
When would online platforms pay data dividends?

Sukanya Kudva and Anil Aswani

Abstract— Online platforms, including social media and
search platforms, have routinely used their users’ data for
targeted ads, to improve their services, and to sell to third-
party buyers. But an increasing awareness of the importance
of users’ data privacy has led to new laws regulating platform
data-sharing. Further, there have been political discussions
on introducing data dividends, that pay users for their data.
Three interesting questions are then: When would these online
platforms be incentivized to pay data dividends? How does
their decision depend on whether users value their privacy
more than the platform’s free services? And should platforms
invest in protecting users’ data? This paper considers various
factors affecting the users’ and platform’s decisions through
utility functions. We construct a principal-agent model using
a Stackelberg game to calculate their optimal decisions and
qualitatively discuss the implications. Our results could inform
a policymaker trying to understand the consequences of man-
dating data dividends.

I. INTRODUCTION
The revenue models of many online platforms depend on

collecting, analyzing, and selling users’ data. A free-service
and advertising-based revenue model can cause conflicts in
the users’ and platform’s interests. Users may be concerned
about their privacy and possible misuse of data, while
platforms want to maximize their profits. Further, users’
perception of a platform’s ethics and their willingness to
participate can be affected by the platform’s revenue model,
pricing decisions, and privacy practices [1]–[3].

A. Cybersecurity on online platforms

After the onset of the Internet of Things (IoT), there
has been an increase in the variety, speed, and volume
of users’ data collected. Information from multiple sources
including devices, sensors, and social networks is being used
by platforms to assist users and collect data [4], [5].

Though users have become more aware of the rampant
collection of their data, they often do not know about
the proliferation of IoT devices in their everyday lives.
For instance, in August 2022 the Australian federal court
convicted a major search platform for collecting users’
location data without their knowledge [6]. When users give
consent and permissions to apps and platforms, they tend to
underestimate the implications of it [17]. Reforms to protect
users’ privacy are very much needed across the world [8].
Users should be able to control, delete and transfer their data
across different platforms and service providers. They should
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be asked for explicit consent every time a platform wants to
use their data for a new purpose [4].

B. Privacy and data dividends

With growing user concerns, consumer privacy legislation
has become an important topic for public discussion, and
multiple new data privacy laws have been introduced [9]. In
Europe, the General Data Protection Regulation (GDPR) was
introduced in 2016 to give consumers more control over their
data [18]. In 2019, legislators in California announced their
intent to introduce data dividends, which is a model in which
platforms would pay users in exchange for use of users’ data
[11]. The same year, Oregon legislators introduced a bill,
called the Health Information Property Act, to compensate
consumers for monetizing their health data [12].

Implementing data dividends comes with its own chal-
lenges as companies holding the data are far more powerful
than individual users. Further, there is a huge information
asymmetry and only companies know the actual value of the
users’ data. The critics of data dividends argue that selling
data would make it a commodity and be counter-productive
in protecting users’ privacy. They also feel that vulnerable
groups – such as people of color and the poor – who are
currently discriminated against should not be incentivized
to pour more data into the system and further reduce their
privacy [13], [14]. On the other hand, the proponents of data
dividends argue that today’s technology economy is hugely
driven by monetizing users’ data, and paying users a share
of these benefits is only fair.

Recent studies have explored different ways of pricing data
dividends for each user based on the value of their individual
data [15]–[18]. Using the idea of Shapley and Owen values,
they calculated the contribution made by each user to the
platform’s profits. For our work, we ask different questions:
Should platforms pay data dividends at all, and why? In this
paper, we do our analysis with homogeneous users but our
methods can be extended to analyze heterogeneous users too.

C. Contributions and outline

Our paper is organized as follows: Sect. II outlines our
utility functions for an online platform and its users and
our principal-agent model, Sect. III analytically solves the
principal-agent model in order to derive their optimal choices
and Sect. IV discusses insights from our model.

Our paper comes in the context of rising debates on data
dividends. We try to understand when and how much online
platforms would pay as data dividends. We consider users’
privacy concerns as an important factor, for which a platform
can invest in data protection. The platform can also pay users



to incentivize taking risks and sharing their data. Our main
contributions are to introduce a principal-agent model using
a Stackelberg game to capture the platform-users dynamics
and then use this to gain a better understanding of when the
platform would pay users with data dividends.

II. OUR MODEL
An online platform provides its users with free services

and a data dividend in exchange for their data. The users
are allowed to choose between two levels – high or low
– of data sharing. For each level, the platform provides a
different data dividend and set of services. As the platform
collects users’ data, it faces the risk of a possible data breach.
If a data breach occurs, the platform loses its reputation
and faces possible legal and financial complications, and the
users are harmed by the misuse of their data. Hence, the
platforms consider investing in protecting their users’ data.
This could include the costs of building better technological
infrastructure and signing insurance contracts.

A. Platform’s utility
The platform has a fixed cost of S to maintain and provide

its services. It invests I in users’ data protection, reducing
the probability of a data breach to B(I). Here, B is assumed
to be a twice differentiable function such that B(I) > 0
with limI→∞ B(I) = 0, B′(I) < 0 and B′′(I) > 0 ∀I .
Note that B is not a complementary cumulative distribution
function. Instead, B(I) gives the probability of data breach
on investment I . In case of a data breach, the platform has
a loss of F from legal cases and a lost reputation. When
having access to k users’ data, the platform makes a revenue
of U(k, b), where b of the total k users chose the low level
of data sharing. The revenue may be due to selling the data
to a third-party, selling advertisements to display to users
or other sources. The platform pays a share of this revenue
to users as data dividends, which are priced at two scales
– p0 and p1 – for the low and high levels of data sharing
respectively.

Considering these costs, revenue, and risks, the platform
has a total expected utility of :

U(k, b)−B(I)F − I − S − p0b− p1(k − b). (1)

B. User’s utility
We consider k homogeneous users who have the same

behavior and parameters. Each user values their personal data
at V and faces an additional personal loss of L on a data
breach. They also benefit from the platform’s free services,
which amount to a value of W . When a user chooses the low
level of data sharing, these benefits and losses scale down
by a factor α ∈ (0, 1). The platform pays users with data
dividends at two scales of pay and thereby encourages a
particular level of data sharing.

Let ci be user i’s decision variable so that ci = 0 and 1
for the low and high levels of data sharing respectively. Then
a user i’s total expected utility is:

ci(p1 − V) + (1− ci)(p0 − αV), (2)

where V = V̄ +B(I)L and V̄ = V −W .

C. Principal-agent formulation

We construct a Stackelberg game [19]–[21], in which
players act sequentially with follower(s) acting after a leader.
In our model, the platform first prices data dividends for
different levels of data-sharing, and decides on investment
for users’ data protection. Given this information, the users
decide how much data to share.

The optimal, equilibrium choices of the platform and the
users are their Stackelberg strategies. We capture this using
an optimization problem, which maximizes the platform’s
utility when the users are maximizing their utilities [22]. It
is formulated as follows:
max U(k, b)−B(I)F − I − S − p0b− p1(k − b)

s.t c∗i = arg max
ci∈{0,1}

ci(p1 − V) + (1− ci)(p0 − αV)

∀i = {1, · · · , k}
c∗i (p1 − V) + (1− c∗i )(p0 − αV) ≥ 0

∀i = {1, · · · , k}
I, p0 , p1 ≥ 0.

(3)

The second constraint in (3) ensures that the users do not
have a net loss from using the platform, without which they
would leave the platform.

III. OPTIMAL CHOICES

Since the users are homogeneous, they make similar
choices: either c∗i = 1 or c∗i = 0 for every user i. If users
find both levels of data sharing to be utility-maximizing, then
we assume that they all choose the level that most benefits
the platform. We solve these two cases of c∗i separately. The
optimal solution is the best of the two cases and can vary
with the numerical values of the parameters of the model.

A. Case 1: c∗i = 1 ∀i = {1, · · · , k}
To ensure users choose high level of data sharing, the

platform must price the data dividends such that p1 − V ≥
p0 − αV . Note that b = 0 in this case. The optimization
problem then reduces to:

max U(k, 0)−B(I)F − I − p1k − S

s.t p1 − V ≥ p0 − αV
p1 − V ≥ 0

I, p0 , p1 ≥ 0.

(4)

Since p0 ≥ 0, p∗0 = 0 is optimal for the problem. Given
this, one can conclude p∗1 = V when V ≥ 0 and p∗1 = 0
when V ≤ 0. Also, U(k, 0)−S can be treated as a constant.
These observations further reduce (4) to two sub-cases with
optimization problems in a single variable I .

1) Sub-case 1 - If V ≥ 0 then p∗1 = V: Set p∗1 = V =
V̄ +B(I)L and add an additional constraint V ≥ 0 in (4).

min B(I)F1 + I + V̄ k

s.t V̄ +B(I)L ≥ 0

I ≥ 0,

(5)

where F1 = F + Lk.



Let I1 = B′−1(−1
F1

) and I2 = B−1(−V̄
L ).

Proposition III.1. When V̄ ≥ 0, I∗ = I1 if I1 exists. Else,
I∗ = 0.

Proof. B(I)L ≥ −V̄ holds ∀I because V̄ ≥ 0. When I1
exists, it’s the optimal solution to the unconstrained problem.
Since it also satisfies I1 ≥ 0, it’s the optimal solution for the
constrained problem too. When I1 doesn’t exist, the objective
in (5) is an increasing function for I ≥ 0. So the smallest
feasible value of I , i.e 0, is optimal.

Proposition III.2. When V̄ ≤ 0,
1) If I1 exists, I∗ = I1 when B(I1)L ≥ −V̄ . Else when

B(I1)L < −V̄ , I∗ = I2 if I2 exists and no solution
otherwise.

2) If I1 doesn’t exist, I∗ = 0 when B(0)L ≥ −V̄ and no
solution otherwise.

Proof. When I1 exists and B(I1)L ≥ −V̄ holds, I1, which is
the unconstrained optimal solution, satisfies both constraints
and is optimal. When B(I1)L < −V̄ , I ≥ I1 doesn’t satisfy
the first constraint in (5) and the objective is a decreasing
function for I < I1. If I2 exists, it is the largest I < I1
satisfying V̄ + B(I2)L ≥ 0 and is optimal. If I2, which
satisfies V̄ + B(I2)L = 0, doesn’t exist then there is no
solution as B(I) is a strictly decreasing function and the
constraint B(I)L ≥ −V̄ can never be satisfied.

When I1 doesn’t exist, the objective is an increasing
function for I ≥ 0. If B(0)L ≥ −V̄ then I = 0 satisfies both
constraints of the problem and is optimal. If B(0)L < −V̄
then there is no solution as B(I) is strictly decreasing and
the constraint B(I)L ≥ −V̄ can never hold.

2) Sub-case 2 - If V ≤ 0 then p∗1 = 0: Set p1 = 0 and
add an additional constraint V ≤ 0 in (4).

min B(I)F0 + I

s.t V̄ +B(I)L ≤ 0

I ≥ 0

(6)

where F0 = F .
Let I3 = B′−1(−1

F0
) and as before, I2 = B−1(−V̄

L ).

Proposition III.3. When V̄ > 0, there is no solution.

Proof. −V̄ ≥ B(I)L can never hold for any I as V̄ > 0.

Proposition III.4. When V̄ ≤ 0,
1) If I3 exists, I∗ = I3 when −V̄ ≥ B(I3)L. Else when

−V̄ < B(I3)L, I∗ = I2.
2) If I3 doesn’t exist, I∗ = 0 when −V̄ ≥ B(0)L and

I∗ = I2 otherwise.

Proof. When I3 exists and −V̄ ≥ B(I3)L holds, I3, which is
the unconstrained optimal solution, satisfies both constraints
and is optimal. When −V̄ < B(I3)L, I ≤ I3 doesn’t satisfy
−V̄ ≥ B(I)L as B(I) is strictly decreasing. Since the
objective is increasing for I > I3, I2 which is the smallest I
satisfying −V̄ ≥ B(I)L is optimal. Here, I2 exists because
I2 > I3 and B(I) is strictly decreasing.

When I3 doesn’t exist, the objective is increasing for I ≥ 0
and hence the smallest feasible I is optimal. If −V̄ ≥ B(0)L
then I = 0 satisfies both the constraints and is optimal. If
−V̄ < B(0) L then I = I2 is the smallest feasible I with
V̄ +B(I)L = 0 and is optimal.

The results from the two sub-cases can be combined by
finding the minimum objective value of the two sub-cases.

3) Final results of Case 1:

Theorem III.5. For the case when all users choose the high
level of data-sharing, when V̄ ≤ 0 the optimal choices of
the platform are as follows:

1) If I1 and I3 exist, (I∗ = I1, p
∗
1 = V̄ +B(I1)L, p

∗
0 = 0)

when L ≥ −V̄
B(I1)

, (I∗ = I2, p
∗
1 = 0, p∗0 = 0) when

−V̄
B(I1)

≥ L ≥ −V̄
B(I3)

and (I∗ = I3, p
∗
1 = 0, p∗0 = 0)

when −V̄
B(I3)

≥ L.
2) If I1 exists but not I3, (I∗ = I1, p∗1 = V̄ +

B(I1)L, p
∗
0 = 0) when L ≥ −V̄

B(I1)
, (I∗ = I2, p

∗
1 =

0, p∗0 = 0) when −V̄
B(I1)

≥ L ≥ −V̄
B(0) and (I∗ = 0, p∗1 =

0, p∗0 = 0) when −V̄
B(0) ≥ L.

3) If both I1 and I3 don’t exist, (I∗ = 0, p∗1 = V̄ +
B(0)L, p∗0 = 0) when L ≥ −V̄

B(0) and (I∗ = 0, p∗1 =

0, p∗0 = 0) when −V̄
B(0) ≥ L.

Proof. The results from Propositions III.1-III.4 are combined
by finding the optimal of the two sub-cases.

1) When I1 and I3 exist :
If L ≥ −V̄

B(I1)
, the optimal solution is one of (I = I1, p1 =

V̄ + B(I1)L, p0 = 0) and (I = I2, p1 = 0, p0 = 0) with
objective function values B(I1)F1+I1+ V̄ k and B(I2)F0+
I2 respectively. The former solution is optimal if:

B(I2)F0 + I2 ≥ B(I1)F1 + I1 + V̄ k

⇐⇒ I2 − I1 ≥ F1(B(I1)−B(I2))

⇐⇒ −1

F1
≤ B(I1)−B(I2)

I1 − I2

(7)

Since B(I1) ≥ −V̄
L = B(I2), I1 ≤ I2 as B is strictly

decreasing. Using the mean value theorem, ∃I ′ s.t I1 ≤
I ′ ≤ I2 and B′(I ′) = B(I1)−B(I2)

I1−I2
. As B′′ > 0, B′(I1) ≥

B′(I ′) =⇒ −1
F1

≤ B(I1)−B(I2)
I1−I2

. Hence, (7) is true.
If −V̄

B(I1)
≥ L ≥ −V̄

B(I3)
then both sub-cases give the same

optimal solution (I∗ = I2, p
∗
1 = 0, p∗0 = 0).

If −V̄
B(I3)

≥ L ≥ −V̄
B(0) then the optimal solution is one of

(I = I3, p1 = 0, p0 = 0) and (I = I2, p1 = 0, p0 = 0) with
objective function values B(I3)F0 + I3 and B(I2)F0 + I2
respectively. The former solution is optimal if:

B(I2)F0 + I2 ≥ B(I3)F0 + I3

⇐⇒ −1

F0
≥ B(I3)−B(I2)

I3 − I2

(8)

Since B(I3) ≤ −V̄
L = B(I2), I3 ≥ I2 as B is strictly

decreasing. Using the mean value theorem, ∃I ′ s.t I2 ≤
I ′ ≤ I3 and B′(I ′) = B(I3)−B(I2)

I3−I2
. As B′′ > 0, B′(I3) ≥

B′(I ′) =⇒ −1
F0

≥ B(I3)−B(I2)
I3−I2

. Hence, (8) is true.



If −V̄
B(0) ≥ L then (I∗ = I3, p∗1 = 0, p∗0 = 0) is

only solution from the two sub-cases as one of them was
infeasible.

2) When I1 exists but not I3:
If L ≥ −V̄

B(I1)
then (I = I1, p1 = V̄ + B(I1)L, p0 = 0)

and (I = I2, p1 = 0, p0 = 0) are compared and (7) holds.
If −V̄

B(I1)
≥ L ≥ −V̄

B(0) then both sub-cases give the same
optimal solution (I∗ = I2, p

∗
1 = 0, p∗0 = 0). If −V̄

B(0) ≥ L

then (I∗ = 0, p∗1 = 0, p∗0 = 0) is only solution from the two
sub-cases as one of them was infeasible.

3) When both I1 and I3 don’t exist:
If L ≥ −V̄

B(0) then (I = 0, p1 = V̄ + B(0)L, p0 = 0) and
(I = I2, p1 = 0, p0 = 0) with objective function values
B(0)F1 + V̄ k and B(I2)F0 + I2 respectively are compared.
The former solution is optimal if:

B(I2)F0 + I2 ≥ B(0)F1 + V̄ k

⇐⇒ (B(I2)−B(0))F1 ≥ −I2

⇐⇒ B(I2)−B(0)

I2
≥ −1

F1

(9)

Using the mean value theorem, ∃I ′ s.t I2 ≤ I ′ ≤ 0 and
B′(I ′) = B(I2)−B(0)

I2
. And B′(I ′) ≥ −1

F1
as I1 doesn’t exist.

Hence, (9) is true.
If −V̄

B(0) ≥ L then (I∗ = 0, p∗1 = 0, p∗0 = 0) is only solution
from the two sub-cases as one of them was infeasible.

Theorem III.6. For the case when all users choose the high
level of data-sharing, when V̄ ≥ 0 the optimal choices of
the platform are as follows:

1) If I1 exists then (I∗ = I1, p
∗
1 = V̄ +B(I1)L, p

∗
0 = 0)

is optimal.
2) If I1 doesn’t exist then (I∗ = 0, p∗1 = V̄ +B(0)L, p∗0 =

0)

Proof. The results follow from Propositions III.1-III.4, and
the above solutions are the only feasible solutions from the
two sub-cases.

The final results of case 1 are summarized in table I.

B. Case 2: c∗i = 0 ∀i = {1, · · · , k}
In this case, platform must price the data dividends such

that p0 − αV ≥ p1 − V . Here, b = k. The optimization
problem becomes:

max U(k, k)−B(I)F − I − p0k − S

s.t p0 − αV ≥ p1 − V
p0 − αV ≥ 0

I, p0 , p1 ≥ 0.

(10)

Similar to case 1, it can be observed that p∗1 = 0 is optimal
and p∗0 = αV when V ≥ 0 and p∗0 = (α− 1)V when V ≤ 0.

Let I4 = B′−1
(

−1
F+αLk

)
, I5 = B′−1

(
−1

F+(α−1)Lk

)
and

as before, I2 = B−1(−V̄
L ).

Theorem III.7. For the case when all users choose the low
level of data-sharing, when V̄ ≤ 0 the optimal choices of
the platform are as follows:

1) If I4 and I5 exist, (I∗ = I4, p
∗
1 = 0, p∗0 = α(V̄ +

B(I4)L)) when L ≥ −V̄
B(I4)

, (I∗ = I2, p
∗
1 = 0, p∗0 = 0)

when −V̄
B(I4)

≥ L ≥ −V̄
B(I5)

and (I∗ = I5, p
∗
1 = 0, p∗0 =

(α− 1)(V̄ +B(I5)L) when −V̄
B(I5)

≥ L.
2) If I4 exists but not I5, (I∗ = I4, p

∗
1 = 0, p∗0 = α(V̄ +

B(I4)L)) when L ≥ −V̄
B(I4)

, (I∗ = I2, p
∗
1 = 0, p∗0 = 0)

when −V̄
B(I4)

≥ L ≥ −V̄
B(0) and (I∗ = 0, p∗1 = 0, p∗0 =

(α− 1)(V̄ +B(0)L)) when −V̄
B(0) ≥ L.

3) If both I4 and I5 don’t exist, (I∗ = 0, p∗1 = 0, p∗0 =
α(V̄ + B(0)L)) when L ≥ −V̄

B(0) and (I∗ = 0, p∗1 =

0, p∗0 = (α− 1)(V̄ +B(0)L)) when −V̄
B(0) ≥ L.

Proof. Propositions similar to III.1-III.4 can be derived for
case 2. The proof is then similar to Theorem III.5.

Theorem III.8. For the case when all users choose the low
level of data-sharing, when V̄ ≥ 0 the optimal choices of
the platform are as follows:

1) If I4 exists then (I∗ = I4, p∗1 = 0, p∗0 = α(V̄ +
B(I4)L)) is optimal.

2) If I4 doesn’t exist then (I∗ = 0, p∗1 = 0, p∗0 = α(V̄ +
B(0)L))

Proof. The proof is similar to Theorem III.6.

The final results of case 2 are summarized in table I.

IV. INSIGHTS FROM OPTIMAL CHOICES

The platform uses data dividends to direct users to choose
a particular level of data sharing. In general, the platform
pays a higher data dividend for the high level of data sharing
to compensate for users’ larger risks. But it also earns a
larger revenue when it collects more data. This trade-off
between revenue and data dividend decides the optimal level
of sharing.

It is optimal for the platform to pay for only one level of
data sharing which maximizes its profit. However, sometimes
it may prefer to not pay at all. The cases when this happens
are outlined below.

A. Can p∗1 = 0 while encouraging high level of data
sharing?

Firstly, p∗1 ̸= 0 when V > W . That is, the platform always
pays a data dividend whenever users value their data more
than the platform’s free services. When V ≤ W , the users
value the platform’s free services more than their data. In this
case, if the platform ensures that a data breach does not occur
then it does not pay any data dividend. So if B(I) → 0 ∀I ,
meaning there is a low possibility of a data breach, or L → 0
so that users face a small loss from a data breach, then no
data dividend is paid. Interestingly, even if F → ∞, which
is if the platform has heavy losses from a data breach, then
they do not pay users with data dividends and instead invest
heavily in data protection (I → ∞). In general, the platform
does not pay a data dividend when W − V − B(I∗)L ≥ 0,
that is, the net users’ utility before pay is positive. Currently,
major technology companies do not pay data dividends. Our



TABLE I

Final results of Case 1 when V̄ ≤ 0 : Here, p∗0 = 0 always.
I1 and I3 exist I1 exists but not I3 I1 and I3 don’t exist

If L ≥
−V̄

B(I1)
: I∗ = I1,

p∗1 = V̄ +B(I1)L.

If
−V̄

B(I1)
≥ L ≥

−V̄

B(I3)
: I∗ = I2,

p∗1 = 0.

If
−V̄

B(I3)
≥ L : I∗ = I3,

p∗1 = 0.

If L ≥
−V̄

B(I1)
: I∗ = I1,

p∗1 = V̄ +B(I1)L.

If
−V̄

B(I1)
≥ L ≥

−V̄

B(0)
: I∗ = I2,

p∗1 = 0.

If
−V̄

B(0)
≥ L : I∗ = 0,

p∗1 = 0.

If L ≥
−V̄

B(0)
: I∗ = 0,

p∗1 = V̄ +B(0)L.

If
−V̄

B(0)
≥ L : I∗ = 0,

p∗1 = 0.

Final results of Case 1 when V̄ ≥ 0 : Here, p∗0 = 0 always.
I1 exists I1 doesn’t exist
I∗ = I1 I∗ = 0

p∗1 = V̄ +B(I1)L p∗1 = V̄ +B(0)L

Final results of Case 2 when V̄ ≤ 0 : Here, p∗1 = 0 always.
I4 and I5 exist I4 exists but not I5 I4 and I5 don’t exist

If L ≥
−V̄

B(I4)
: I∗ = I4,

p∗0 = α(V̄ +B(I4)L).

If
−V̄

B(I4)
≥ L ≥

−V̄

B(I5)
: I∗ = I2,

p∗0 = 0.

If
−V̄

B(I5)
≥ L : I∗ = I5,

p∗0 = (α− 1)(V̄ +B(I5)L).

If L ≥
−V̄

B(I4)
: I∗ = I4,

p∗0 = α(V̄ +B(I4)L).

If
−V̄

B(I4)
≥ L ≥

−V̄

B(0)
: I∗ = I2,

p∗0 = 0.

If
−V̄

B(0)
≥ L : I∗ = 0,

p∗0 = (α− 1)(V̄ +B(0)L).

If L ≥
−V̄

B(0)
: I∗ = 0,

p∗0 = α(V̄ +B(0)L).

If
−V̄

B(0)
≥ L : I∗ = 0,

p∗0 = (α− 1)(V̄ +B(0)L).

Final results of Case 2 when V̄ ≥ 0 : Here, p∗1 = 0 always.
I4 exists I4 doesn’t exist
I∗ = I4 I∗ = 0

p∗0 = α(V̄ +B(I4)L) p∗0 = α(V̄ +B(0)L)

model suggests that these companies believe they are in the
region described by the above discussion.

B. Can p∗0 = 0 while encouraging low level of data sharing?
Like for p1, if V > W then p∗0 ̸= 0. But when V ≥ W ,

p∗0 = 0 only if W − V − B(I∗)L = 0, that is, the net
users’ utility is zero. This is strange because the platform
pays a data dividend when W − V − B(I∗)L > 0,
that is, the net users’ utility before pay is positive. The
reason is that in this case the users naturally prefer a high
level of data sharing. So the platform has to pay a data
dividend to incentivize the low level of data sharing. One
could argue that the platform should rather remove the
option of a high level of data sharing, and it probably would.

Finally, we also analyze the trends in the investment
for users’ data protection. If B(I) → 0 ∀I , meaning the
possibility of a data breach is small, or if F,L → 0 so
that no party loses from a data breach, then the platform
does not invest in data protection. If B′(I) → 0 ∀I , that is
when the likelihood of a data breach is not very sensitive to
investment, then the platform chooses to not invest at all.

V. CONCLUSION

We studied the dynamics between an online platform
and its users when the latter are paid with data dividends.

Fig. 1. Here, users choose the high level of data sharing, I1 exists, and
V̄ ≤ 0. Data dividend p1 is plotted for increasing values of L, that is
users’ loss from a data breach. The platform pays a data dividend beyond
a threshold when V > 0, that is users face a total loss.

We demonstrated how an online platform could use data
dividends to incentivize its users to share more data and take
more risks, while also giving them an option to share as much
data as they want. If the platform wants to gather more data,
it pays a data dividend only when the users perceive their
risks and losses to be higher than their benefits. Further, when



Fig. 2. Here, users choose the high level of data sharing and V̄ ≥ 0. Data
dividend p1 is plotted for increasing values of L, that is users’ loss from a
data breach. The platform always pays a data dividend of at least V̄ .

Fig. 3. Here, users choose the low level of data sharing, I4 exists, and
V̄ ≤ 0. Data dividend p0 is plotted for increasing values of L, that is
users’ loss from a data breach. Interestingly, the platform doesn’t pay a
data dividend only when V = 0, that is users neither have a net loss nor
gain.

users feel that they do not lose much from a data breach,
the platform prefers to invest in data protection rather than
pay users for risking a breach. On the other hand, when
users perceive a high loss from a breach, the platform has
to both invest and pay. It would be interesting to analyze
multiple (more than 2) levels of data sharing, each with a
different data dividend, and where heterogeneous users are
incentivized to share more or fewer data as is optimal for
the platform. We leave this for future work.

It is debatable whether data dividends could treat data
as a commodity and exploit the poor and vulnerable. But
if data dividends are introduced, our model shows that
platforms cannot always use it to shirk responsibility for data
protection. When users feel considerable harm from a data
breach, platforms would both invest in data protection and
pay higher data dividends. We believe that our insights could
help a policymaker understand data dividends better.
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