https://doi.org/10.1039/C9SC03056E>.

234 (10) Hwang, S.-H.; Kang, S.-Y.; Yang, S.; Lee, J.; Choi, T.-L. Synchronous
235 Preparation of Length-Controllable 1D Nanoparticles via Crystallization-Driven In
236 Situ Nanoparticlization of Conjugated Polymers. *J. Am. Chem. Soc.* **2022**, *144* (13),
237 5921–5929. <https://doi.org/10.1021/jacs.1c13385>.

238 (11) Hurst, P. J.; Rakowski, A. M.; Patterson, J. P. Ring-Opening Polymerization-
239 Induced Crystallization-Driven Self-Assembly of Poly-L-Lactide-Block-Polyethylene
240 Glycol Block Copolymers (ROPI-CDSA). *Nat. Commun.* **2020**, *11* (1), 4690.
241 <https://doi.org/10.1038/s41467-020-18460-2>.

242 (12) Hurst, P. J.; Graham, A. A.; Patterson, J. P. Gaining Structural Control by
243 Modification of Polymerization Rate in Ring-Opening Polymerization-Induced
244 Crystallization-Driven Self-Assembly. *ACS Polym. Au* **2022**, *2* (6), 501–509.
245 <https://doi.org/10.1021/acspolymersau.2c00027>.

246 (13) Hurst, P. J.; Gassaway, K. J.; Abouchaleh, M. F.; Idris, N. S.; Jones, C. R.;
247 Dicksion, C. A.; Nowick, J. S.; Patterson, J. P. Drug Catalyzed Polymerization Yields

248 One Pot Nanomedicines. *RSC Appl. Polym.* **2024**.
249 <https://doi.org/10.1039/D3LP00135K>.

250 (14) Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M. W.; Lecommandoux, S.; Bonduelle, C. Aqueous Ring-Opening Polymerization-
251 Induced Self-Assembly (ROPISA) of N-Carboxyanhydrides. *Angew. Chem. Int. Ed.*
252 **2020**, *59* (2), 622–626. <https://doi.org/10.1002/anie.201912028>.

253 (15) Grazon, C.; Salas-Ambrosio, P.; Antoine, S.; Ibarboure, E.; Sandre, O.;
254 J. Clulow, A.; J. Boyd, B.; W. Grinstaff, M.; Lecommandoux, S.; Bonduelle, C.
255 Aqueous ROPISA of α -Amino Acid N -Carboxyanhydrides: Polypeptide Block
256 Secondary Structure Controls Nanoparticle Shape Anisotropy. *Polym. Chem.* **2021**,
257 *12* (43), 6242–6251. <https://doi.org/10.1039/D1PY00995H>.

258 (16) Shi, Q.; Chen, Y.; Yang, J.; Yang, J. Ring-Opening Polymerization-Induced Self-
259 Assembly (ROPISA) of Salicylic Acid o -Carboxyanhydride. *Chem. Commun.* **2021**,
260 *57* (86), 11390–11393. <https://doi.org/10.1039/D1CC04630F>.

261 (17) Yao, S.; Yang, J.; Yang, J. ROPISA of Salicylic Acid O -Carboxyanhydride: Fast
262 Polymerization Followed by in Situ Kinetics-Driven Self-Assembly. *Polym. Chem.*
263 **2023**, *14* (30), 3493–3500. <https://doi.org/10.1039/D3PY00550J>.

264 (18) Shen, D.; Shi, B.; Zhou, P.; Li, D.; Wang, G. Temperature-Dependent Ring-
265 Opening Polymerization-Induced Self-Assembly Using Crystallizable Polylactones
266 as Core-Forming Blocks. *Macromolecules* **2023**, *56* (13), 4814–4822.
267 <https://doi.org/10.1021/acs.macromol.3c00681>.

268 (19) Xi Huang, S.; Hao Wang, Z.; Lin, M.; Hui Fu, X.; Sun, J. One-Pot Preparation of
269 Polypeptide Nanogels in Aqueous Solution via Ring-Opening Polymerization-
270 Induced Nano-Gelation. *Polym. Chem.* **2023**, *14* (15), 1801–1808.
271 <https://doi.org/10.1039/D3PY00206C>.

272 (20) Jiang, J.; Zhang, X.; Fan, Z.; Du, J. Ring-Opening Polymerization of N-
273 Carboxyanhydride-Induced Self-Assembly for Fabricating Biodegradable Polymer
274 Vesicles. *ACS Macro Lett.* **2019**, *8* (10), 1216–1221.
275 <https://doi.org/10.1021/acsmacrolett.9b00606>.

276 (21) Ellis, C. E.; Garcia-Hernandez, J. D.; Manners, I. Scalable and Uniform Length-
277 Tunable Biodegradable Block Copolymer Nanofibers with a Polycarbonate Core via
278 Living Polymerization-Induced Crystallization-Driven Self-Assembly. *J. Am. Chem.*
279 **Soc.** **2022**, *144* (44), 20525–20538. <https://doi.org/10.1021/jacs.2c09715>.

280 (22) Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z. P. L.; Wilson, N. R.; Mathers,
281 R. T.; Dove, A. P.; O'Reilly, R. K. 1D vs. 2D Shape Selectivity in the Crystallization-
282 Driven Self-Assembly of Polylactide Block Copolymers. *Chem. Sci.* **2017**, *8* (6),
283 4223–4230. <https://doi.org/10.1039/C7SC00641A>.

284 (23) Yu, W.; Inam, M.; Jones, J. R.; Dove, A. P.; O'Reilly, R. K. Understanding the
285 CDSA of Poly(Lactide) Containing Triblock Copolymers. *Polym. Chem.* **2017**, *8* (36),
286 5504–5512. <https://doi.org/10.1039/C7PY01056G>.

287 (24) Kim, S. H.; Nederberg, F.; Zhang, L.; Wade, C. G.; Waymouth, R. M.; Hedrick, J.
288 L. Hierarchical Assembly of Nanostructured Organosilicate Networks via
289 Stereocomplexation of Block Copolymers. *Nano Lett.* **2008**, *8* (1), 294–301.
290 <https://doi.org/10.1021/nl0726813>.

291 (25) Lohmeijer, B. G. G.; Pratt, R. C.; Leibfarth, F.; Logan, J. W.; Long, D. A.; Dove,
292 A. P.; Nederberg, F.; Choi, J.; Wade, C.; Waymouth, R. M.; Hedrick, J. L. Guanidine

293

294 and Amidine Organocatalysts for Ring-Opening Polymerization of Cyclic Esters.
295 *Macromolecules* **2006**, 39 (25), 8574–8583. <https://doi.org/10.1021/ma0619381>.

296 (26) Yildirim, I.; Weber, C.; Schubert, U. S. Old Meets New: Combination of PLA and
297 RDRP to Obtain Sophisticated Macromolecular Architectures. *Prog. Polym. Sci.*
298 **2018**, 76, 111–150. <https://doi.org/10.1016/j.progpolymsci.2017.07.010>.

299 (27) Xia, Y.; Scheutz, G. M.; Easterling, C. P.; Zhao, J.; Sumerlin, B. S. Hybrid Block
300 Copolymer Synthesis by Merging Photoiniferter and Organocatalytic Ring-Opening
301 Polymerizations. *Angew. Chem.* **2021**, 133 (34), 18685–18689.
302 <https://doi.org/10.1002/ange.202106418>.

303 (28) Hartlieb, M. Photo-Iniferter RAFT Polymerization. *Macromol. Rapid Commun.*
304 **2022**, 43 (1), 2100514. <https://doi.org/10.1002/marc.202100514>.

305 (29) Carmean, R. N.; Sims, M. B.; Figg, C. A.; Hurst, P. J.; Patterson, J. P.; Sumerlin,
306 B. S. Ultrahigh Molecular Weight Hydrophobic Acrylic and Styrenic Polymers
307 through Organic-Phase Photoiniferter-Mediated Polymerization. *ACS Macro Lett.*
308 **2020**, 9 (4), 613–618. <https://doi.org/10.1021/acsmacrolett.0c00203>.

309 (30) Davidson, C. L. G. I.; Lott, M. E.; Trachsel, L.; Wong, A. J.; Olson, R. A.; Pedro,
310 D. I.; Sawyer, W. G.; Sumerlin, B. S. Inverse Miniemulsion Enables the Continuous-
311 Flow Synthesis of Controlled Ultra-High Molecular Weight Polymers. *ACS Macro*
312 *Lett.* **2023**, 1224–1230. <https://doi.org/10.1021/acsmacrolett.3c00431>.

313 (31) Hughes, R. W.; Lott, M. E.; Bowman, J. I.; Sumerlin, B. S. Excitation
314 Dependence in Photoiniferter Polymerization. *ACS Macro Lett.* **2023**, 12 (1), 14–19.
315 <https://doi.org/10.1021/acsmacrolett.2c00683>.

316 (32) Olson, R. A.; Lott, M. E.; Garrison, J. B.; Davidson, C. L. G. I.; Trachsel, L.;
317 Pedro, D. I.; Sawyer, W. G.; Sumerlin, B. S. Inverse Miniemulsion Photoiniferter
318 Polymerization for the Synthesis of Ultrahigh Molecular Weight Polymers.
319 *Macromolecules* **2022**, 55 (19), 8451–8460.
320 <https://doi.org/10.1021/acs.macromol.2c01239>.

321 (33) Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.;
322 Hedrick, J. L. Organocatalytic Ring-Opening Polymerization. *Chem. Rev.* **2007**, 107
323 (12), 5813–5840. <https://doi.org/10.1021/cr068415b>.

324 (34) Thomas, C.; Bibal, B. Hydrogen-Bonding Organocatalysts for Ring-Opening
325 Polymerization. *Green Chem.* **2014**, 16 (4), 1687–1699.
326 <https://doi.org/10.1039/C3GC41806E>.

327 (35) Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Lundberg, P. N. P.; Dove, A. P.; Li,
328 H.; Wade, C. G.; Waymouth, R. M.; Hedrick, J. L. Exploration, Optimization, and
329 Application of Supramolecular Thiourea–Amine Catalysts for the Synthesis of
330 Lactide (Co)Polymers. *Macromolecules* **2006**, 39 (23), 7863–7871.
331 <https://doi.org/10.1021/ma061607o>.

332 (36) Danino, D.; Talmon, Y.; Zana, R. Cryo-TEM of Thread-like Micelles: On-the-Grid
333 Microstructural Transformations Induced during Specimen Preparation. *Colloids*
334 *Surf. Physicochem. Eng. Asp.* **2000**, 169 (1), 67–73. [https://doi.org/10.1016/S0927-7757\(00\)00418-0](https://doi.org/10.1016/S0927-7757(00)00418-0).

335 (37) Patterson, J. P.; Kelley, E. G.; Murphy, R. P.; Moughton, A. O.; Robin, M. P.; Lu,
336 A.; Colombani, O.; Chassenieux, C.; Cheung, D.; Sullivan, M. O.; Epps, T. H. I.;
337 O'Reilly, R. K. Structural Characterization of Amphiphilic Homopolymer Micelles

338

339 Using Light Scattering, SANS, and Cryo-TEM. *Macromolecules* **2013**, *46* (15),
340 6319–6325. <https://doi.org/10.1021/ma4007544>.

341 (38) Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. *Chem. Soc. Rev.*
342 **2012**, *41* (18), 5969–5985. <https://doi.org/10.1039/C2CS35115C>.

343 (39) Patterson, J. P.; Robin, M. P.; Chassenieux, C.; Colombani, O.; O'Reilly, R. K.
344 The Analysis of Solution Self-Assembled Polymeric Nanomaterials. *Chem. Soc.*
345 *Rev.* **2014**, *43* (8), 2412–2425. <https://doi.org/10.1039/C3CS60454C>.

346