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Abstract

This study introduces an ensemble learning model for the prediction of significant wave height and
average wave period in stations along the U.S. Atlantic coast. The model utilizes the stacking
method, combining three base learner models - Lasso regression, support vector machine, and
Multi-layer Perceptron - to achieve more precise and robust predictions. To train and evaluate the
models, a twenty-year dataset comprising meteorological and wave data was used, enabling
forecasts for significant wave height and average wave period at 1, 3, 6, and 12 hour intervals. The
data collection involved two NOAA buoy stations situated on the U.S. Atlantic coast. The findings
demonstrate that the ensemble learning model constructed through the stacking method yields
significantly higher accuracy in predicting significant wave height within the specified time
intervals.

Moreover, the study investigates the influence of swell waves on forecasting significant wave
height and average wave period. Notably, the inclusion of swell waves improves the accuracy of
the 12-hour forecast. Consequently, the developed ensemble model effectively estimates both
significant wave height and average wave period. The ensemble model outperforms the individual
models in forecasting significant wave height and average wave period. This ensemble learning

model serves as a viable alternative to conventional coastal models for predicting wave parameters.
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1. Introduction

Accurate prediction of wave characteristics plays a crucial role in various applications such
as wave energy development, marine facility security, fishery management, offshore and coastal
structure design, and coastal protection (Jain et al., 2011; Moghaddam et al., 2018; Gracia et al.,
2021; Isaee Moghaddam et al., 2021; Ahn et al., 2022). While conventional numerical wave models
like Simulating W Aves Nearshore (SWAN; Booij et al. 1999) have been widely used for forecasting
ocean wave parameters (e.g., Allahdadi et al., 2017; Li et al., 2020; Chaichitehrani et al., 2022;
Sapiega et al., 2023), they are limited by high computational requirements and small time step
constraints when dealing with complex oceanic processes. Moreover, the predictions of these
models may lack generalization across different oceans and seas (Kumar et al., 2018).

To address these challenges, machine learning approaches have gained significant attention
in recent decades, leveraging the abundance of available data for predicting wave characteristics.
These data-driven and model-free methods offer an alternative or complementary approach to
conventional numerical wave models (Elbisy, 2015; Mooneyham et al., 2020; Ghadami and
Epureanu, 2022; Zhan et al., 2022). Machine learning (ML) methods have shown success in
predicting wave characteristics, particularly in emergency situations where prompt results are
crucial (Fan et al., 2020). Various sources of data, including numerical wave models, buoys, and
weather stations, have been extensively utilized in ML models for wave parameter prediction.
Neural network techniques, known for their computational efficiency, have been widely employed
in wave forecasting studies (Tolman et al., 2005; Londhe and Panchang, 2006; Pooja et al., 2011;
Kumar et al., 2018). Other data-driven models, such as artificial neural networks (ANN) and
convolutional neural networks (CNN), have been particularly popular for wave parameter
forecasting, enabling predictions without prior system knowledge. For instance, Sadeghifar et al.
(2017) demonstrated the robust predictive ability of recurrent neural networks (RNN) in forecasting
significant wave height in the southern Caspian Sea using observational data. Long Short-Term
Memory (LSTM) models have also been widely employed for wave forecasting in various bodies
of water worldwide (Pirhooshyaran and Snyder, 2020; Ahn et al., 2022). Ahn et al. (2022) explored
the effectiveness of a multi-task LSTM architecture for global forecasting of significant wave
height, achieving promising results in a complex system. While LSTM models are designed to
handle long-term dependencies, they may face challenges related to parallelization and training

time, thus requiring substantial memory resources. In contrast, simpler ML models like Support
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Vector Regression (SVR), Support Vector Machines (SVMs), and Extreme Gradient Boosting
(XGB) have been extensively used for wave parameter forecasting due to their simplicity and
reduced number of parameters (Mahjoobi and Adeli Mosabbeb, 2009; James et al., 2018; Hu et al.,
2021). Berbi¢ et al. (2017) compared the performance of ANN and SVM in predicting significant
wave height and found them to be comparable, with ANN exhibiting slightly better accuracy.
Garcia et al. (2021) employed Multi-Layer Perceptron (MLP), LightGBM, and ensemble models
to enhance the accuracy of numerical models in wave parameter forecasting, achieving a significant
reduction in prediction error. Recent studies have also focused on specific regions, such as the
Atlantic coast. Wei (2021) applied LSTM models to predict wave parameters at four NDBC stations
along the U.S. Atlantic coast. They found that short-term forecasts (e.g., 1 to 6 hours) exhibited
higher accuracy than longer-term forecasts (e.g., 24 to 48 hours).

Each of the ML approaches mentioned above has its own strengths and weaknesses.
However, relying on a single ML model to predict wave parameters can lead to suboptimal results
due to uncertainties in training parameters. To address this issue, ensemble machine learning (EML)
models have been developed to mitigate modeling errors and reduce overfitting problems
(Berkhahn et al., 2019; Zounemat-Kermani et al., 2020; Tan, 2021). These ensemble models
combine predictions from multiple ML models or base/weak learners to improve overall
performance and reliability in wave parameter predictions. EML models can overcome individual
models' limitations, including statistical, computational, and representation problems (Dietterich,
2000; Zounemat-Kermani et al., 2021). For instance, Kumar et al. (2018) proposed an ensemble
extreme learning method for predicting daily wave height, demonstrating the advantages of EML
over base learners. By leveraging the collective knowledge of multiple base learners, EML models
offer improved predictive performance and enhanced robustness in wave parameter forecasting
tasks.

Despite the effectiveness of EML models, there is a lack of comprehensive studies
highlighting the potential of EML approaches in predicting wave parameters. This study aims to
evaluate the performance of a stacking ensemble approach utilizing three base learners: Lasso
Regression, Multi-Layer Perceptron (MLP), and Support Vector Machine (SVM) for the
forecasting of short-term (1, 3, 6, and 12 hour) wave characteristics, including significant wave
height and average wave period, along the U.S. East Coast. The primary objective is to demonstrate

the effectiveness and predictive capabilities of the ensemble learning model in capturing the
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temporal variations of wave parameters in a coastal region. The goals of this study are 1) assessing
the effectiveness of the three base learners in wave parameter forecasting, and 2) developing and
evaluating the performance of the stacking ensemble learning model. In addition to investigating
various ML techniques, this study introduces an innovative approach to enhance the accuracy of
wave parameter forecasts: the incorporation of swells height components at each station as an
additional training parameter. This improves the predictive capabilities of the models. By
integrating this novel methodology into the analysis, the study aims to enhance the forecast
accuracy of wave parameters.
2. Study Region and Data

Our study focused on forecasting significant wave height and average wave period using
data from two locations along the U.S. East Coast: the Cape Hatteras region and a portion of the
South Atlantic Bight (Figure 1). The wave climate in this region exhibits a seasonal pattern, with
easterly to southeasterly seas (wind-generated waves) and swells during summers, and a northerly
to northeasterly wind field produced by strong storms, known as nor'easters, during the winter and
early spring (Allahdadi et al., 2019a and b). Allahdadi et al. (2019b) emphasized the significant
spatial variability of the wind field in this region due to its large geographical extent. Consequently,
different regions of the wave growth curve, such as fetch-limited, fully developed, and duration-
limited, can be observed at various locations depending on their proximity to a storm center, as
described by Kahna and Clayton (1994) and the Coast Engineering Manual (2000). The occurrence
of tropical storms during the summer and early fall in the western Atlantic further adds complexity
to the wave fields. Thus, utilizing datasets with appropriate quality and temporal coverage is crucial
for accurate model training and forecasts.

To obtain the necessary data, we collected meteorological, wave parameter, and wave
spectral data from April 1, 2003, to December 1, 2022, from two stations operated by the NOAA
National Data Buoy Center (NDBC) (https://www.ndbc.noaa.gov/). The dataset includes various

measurements such as wind direction (degrees), wind speed (m/s), wind gust (m/s), significant wave
height (m), dominant wave period (seconds), average wave period (seconds), direction of the
dominant wave periods (degrees), sea level pressure (hPa), air temperature (degrees Celsius), sea
surface temperature (degrees Celsius), and dew point temperature (degrees Celsius). These data
were used through a selection process to find the input variables (features or predictors) to forecast

significant wave height and average wave period at stations 41025 and 41013 on the U.S. Atlantic
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coast (Figure 1 and Table 1). The length of the data required for training can vary significantly
based on several factors, including the nature of the data, the complexity of the model, and the
project goal (Giitter et al., 2022; Dawson et al., 2023). Accordingly, the minimum required length
of data should be determined. For an ML-based wave model, the goal may necessitate considering
seasonal and multidecadal variations, as well as the frequency of extreme events, when selecting
the minimum length of data. If the available data is insufficient, it is advisable to confirm whether
the dataset is indeed too small and consider collecting more data. Additionally, exploring data

augmentation methods could artificially increase your sample size.
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FIG. 1. Location of NOAA NDBC stations 41025 and 41013. SAB stands for South Atlantic Bight.

TABLE 1. The NOAA NDBC stations' information used to forecast significant wave height and wave periods.

Station Id Station name Longitude Latitude Water Depth (m)
41025 Diamond Shoals, NC -75.45 35.01 48.8
41013 Frying Pan Shoals, NC -77.76 33.441 33

Twelve variables were initially examined as potential predictors to forecast significant wave
heights and average wave periods for the next 1, 3, 6, and 12 hours (Table 2). Additionally, this
study employed an approach to account for the influence of swells on the forecast of wave height

and period.

Accepted for publication in Artificial Intelligence for the Earth Systems. DOl 10.1175/AIES-D-23-0061.1.
Unauthenticated | Downloaded 06/06/24 07:15 PM UTC



Through wave spectrum analysis, we determined that the wave field in our study area is
influenced not only by local wind but also by swells originating from distant locations. As a result,
including these swells in our analysis became essential in capturing the complete wave climate of

our study area for forecast times 12 hours and larger.

TABLE 2. Twelve variables used, including input variables (predictors) used to forecast targets. The targets are
significant wave height (WVHT or Hs) and average wave period. Except for swells and seas, the data were
obtained from NOAA National Buoy Data Center (http: /www.ndbc.noaa.gov/measdes.shtml).

Variable Description Unit Predictor (P"S

or Target (}B
APD Average wave period seconds T I
ATMP Air temperature degrees Celsius p 12
DEWP Dewpoint temperature degrees Celsius p 13
DPD Dominant wave period seconds p 14
GST Gust speed m/s P 15
PRES Sea level pressure hPa P 16
Seas Height  Heights of waves generated by local wind meters P 17
Swell Height Heights of waves generated by distance wind  meters P 18
WDI Wind direction degrees P 19
WSP Wind speed m/s P9
WTMP Water temperature degrees Celsius Py
WVHT Significant wave height meters T oy

Wave and wind vectors in the study area do not have a distinct pattern due to the varied forces
influencing them (Figure 2). Station 41025 exhibits two dominant wind directions, one from the
north-northeast and the other from the southwest, aligning with the general coastline orientation
near this station. The north-northeast winds account for approximately 20% of the wind
occurrences, while the southwest winds constitute around 17%. Conversely, at station 41013, winds
predominantly blow from the northeast and southwest directions, with occurrence of 22% and 20%,
respectively. The temporal variability in wind speed and direction at each station presents a
challenge for the machine learning model in capturing these diverse wind patterns accurately. The
wave directions (Figures 2C and D) do not consistently align with the wind directions. This
disparity between wind and wave directions further highlights the complexity of the wave dynamics

in the study area. At station 41025, the predominant wave directions fall within the northeast to east
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range, whereas at station 41013, they lie within the east to southeast range. This pattern can be
attributed to various factors such as the geometry of the coastline (Ardhuin et al., 2007), variations
in fetch lengths in different directions (Massel, 1990), and the influence of remotely generated
waves (swells) (Ahn et al., 2021) at each location. These findings emphasize that achieving a highly
accurate machine learning forecast model may require the inclusion of additional parameters and

considerations beyond wind speed and direction alone.

Wind Rose at station 41025 Wind Rose at station 41013

FIG. 2. Wind (A and B) and wave (C and D) rose plots at stations 41025 (A and C) and 41013 (B and D) from
April 1, 2003, to December 1, 2022.

The energy distribution within the frequency-directional space provides insights into the
various wave components originating from different directions that contribute to the overall wave

parameters. Portions of the wave energy do not align with the prevailing local wind direction and

7
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are likely generated by distant winds (swells). 2D spectra of wave energy distribution at the two
stations visually highlight the presence of wave components originating from different directions

and highlight the complexity of the wave field (Figure 3).

-3
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FIG. 3. Examples of frequency-direction spectra measured at stations 41013 (A and B) and 41025 (C and D) on
specific days.

The observed spectra at both stations and different time periods clearly indicate the presence
of significant energy sectors beyond the main energy sectors aligned with the local wind direction.
These additional energy sectors, spanning various directions and frequency bands, represent waves
that are not locally generated and can be identified as swells. For example, at station 41025, a
complex wave energy spectrum was observed on 01/25/2015 at 10:00 UTC (Figure 3C). While a
considerable portion of the wave energy aligned with the southwest to west direction, which
corresponds to the local wind direction, several other high-energy sectors were evident. Notably, a

distinct low-frequency wave energy sector with a southeast direction indicated the presence of a
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primary swell component. Additionally, other swell components originating from the north and
south were identified, all characterized by lower frequencies than the primary wind-generated
energy.

Further analysis of the 2D spectra at these stations for various months and days revealed
numerous instances of spectra with multiple peaks in different directions. It became apparent that
accurately describing these spectra solely based on the local wind within a machine learning
framework was challenging. Consequently, this observation motivated us to separate the swell
component and incorporate it as an additional predictor, which will be elaborated upon in the
following sections.

3. Methods
a. Feature Selection

In the context of wave parameter forecasting using machine learning techniques, an initial
step is to determine the impact of each available parameter (feature variable) on estimating wave
parameters. Feature selection plays a crucial role in machine learning, as optimal feature selection
enhances model accuracy, reduces computational costs, and facilitates the understanding and
interpretation the relationship between feature variables and target variables. In this study, feature
selection was carried out using a correlation matrix method, which assesses the relevance of each
feature variable by examining its association with the target variables and other feature variables.
This allows the identification of informative features that significantly contribute to the forecast of
wave parameters. Along with the standard NDBC parameters, additional feature variables such as
swells and sea height were included. Swells and seas parameters were calculated using the approach
described in Section b. These supplementary variables were incorporated to enhance the model's
predictive capabilities and capture a more comprehensive understanding of the wave system.

Correlation analysis was performed with feature variables and the target variables
significant wave height (WVHT) and average wave period (APD). The dependencies between each
feature and target variable were visualized using Pearson correlation heat maps (Figure 4). The
correlation analysis was conducted for various forecast times for 1, 3, 6, and 12 hours. The target
variables (WVHT and APD) correspond to the same feature variables, but their values are time-
shifted according to the chosen forecast time (1, 3, 6, 12 h).

Figure 4 illustrates the correlation matrix between the feature and target variables, with a

focus on the 1-hour and 12-hour forecasts at station 41025. Similar correlation patterns were
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observed for the 1-hour and 12-hour forecasts at station 41013. The Pearson correlation coefficient
ranges from 1, indicating a strong positive correlation, to 0, indicating a weak or no correlation.
Importantly, our study included swells and seas wave height as feature variables, specifically
limited to the forecast of wave parameters for the next 12 hours. This decision was based on an
understanding of the dynamics of swells formation and propagation, which suggests that their

impacts become more pronounced over longer forecast periods.
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FIG. 4. Pearson correlation heat maps between features and target (significant wave height) for the 1 h (left) and
12 h (right) forecast at station 41025.

The analysis revealed that wave height, wind speed, gust speed, and mean wave period are
the most influential parameters contributing to the forecast of the target variables at both stations.
Therefore, these four parameters were employed for the final model training and forecasting.
Additionally, for the 12 hour forecast, swells wave height was included. These parameters displayed
positive correlations with the wave parameters, indicating their significance in predicting wave
characteristics. Conversely, other meteorological and oceanographic parameters, such as air
pressure, air temperature, and water temperature, demonstrated either negative correlations or very
weak correlations with the wave parameters. It is important to note that the negative difference
between air temperature and water temperature could potentially contribute to increased wind
energy transfer to the water surface, resulting in higher wind-generated wave height, as reported by
Ardhuin et al. (2007) and Allahdadi et al. (2019). However, investigating this effect within the

machine learning framework falls outside the scope of this study.
10
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Furthermore, the calculated seas and swells components exhibited relatively high correlations, with
values reaching as high as 0.6 - 0.7 in forecasting wave height. This highlights the significance of
considering these components as predictors in the wave parameter forecasts. Frequency histograms
of the feature parameters at station 41025 exhibit diverse distributions (Figure 5). Parameters such
as wave height, wind speed, and wave periods, which display high correlations with the target
parameters, generally exhibit left-skewed distributions. On the other hand, parameters such as air
pressure or air temperature, which exhibit lower correlations with the target parameters, generally
show right-skewed or nearly normal distributions. This consistency between the histograms of the
feature and target parameters could serve as a preliminary indicator for selecting the final feature

parameters in a machine learning practice.

Regarding the wind data, it should be noted that wind direction has a cyclic nature and, therefore,
that correlation with wave height can be higher if wind components are used along with wave
components when establishing Pearson correlation. In our model training and forecasts of wave
parameters, we tried both options (wind speed and direction vs. wind velocity components) and
found no meaningful difference. The results presented in the next section are based on the model
using wind components.

It should be noted the high correlation between certain parameters, such as wave period and wave
height, or vice versa, does not necessarily imply that they are predictors of each other. Instead, it
indicates their association and the fact that similar forcing mechanisms primarily influence them.
However, in this study, the wave period was utilized in model training as a predictor for wave
height, and vice versa. This is due to the fact that wave period is a highly non-linear function of the
wave spectral moments (0™, -1™, or -2%, depending on the definition). Along with wave height,
which is a function of the 0" spectral moment, these parameters can convey aspects of the non-
linear and spectral nature of waves to the trained model. This is particularly useful when dealing
with highly non-uniform wind fields over the study region. Notably, similar approaches have been
employed in several other research studies, including those by Wei et al. (2021), Shi et al. (2023),
and Zhan et al. (2022).
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FIG. 5. Distribution of features at station 41025.

Regarding the approach used in this study for feature and predictor selection, the results can

likely be used only for short-term wave forecasts up to 24-48 hours. Hence, in addition to wind

parameters, wave parameters of the present time are also used as predictors of future wave events.

One of the main reasons for adopting this approach is the inherently non-linear process of wave

generation by wind, which does not guarantee a strong correlation between wave parameters and

wind speed (Allahdadi et al., 2019a). In fact, the non-uniformity of wind fields over the U.S. East

Coast and offshore regions, coupled with the complex coastal geometry, significantly contributes

to the observed low correlation between wind speed and wave parameters.
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b. Separation of Seas and Swell Waves

Wind is the primary force responsible for generating gravity waves; consequently, wind
should be used as the main feature parameter for model training and forecasting. However, once
generated by wind, waves can travel hundreds to thousands of kilometers as swells, even in the
absence of direct wind force (Ardhuin et al., 2009). These swells travel at a group speed while their
energy is basically conserved (Ardhuin et al., 2009). This implied that in regions characterized by
a predominant swell wave climate, the wave parameters are not necessarily consistent with wind
parameters (Gulev and Grigorieva, 2009). Depending on the season and/or geographical location,
swells can be an important or even dominant component of the wave energy spectrum. For example,
in the northern Indian Ocean, including the Arabian Sea and the Gulf of Oman, swells dominate the
wave characteristics during the summer monsoon season (Chaichitehrani and Allahdadi, 2018). In
the tropical and mid-latitude offshore regions of the North Atlantic, an analysis of satellite and
modeling data from 2002 to 2008 revealed the predominant influence of swells throughout the year
(de Farias et al., 2012). In many previous studies covering extensive oceanic basins, especially
within the study region along the U.S. East Coast, regardless of the importance of remotely
generated waves (swells), swells have not been used in model training and the prediction of wave
parameters. However, in addition to wind as the primary wave-generating force, the inclusion of
swells may be essential.

Although this assumption may be valid for small, enclosed basins, it is not applicable to the
vast geographical extent of the U.S. East Coast. As depicted in Figure 3, significant portions of the
energy spectrum exhibit deviations from the general wind direction. These deviations correspond
to swells, which are waves originating from remote locations and propagating towards the study
area. In the case of implementing the forecasts for an area with gridded data and well-defined open
boundaries, one approach to taking the swell effect into account is to include wave data along the
open boundaries, obtained as the output from a numerical model, into model training and use it as
a predictor. This approach was successfully applied in Monterey Bay by James et al. (2017).
However, as we are applying the ML framework to only two observational points without a specific
offshore boundary in our study, this approach is not applicable. Instead, we adopted the methods
developed by Wang and Hwang (2001) and Hwang et al. (2012) to separate wind-generated seas

from the swell wave components. We effectively incorporated the swell component into our
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analysis by utilizing spectral data measured at the study stations. This swell component and other
predictors (Table 2) were treated as independent parameters during the model training process. By
including the swell component, we aimed to enhance the accuracy and robustness of our ML model
in capturing the diverse wave dynamics experienced along the U.S. East Coast.

The seas and swell waves components were separated following Wang and Hwang (2001):

Hay = 4/Moy (1)
My = [ FUS(FAf, n=0,2 2)
Hg = 4/mg;s (3)
mus = [ fUS(NAf, n=0,2 4)

where Hy,, and Hg are significant wave height of the sea and swell components, respectively. f; is
the separation frequency, and fy,4, and f;,,;, are the maximum and minimum measured frequencies.
fs 1s defined as (Hwang et al., 2012):

fo1 = 24.2084f3, —9.2021f2, + 1.8906f,,; — 0.04286 (5)
where f,; is the peak frequency of I;(f)

I(f) = 2 6)
(m-1())

Where m; (f)is the first moment of the wave spectrum:

ma () = [ fS(Faf” (7
where n = 1, and the upper frequency for separation seas and swells is f,, = 0.5 Hz.

The calculated swells and seas wave heights at each station were included as predictors to
forecast significant wave height and average wave period. Timeseries of total significant wave
height compared to the swell wave heights (Figure 6) reveal that, depending on the season, swell
height can account for a significant portion of total wave height up to one-third to half of it. This
underscores the importance of considering the swell component in wave height predictions, as it
can substantially impact the overall wave climate and wave parameter forecasts along the U.S.
East Coast. We conducted two sets of forecasts: one considering the swell component of the wave
spectrum during model training and another excluding it. The purpose was to evaluate the extent

to which including the swell information improves the accuracy of the forecasts. The swell
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components were solely incorporated for the 12 hour forecasts of significant wave height at both

stations.
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—— Swell Wave Height (m
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. 6. An example of timeseries of total significant wave height (black line) and swell wave height (red line) over

the study period (2012 —2015).
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We investigated the impact of swells on wave parameter forecasts across all forecast horizons,
including 1, 3, 6, and 12 hours. However, for forecast horizons shorter than 12 hours, the specific
geographical locations of the two stations within the regional wave field in the northwest Atlantic,
combined with the rapid propagation of swell waves, render their influence negligible.
Consequently, for 1, 3, and 6-hour forecasts, we have presented results exclusively for scenarios

involving wind-generated waves, with the effect of swells excluded.

c. Machine Learning Models

A crucial aspect of ML modeling is selecting suitable ML models that effectively capture
the variations of target parameters within a specific geographical region. ML models can differ in
their architectural design and data processing techniques, resulting in varying performance. Base
learner models such as support vector regression (SVR), support vector machines (SVMs), and
XGBoost have been widely utilized for wave parameter forecasting due to their simplicity and
demonstrated effectiveness (Mahjoobi and Adeli Mosabbeb, 2009; James et al., 2018; Hu et al.,
2021). This study employed three base learner models: 1. Least Absolute Shrinkage and Selection
Operation (Lasso) regression, 2. Support Vector Machine (SVM), and 3. Multi-Layer Perceptron
(MLP). These models were selected based on their proven effectiveness in wave parameter

forecasting and their ability to capture variations within our geographical region of interest. The
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utilization of these models allows us to leverage their strengths and enhance the accuracy of our
predictions in capturing the complex dynamics of wave parameters. Lasso Regression (L1
regularization technique) is a simple model that employs a shrinkage technique, resulting in a
smaller set of parameters and facilitating model interpretation. Support Vector Machine (SVM) is
designed to separate different classes of data points by identifying an optimal line (hyperplane) that
is positioned at an optimal distance from the classes. SVM relies on kernel functions, and in our
study, the radial basis function (rbf) kernel yielded the best performance among the available
options. SVM with the rbf kernel can capture complex non-linear relationships in the data. In
addition, SVMs are effective in high-dimensional spaces and are robust to outliers since they focus
on support vectors. SVM naturally incorporates regularization, which can prevent overfitting. In a
stacked ensemble, SVMs with rbf kernels can serve as powerful base models for capturing non-
linear patterns in the data (Salcedo-Sanz et al., 2014; Martins et al., 2016). Multi-Layer Perceptron
(MLP) is a supervised learning algorithm that excels at solving non-linear problems. Its architecture
consists of input, hidden, and output layers, with the hidden layers acting as the computational
engine. The backpropagation technique is employed to train all the MLP nodes. MLPs can learn
complex and hierarchical features from data. They excel in tasks with intricate patterns and large
amounts of data. MLPs are particularly useful when the underlying data has intricated, non-linear
relationships that other base models might struggle to capture. In a stacked ensemble, an MLP can
be one of the base models to provide diversity and complementarity to the ensemble. MLPs excel
at representation learning and handling large-scale, complex datasets, making them suitable when
the data exhibits high-dimensional and non-linear characteristics (Kim and Adali, 2002; Alsmadi
et al., 2009; Kruse et al., 2022). By combining these models with others in a stacked ensemble, we
can leverage the strengths of each base model to improve overall predictive performance and handle
a wider range of data patterns effectively. These three methods have distinct architectures, learning
algorithms, and advantages in forecasting techniques that, when combined, enhance the accuracy
and robustness of the forecasts.

An ensemble model was developed using the stacking or stacked generalization method to
achieve this. The stacking method utilizes a meta-learner, which learns how to effectively combine
the predictions from the base models. The meta-learner acts as the coordinator, using the predictions

from the base models as input data and combining them effectively to produce the final prediction.
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The dataset was divided into two portions: a training dataset comprising 90% of the total
data, and a hold-out dataset representing the remaining 10%. The training dataset was further split
into 67% for training the base models and 33% for training the meta-learner (Figure 7). To ensure
better comparison and analysis, the data underwent scaling using the Standard Scaler function in
Python, which standardized the variables by removing the mean and scaling to unit variance.
Notably, the chronological order of the dataset splits was preserved, with the training data
containing the earliest timesteps (Figure 8) and the testing data containing the most recent timesteps.

The base learner models were trained using 67% of the training dataset, and a k-fold cross-
validation approach (with k=3) was employed to estimate the optimal training parameters. The
meta-learner training dataset (33% of the training dataset) was then used to generate predictions
from each trained base model for the target variables, significant wave height, and average wave
period (Figure 8). Initially, we trained the base learner models and then generated a meta-training
dataset using predictions from the base learner models alongside the actual target values. This
dataset was then employed for the training of the linear regression meta-model. During the training
of the meta-learner (model), each row of the meta-training dataset contained the predictions made
by base learner models for a specific sample, and at the same time, we had the actual target values
for those samples. In essence, we trained the linear regression model using the predictions from
base learner models as input features and the actual target values as the target variable.

Hyperparameter tuning was performed on the three base models to optimize their
performance (Table 3). Hyperparameter optimization plays a crucial role in fine-tuning the behavior
of machine learning models to achieve optimal results and minimize error metrics. In the final step,
the hold-out test dataset (10% of the total data) was provided to the trained base models to generate
their predictions for the target variables within the hold-out test dataset. These predictions were
then fed into the trained meta-learner to produce the stacked model's predictions of the target values.
The ensemble model, along with the three base models, was utilized for short-term (1, 3, 6, and 12

h) forecasts of significant wave height and average wave period.
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TABLE 3. Summary of the hyperparameters for the three base models.

Model Model Hyperparameters
fit_intercept = 1
alpha = 0.01
Lasso Regression max_iter = 10000

random_state = 8

Regularization= L1

Activation = identity,
Alpha=10.001
] hidden_layer sizes = (24, 24)
Multilayer Perceptron (MLP)
max_iter = 20000
random_state = 8

solver = adam

Kernel = rbf

Gamma = auto
C=0.07
max_iter = 30000

Support Vector Machine (SVM)

In SVM, rbf is the radial basis function, and C is the regularization parameter. Default values
were used for the unspecified parameters.
We employed a standard desktop CPU for model training and forecasting. The 20-year processing

required approximately 30 minutes for each model.
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FIG. 8. Flowchart of the developed ensemble model.
d. Evaluation metrics
The models' performance and prediction accuracy were evaluated using the Coefficient of
Determination (R?), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the slope
of the best-fit line. R? represents the models’ performance and measures how well the model fits
the data. Its value ranges between 0 and 1. Higher values indicate better model performance in

capturing the variation in the data. Additionally, the slope of the best-fit line provides insights into
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the direction and strength of the relationship between the variables. A slope closer to 1 suggests a
stronger linear relationship between the variables being analyzed.
i 9

2y — y)?

RMSE measures the error rate, which is calculated as the square root of the mean squared error. It

R?=1

estimates the average magnitude of the errors between the predicted and actual values.

1% .
RMSE = NZ(yi - 9)
L=

MAE represents the average of all absolute errors, indicating the overall accuracy of the predictions.

It is computed by averaging the absolute difference between the predicted and actual values.
MAE= ¥ |y; — I

where y is a predicted value of y, ¥ is a mean value of y, and N is the number of points.

4. Results and Discussion

a. Evaluating model performance

The primary goal of this study is to evaluate the performance of various ML techniques in
wave forecasting within the study region, while also validating the performance of an ensemble
model developed through the stacking technique. To achieve this, significant wave height and
average wave period forecasts were made for forecast times of 1, 3, 6, and 12 hours at two NDBC
stations on the U.S. East Coast. Three base learner models and the ensemble model were employed
in the forecasting process. The forecasted parameters from each model were then compared with
the observations at each buoy, and model performance statistics were analyzed.

Scatterplots display the comparisons of forecasted significant wave height (Figure 9) and
average wave period (Figure 10) to observations for the forecast times using the base learner models
and the ensemble model, with observations from station 41025. The results show that the ensemble
model consistently outperforms the individual base learner models across all forecast times for both
targets. This superiority of the ensemble model is seen numerically in the evaluation metrics in each

plot box.

20

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0061.1.

Unauthenticated | Downloaded 06/06/24 07:15 PM UTC



6 - 6 6 6 E
« 1-hrforcast (A) rd «  3-hrforcast (E) ¢ 6-hrforcast (I). e 12-hrforcast (M) 4
T One-to-One Line * g B One-to-One Lie = B One;to-One Line B One-to-One Line .
= . = . = _ . = .
T 4|R*=0.969 T ,lRe=0912 O T, R =0.878 I 4|R2=0831
)- MAE = 0.136 = .
; MAE = 0.080 ; ; 0 ; MAE = 0,187
RMSE = 0.119, .53+ RMSE = Q.237 RMSE = b.292 *
° PP XY ° T |Slope 5 0.826 k] 20- o
2 |Slope = 0.96: K] ] o . 2 |Slope = 0.723,
s S s . . S .
82 82 82 e 82 .
o o o . o .
o o' o o
-1 - - . -1 .
0 2 4 % 2 4 % 2 4 0 2 4
Measured WVHT (m) Measured WVHT (m) Measured WVHT (m) Measured WVHT (m)
6 6
. « 1-hrforcast ( ) . ¢ 3-hrforcast (F) ; . «  6-hrforcast (J) S . »  12-hrforcast (N)
E One-to-One Line * 7 3 One-to-One Lirre g E Onesto-One Line “o £ One-to-One Line e
= 7. = = . . E .
T _ T _ T |R2=0.876 . T _ .
< 4]/R?=0.969 . < 4|Re=0013 2 4|MAE < 0141 g4 R?=0.833 .
= “|MAE = 0.079 S |MAE=0135  °, RMSE =Q.239 ° ]
5 |RMSE=0.118, T |RMSE =0.200 " " 3 siope = 0580 & 3
£ |Slope =0.96 £ |Slope=0.9 - £ e : 8
-] ] k-] .o °
I [ o ", . @ .
EIZ EIZ E|2 ., °'|2
o o o o
] =} =
E‘ = = M =
p . ol
0 3 3 0 3 i 0 2 4 ¢ 2 4
Measured WVHT (m) Measured WVHT (m) Measured WVHT (m) Measured WVHT (m)
6 6 6 _
«  1-hrforcast (C) s «  3-hrforcast (G) o . e 6-hrforcast _ «  12-hr forcast (O) Ve
B One-to-One Line * * /7~ E One-to-One Lime -, , " E One-to-One Line k3 One-to-One Line -
= P £ £ |Re=0.865 e £
< ,IR?=0.965 S 4{R*=0.917 oy 2 4|MAE =0.145 = < 4R = 0814
2 *|MAE = 0.086 S |MAE=0433 44 F60 5% MAE = 0.185
T |RMSE = 0.126 6% T |RMSE =0.194 gt s%, 3 L T |RMSE=0.306 .
£ |Slope = 0.977a%% G |Slope= ¢ ° £ | Slope = 0.7422.
3 g, g, 3, - .
= . =
& ;' ; 0 o .
: 3 5 : 5 °
3 " 0 2 4 0 2 4 % 2 7
Measured WVHT (m) Measured WVHT (m) Measured WVHT (m) Measured WVHT (m)
6 - 6 g 6 -
_ «  1-hrforcast (D) ; _ +  3-hrforcast (H) v _ «  6-hrforcast (L) . _ «  12-hrforcast (P) <7
E One-to-One Line £ One-to-One Lire ,  .7& £ One~4o-One Line }_ 3 £ One-to-One Line g
. = g £ = = .
= = . = _ . o Tyt s ° = .
T 4 /R2=0.970 . Z ,lrRe=0920 T R 082 ol I lRe=0847 .-
2 *|MAE = 0.078 £ "|mMAE=0.130 S |RMSE = ( rad 2 *|MAE =0.16¢
5 |RMSE = T | Slope = 0.98 5 |RMSE=0.2 .
% Slope = 0.97 % % P G % Slope
b= p 5 5 . 5 ..
® P g2 : £2
o o [ o
@ o @ o
i & i b
2 4 0 0 2 4 0 3 i

Measured WVHT (m)

2 4
Measured WVHT (m)

Measured WVHT (m)

Measured WVHT (m)

FIG. 9. Comparison of predicted 1 h (A-D), 3 h (E-H), 6 h (I-L), and 12 h (M-P) to observed significant wave
height using base learner and ensemble models at NDBC station 41025. Red dashed lines represent the
one-to-one relationship, and the dotted gray lines depict the best fit.
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FIG. 10. Comparison of forecasted to observed average wave period for 1 h (A-D), 3 h (E-H), 6 h (I-L), and 12
h (M-P) using base learner and ensemble models at NDBC station 41025. Red dashed lines represent the
one-to-one relationship, and the dotted gray lines depict the best fit.

Timeseries plots of comparisons between the ensemble model’s significant wave height forecasts
and the corresponding observed data at station 41025 illustrate discrepancies between the forecast
and the observed data increase as the forecast lead time increases (Figure 11). This indicates that

the accuracy of the ensemble model decreases as the forecast horizon extends further into the future.
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FIG. 11. An example showing the comparison of forecasted to observed significant wave height (WVHT) for
(A)1h,(B)3h,(C)6h,and (D) 12 h at NDBC station 41025.
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Figures 12 and 13 display the comparisons between the significant wave height and average
wave period forecasts for 1, 3, 6, and 12 hours using both the base learner models and the ensemble
model, with the corresponding observed data at station 41013. For the 1-hour forecast of significant
wave height at stations 41013 and 41025, the individual base learner and ensemble models exhibited
satisfactory performance, with R? values exceeding 90% (Figures 9A-D and 12A-D). MLP
performed comparably to the ensemble model (R?>= 0.976) but achieved slightly higher RMSE and
MAE values at station 41013 for the 1-hour forecast. Among the base learner models, Lasso
Regression outperformed MLP and SVM for the significant wave height forecast (except the 1-
hour forecast). Notably, SVM exhibited the least favorable performance in the majority of cases,
except for the 1-hour forecast, where it achieved a higher R? and lower RMSE and MAE values
compared to Lasso Regression (Figure 12).

The accuracy of both the base learner mode and the ensemble model exhibits a decline as
the forecast horizon extends further into the future. Furthermore, the ensemble model surpassed all
base learner models, exhibiting higher R? and smaller RMSE and MAE values in forecasting the
average wave period (Figure 13A-D).

Furthermore, the ensemble model yielded a 6.5% improvement in predicted R? values for
the 12-hour forecast of significant wave height compared to those of Lasso Regression (Figure
12M-P). Overall, the ensemble model demonstrated superior performance compared to the
individual base learner models in forecasting both significant wave height and average wave period,

as evidenced by the evaluation metrics R?>, RMSE, MAE, and slope of the best-fit line.

24

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0061.1.

Unauthenticated | Downloaded 06/06/24 07:15 PM UTC



6 6 1 6
« 1-hrforcast (A) e 3-hrforcast (E) E +  6-hrforcast (I) . e 12-hr forcast (M)
B One-to-One Line ¢ B One-to-One Ling B One-to-One Line - T One-to-One Line .
e e . £ |R*=0.947 . = |R*=0.884 o
T 4{R*=0.971 Z 4R =0.949 S 4|MAE = 0.113 Y S 4/MAE = 0.162 .
E MAE = 0.075 MAE = 0.105 - -
RMSE = 0.114 S | RMSE = 0.152 % . = |RMSE =0.154 S |RMSE =0.230 .
S |slope=0.9 2 H . g |Slope =085 3 |Slope=0718
o e * ° L ° vl -
22 ) 82 22 g2
a o & ”
E E 5 E
% 2 4 0 2 4 0 2 4 % 2 4
Measured WVHT (m) Measured WVHT (m) Measured WVHT (m) Measured WVHT (m)
6 6 6
- « 1-hrforcast (B) ’ _ e 3-hrforcast Fl s »  6-hrforcast (J) s e 12-hrforcast (N)
£ One-to-One Line ..}l{. E One-to-One Ling «® ¢/ E One-to-One Line , . E One-to-One Line :
[ > St [ ‘s - = b
£ _ . T - . T |R2=0.928 E |Re=0.866
4{R*=0.976 P % 24 R? = 0.948 . S 4{MAE = 0.124 4{MAE = 0.175 .
MAE =0.070 . _g%%s" - MAE = 0.108 . S |RMSE = 0.180
z ., : > =0. RMSE = 0.247
T |RMSE =0.103 T |RMSE=0.153 T | Slooe =087 . S |Slone =
% Slope = 0.9 . ¢ |Slope =09 £ P L % pe = 0.
° 3 ° L k] .
2, g, g, P
o a a o
5| o o 5|
= = = =
% 2 73 0 2 2 0 2 4 0 2 4
Measured WVHT (m) Measured WVHT (m) Measured WVHT (m) Measured WVHT (m)
1-hr fe t 6 6 6
o 1-hrforcas! .
E OnetoOne Li (C) . e 3-hrforcast ' G) . e 6-hrforcast ) (K) . e 12-hr forcast ) (O)
= nefo-One Line . . E One-to-One Line E One-to-One Line o E One-to-One Line
= < 40 = o e = B : - _ p
R?=0.974 > A0 I _ I |R2=0.920 . I |R2=0.86
£ %\ MAE = 0073 PR 2 4R 0947 p 2 4|MAE 2 4/MAE .
RMSE = 0.108 > Rmse ot ) RMSE RMSE
® =9 o |RMSE =0.155., . o o
3 Slope = 0.9 % Slope = 0.9 % Slope % Slope
5 9 ° )
S2 3 2 . 8 2 H 2
a o o o
s { | |
g s s s
o @ ] a
0% 0r 0% 0%
2 4 2 4 2 4 2 4
Measured WVHT (m) Measured WVHT (m) Measured WVHT (m) Measured WVHT (m)
6 6 - 6 v 6 v
o 1-hrforcast (D) - o  3-hrforcast (H) . 6-hr forcast (L) - e 12-hr forcast (P) e
3 One-to-One Line ¢ ,(' E One-to-One Ling 2 3 One-to-One Lin‘e e 3 One-to-One Line
= = * = - S aete, = - <
T 4|R?= 0976 - T 4|R?=0.951 L, R 20900 Ak P
> - y . = = 4/MAE =0.102 Cd = 4/MAE =0.123
2 *|MAE = 0.069 . MAE = 0.104 , . s ! s
- o - RMSE = 0.134 RMSE = 0.163
- |RMSE =0.102 - |RMSE=0.1 T |slo e =0.951 S |Slope =
£ |Slope = 0.97 £ |Slope=0.9 - 2 pe =0 £ pe =2
L L2 L2 L2
-] . ] -] -]
gz 22 . gz 22
V)I ‘l)l llll V)I
1= k= 1= 1=
] i ] w
0 2 4 0 2 4 0 2 4 0 2 4
Measured WVHT (m) Measured WVHT (m) Measured WVHT (m) Measured WVHT (m)

12. Comparison of forecasted to observed significant wave height (WVHT) for 1 h (A-D), 3 h (E-H), 6 h
(I-L), and 12 h (M-P) using base learner and ensemble models at NDBC station 41013. Red dashed lines
represent the one-to-one relationship, and the dotted gray lines depict the best fit.
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FIG. 13. Comparison of forecasted to observed average wave period (APD) for 1 h (A-D), 3 h (E-H), 6 h (I-L),
and 12 h (M-P) using base learner and ensemble models at NDBC station 41013. Red dashed lines represent
the one-to-one relationship, and the dotted gray lines depict the best fit.

As observed here, the accuracy of the significant wave height forecast for station 41013 is higher
than that of 41025 for all the forecasts. In fact, for an extensive region like the U.S. East Coast,
we expect to get different accuracies at different buoy locations when using either a numerical
model or a machine learning framework (Allahdadi et al., 2019b). This non-uniform accuracy
may stem from various factors, including non-uniformity of the wind field, complex model F, and

different strengths of correlation between wave parameters and wind speed at different locations.
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In cases involving complex coastal geometry, such as the slanting fetch effect (see Allahdadi et
al., 2019a), it will modify the directional spectrum and dissipate some portions of wave energy.
Evaluation metrics R?> and RMSE for significant wave height and average wave period
forecasts at station 41025 also show that the ensemble outperforms the base learner models (Figure
14), except in two cases for 1 and 6-hour forecast, where MLP yielded smaller RMSE compared to
the base learner models and the ensemble model (Figure 14B). Among the base learner models,
Lasso Regression exhibited slightly higher R? for significant wave height at all forecast times
(Figure 14A). Similarly, Lasso Regression showed the best overall performance for average wave
period forecasts, with SVM yielding slightly higher R? and smaller RMSE for the 3 and 12-hour
forecast (Figure 14C-D). As seen in other metrics, the ensemble model consistently improved
forecast accuracy for both target parameters and across most forecast times, with higher R? values

and lower RMSE values.
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FIG. 14. R? and RMSE between forecasted and observed significant wave height (A and B) and average wave
period (C and D) at 1, 3, 6, and 12 h forecast times. The forecasts were generated using base learner models
Lasso Regression (blue), SVM (orange), MLP (green), and the ensemble model (red) at NDBC station 41025.

b. Effect of including swells in analysis
The impact of including swells wave height in model training was investigated for forecast
times of 1 to 12 hours at both stations. The results indicate that the effect of swells on forecast

accuracy was negligible for forecast times of 6 hours or less, but became significant for the 12-hour
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forecast. For example, on December 24, 2015, at 2:00 AM at station 41013, including in the inputs
swells that occurred 6 hours prior resulted in a 4.4% reduction in the difference between the
forecasted and observed values for the 12-hour significant wave height forecast. At that time, the
measured significant wave height was approximately 2.98 m, which is relatively high. Similarly,
on November 27, 2015, at 4:00 PM at station 41025, including swells from the past 12 hours
resulted in an improvement from a 12.2% difference between forecasted without swells and
observed to a 9.3% difference between forecasted with swells and observed. The measured
significant wave height at that time was approximately 2.82 m. These examples highlight the
positive impact of incorporating swells into the analysis, improving the accuracy of predicting
significant wave height for the 12-hour forecast.

Incorporating swells and seas as input features in the ensemble model improved the
prediction of significant wave height for the 12-hour forecast (Figure 15). R? increased from 0.80
without to 0.84 with swells and seas, indicating a better fit between the predicted and measured
values. Additionally, MAE and RMSE decreased by up to 0.03 m, showing that the inclusion of
swells and seas reduced forecast errors. The forecasted significant wave height, with and without
considering the swells height, was more accurate during peaks, suggesting that the inclusion of

swells enhanced the model's ability to capture and predict extreme wave events accurately.
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FIG. 15. Comparison of significant wave height (WVHT) without (A) and with (B) swells and seas as input
features at NDBC station 41025. Red dashed lines represent the one-to-one relationship, and the
dotted gray lines depict the best fit.

28

Accepted for publication in Artificial Intelligence for the Earth Systems. DOI 10.1175/AIES-D-23-0061.1.

Unauthenticated | Downloaded 06/06/24 07:15 PM UTC



5. Summary and conclusion

We developed and evaluated an ensemble model to forecast significant wave height and
average wave period for various forecast times (1, 3, 6, and 12 h) at two NOAA National Data Buoy
Center (NDBC) stations along the U.S. Atlantic coast. We collected a comprehensive dataset
spanning almost 20 years that included meteorological variables and wave parameters to train and
test our model.

Through careful feature selection, we identified relevant variables that played key roles in
predicting wave parameters. Additionally, we conducted a swell component analysis to account for
the contribution of swells generated by remote winds. By separating the swell component from the
overall wave energy spectrum, we included it as an independent predictor in our analysis. We
employed three base learner models: Lasso Regression, Support Vector Machine (SVM), and
Multi-Layer Perceptron (MLP), which are known for their effectiveness in wave parameter
forecasting. These models captured the complex relationships between the selected features and the
target variables. To further enhance prediction accuracy, we developed an ensemble model using
the stacking method. The ensemble model combined the predictions from the base learner models
through a meta-learner, which learned how to combine these predictions to generate the final
prediction effectively.

The ensemble model outperformed the individual base learner models in predicting
significant wave height and average wave period. The ensemble model demonstrated higher
accuracy and reliability, as evidenced by evaluation metrics Coefficient of Determination (R?), Root
Mean Squared Error (RMSE), and Mean Absolute Error (MAE). The greatest model accuracy was
achieved by leveraging the strengths of multiple models and incorporating the swell component.

Overall, our findings suggest that the ensemble model developed in this study can be a
valuable tool for forecasting wave parameters along the U.S. Atlantic coast and potentially other
ocean regions. This ensemble model offers improved accuracy and robustness compared to
individual models, providing a promising alternative to computing-intensive traditional coastal
models. Future research could explore the application of the ensemble model for long-term wave
parameter forecasts and investigate spatial-temporal predictions of wave parameters.

In conclusion, our study contributes to wave forecasting by developing a machine learning
ensemble model that effectively predicts significant wave height and average wave period while

using far less computational resources than traditional ocean models. The findings highlight the
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potential of the ensemble model for enhancing wave parameter forecasts, offering valuable insights
for coastal planning and management, wave energy development, port infrastructure, fishery

activities, maritime security, and offshore wind energy and oil and gas asset design and operations.
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