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Abstract 

This study introduces an ensemble learning model for the prediction of significant wave height and 

average wave period in stations along the U.S. Atlantic coast. The model utilizes the stacking 

method, combining three base learner models - Lasso regression, support vector machine, and 

Multi-layer Perceptron - to achieve more precise and robust predictions. To train and evaluate the 

models, a twenty-year dataset comprising meteorological and wave data was used, enabling 

forecasts for significant wave height and average wave period at 1, 3, 6, and 12 hour intervals. The 

data collection involved two NOAA buoy stations situated on the U.S. Atlantic coast. The findings 

demonstrate that the ensemble learning model constructed through the stacking method yields 

significantly higher accuracy in predicting significant wave height within the specified time 

intervals. 

Moreover, the study investigates the influence of swell waves on forecasting significant wave 

height and average wave period. Notably, the inclusion of swell waves improves the accuracy of 

the 12-hour forecast. Consequently, the developed ensemble model effectively estimates both 

significant wave height and average wave period. The ensemble model outperforms the individual 

models in forecasting significant wave height and average wave period. This ensemble learning 

model serves as a viable alternative to conventional coastal models for predicting wave parameters. 
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1. Introduction

Accurate prediction of wave characteristics plays a crucial role in various applications such 

as wave energy development, marine facility security, fishery management, offshore and coastal 

structure design, and coastal protection (Jain et al., 2011; Moghaddam et al., 2018; Gracia et al., 

2021; Isaee Moghaddam et al., 2021; Ahn et al., 2022). While conventional numerical wave models 

like Simulating WAves Nearshore (SWAN; Booij et al. 1999) have been widely used for forecasting 

ocean wave parameters (e.g., Allahdadi et al., 2017; Li et al., 2020; Chaichitehrani et al., 2022; 

Sapiega et al., 2023), they are limited by high computational requirements and small time step 

constraints when dealing with complex oceanic processes. Moreover, the predictions of these 

models may lack generalization across different oceans and seas (Kumar et al., 2018). 

To address these challenges, machine learning approaches have gained significant attention 

in recent decades, leveraging the abundance of available data for predicting wave characteristics. 

These data-driven and model-free methods offer an alternative or complementary approach to 

conventional numerical wave models (Elbisy, 2015; Mooneyham et al., 2020; Ghadami and 

Epureanu, 2022; Zhan et al., 2022). Machine learning (ML) methods have shown success in 

predicting wave characteristics, particularly in emergency situations where prompt results are 

crucial (Fan et al., 2020). Various sources of data, including numerical wave models, buoys, and 

weather stations, have been extensively utilized in ML models for wave parameter prediction. 

Neural network techniques, known for their computational efficiency, have been widely employed 

in wave forecasting studies (Tolman et al., 2005; Londhe and Panchang, 2006; Pooja et al., 2011; 

Kumar et al., 2018). Other data-driven models, such as artificial neural networks (ANN) and 

convolutional neural networks (CNN), have been particularly popular for wave parameter 

forecasting, enabling predictions without prior system knowledge. For instance, Sadeghifar et al. 

(2017) demonstrated the robust predictive ability of recurrent neural networks (RNN) in forecasting 

significant wave height in the southern Caspian Sea using observational data. Long Short-Term 

Memory (LSTM) models have also been widely employed for wave forecasting in various bodies 

of water worldwide (Pirhooshyaran and Snyder, 2020; Ahn et al., 2022). Ahn et al. (2022) explored 

the effectiveness of a multi-task LSTM architecture for global forecasting of significant wave 

height, achieving promising results in a complex system. While LSTM models are designed to 

handle long-term dependencies, they may face challenges related to parallelization and training 

time, thus requiring substantial memory resources. In contrast, simpler ML models like Support 
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Vector Regression (SVR), Support Vector Machines (SVMs), and Extreme Gradient Boosting 

(XGB) have been extensively used for wave parameter forecasting due to their simplicity and 

reduced number of parameters (Mahjoobi and Adeli Mosabbeb, 2009; James et al., 2018; Hu et al., 

2021). Berbić et al. (2017) compared the performance of ANN and SVM in predicting significant 

wave height and found them to be comparable, with ANN exhibiting slightly better accuracy. 

Garcia et al. (2021) employed Multi-Layer Perceptron (MLP), LightGBM, and ensemble models 

to enhance the accuracy of numerical models in wave parameter forecasting, achieving a significant 

reduction in prediction error. Recent studies have also focused on specific regions, such as the 

Atlantic coast. Wei (2021) applied LSTM models to predict wave parameters at four NDBC stations 

along the U.S. Atlantic coast. They found that short-term forecasts (e.g., 1 to 6 hours) exhibited 

higher accuracy than longer-term forecasts (e.g., 24 to 48 hours). 

Each of the ML approaches mentioned above has its own strengths and weaknesses. 

However, relying on a single ML model to predict wave parameters can lead to suboptimal results 

due to uncertainties in training parameters. To address this issue, ensemble machine learning (EML) 

models have been developed to mitigate modeling errors and reduce overfitting problems 

(Berkhahn et al., 2019; Zounemat-Kermani et al., 2020; Tan, 2021). These ensemble models 

combine predictions from multiple ML models or base/weak learners to improve overall 

performance and reliability in wave parameter predictions. EML models can overcome individual 

models' limitations, including statistical, computational, and representation problems (Dietterich, 

2000; Zounemat-Kermani et al., 2021). For instance, Kumar et al. (2018) proposed an ensemble 

extreme learning method for predicting daily wave height, demonstrating the advantages of EML 

over base learners. By leveraging the collective knowledge of multiple base learners, EML models 

offer improved predictive performance and enhanced robustness in wave parameter forecasting 

tasks. 

Despite the effectiveness of EML models, there is a lack of comprehensive studies 

highlighting the potential of EML approaches in predicting wave parameters. This study aims to 

evaluate the performance of a stacking ensemble approach utilizing three base learners: Lasso 

Regression, Multi-Layer Perceptron (MLP), and Support Vector Machine (SVM) for the 

forecasting of short-term (1, 3, 6, and 12 hour) wave characteristics, including significant wave 

height and average wave period, along the U.S. East Coast. The primary objective is to demonstrate 

the effectiveness and predictive capabilities of the ensemble learning model in capturing the 
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temporal variations of wave parameters in a coastal region. The goals of this study are 1) assessing 

the effectiveness of the three base learners in wave parameter forecasting, and 2) developing and 

evaluating the performance of the stacking ensemble learning model. In addition to investigating 

various ML techniques, this study introduces an innovative approach to enhance the accuracy of 

wave parameter forecasts: the incorporation of swells height components at each station as an 

additional training parameter. This improves the predictive capabilities of the models. By 

integrating this novel methodology into the analysis, the study aims to enhance the forecast 

accuracy of wave parameters. 

2. Study Region and Data

Our study focused on forecasting significant wave height and average wave period using 

data from two locations along the U.S. East Coast: the Cape Hatteras region and a portion of the 

South Atlantic Bight (Figure 1). The wave climate in this region exhibits a seasonal pattern, with 

easterly to southeasterly seas (wind-generated waves) and swells during summers, and a northerly 

to northeasterly wind field produced by strong storms, known as nor'easters, during the winter and 

early spring (Allahdadi et al., 2019a and b). Allahdadi et al. (2019b) emphasized the significant 

spatial variability of the wind field in this region due to its large geographical extent. Consequently, 

different regions of the wave growth curve, such as fetch-limited, fully developed, and duration-

limited, can be observed at various locations depending on their proximity to a storm center, as 

described by Kahna and Clayton (1994) and the Coast Engineering Manual (2000). The occurrence 

of tropical storms during the summer and early fall in the western Atlantic further adds complexity 

to the wave fields. Thus, utilizing datasets with appropriate quality and temporal coverage is crucial 

for accurate model training and forecasts. 

To obtain the necessary data, we collected meteorological, wave parameter, and wave 

spectral data from April 1, 2003, to December 1, 2022, from two stations operated by the NOAA 

National Data Buoy Center (NDBC) (https://www.ndbc.noaa.gov/). The dataset includes various 

measurements such as wind direction (degrees), wind speed (m/s), wind gust (m/s), significant wave 

height (m), dominant wave period (seconds), average wave period (seconds), direction of the 

dominant wave periods (degrees), sea level pressure (hPa), air temperature (degrees Celsius), sea 

surface temperature (degrees Celsius), and dew point temperature (degrees Celsius). These data 

were used through a selection process to find the input variables (features or predictors) to forecast 

significant wave height and average wave period at stations 41025 and 41013 on the U.S. Atlantic 
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coast (Figure 1 and Table 1). The length of the data required for training can vary significantly 

based on several factors, including the nature of the data, the complexity of the model, and the 

project goal (Gütter et al., 2022; Dawson et al., 2023). Accordingly, the minimum required length 

of data should be determined. For an ML-based wave model, the goal may necessitate considering 

seasonal and multidecadal variations, as well as the frequency of extreme events, when selecting 

the minimum length of data. If the available data is insufficient, it is advisable to confirm whether 

the dataset is indeed too small and consider collecting more data. Additionally, exploring data 

augmentation methods could artificially increase your sample size. 

FIG. 1. Location of NOAA NDBC stations 41025 and 41013. SAB stands for South Atlantic Bight. 

TABLE 1. The NOAA NDBC stations' information used to forecast significant wave height and wave periods. 

Twelve variables were initially examined as potential predictors to forecast significant wave 

heights and average wave periods for the next 1, 3, 6, and 12 hours (Table 2). Additionally, this 

study employed an approach to account for the influence of swells on the forecast of wave height 

and period. 

United States

Gulf of Mexico

North Atlantic

Ocean

Cape Hatteras

SAB

Station Id Station name       Longitude    Latitude           Water Depth (m) 

41025 Diamond Shoals, NC -75.45 35.01 48.8 

41013 Frying Pan Shoals, NC -77.76 33.441 33 
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Through wave spectrum analysis, we determined that the wave field in our study area is 

influenced not only by local wind but also by swells originating from distant locations. As a result, 

including these swells in our analysis became essential in capturing the complete wave climate of 

our study area for forecast times 12 hours and larger.  

TABLE 2. Twelve variables used, including input variables (predictors) used to forecast targets. The targets are 
significant wave height (WVHT or Hs) and average wave period. Except for swells and seas, the data were 

obtained from NOAA National Buoy Data Center (http: //www.ndbc.noaa.gov/measdes.shtml). 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Wave and wind vectors in the study area do not have a distinct pattern due to the varied forces 

influencing them (Figure 2). Station 41025 exhibits two dominant wind directions, one from the 

north-northeast and the other from the southwest, aligning with the general coastline orientation 

near this station. The north-northeast winds account for approximately 20% of the wind 

occurrences, while the southwest winds constitute around 17%. Conversely, at station 41013, winds 

predominantly blow from the northeast and southwest directions, with occurrence of 22% and 20%, 

respectively. The temporal variability in wind speed and direction at each station presents a 

challenge for the machine learning model in capturing these diverse wind patterns accurately. The 

wave directions (Figures 2C and D) do not consistently align with the wind directions. This 

disparity between wind and wave directions further highlights the complexity of the wave dynamics 

in the study area. At station 41025, the predominant wave directions fall within the northeast to east 

Variable Description Unit Predictor (P) 

or Target (T) 

APD Average wave period  seconds T 

ATMP Air temperature degrees Celsius P 

DEWP Dewpoint temperature  degrees Celsius P 

DPD Dominant wave period  seconds P 

GST Gust speed m/s P 

PRES Sea level pressure  hPa P 

Seas Height Heights of waves generated by local wind meters P 

Swell Height Heights of waves generated by distance wind meters P 

WDI Wind direction degrees P 

WSP Wind speed m/s P 

WTMP Water temperature degrees Celsius P 

WVHT Significant wave height meters T 
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range, whereas at station 41013, they lie within the east to southeast range. This pattern can be 

attributed to various factors such as the geometry of the coastline (Ardhuin et al., 2007), variations 

in fetch lengths in different directions (Massel, 1990), and the influence of remotely generated 

waves (swells) (Ahn et al., 2021) at each location. These findings emphasize that achieving a highly 

accurate machine learning forecast model may require the inclusion of additional parameters and 

considerations beyond wind speed and direction alone. 

FIG. 2. Wind (A and B) and wave (C and D) rose plots at stations 41025 (A and C) and 41013 (B and D) from 
April 1, 2003, to December 1, 2022. 

The energy distribution within the frequency-directional space provides insights into the 

various wave components originating from different directions that contribute to the overall wave 

parameters. Portions of the wave energy do not align with the prevailing local wind direction and 

(A) (B)

(D)(C)
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are likely generated by distant winds (swells). 2D spectra of wave energy distribution at the two 

stations visually highlight the presence of wave components originating from different directions 

and highlight the complexity of the wave field (Figure 3). 

FIG. 3. Examples of frequency-direction spectra measured at stations 41013 (A and B) and 41025 (C and D) on 
specific days. 

The observed spectra at both stations and different time periods clearly indicate the presence 

of significant energy sectors beyond the main energy sectors aligned with the local wind direction. 

These additional energy sectors, spanning various directions and frequency bands, represent waves 

that are not locally generated and can be identified as swells. For example, at station 41025, a 

complex wave energy spectrum was observed on 01/25/2015 at 10:00 UTC (Figure 3C). While a 

considerable portion of the wave energy aligned with the southwest to west direction, which 

corresponds to the local wind direction, several other high-energy sectors were evident. Notably, a 

distinct low-frequency wave energy sector with a southeast direction indicated the presence of a 

(A)

(D)(C)

(B)
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primary swell component. Additionally, other swell components originating from the north and 

south were identified, all characterized by lower frequencies than the primary wind-generated 

energy. 

Further analysis of the 2D spectra at these stations for various months and days revealed 

numerous instances of spectra with multiple peaks in different directions. It became apparent that 

accurately describing these spectra solely based on the local wind within a machine learning 

framework was challenging. Consequently, this observation motivated us to separate the swell 

component and incorporate it as an additional predictor, which will be elaborated upon in the 

following sections. 

3. Methods

a. Feature Selection
In the context of wave parameter forecasting using machine learning techniques, an initial 

step is to determine the impact of each available parameter (feature variable) on estimating wave 

parameters. Feature selection plays a crucial role in machine learning, as optimal feature selection 

enhances model accuracy, reduces computational costs, and facilitates the understanding and 

interpretation the relationship between feature variables and target variables. In this study, feature 

selection was carried out using a correlation matrix method, which assesses the relevance of each 

feature variable by examining its association with the target variables and other feature variables. 

This allows the identification of informative features that significantly contribute to the forecast of 

wave parameters. Along with the standard NDBC parameters, additional feature variables such as 

swells and sea height were included. Swells and seas parameters were calculated using the approach 

described in Section b. These supplementary variables were incorporated to enhance the model's 

predictive capabilities and capture a more comprehensive understanding of the wave system. 

Correlation analysis was performed with feature variables and the target variables 

significant wave height (WVHT) and average wave period (APD). The dependencies between each 

feature and target variable were visualized using Pearson correlation heat maps (Figure 4). The 

correlation analysis was conducted for various forecast times for 1, 3, 6, and 12 hours. The target 

variables (WVHT and APD) correspond to the same feature variables, but their values are time-

shifted according to the chosen forecast time (1, 3, 6, 12 h). 

Figure 4 illustrates the correlation matrix between the feature and target variables, with a 

focus on the 1-hour and 12-hour forecasts at station 41025. Similar correlation patterns were 
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observed for the 1-hour and 12-hour forecasts at station 41013. The Pearson correlation coefficient 

ranges from 1, indicating a strong positive correlation, to 0, indicating a weak or no correlation. 

Importantly, our study included swells and seas wave height as feature variables, specifically 

limited to the forecast of wave parameters for the next 12 hours. This decision was based on an 

understanding of the dynamics of swells formation and propagation, which suggests that their 

impacts become more pronounced over longer forecast periods. 

FIG. 4. Pearson correlation heat maps between features and target (significant wave height) for the 1 h (left) and 
12 h (right) forecast at station 41025. 

The analysis revealed that wave height, wind speed, gust speed, and mean wave period are 

the most influential parameters contributing to the forecast of the target variables at both stations. 

Therefore, these four parameters were employed for the final model training and forecasting. 

Additionally, for the 12 hour forecast, swells wave height was included. These parameters displayed 

positive correlations with the wave parameters, indicating their significance in predicting wave 

characteristics. Conversely, other meteorological and oceanographic parameters, such as air 

pressure, air temperature, and water temperature, demonstrated either negative correlations or very 

weak correlations with the wave parameters. It is important to note that the negative difference 

between air temperature and water temperature could potentially contribute to increased wind 

energy transfer to the water surface, resulting in higher wind-generated wave height, as reported by 

Ardhuin et al. (2007) and Allahdadi et al. (2019). However, investigating this effect within the 

machine learning framework falls outside the scope of this study. 
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Furthermore, the calculated seas and swells components exhibited relatively high correlations, with 

values reaching as high as 0.6 - 0.7 in forecasting wave height. This highlights the significance of 

considering these components as predictors in the wave parameter forecasts. Frequency histograms 

of the feature parameters at station 41025 exhibit diverse distributions (Figure 5). Parameters such 

as wave height, wind speed, and wave periods, which display high correlations with the target 

parameters, generally exhibit left-skewed distributions. On the other hand, parameters such as air 

pressure or air temperature, which exhibit lower correlations with the target parameters, generally 

show right-skewed or nearly normal distributions. This consistency between the histograms of the 

feature and target parameters could serve as a preliminary indicator for selecting the final feature 

parameters in a machine learning practice.  

Regarding the wind data, it should be noted that wind direction has a cyclic nature and, therefore, 

that correlation with wave height can be higher if wind components are used along with wave 

components when establishing Pearson correlation. In our model training and forecasts of wave 

parameters, we tried both options (wind speed and direction vs. wind velocity components) and 

found no meaningful difference. The results presented in the next section are based on the model 

using wind components.  

It should be noted the high correlation between certain parameters, such as wave period and wave 

height, or vice versa, does not necessarily imply that they are predictors of each other. Instead, it 

indicates their association and the fact that similar forcing mechanisms primarily influence them. 

However, in this study, the wave period was utilized in model training as a predictor for wave 

height, and vice versa. This is due to the fact that wave period is a highly non-linear function of the 

wave spectral moments (0th, -1th, or -2th, depending on the definition). Along with wave height, 

which is a function of the 0th spectral moment, these parameters can convey aspects of the non-

linear and spectral nature of waves to the trained model. This is particularly useful when dealing 

with highly non-uniform wind fields over the study region. Notably, similar approaches have been 

employed in several other research studies, including those by Wei et al. (2021), Shi et al. (2023), 

and Zhan et al. (2022). 
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FIG. 5. Distribution of features at station 41025. 

Regarding the approach used in this study for feature and predictor selection, the results can 

likely be used only for short-term wave forecasts up to 24-48 hours. Hence, in addition to wind 

parameters, wave parameters of the present time are also used as predictors of future wave events. 

One of the main reasons for adopting this approach is the inherently non-linear process of wave 

generation by wind, which does not guarantee a strong correlation between wave parameters and 

wind speed (Allahdadi et al., 2019a). In fact, the non-uniformity of wind fields over the U.S. East 

Coast and offshore regions, coupled with the complex coastal geometry, significantly contributes 

to the observed low correlation between wind speed and wave parameters. 
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b. Separation of Seas and Swell Waves

Wind is the primary force responsible for generating gravity waves; consequently, wind 

should be used as the main feature parameter for model training and forecasting. However, once 

generated by wind, waves can travel hundreds to thousands of kilometers as swells, even in the 

absence of direct wind force (Ardhuin et al., 2009). These swells travel at a group speed while their 

energy is basically conserved (Ardhuin et al., 2009). This implied that in regions characterized by 

a predominant swell wave climate, the wave parameters are not necessarily consistent with wind 

parameters (Gulev and Grigorieva, 2009). Depending on the season and/or geographical location, 

swells can be an important or even dominant component of the wave energy spectrum. For example, 

in the northern Indian Ocean, including the Arabian Sea and the Gulf of Oman, swells dominate the 

wave characteristics during the summer monsoon season (Chaichitehrani and Allahdadi, 2018). In 

the tropical and mid-latitude offshore regions of the North Atlantic, an analysis of satellite and 

modeling data from 2002 to 2008 revealed the predominant influence of swells throughout the year 

(de Farias et al., 2012). In many previous studies covering extensive oceanic basins, especially 

within the study region along the U.S. East Coast, regardless of the importance of remotely 

generated waves (swells), swells have not been used in model training and the prediction of wave 

parameters. However, in addition to wind as the primary wave-generating force, the inclusion of 

swells may be essential. 

 Although this assumption may be valid for small, enclosed basins, it is not applicable to the 

vast geographical extent of the U.S. East Coast. As depicted in Figure 3, significant portions of the 

energy spectrum exhibit deviations from the general wind direction. These deviations correspond 

to swells, which are waves originating from remote locations and propagating towards the study 

area. In the case of implementing the forecasts for an area with gridded data and well-defined open 

boundaries, one approach to taking the swell effect into account is to include wave data along the 

open boundaries, obtained as the output from a numerical model, into model training and use it as 

a predictor. This approach was successfully applied in Monterey Bay by James et al. (2017). 

However, as we are applying the ML framework to only two observational points without a specific 

offshore boundary in our study, this approach is not applicable. Instead, we adopted the methods 

developed by Wang and Hwang (2001) and Hwang et al. (2012) to separate wind-generated seas 

from the swell wave components. We effectively incorporated the swell component into our 
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analysis by utilizing spectral data measured at the study stations. This swell component and other 

predictors (Table 2) were treated as independent parameters during the model training process. By 

including the swell component, we aimed to enhance the accuracy and robustness of our ML model 

in capturing the diverse wave dynamics experienced along the U.S. East Coast. 

The seas and swell waves components were separated following Wang and Hwang (2001): 

𝐻𝑠𝑤 = 4√𝑚0𝑤  (1) 

𝑚𝑛𝑤 = ∫ 𝑓𝑛𝑓𝑚𝑎𝑥

𝑓𝑠
𝑆(𝑓)𝑑𝑓,   𝑛 = 0, 2                                                                                             (2)

𝐻𝑠𝑠 = 4√𝑚0𝑠    (3) 

𝑚𝑛𝑠 = ∫ 𝑓𝑛𝑓𝑠

𝑓𝑚𝑖𝑛
𝑆(𝑓)𝑑𝑓,   𝑛 = 0, 2                                                                                               (4)

where 𝐻𝑠𝑤 and 𝐻𝑠𝑠 are significant wave height of the sea and swell components, respectively.  𝑓𝑠 is 

the separation frequency, and 𝑓𝑚𝑎𝑥  and 𝑓𝑚𝑖𝑛 are the maximum and minimum measured frequencies. 

𝑓𝑠 is defined as (Hwang et al., 2012):  

𝑓𝑠1 = 24.2084𝑓𝑚1
3 − 9.2021𝑓𝑚1

2 + 1.8906𝑓𝑚1 − 0.04286  (5) 

where 𝑓𝑚1 is the peak frequency of  𝐼1(𝑓)

𝐼1(𝑓) =  
𝑚1 (𝑓)

√(𝑚−1(𝑓))
 (6) 

Where 𝑚1 (𝑓)is the first moment of the wave spectrum:

𝑚𝑛 (𝑓) =  ∫ 𝑓′𝑛𝑆(𝑓′)𝑑𝑓′𝑓𝑢

𝑓
 (7) 

where 𝑛 = 1, and the upper frequency for separation seas and swells is 𝑓𝑢 = 0.5 𝐻𝑧. 

          The calculated swells and seas wave heights at each station were included as predictors to 

forecast significant wave height and average wave period. Timeseries of total significant wave 

height compared to the swell wave heights (Figure 6) reveal that, depending on the season, swell 

height can account for a significant portion of total wave height up to one-third to half of it. This 

underscores the importance of considering the swell component in wave height predictions, as it 

can substantially impact the overall wave climate and wave parameter forecasts along the U.S. 

East Coast. We conducted two sets of forecasts: one considering the swell component of the wave 

spectrum during model training and another excluding it. The purpose was to evaluate the extent 

to which including the swell information improves the accuracy of the forecasts. The swell 
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components were solely incorporated for the 12 hour forecasts of significant wave height at both 

stations. 

. 6. An example of timeseries of total significant wave height (black line) and swell wave height (red line) over 

the study period (2012 – 2015). 

We investigated the impact of swells on wave parameter forecasts across all forecast horizons, 

including 1, 3, 6, and 12 hours. However, for forecast horizons shorter than 12 hours, the specific 

geographical locations of the two stations within the regional wave field in the northwest Atlantic, 

combined with the rapid propagation of swell waves, render their influence negligible. 

Consequently, for 1, 3, and 6-hour forecasts, we have presented results exclusively for scenarios 

involving wind-generated waves, with the effect of swells excluded. 

c. Machine Learning Models

A crucial aspect of ML modeling is selecting suitable ML models that effectively capture 

the variations of target parameters within a specific geographical region. ML models can differ in 

their architectural design and data processing techniques, resulting in varying performance. Base 

learner models such as support vector regression (SVR), support vector machines (SVMs), and 

XGBoost have been widely utilized for wave parameter forecasting due to their simplicity and 

demonstrated effectiveness (Mahjoobi and Adeli Mosabbeb, 2009; James et al., 2018; Hu et al., 

2021). This study employed three base learner models: 1. Least Absolute Shrinkage and Selection 

Operation (Lasso) regression, 2. Support Vector Machine (SVM), and 3. Multi-Layer Perceptron 

(MLP). These models were selected based on their proven effectiveness in wave parameter 

forecasting and their ability to capture variations within our geographical region of interest. The 
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utilization of these models allows us to leverage their strengths and enhance the accuracy of our 

predictions in capturing the complex dynamics of wave parameters. Lasso Regression (L1 

regularization technique) is a simple model that employs a shrinkage technique, resulting in a 

smaller set of parameters and facilitating model interpretation. Support Vector Machine (SVM) is 

designed to separate different classes of data points by identifying an optimal line (hyperplane) that 

is positioned at an optimal distance from the classes. SVM relies on kernel functions, and in our 

study, the radial basis function (rbf) kernel yielded the best performance among the available 

options. SVM with the rbf kernel can capture complex non-linear relationships in the data. In 

addition, SVMs are effective in high-dimensional spaces and are robust to outliers since they focus 

on support vectors. SVM naturally incorporates regularization, which can prevent overfitting. In a 

stacked ensemble, SVMs with rbf kernels can serve as powerful base models for capturing non-

linear patterns in the data (Salcedo-Sanz et al., 2014; Martins et al., 2016). Multi-Layer Perceptron 

(MLP) is a supervised learning algorithm that excels at solving non-linear problems. Its architecture 

consists of input, hidden, and output layers, with the hidden layers acting as the computational 

engine. The backpropagation technique is employed to train all the MLP nodes. MLPs can learn 

complex and hierarchical features from data. They excel in tasks with intricate patterns and large 

amounts of data. MLPs are particularly useful when the underlying data has intricated, non-linear 

relationships that other base models might struggle to capture. In a stacked ensemble, an MLP can 

be one of the base models to provide diversity and complementarity to the ensemble. MLPs excel 

at representation learning and handling large-scale, complex datasets, making them suitable when 

the data exhibits high-dimensional and non-linear characteristics (Kim and Adali, 2002; Alsmadi 

et al., 2009; Kruse et al., 2022). By combining these models with others in a stacked ensemble, we 

can leverage the strengths of each base model to improve overall predictive performance and handle 

a wider range of data patterns effectively. These three methods have distinct architectures, learning 

algorithms, and advantages in forecasting techniques that, when combined, enhance the accuracy 

and robustness of the forecasts.  

An ensemble model was developed using the stacking or stacked generalization method to 

achieve this. The stacking method utilizes a meta-learner, which learns how to effectively combine 

the predictions from the base models. The meta-learner acts as the coordinator, using the predictions 

from the base models as input data and combining them effectively to produce the final prediction. 
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The dataset was divided into two portions: a training dataset comprising 90% of the total 

data, and a hold-out dataset representing the remaining 10%. The training dataset was further split 

into 67% for training the base models and 33% for training the meta-learner (Figure 7). To ensure 

better comparison and analysis, the data underwent scaling using the Standard Scaler function in 

Python, which standardized the variables by removing the mean and scaling to unit variance. 

Notably, the chronological order of the dataset splits was preserved, with the training data 

containing the earliest timesteps (Figure 8) and the testing data containing the most recent timesteps. 

The base learner models were trained using 67% of the training dataset, and a k-fold cross-

validation approach (with k=3) was employed to estimate the optimal training parameters. The 

meta-learner training dataset (33% of the training dataset) was then used to generate predictions 

from each trained base model for the target variables, significant wave height, and average wave 

period (Figure 8). Initially, we trained the base learner models and then generated a meta-training 

dataset using predictions from the base learner models alongside the actual target values. This 

dataset was then employed for the training of the linear regression meta-model. During the training 

of the meta-learner (model), each row of the meta-training dataset contained the predictions made 

by base learner models for a specific sample, and at the same time, we had the actual target values 

for those samples. In essence, we trained the linear regression model using the predictions from 

base learner models as input features and the actual target values as the target variable. 

Hyperparameter tuning was performed on the three base models to optimize their 

performance (Table 3). Hyperparameter optimization plays a crucial role in fine-tuning the behavior 

of machine learning models to achieve optimal results and minimize error metrics. In the final step, 

the hold-out test dataset (10% of the total data) was provided to the trained base models to generate 

their predictions for the target variables within the hold-out test dataset. These predictions were 

then fed into the trained meta-learner to produce the stacked model's predictions of the target values. 

The ensemble model, along with the three base models, was utilized for short-term (1, 3, 6, and 12 

h) forecasts of significant wave height and average wave period.
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TABLE 3. Summary of the hyperparameters for the three base models. 

Model Model Hyperparameters 

Lasso Regression 

fit_intercept = 1 

alpha = 0.01 

max_iter = 10000 

random_state = 8 

Regularization= L1 

Multilayer Perceptron (MLP) 

Activation = identity, 

Alpha = 0.001 

hidden_layer_sizes = (24, 24) 

max_iter = 20000 

random_state = 8 

solver = adam 

Support Vector Machine (SVM) 

Kernel = rbf 

Gamma = auto 

C = 0.07 

max_iter = 30000 

In SVM, rbf is the radial basis function, and C is the regularization parameter. Default values 

were used for the unspecified parameters. 

We employed a standard desktop CPU for model training and forecasting. The 20-year processing 

required approximately 30 minutes for each model. 
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FIG. 7. Flowchart of the training set and test set. 

FIG. 8. Flowchart of the developed ensemble model. 

d. Evaluation metrics

The models' performance and prediction accuracy were evaluated using the Coefficient of 

Determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the slope 

of the best-fit line. R2 represents the models’ performance and measures how well the model fits 

the data. Its value ranges between 0 and 1. Higher values indicate better model performance in 

capturing the variation in the data. Additionally, the slope of the best-fit line provides insights into 
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the direction and strength of the relationship between the variables. A slope closer to 1 suggests a 

stronger linear relationship between the variables being analyzed. 

𝑅2 = 1 −
∑(𝑦𝑖 −  𝑦̂)2

∑(𝑦𝑖 −  𝑦̅)2 

RMSE measures the error rate, which is calculated as the square root of the mean squared error. It 

estimates the average magnitude of the errors between the predicted and actual values. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 −  𝑦̂)2

𝑁

𝑖=1

MAE represents the average of all absolute errors, indicating the overall accuracy of the predictions. 

It is computed by averaging the absolute difference between the predicted and actual values.      

     MAE =  1

𝑁
∑ |𝑦𝑖 − 𝑦̂|𝑁

𝑖=1

where 𝑦̂ is a predicted value of 𝑦, 𝑦̅ is a mean value of 𝑦, and 𝑁 is the number of points. 

4. Results and Discussion

a. Evaluating model performance

The primary goal of this study is to evaluate the performance of various ML techniques in 

wave forecasting within the study region, while also validating the performance of an ensemble 

model developed through the stacking technique. To achieve this, significant wave height and 

average wave period forecasts were made for forecast times of 1, 3, 6, and 12 hours at two NDBC 

stations on the U.S. East Coast. Three base learner models and the ensemble model were employed 

in the forecasting process. The forecasted parameters from each model were then compared with 

the observations at each buoy, and model performance statistics were analyzed. 

Scatterplots display the comparisons of forecasted significant wave height (Figure 9) and 

average wave period (Figure 10) to observations for the forecast times using the base learner models 

and the ensemble model, with observations from station 41025. The results show that the ensemble 

model consistently outperforms the individual base learner models across all forecast times for both 

targets. This superiority of the ensemble model is seen numerically in the evaluation metrics in each 

plot box. 
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FIG. 9. Comparison of predicted 1 h (A-D), 3 h (E-H), 6 h (I-L), and 12 h (M-P) to observed significant wave 
height using base learner and ensemble models at NDBC station 41025. Red dashed lines represent the 
one-to-one relationship, and the dotted gray lines depict the best fit. 
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FIG. 10. Comparison of forecasted to observed average wave period for 1 h (A-D), 3 h (E-H), 6 h (I-L), and 12 
h (M-P) using base learner and ensemble models at NDBC station 41025. Red dashed lines represent the 
one-to-one relationship, and the dotted gray lines depict the best fit. 

Timeseries plots of comparisons between the ensemble model’s significant wave height forecasts 

and the corresponding observed data at station 41025 illustrate discrepancies between the forecast 

and the observed data increase as the forecast lead time increases (Figure 11). This indicates that 

the accuracy of the ensemble model decreases as the forecast horizon extends further into the future. 
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FIG. 11. An example showing the comparison of forecasted to observed significant wave height (WVHT) for 
(A) 1 h, (B) 3 h, (C) 6 h, and (D) 12 h at NDBC station 41025.
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Figures 12 and 13 display the comparisons between the significant wave height and average 

wave period forecasts for 1, 3, 6, and 12 hours using both the base learner models and the ensemble 

model, with the corresponding observed data at station 41013. For the 1-hour forecast of significant 

wave height at stations 41013 and 41025, the individual base learner and ensemble models exhibited 

satisfactory performance, with R2 values exceeding 90% (Figures 9A-D and 12A-D). MLP 

performed comparably to the ensemble model (R2 = 0.976) but achieved slightly higher RMSE and 

MAE values at station 41013 for the 1-hour forecast. Among the base learner models, Lasso 

Regression outperformed MLP and SVM for the significant wave height forecast (except the 1-

hour forecast). Notably, SVM exhibited the least favorable performance in the majority of cases, 

except for the 1-hour forecast, where it achieved a higher R2 and lower RMSE and MAE values 

compared to Lasso Regression (Figure 12).  

The accuracy of both the base learner mode and the ensemble model exhibits a decline as 

the forecast horizon extends further into the future. Furthermore, the ensemble model surpassed all 

base learner models, exhibiting higher R2 and smaller RMSE and MAE values in forecasting the 

average wave period (Figure 13A-D). 

Furthermore, the ensemble model yielded a 6.5% improvement in predicted R2 values for 

the 12-hour forecast of significant wave height compared to those of Lasso Regression (Figure 

12M-P). Overall, the ensemble model demonstrated superior performance compared to the 

individual base learner models in forecasting both significant wave height and average wave period, 

as evidenced by the evaluation metrics R2, RMSE, MAE, and slope of the best-fit line. 
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12. Comparison of forecasted to observed significant wave height (WVHT) for 1 h (A-D), 3 h (E-H), 6 h
(I-L), and 12 h (M-P) using base learner and ensemble models at NDBC station 41013. Red dashed lines
represent the one-to-one relationship, and the dotted gray lines depict the best fit.
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FIG. 13. Comparison of forecasted to observed average wave period (APD) for 1 h (A-D), 3 h (E-H), 6 h (I-L), 
and 12 h (M-P) using base learner and ensemble models at NDBC station 41013. Red dashed lines represent 
the one-to-one relationship, and the dotted gray lines depict the best fit. 

As observed here, the accuracy of the significant wave height forecast for station 41013 is higher 

than that of 41025 for all the forecasts. In fact, for an extensive region like the U.S. East Coast, 

we expect to get different accuracies at different buoy locations when using either a numerical 

model or a machine learning framework (Allahdadi et al., 2019b). This non-uniform accuracy 

may stem from various factors, including non-uniformity of the wind field, complex model F, and 

different strengths of correlation between wave parameters and wind speed at different locations. 
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In cases involving complex coastal geometry, such as the slanting fetch effect (see Allahdadi et 

al., 2019a), it will modify the directional spectrum and dissipate some portions of wave energy. 

Evaluation metrics R2 and RMSE for significant wave height and average wave period 

forecasts at station 41025 also show that the ensemble outperforms the base learner models (Figure 

14), except in two cases for 1 and 6-hour forecast, where MLP yielded smaller RMSE compared to 

the base learner models and the ensemble model (Figure 14B). Among the base learner models, 

Lasso Regression exhibited slightly higher R2 for significant wave height at all forecast times 

(Figure 14A). Similarly, Lasso Regression showed the best overall performance for average wave 

period forecasts, with SVM yielding slightly higher R2 and smaller RMSE for the 3 and 12-hour 

forecast (Figure 14C-D). As seen in other metrics, the ensemble model consistently improved 

forecast accuracy for both target parameters and across most forecast times, with higher R2 values 

and lower RMSE values. 

FIG. 14. R2 and RMSE between forecasted and observed significant wave height (A and B) and average wave 
period (C and D) at 1, 3, 6, and 12 h forecast times. The forecasts were generated using base learner models 
Lasso Regression (blue), SVM (orange), MLP (green), and the ensemble model (red) at NDBC station 41025. 

b. Effect of including swells in analysis

The impact of including swells wave height in model training was investigated for forecast 

times of 1 to 12 hours at both stations. The results indicate that the effect of swells on forecast 

accuracy was negligible for forecast times of 6 hours or less, but became significant for the 12-hour 
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forecast. For example, on December 24, 2015, at 2:00 AM at station 41013, including in the inputs 

swells that occurred 6 hours prior resulted in a 4.4% reduction in the difference between the 

forecasted and observed values for the 12-hour significant wave height forecast. At that time, the 

measured significant wave height was approximately 2.98 m, which is relatively high. Similarly, 

on November 27, 2015, at 4:00 PM at station 41025, including swells from the past 12 hours 

resulted in an improvement from a 12.2% difference between forecasted without swells and 

observed to a 9.3% difference between forecasted with swells and observed. The measured 

significant wave height at that time was approximately 2.82 m. These examples highlight the 

positive impact of incorporating swells into the analysis, improving the accuracy of predicting 

significant wave height for the 12-hour forecast. 

Incorporating swells and seas as input features in the ensemble model improved the 

prediction of significant wave height for the 12-hour forecast (Figure 15). R2 increased from 0.80 

without to 0.84 with swells and seas, indicating a better fit between the predicted and measured 

values. Additionally, MAE and RMSE decreased by up to 0.03 m, showing that the inclusion of 

swells and seas reduced forecast errors. The forecasted significant wave height, with and without 

considering the swells height, was more accurate during peaks, suggesting that the inclusion of 

swells enhanced the model's ability to capture and predict extreme wave events accurately. 

FIG. 15. Comparison of significant wave height (WVHT) without (A) and with (B) swells and seas as input 
features at NDBC station 41025. Red dashed lines represent the one-to-one relationship, and the 
dotted gray lines depict the best fit. 
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5. Summary and conclusion

We developed and evaluated an ensemble model to forecast significant wave height and 

average wave period for various forecast times (1, 3, 6, and 12 h) at two NOAA National Data Buoy 

Center (NDBC) stations along the U.S. Atlantic coast. We collected a comprehensive dataset 

spanning almost 20 years that included meteorological variables and wave parameters to train and 

test our model. 

Through careful feature selection, we identified relevant variables that played key roles in 

predicting wave parameters. Additionally, we conducted a swell component analysis to account for 

the contribution of swells generated by remote winds. By separating the swell component from the 

overall wave energy spectrum, we included it as an independent predictor in our analysis. We 

employed three base learner models: Lasso Regression, Support Vector Machine (SVM), and 

Multi-Layer Perceptron (MLP), which are known for their effectiveness in wave parameter 

forecasting. These models captured the complex relationships between the selected features and the 

target variables. To further enhance prediction accuracy, we developed an ensemble model using 

the stacking method. The ensemble model combined the predictions from the base learner models 

through a meta-learner, which learned how to combine these predictions to generate the final 

prediction effectively. 

The ensemble model outperformed the individual base learner models in predicting 

significant wave height and average wave period. The ensemble model demonstrated higher 

accuracy and reliability, as evidenced by evaluation metrics Coefficient of Determination (R2), Root 

Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The greatest model accuracy was 

achieved by leveraging the strengths of multiple models and incorporating the swell component. 

Overall, our findings suggest that the ensemble model developed in this study can be a 

valuable tool for forecasting wave parameters along the U.S. Atlantic coast and potentially other 

ocean regions. This ensemble model offers improved accuracy and robustness compared to 

individual models, providing a promising alternative to computing-intensive traditional coastal 

models. Future research could explore the application of the ensemble model for long-term wave 

parameter forecasts and investigate spatial-temporal predictions of wave parameters. 

In conclusion, our study contributes to wave forecasting by developing a machine learning 

ensemble model that effectively predicts significant wave height and average wave period while 

using far less computational resources than traditional ocean models. The findings highlight the 
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potential of the ensemble model for enhancing wave parameter forecasts, offering valuable insights 

for coastal planning and management, wave energy development, port infrastructure, fishery 

activities, maritime security, and offshore wind energy and oil and gas asset design and operations. 
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