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Abstract— The exploration/exploitation trade-off is an in-
herent challenge in data-driven adaptive control. Though
this trade-off has been studied for multi-armed bandits
(MAB’s) and reinforcement learning for linear systems; it
is less well-studied for learning-based control of nonlinear
systems. A significant theoretical challenge in the non-
linear setting is that there is no explicit characterization
of an optimal controller for a given set of cost and sys-
tem parameters. We propose the use of a finite-horizon
oracle controller with full knowledge of parameters as a
reasonable surrogate to optimal controller. This allows us
to develop policies in the context of learning-based MPC
and MAB’s and conduct a control-theoretic analysis using
techniques from MPC- and optimization-theory to show
these policies achieve low regret with respect to this finite-
horizon oracle. Our simulations exhibit the low regret of our
policy on a heating, ventilation, and air-conditioning model
with partially-unknown cost function.

Index Terms— Non-myopic Exploitation, Learning-Based
Control, Model Predictive Control, Restless Bandits

I. INTRODUCTION

Reinforcement learning (RL) research [1]–[3] focuses on
regret analysis for primarily unconstrained, linear systems.
On the other hand, adaptive model predictive control (MPC),
including learning-based MPC (LBMPC), seeks to ensure
constraint satisfaction in the presence of models that are up-
dated as more data becomes available [4]–[7]. The relationship
between MPC and RL has not yet been fully explored.

Our paper aims to better connect these two areas. We make
two main contributions: First, we discuss how comparing
finite-horizon policies with different horizon lengths leads to
ambiguous regret notions in evaluation of learning-based con-
trol policies. Thus we propose a regret notion that compares
a finite-horizon learning-based policy with a finite-horizon
oracle controller as the benchmark. Second, we bound this
regret notion for a class of learning-based control policies for
which we prove constraint satisfaction. An important aspect
of our regret analysis is that we have to consider the stability
of our policy when bounding the regret. In this sense, our
analysis draws a connection between stability of the nonlinear
control system and regret performance of the learning policy.
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A. Partially-Unknown Cost Function
MPC usually assumes the system dynamics and a cost

function are exactly known. However, these may be partially-
unknown in real-world systems that motivate our setup.

1) Heating, Ventilation, Air-Conditioning (HVAC) Systems:
Since HVAC uses a large part of total building energy, im-
proving HVAC energy-efficiency using MPC has been stud-
ied [8]–[11]. However, past works typically assume perfect
knowledge of a cost function that characterizes the trade-off
between energy-efficiency and occupant comfort. In practice,
the quantity of trade-off is different for each occupant and is
a priori unknown to the controller. It makes sense to learn
an ideal trade-off from occupant-reported data [12] and then
adapt the MPC operation in response, which is an example of
MPC with a partially-unknown cost function.

2) Clinical-Inventory Management: Inventory management
in hospitals involves periodically restocking drugs and medical
supplies, and MPC for inventory management [13]–[16] is
powerful as it naturally captures the dynamics of consum-
ing and purchasing drugs and supplies. Although past work
typically assumes that consumption dynamics are completely
characterized, it is not realistic for the demand in hospitals due
to unforeseeable medical emergencies. It then makes sense
from a practical standpoint to learn about the demand from
such events and then adapt the MPC operation in response,
which is an example of MPC with learning for the dynamics.

B. Exploration/Exploitation Trade-Off
A challenge in LBMPC is to jointly optimize the control to

minimize a cost function and to steer the system to get more
information about unknown system or cost parameters [17].
This exploration/exploitation trade-off and has been formally
studied in the setting of MAB’s [18]–[20], RL for finite
Markov chains [21]–[23] and for linear systems [24]–[27].

Most work on MAB’s assumes (weak-)stationarity because
computing the optimal policy with non-stationary is PSPACE-
hard [28]. In RL of control systems, past work on nonlinear
systems is limited [29]–[34] because the optimal controller for
linear systems with a quadratic cost is completely character-
ized by the Algebraic Ricatti Equation: This allows one to
convert the RL problem into simply a parameter estimation
problem. However, extending these ideas to nonlinear systems
is nontrivial as there is no such simple characterization of the
optimal controller, and so alternative approaches are needed.
We design a learning-based controller for nonlinear and non-
stationary systems where the policy explores to improve the
estimation methodology embedded in the learning mechanism.
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C. Outline
Sect. II covers preliminaries. Sect. III defines our setup and

and proves safety properties for a class of control policies.
Sect. IV introduces N -step dynamic regret, and Sect. V and VI
present a finite sample analysis for the parameter estimation
and regret analysis for the non-myopic ϵ-greedy algorithm.
Lastly, numerical experiments are done in Sect. VII.

II. PRELIMINARIES

A polytope U in Rn can be represented as intersection of a
set of half-spaces [35]: U = {x : Pix ≤ qi, i = 1, . . . , d}, Pi ∈
Rd×n, qi ∈ Rd. Let U ,V be two sets. The linear transformation
of U by a matrix R is RU = {Ru : u ∈ U}. Their Minkowski
sum [36] is defined as U ⊕ V = {u + v : u ∈ U ; v ∈ V}
and Pontryagin set difference [37] is defined as U ⊖V = {u :
u+V ⊆ U}. Note R(U⊖V) ⊆ RU⊖RV and (U⊖V)⊕V ⊆ U .

III. PROBLEM FORMULATION

Let xt ∈ Rn be states and ut ∈ Rq be inputs. We assume
xt ∈ X and ut ∈ U are constrained by (compact) polytopes
X ,U . The true system dynamics are xt+1 = f(xt, ut, θ0) =
Axt+But+g(xt, ut, θ0), where A ∈ Rn×n, B ∈ Rn×q , θ0 ∈
Θ for some compact set Θ ⊆ Rp, and the nonlinear function
g(·, ·, θ) : Rn × Rq → Rn is parameterized by θ ∈ Θ. We
assume {g(x, u, θ0) : x ∈ X , u ∈ U} ⊆ W for some bounded
polytope W , and A,B, g,W,Θ are known but θ0 is not known
to the controller. Define wt = g(xt, ut, θ0), and note wt ∈
W by assumption. The intuition is we have a nominal linear
model and a partially-unknown, nonlinear correction.

At each time t, the controller receives a stochastic reward
rt from distribution Pxt,ut,θ0 with probability density func-
tion p(r|xt, ut, θ0) and expectation E rt = h(xt, ut, θ0). We
assume h is parametrically unknown (θ0 is unknown). This
setup can handle stochastic costs ct (as opposed to rewards)
by setting rt = −ct. We standardize our notation for rewards.

The control problem is to sequentially choose inputs to
maximize expected total reward at the end of a finite time
horizon T = {0, . . . , T}. At time t, the controller has access
to past rewards, inputs, and states. Hence, any policy ut =
Λt(Ft) will be a sequence (with respect to t) of functions of

Ft = {r0, . . . , rt−1, u0, . . . , ut−1, x0, . . . , xt}. (1)

We distinguish between different policies by using superscripts
for the sequence of functions Λt characterizing the policy.

A. Learning-Based MPC Formulation
LBMPC uses two models: a learned model to enhance

performance and a nominal model to provide robustness [5].
Because A,B are known in our setup, the controller uses as its
nominal model x̄t+k+1|t = Ax̄t+k|t+But+k|t, where x̄ ∈ Rn

is system state of the nominal model. The “|t” notation denotes
the initial condition is taken to be x̄t|t = xt, where xt is
the true state at time t. Because g(·, ·, θ) is also known, the
controller uses as its learned model x̃t+k+1|t = Ax̃t+k|t +

But+k|t+ g(x̃t+k|t, ut+k|t, θ̂t), where x̃ is the system state of
the learned model and θ̂t is the controller’s estimate of θ0 at

time t. Here, LBMPC learns the true dynamics by updating its
estimate of θ0 as more state measurements become available.

We must first discuss the terminal set used for the MPC.
Assuming that (A,B) is stabilizable, there exists a constant
state-feedback matrix K ∈ Rq×n such that (A+BK) is Schur
stable. We assume Ω ⊆ X is a maximal output admissible
disturbance invariant set [37] meaning that for some stabilizing
K it satisfies: a) Ω ⊆ {x : x ∈ X : Kx ∈ U} (constraint
satisfaction) and b) (A + BK)Ω ⊕ W ⊆ Ω (disturbance
invariance). The intuition is that Ω is a set of states satisfying
the constraints X for which there exists a feasible action
keeping the true state within Ω despite the uncertainty of the
nominal model. Several algorithms [37]–[40] can compute this
set, and so we assume Ω is available to the controller.

With the set Ω, we consider an (simplified) LBMPC variant
that maximizes the expected N -step reward. Our results can
be generalized straightforwardly to the full formulation [5],
but we do not consider this as it adds substantial notational
complexity that hinders showcasing the stochastic aspects of
our setting. The LBMPC formulation of a finite-horizon N is

VN (xt, θ, t) =max
∑N

k=0 h(x̃t+k|t, ut+k|t, θ)

s.t. x̄t+k+1|t = Ax̄t+k|t +But+k|t k ∈ ⟨N − 1⟩
x̃t+k+1|t = Ax̃t+k|t +But+k|t

+ g(x̃t+k|t, ut+k|t, θ) k ∈ ⟨N − 1⟩
x̄t+k|t ∈ X k ∈ [N ]

ut+k|t ∈ U k ∈ ⟨N⟩
x̄t+1|t ∈ Ω⊖W , x̄t|t = x̃t|t = xt (2)

where ⟨k⟩ = {0, . . . , k} and [k] = {1, . . . , k}. The difference
between this simplified variant and the full formulation is that
here we apply the invariant set Ω at the first time step, an idea
previously used in [41], whereas the full formulation uses a
robust tube framework to apply Ω at the N -th time point.
Our results apply to the above LBMPC formulation and may
generalize to the similar variants, but it is unclear if they would
generalize to other LBMPC forms without further study.

B. Safety of Learning-Based MPC Variant
Because applying the invariant set to the first time point in

an MPC formulation is nonstandard, we first formally prove
that this LBMPC variant ensures recursive properties of robust
constraint satisfaction and robust feasibility.

Theorem 1: Suppose {ut|t, . . . , ut+N |t} are feasible for
VN (xt, θ, t) for any θ. If Ω is a maximal output admissible
disturbance invariant set, then choosing ut = ut|t ensures that
we have: a) xt+1 ∈ X (robust constraint satisfaction) and b)
there exist values {ut+1|t+1, . . . , ut+N |t+1} that are feasible
for VN (xt+1, θ

′, t+ 1) for any θ′ (robust feasibility).
Proof: Since {ut|t, . . . , ut+N |t} are feasible for

VN (xt, θ, t), then xt+1|t = Axt + But|t ∈ Ω ⊖ W by (2).
By relating the true dynamics to the nominal model, the true
next state is xt+1 = xt+1|t + wt for some wt ∈ W . This
means xt+1 ∈ (Ω ⊖ W) ⊕ W ⊆ Ω ⊆ X where the last set
inclusion follows from the constraint satisfaction property in
the definition of Ω. By the definition (2) of VN (xt+1, θ

′, t+1),
we have that x̄t+1|t+1 = xt+1. However, we just showed that
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xt+1 ∈ Ω. Hence x̄t+1|t+1 ∈ Ω. Now set ut+1|t+1 = Kxt+1,
and note that the constraint satisfaction property of Ω means
ut+1|t+1 ∈ U . Since xt+2|t+1 = Axt+1|t+1 + But+1|t+1 =
(A + BK)xt+1|t+1, we have xt+2|t+1 ∈ (A + BK)Ω ⊆
((A + BK)Ω ⊕ W) ⊖ W ⊆ Ω ⊖ W where the last set
inclusion follows by the disturbance invariance property of Ω.
So x̄t+2|t+1 ∈ Ω⊖W ⊆ Ω ⊆ X by the constraint satisfaction
property of Ω. We can sequentially repeat this argument with
ut+k+1|t+1 = Kxt+k+1|t+1 to show this choice results in
ut+k+1|t+1 ∈ U and xt+k+1|t+1 ∈ X for k ∈ [N − 1]. Thus
{ut+1|t+1, . . . , ut+N |t+1} are feasible for VN (xt+1, θ

′, t+1).

Remark 1: An important feature of the above result is that
there is no required relationship between the θ and θ′. Since
estimates of the θ are updated through learning, this shows
that the safety properties of this LBMPC variant are decoupled
from the design of the learning-process.

C. Technical Assumptions

Our learning-based control problem is well-posed under
certain regularity assumptions described below.

Assumption 1: The rewards rt are conditionally indepen-
dent given θ0 and x0, or equivalently, given θ0 and the
complete sequence of {u0, . . . , ut, x0, . . . , xt}.
Similar to the independent rewards of the stationary MABs, we
have independence of rt|{xt, θ0} and rt′ |{xt′ , θ0} for t ̸= t′.

Assumption 2: The log-likelihood ratio ℓ(r, x, u; θ, θ′) =

log p(r|x,u,θ)
p(r|x,u,θ′) of Px,u,θ is locally Lℓ,x-Lipschitz continuous

with respect to x on the compact set X for θ, θ′ ∈ Θ, u ∈ U .
This ensures continuity of the reward distribution with respect
to the parameters. If two parameter sets are close to each other
in value, then the resulting distributions will also be similar.

Assumption 3: The distribution Px,u,θ for all x ∈ X , u ∈
U , and θ ∈ Θ is sub-Gaussian with parameter σ, and either
p(r|x, u, θ) has a finite support or ℓ(r, u;x, θ, x′, θ′) is locally
Lℓ,r-Lipschitz with respect to r.
This assumption ensures sample averages are close to their
means and is satisfied by many distributions (e.g., Gaussian
with known variance). Our last condition ensures the dynamics
and the expectation function are well-behaved.

Assumption 4: Repeated composition of the true dynamics
with itself up to N − 1 times, f t+k(xt, ut|t, . . . , ut+k|t, θ), is
Lipschitz continuous with respect to xt ∈ X and ut+k|t ∈
U with constants Lf,x and Lf,u, respectively. Besides, the
expectation h(xt, ut, θ), for ut = Λt(Ft) in (1), is Lipschitz
continuous with respect to xt ∈ X and ut ∈ U with constants
Lh,x and Lh,u, respectively, for all θ ∈ Θ.

IV. THE N-STEP DYNAMIC REGRET

Our interest is in evaluating the performance of an LBMPC
exploitation policy for a given N ≤ T that is ΛE,N

t (Ft) =
u∗
t|t(θ̂t) for the corresponding value from the maximizer of

VN (xt, θ̂t, t) where θ̂t are the control policy’s estimates of the
unknown θ0. Data-driven policies are often evaluated by com-
paring performance to a benchmark policy, and it is typical to
benchmark using the optimal policy [42]–[44]. In our setting,

the optimal policy is a sequence of functions Λ∗
t (Ft)

T
t=0 max-

imizing
∑T

t=0 h(xt, ut, θ0) subject to the knowledge available
to the control policy (which does not include θ0). However,
computing optimal policies for the problems we consider is
PSPACE-hard [28]. Even their structure is not known for our
setup, including for the special case of linear dynamics and
quadratic cost function with unknown coefficients.

An alternative benchmark is an oracle policy that has perfect
knowledge of θ0. Specifically, we will use the LBMPC oracle
policy that is ΛO,N

t (Ft) = u∗
t|t(θ0) for the corresponding

value from the maximizer of VN (xt, θ0, t) as defined in (2).
However, there are two subtleties that have to be discussed.

The first subtlety is that the horizon length of the LBMPC
oracle policy could potentially be different than the horizon
length of the LBMPC policy. However, using different control
horizon lengths can lead to different sums of expected rewards
over the entire control horizon T . Though this behavior
is well known within the MPC community, its implication
on evaluating learning-based control policies has not been
previously appreciated. The implication is that comparing poli-
cies with different horizon lengths leads to a poorly-defined
regret notion, and that we should compare oracle policies and
learning-based policies with the same finite-horizon.

The second subtlety is that the presence of nonlinear dy-
namics in our setup means the state trajectory of a system
always controlled by a benchmark policy can be very different
than that of a system always controlled by a learning policy,
even if the learning policy converges towards the benchmark
policy. For this reason, we define a regret notion to compare
a finite-horizon benchmark policy to a finite-horizon learning-
based policy. We consider an ϵ-greedy policy Λϵ,N

t that uses
the LBMPC policy ΛE,N

t at each greedy exploitation step. Let
xt, ut be the state and input for the system as controlled by the
oracle policy ΛO,N

t , and let x′
t, u

′
t be the state and input for

the system as controlled by the ϵ-greedy policy Λϵ,N
t . Then,

the expected N -step dynamic regret is defined as

RN,T =
∑T

t=0 h(xt,Λ
O,N
t (Ft), θ0)− h(x′

t,Λ
ϵ,N
t (F ′

t), θ0)
(3)

where Ft is as defined in (1) and F ′
t is as defined in (1) with

x′, u′ replacing x, u. This definition is closely related to the
traditional dynamic regret [45], [46], and the novel aspect of
ours is that it compares two N -step finite-horizon policies.

V. PARAMETER ESTIMATION

Let the variables {ri}t−1
i=0 be the actual observed values of

the rewards up to time t. Using Assumption 1, the joint likeli-
hood p({ri}t−1

i=0|x0, . . . , xt, u0, . . . , ut−1, θ) can be expressed
as

∏t−1
i=0 p(ri|xi, ui, θ)P (xi|xi−1, θ). Here, the one step transi-

tion likelihood P (xi|xi−1, θ) is a degenerate distribution with
all probability mass at xi, by perpetuation of the dynamics
f(xi, ui, θ) with initial conditions xi−1. Thus, the maximum
likelihood estimator (MLE) for θ is

θ̂t ∈ argmin
θ∈Θ

−
∑t−1

i=0 log p(ri|xi, ui, θ)

s.t. xi+1 = f(xi, ui, θ) ∀i ∈ {0, . . . , t− 1}
(4)

This MLE problem can be computed using optimization,
dynamic programming, or various filtering techniques for
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different problem structures. The Kalman Filter (KF) is a
recursive estimator for linear-quadratic discrete-time systems.
In more complex systems with non-Gaussian distributions
and nonlinear dynamics, the Extended KF and Particle Filter
are well-known estimators [47]–[49]. For practical purposes,
these efficient approaches motivate the use of MLE in our
policy. Further, if the controller did not have perfect state
measurements, we could use the noisy state data to estimate
the dynamics in the constraints of (4) [50], [51], which would
also alleviate any potential infeasibility issues of the MLE.

We further analyze the concentration properties of the
solution to (4) and take an approach to the theoretical analysis
that generalizes that of [20]. We begin by introducing the
notion of trajectory Kullback–Leibler (KL) divergence. Since
this problem includes the joint distribution of a trajectory of
values, the concentration bound for the parameter estimates is
computed with regards to the trajectory KL divergence.

Definition 1: The trajectory Kullback–Leibler (KL) diver-
gence between the parameter trajectories θ, θ′ ∈ Θ with
the same input sequence ΠT = {ut}Tt=0 is DΠT

(θ||θ′) =∑T
i=0 DKL(Pfi(x0,Πi,θ),ui,θ||Pfi(x0,Πi,θ′),ui,θ′), where Πi is

the given sequence of control inputs from time 0 to i, f i is
the repeated composition of the dynamics f with itself i times
subject to Πi, and DKL is the standard KL-Divergence.
We have an observability assumption with the implication that
the distance between two different parameters θ, θ′ ∈ Θ is
bounded proportional to their trajectory KL divergence.

Assumption 5: For a given input sequence ΠT and parame-
ters θ ̸= θ′, if DΠT

(θ||θ′) ≤ δ, then ∥θ− θ′∥≤ Cδ for C > 0.
We next reformulate the MLE problem (4) by removing the
state dynamics constraints through repeated composition of f ,
that is θ̂t ∈ argminθ∈Θ

1
t−1

∑t−1
i=0 log

p(ri|fi(x0,Πi,θ0),ui,θ0)
p(ri|fi(x0,Πi,θ),ui,θ)

.
This reformulation is helpful for our theoretical analysis since
for fixed θ, the expected value of the above objective function
under Px0,ΠT ,θ0 is simply 1

t−1DΠT
(θ0||θ). Hence, we can

interpret the MLE problem as minimizing the trajectory KL
divergence between the distribution of potential sets of pa-
rameters and that of the true parameter set. This interpretation
is helpful for us to derive our concentration inequalities. For
conciseness of our analysis in this paper, we present the final
concentration bound for θ̂t and do not include its proof since
it largely follows by the theoretical arguments in [20].

Theorem 2: For any constant ζ > 0, we have the bound
that P ( 1

t−1DΠt
(θ0||θ̂t) ≤ ζ+

cf (dx,dθ)√
t−1

) ≥ 1−exp(− ζ2(t−1)
2L2

ℓ,rσ
2 )

where the constant cf (dx, dθ) = 8Lf,xLℓ,xdiam(X )
√
π +

48
√
2(2)

1
dx+dθ Lf,xLℓ,xdiam(Θ × X )

√
π(dx + dθ) depends

upon dx and dθ (dimensionalities of X and Θ), and
diam(X ) = maxx,y∈X ∥x− y∥2.

Proof: Omitted. Refer to Section 3 of [20].
We will use this concentration inequality to prove the regret
bound of our non-myopic ϵ-greedy policy that we present next.

VI. PROPOSED APPROACH

We develop a non-myopic ϵ-greedy algorithm that can
achieve effective regret bounds for the non-stationary and
nonlinear LBMPC introduced in Section III. Our choice of
algorithm aims to draw a connection between the control

and MAB literature. A possible alternative could be adding
additive noise to the control inputs which we leave as a future
work. When compared with the other well-known MAB strate-
gies, Thompson Sampling (TS) and Upper Confidence Bound
(UCB), ϵ-greedy is significantly easier from a computational
standpoint for combining with the LBMPC formulation of our
non-myopic exploitation problem. TS requires characterization
of the posterior distribution which is indeed not possible under
the general dynamics considered. Similarly, UCB requires
being able to compute the confidence bounds which is not
feasible in this framework. Hence, those strategies are not
practical for the kinds of applications we are interested in.

Our Algorithm 1 explores randomly according to a non-
stationary stochastic process. The initial state x0 is an arbitrary
point from the X . At each time t ∈ T , the algorithm samples
a Bernoulli variable st based on the exploration probability
ϵt. If st = 1, it performs pure exploration. To ensure ro-
bust constraint satisfaction and feasibility after exploration, it
chooses an input ut|t uniform randomly from U(xt) = {u :
Axt + Bu ∈ Ω ⊖ W , u ∈ U}. If st = 0, the algorithm
performs a greedy exploitation step by solving the non-myopic
exploitation problem VN (xt, θ̂t, t) to select the sequence of
inputs with the highest MLE-estimated N -step reward. Finally,
the algorithm observes the updated state xt+1 and reward rt
after applying the chosen input Λϵ,N

t (Ft) to the system.

Algorithm 1 Non-myopic ϵ-Greedy Algorithm

1: Set: c > 0 and x0 ∈ X
2: for t ∈ T do
3: Set: ϵt = min {1, c/t}
4: Sample: st ∼ Bernoulli(ϵt)
5: if st = 1 then
6: Randomly select: ut|t ∈ U(xt)

7: Set: Λϵ,N
t (Ft) = ut|t

8: else
9: Compute: θ̂t from (4)

10: Compute: u∗
t|t(θ̂t) from VN (xt, θ̂t, t) (2)

11: Set: Λϵ,N
t (Ft) = u∗

t|t(θ̂t)
12: end if
13: Observe: rt and xt+1

14: end for

Remark 2: If W,X ,U are all polytopes, then Ω can be
approximated by a polytope arbitrarily well. Then, Ω ⊖ W
is also a polytope. As a result, line 6 involves randomly
picking an element from a polytope that can be done in a
computationally efficient way using standard algorithms.
For clarity, we consider a randomization at the initial system
state, and then assume noise-free transitions for the subsequent
states which is common in the line of RL for finite sample
analysis [52]–[55]. Our analysis here provides a strong ground
for generalization of our policy to the setting of imperfect
state measurements as an important direction for future work.
Note that the exploration probability ϵt decays over time.
This reduces the cost of exploration by ensuring the algorithm
makes fewer unnecessary explorations as more data collected
and the estimates of our policy improve.
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A. Lipschitzian Stability of Non-myopic Exploitation

We prove Lipschitzian stability, with respect to perturbations
of parameter values, of optimal solutions of the non-myopic
exploitation policy ΛE,N

t (Ft) = u∗
t|t(θ̂t) by proving a second

order growth condition and Lipschitz continuity of the differ-
ence of the perturbed and unperturbed objective functions.

Lemma 1: Suppose UN,t = {ut|t, . . . , ut+N |t} is a feasible
input sequence for VN (xt, θ̂t, t). Let JN (xt, UN,t, θ̂t, t) be the
estimated N -step reward of this input sequence at time t, i.e.,

JN (xt, UN,t, θ̂t, t) =
∑N

k=0 h(x̃t+k|t, ut+k|t, θ̂t) (5)

where x̃t+k+1|t = f(x̃t+k|t, ut+k|t, θ̂t) for k ∈ ⟨N − 1⟩ as
given in (2). Then, JN (xt, UN,t, θ̂t, t) is (Lf,u·Lh,u)-Lipschitz
continuous with respect to UN,t on the compact set UN+1 for
any feasible input sequence U ′

N,t = {u′
t|t, . . . , u

′
t+N |t}.

Proof: By Assumption 4, f t+k(xt, ut|t, . . . , ut+k|t, θ̂) is
Lf,u-Lipschitz continuous and h(x̃t+k|t, ut+k|t, θ̂t) is Lh,u-
Lipschitz continuous with respect to ut+k|t ∈ U . Then, by
preservation of Lipschitz continuity across functional compo-
sitions and addition, we have the desired condition.

Lemma 1 implies the second order growth condition for
VN (xt, θ̂t, t) since it shows JN increases at least linearly over
a compact set. We next present the second condition required
for the Lipschitzian stability of the maximizer of VN (xt, θ̂t, t).

Assumption 6: Let U∗
N,t(θ̂t) = {u∗

t|t(θ̂t), . . . , u
∗
t+N |t(θ̂t)}

and U∗
N,t(θ) = {u∗

t|t(θ), . . . , u
∗
t+N |t(θ)} be maximizers

of VN (xt, θ̂t, t) and VN (xt, θ, t). Then, for κ ≥ 0,
we have |[JN (xt, U

∗
N,t(θ̂t), θ̂t, t) − JN (xt, U

∗
N,t(θ̂t), θ, t)] −

[JN (xt, U
∗
N,t(θ), θ̂t, t) − JN (xt, U

∗
N,t(θ), θ, t)]|≤ κ∥θ̂t −

θ∥·∥U∗
N,t(θ̂t)− U∗

N,t(θ)∥.
We now give a sufficient condition for Assumption 6.

Proposition 1: For any θ ∈ Θ and real constant LJ ≥ 0,
if ∥∇uJN (xt, U

∗
N,t(θ̂t), θ̂t, t)−∇uJN (xt, U

∗
N,t(θ̂t), θ, t)∥∞≤

LJ∥θ̂t − θ∥ holds, then Assumption 6 is satisfied.
Proof: Let s(τ) = U∗

N,t(θ̂t) + τ · (U∗
N,t(θ)− U∗

N,t(θ̂t)).
This implies s(0) = U∗

N,t(θ̂t) and s(1) = U∗
N,t(θ). Then,

[JN (xt, U
∗
N,t(θ̂t), θ̂t, t)− JN (xt, U

∗
N,t(θ̂t), θ, t)]

− [JN (xt, U
∗
N,t(θ), θ̂t, t)− JN (xt, U

∗
N,t(θ), θ, t)]

=
∫ 1

0
∇UJ(xt, s(τ), θ̂t, t)

T (U∗
N,t(θ)− U∗

N,t(θ̂t))dτ

−
∫ 1

0
∇UJ(xt, s(τ), θ, t)

T (U∗
N,t(θ)− U∗

N,t(θ̂t))dτ (6)

where the last equality follows by the Fundamental Theorem
of Calculus for Line Integrals. Then, we continue as

= |
∫ 1

0
[∇UJ(xt, s(τ), θ̂t, t)−∇UJ(xt, s(τ), θ, t)]

T

(U∗
N,t(θ)− U∗

N,t(θ̂t))dτ | (7)

≤
∫ 1

0
∥∇UJ(xt, s(τ), θ̂t, t)−∇UJ(xt, s(τ), θ, t)∥∞

||U∗
N,t(θ)− U∗

N,t(θ̂t)∥1dτ (8)

≤ LJ∥θ̂t − θ∥·∥U∗
N,t(θ)− U∗

N,t(θ̂t)∥1 (9)

≤
√
NLJ∥θ̂t − θ∥·∥U∗

N,t(θ)− U∗
N,t(θ̂t)∥2 (10)

where (8) follows by Hölder’s inequality, and (9) follows
by the assumed property in Proposition 1. This gives us the
desired result in Assumption 6 by setting κ =

√
NLJ .

Lemma 2: If the state dynamics f(x, u, θ) and the expec-
tation function h(x, u, θ) are polynomial functions, then the
sufficient condition given in Proposition 1 holds.

Proof: Since (5) is the average of compositions of two
polynomials f and h, it is polynomial. Then, ∇uJN (x, U, θ, t)
is polynomial on the bounded domain X ×UN+1×Θ. Hence,
by Corollary 8.2 in [56], ∇uJN (x, U, θ, t) is locally Lipschitz
with respect to θ ∈ Θ for any x ∈ X , U ∈ UN+1, t ∈ T .
A specific example where Lemma 2 holds is a discrete-time
linear time-invariant system with f(x, u, θ) = Ax + Bu and
h(x, u, θ) = xTQx+ uTRu where θ = [Q,R,A,B].

Lemma 3: If Assumption 6 and Lemma 1 hold, then the
Lipschitzian stability property follows by Proposition 4.32 in
[57], i.e., ||U∗

N,t(θ̂t)− U∗
N,t(θ)|| ≤ c−1

u κ∥θ̂t − θ∥ for cu > 0.
Since ||u∗

t|t(θ̂t) − u∗
t|t(θ)|| ≤ ||U∗

N,t(θ̂t) − U∗
N,t(θ)||, we

conclude that the non-myopic exploitation policy ΛE,N
t (Ft) =

u∗
t|t(θ̂t) corresponding from the maximizer of VN (xt, θ̂t, t) is

c−1
u κ-Lipschitz continuous with respect to θ̂t ∈ Θ.

B. Regret Analysis

We next characterize the N -step dynamic regret RN,T (3) of
Algorithm 1. By definition, RN,T compares the LBMPC oracle
policy ΛO,N

t (Ft) for the system xt, ut as controlled by the
oracle policy to our non-myopic ϵ-greedy policy Λϵ,N

t (F ′
t) for

the system x′
t, u

′
t as controlled by the learning-policy that uses

the LBMPC policy ΛE,N
t (F ′

t) at greedy exploitation steps. We
start by bounding a weaker notion that compares the actions
chosen under the states x′

t achieved by Λϵ,N
t (F ′

t).
Theorem 3: The non-myopic ϵ-greedy policy Λϵ,N

t (F ′
t) and

the LBMPC oracle policy ΛO,N
t (F ′

t) satisfy the following
result for the system states x′

t that are achieved by Λϵ,N
t (F ′

t):∑T
t=0 h(x

′
t,Λ

O,N (F ′
t), θ0)−

∑T
t=0 h(x

′
t,Λ

ϵ,N (F ′
t), θ0)

≤ M exp(
c2f (dx,dθ)

2L2
ℓ,rσ

2 )(C + log T )

+Mc(1− log(c+ 1) + log T ) +
Lh,uκC

√
4L2

ℓ,rσ
2

cu

√
T log T

(11)

where C > 0, cf (dx, dθ) is the constant in Theorem 2, and C
is a bound on the finite summation

∑9
t=1 exp(−(log t)2).

Proof: For notational convenience, let E[Mt] =
h(x′

t,Λ
O,N (F ′

t), θ0)− h(x′
t,Λ

ϵ,N (F ′
t), θ0). Let T xit ∈ T and

T xre ∈ T be the set of random time points that Algo-
rithm (1) performs exploitation and exploration, respectively.
Noticing the cardinalities #T xit, #T xre are random vari-
ables, we have

∑T
t=0 E[Mt] =

∑
t∈T xit h(x′

t, u
∗
t|t(θ0), θ0) −

h(x′
t, u

∗
t|t(θ̂t), θ0)+

∑
t∈T xre h(x′

t, u
∗
t|t(θ0), θ0)−h(x′

t, ut|t, θ0).
We note that E[Mt] is a bounded value since X ,Θ,U are all
compact sets and h(x, u, θ) is a bounded continuous function
on this domain. Then, assuming E[Mt] ≤ M, we obtain

[
∑T

t=0 E[Mt]|T xit] ≤ ME[#T xre]

+
∑

t∈T xit h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, u
∗
t|t(θ̂t), θ0) (12)
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We can rewrite each term inside the summation above as

h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, u
∗
t|t(θ̂t), θ0)

= E[Mt|DΠt(θ0||θ̂t) ≤ δθ̂t , xt, θ0, θ̂t]P (DΠt(θ0||θ̂t) ≤ δθ̂t)

+ E[Mt|DΠt
(θ0||θ̂t) ≥ δθ̂t , xt, θ0, θ̂t]P (DΠt

(θ0||θ̂t) ≥ δθ̂t)

= (13, a) + (13, b) (13)

Let ε(δθ̂t) = max{∥θ0 − θ̂t∥: DΠt(θ0||θ̂t) ≤ δθ̂t}, ∀t ∈ T xit.∑
t∈T xit(13, a)

=
∑

t∈T xit h(x′
t, u

∗
t|t(θ0), θ0)− h(x′

t, u
∗
t|t(θ̂t), θ0) (14)

≤
∑

t∈T xit Lh,u∥u∗
t|t(θ0)− u∗

t|t(θ̂t)∥ (15)

≤
∑

t∈T xit Lh,u∥U∗
N |t(θ0)− U∗

N |t(θ̂t)∥ (16)

≤ Lh,uκ
cu

∑
t∈T xit∥θ0 − θ̂t∥ (17)

≤ Lh,uκ
cu

∑
t∈T xit ε(δθ̂t) (18)

where (15) follows by Assumption 4 and (17) follows by
Lemma 3. Now, we have ε(δθ̂t) = Cδθ̂t for a constant C > 0

by Assumption 5 and let η(t) = |{s ∈ T xit : s ≤ t}|. Then,
for δθ̂t =

√
4L2

ℓ,rσ
2 log η(t)/

√
η(t), we obtain

≤ Lh,uκC
√

4L2
ℓ,rσ

2

cu

√
#T xit log#T xit (19)

≤ Lh,uκC
√

4L2
ℓ,rσ

2

cu

√
T log T (20)

To bound the second term in (13), recall E[Mt] ≤ M. Then,∑
t∈T xit(13, b) ≤ M

∑
t∈T xit exp(

−(δ
θ̂t

√
t−1−cf (dx,dθ))

2

2L2
ℓ,rσ

2 )

(21)

≤ M
∑

t∈T xit exp(
−δ2

θ̂t
(t−1)/2+c2f (dx,dθ)

2L2
ℓ,rσ

2 ) (22)

≤ M exp(
c2f (dx,dθ)

2L2
ℓ,rσ

2 )

(
∑9

t=1 exp(−(log t)2) +
∑

t∈T xit,t≥10 exp(− log t)) (23)

≤ M exp(
c2f (dx,dθ)

2L2
ℓ,rσ

2 )(C + log T ) (24)

where (21) follows by Theorem 2 and C can be approxi-
mated as 2.2232. Lastly, we bound the first term in (12):
ME[#T xre] = M

∑T
t=0 min{1, c

t} ≤ M(c +
∑T

t=c+1
c
t ) ≤

Mc(1− log(c+ 1) + log T ). Substituting these into (12):

[
∑T

t=0 E[Mt]|T xit] ≤ M exp(
c2f (dx,dθ)

2L2
ℓ,rσ

2 )(C + log T )

+Mc(1− log(c+ 1) + log T ) +
Lh,uκC

√
4L2

ℓ,rσ
2

cu

√
T log T

and taking the expectation gives us the desired result.
We analyze regret of Λϵ,N (F ′

t) by assuming stability of
ΛO,N
t (Ft). If the LBMPC from Sect. III does not provide

stability, the full LBMPC formulation [5] can achieve stability.
Our results in this paper generalize to the full formulation but
at the expense of substantial notational complexity.

Assumption 7: Let xeq ∈ Ω be an equilibrium for the
LBMPC system in Sect. III. For α ∈ [0, 2/3] and Ft as in
(1), the LBMPC oracle policy ΛO,N

t (Ft) satisfies ∥Axt +
BΛO,N

t (Ft) + g(xt,Λ
O,N
t (Ft), θ0)− xeq∥≤ α∥xt − xeq∥ ∀t.

Exponential stability of the nonlinear LBMPC implied by this
assumption can be ensured under certain sufficient conditions
established in the literature [58], [59]. Generalizing the results
with less restrictive stability notions poses future research.

Theorem 4: For 4 ≤ c ≤ 4
√
T/

√
3, the expected N -step

dynamic regret RN,T (3) for a policy Λϵ,N (F ′
t) computed

by Algorithm 1 satisfies RN,T ≤ 2Lh,x

√
Tdiam(X ) +

2Lh,xc(3−α)
1−α diam(X ) log T +

4Lh,xCc2

α

√
T (log T )3 +

M exp(
c2f (dx,dθ)

2L2
ℓ,rσ

2 )(C+log T )+Mc(1− log(c+1)+ log T )+

Lh,uκC
√

4L2
ℓ,rσ

2

cu

√
T log T with probability at least [1 − (T −

2
√
T ) exp (−

4c2
(
log

e(2
√

T+2
c+1

)2

2c log(2
√
T+1)+ 2c2

2
√

T+1
+ 4c2

3 log
e(2

√
T+2)

c+1

)−exp (−

c2( log T
2
√

T+1
)
2

(4+ 2
3 c

2) log T
)] where C = c−1

u (∥B∥+Lf,u)κC
√
4L2

ℓ,rσ
2.

Proof: By Assumption 4 and the upper bound in (11),

RN,T =
∑T

t=0 h(xt,Λ
O,N
t (Ft), θ0)− h(x′

t,Λ
O,N
t (F ′

t), θ0)

+
∑T

t=0 h(x
′
t,Λ

O,N
t (F ′

t), θ0)− h(x′
t,Λ

ϵ,N
t (F ′

t), θ0)

≤ Lh,x

∑T
t=0∥xt − x′

t∥ + (11) (25)

Algorithm (1) performs exploration at random times according
to a non-stationary stochastic process over T . We divide T
into “inter-explore intervals” composed of an exploration and
the subsequent exploitations until the next one is reached.
Let Ik = [Ik, Ik] be the kth sub-interval such that I−1 =
[0, 2⌈

√
T ⌉], I0 = [2⌈

√
T ⌉ + 1, txre

1 − 1], Ik = [txre
k , txre

k+1 − 1]
for k ∈ [1,K − 1] where txre

k is the kth exploration step after
time 2⌈

√
T ⌉, and IK = [txre

K , T ] where K =
∑T

t=2⌈
√
T⌉+1 st

and st ∼ Bernoulli (min {1, c/t}). Then,
∑T

t=0∥xt − x′
t∥=∑K

k=−1

∑
t∈Ik

∥xt − x′
t∥. The key idea is that regret over

each Ik, k ∈ [0,K] is bounded above by the regret over
Sk = [Sk, Sk] = [Ik, T ] that includes a single exploration
at time Ik followed by exploitation steps thereafter up to T .

Suppose Algorithm 1 uses ΛO,N
t (Ft) at all greedy ex-

ploitation steps of Sk, k ∈ [0,K]. Since xt ∈ X for t ∈
T xre and X is compact, ∥xt − xeq∥≤ diam(X ), t ∈ T xre.
Then, by Assumption 7,

∑
t∈Ik

∥xt − xeq∥≤
∑

t∈Sk
∥xt −

xeq∥= ∥xtxre
k

− xeq∥+
∑Sk

t=Sk+1∥xt − xeq∥≤ diam(X ) +∑Sk

t=Sk+1 α
t−Skdiam(X ) ≤ diam(X )/(1−α). Next, suppose

instead ΛE,N
t (F ′

t) is used at all greedy exploitation steps of
Sk, k ∈ [0,K]. Observe the convergence of ΛE,N (F ′

t):

∥Ax′
t +BΛE,N

t (F ′
t) + g(x′

t,Λ
E,N
t (F ′

t), θ0)− xeq∥
≤∥Ax′

t +BΛO,N
t (F ′

t) + g(x′
t,Λ

O,N
t (F ′

t), θ
o)− xeq∥

+ ∥BΛE,N
t (F ′

t) + g(x′
t,Λ

E,N
t (F ′

t), θ0)

−BΛO,N
t (F ′

t)− g(x′
t,Λ

O,N
t (F ′

t), θ0)∥ (26)

≤ α∥x′
t − xeq∥+∥BΛE,N

t (F ′
t) + g(x′

t,Λ
E,N
t (F ′

t), θ0)

−BΛO,N
t (F ′

t)− g(x′
t,Λ

O,N
t (F ′

t), θ0)∥ (27)

where (26) follows by the triangle inequality and (27) follows
by Assumption 7. Recall that ∥ΛE,N

t (F ′
t) − ΛO,N

t (F ′
t)∥≤

κC
√

4L2
ℓ,rσ

2

cu

log η(t)√
η(t)

as followed from (15) to (19). By As-

sumption 4, we have (27) ≤ α∥x′
t − xeq∥+C log η(t)√

η(t)
, where
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C =
(∥B∥+Lf,u)κC

√
4L2

ℓ,rσ
2

cu
. Then, for k ∈ [0,K],∑

t∈Ik
∥x′

t − xeq∥≤
∑

t∈Sk
∥x′

t − xeq∥

= ∥x′
txre
k
− xeq∥+

∑Sk

t=Sk+1∥x′
t − xeq∥≤ diam(X )+∑T

t=txre
k +1 [α

t−txre
k diam(X ) + C

∑t−1
i=txre

k +1
αt−1−i log η(i)√

η(i)
]

≤ 2−α
1−αdiam(X ) + C

∑T
t=txre

k +1

∑t−1
i=txre

k +1 α
t−1−i log η(i)√

η(i)

Recall η(i) = i−
∑i

j=1 sj where sj ∼ Bernoulli(min{1, c/j})
and E

∑i
j=1 sj ≤ c+

∫ i

j=c
c
j dj = c log ei

c . By conditioning on
the event Ei = {

∑i
j=1 sj ≤ 3E

∑i
j=1 sj}, we get η(i) ≥

i− 3E
∑i

j=1 sj ≥ i− 3c log ei
c ≥ i

c2 where the last inequality
holds for all i ≥ 2⌈

√
T ⌉+1 ≥ 6c2+1. Then, for α ∈ [0, 2/3],

≤ 2−α
1−αdiam(X ) + Cc

∑T
t=txre

k +1

∑t−1
i=txre

k +1 α
t−i−1 log i√

i

≤ 2−α
1−αdiam(X ) + Cc

α

∑T
t=txre

k +1

∑t−1
i=txre

k +1
log i

(t−i)
√
i

≤ 2−α
1−αdiam(X ) + 2Cc

α

∑T
t=txre

k +1
(log t)2√

t

≤ 2−α
1−αdiam(X ) + 2Cc

α

√
T (log T )2 (28)

Note E
∑i

j=1 sj ≥ c log e(i+1)
c+1 and Var(

∑i
j=1 sj) =∑i

j=1
c
j · j−c

j ≤ c log i + c2

i . Then, by Bernstein’s in-
equality (Corollary 2.11 in [60]), it follows that (28) holds
with probability P(∩T

i=txre
k +1Ei) ≥ 1 −

∑T
i=txre

k +1 P (E i) ≥

1 −
∑T

i=txre
k +1 exp(−

4c2(log
e(i+1)
c+1 )2

2c log i+ 2c2

i + 4c2

3 log
e(i+1)
c+1

) ≥ 1 −

(T − 2
√
T ) exp(− 4c2(log

e(2
√

T+2
c+1 )2

2c log(2
√
T+1)+ 2c2

2
√

T+1
+ 4c2

3 log
e(2

√
T+2)

c+1

). The

above bounds for ΛO,N (Ft) and (28) for Λϵ,N (F ′
t) allow

us to bound the deviation of the system trajectory under the
learning policy from the one under the oracle policy over I−1

as
∑

t∈I−1
∥xt − x′

t∥≤ 2
√
Tdiam(X ) and over Ik, k ≥ 0 as∑

t∈Ik
∥xt − x′

t∥≤
∑

t∈Sk
∥xt − xeq∥+

∑
t∈Sk

∥x′
t − xeq∥≤

3−α
1−αdiam(X )+ 2Cc

α

√
T (log T )2. Combining this with (25), we

obtain RN,T ≤ 2Lh,x

√
Tdiam(X ) + Lh,xK( 3−α

1−αdiam(X ) +
2C

√
c

α

√
T (log T )2) + (11), and it remains to bound K. Note

EK ≥ c log T+1
2
√
T+1

, Var(K) ≤ 2 log T , and Bernstein’s

inequality yields P(K ≤ 2EK) ≥ 1 − exp(−
c2(log T

2
√

T+1
)2

(4+ 2
3 c

2) log T
).

Bounding K by 2EK ≤ 2c log T gives the desired result.
This instantaneous bound implies asymptotic N -step dynamic
regret of order O(

√
T (log T )3) for Algorithm 1.

VII. NUMERICAL EXPERIMENTS

We conduct experiments using Python 3.7.4 and Anaconda
on a laptop with 2.3 GHz 8-Core Intel Core i9 processor and
16GB DDR4 RAM. We use MOSEK [61] for optimization. We
simulate an HVAC system (see Sect. I-A.1), using a discrete
time model from [8] with 15 minutes sampling interval and
dynamics xt+1 = krxt−kcut+kvvt+qt, where xt ∈ [20, 24]
in ◦C, ut ∈ [0, 0.5] is AC duty cycle, vt is outside temperature
in ◦C, and qt is heating load due to occupants. We assume rt =
−ct ∼ N

(
h(xt, ut, θ0), σ

2
)

for h(xt, ut, θ0) = γ1ptut+(xt−
γ2 − vt)

2 where pt is the electricity price assumed to follow
a peak-pricing plan between 12-6 p.m. over an 24 hour day.

Fig. 1: Expected 10-step dynamic regret.

Fig. 2: Difference of cumulative expected costs for N = 1, 10.

The γ1ptut accounts for energy use, and vt + γ2 indicates a
setpoint preference that adjusts with outside temperature [62].
We suppose θ0 = [qt, γ1, γ2] are unknown to the controller,
and use σ = 1, kr = 0.64, kc = 2.64, kv = 0.10 [8]. We
assume vt and qt are generated from a sinusoidal distribution
with a single peak over 24 hours and average values of 6.98
and 17, respectively. All metrics are averaged across 1000
replicates. Fig. 1 shows regret up to time T = 100, 000 of
the N = 10 policy. These results are compatible with our
asymptotic regret bound O(

√
T (log T )3). Fig. 2 compares

cumulative expected costs of the N = 1 and N = 10 policies
by subtracting the expected cost of Λϵ,10

t (F ′
t) from that of

Λϵ,1
t (F ′

t). Lower costs are obtained with N = 10.

VIII. CONCLUSION

This paper studies the intersection of nonlinear MPC and
RL. Stability is one of the unique (and not previously well-
studied) issues that arises with RL for nonlinear systems. We
develop a new class of LBMPC policies that we prove achieves
low regret, which is supported by our numerical experiments.
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