
TYPE Original Research

PUBLISHED 20 July 2023

DOI 10.3389/fams.2023.1153184

OPEN ACCESS

EDITED BY

Gonzalo Muñoz,

Universidad de O’Higgins, Chile

REVIEWED BY

Laura Antonelli,

National Research Council (CNR), Italy

Omar Abu Arqub,

Al-Balqa Applied University, Jordan

*CORRESPONDENCE

Wenhao Pan

wenhao1102@berkeley.edu

RECEIVED 29 January 2023

ACCEPTED 27 June 2023

PUBLISHED 20 July 2023

CITATION

Pan W, Aswani A and Chen C (2023)

Accelerated non-negative tensor completion

via integer programming.

Front. Appl. Math. Stat. 9:1153184.

doi: 10.3389/fams.2023.1153184

COPYRIGHT

© 2023 Pan, Aswani and Chen. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Accelerated non-negative tensor
completion via integer
programming

Wenhao Pan1,2*, Anil Aswani3 and Chen Chen4

1Department of Statistics, University of California, Berkeley, Berkeley, CA, United States, 2Department of

Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA,

United States, 3Industrial Engineering and Operations Research, University of California, Berkeley,

Berkeley, CA, United States, 4Integrated Systems Engineering, The Ohio State University, Columbus, OH,

United States

The problem of tensor completion has applications in healthcare, computer

vision, and other domains. However, past approaches to tensor completion

have faced a tension in that they either have polynomial-time computation

but require exponentially more samples than the information-theoretic rate,

or they use fewer samples but require solving NP-hard problems for which

there are no known practical algorithms. A recent approach, based on integer

programming, resolves this tension for non-negative tensor completion. It

achieves the information-theoretic sample complexity rate and deploys the

blended conditional gradients algorithm, which requires a linear (in numerical

tolerance) number of oracle steps to converge to the global optimum. The tradeoff

in this approach is that, in theworst case, the oracle step requires solving an integer

linear program. Despite this theoretical limitation, numerical experiments show

that this algorithm can, on certain instances, scale up to 100 million entries while

running on a personal computer. The goal of this study is to further enhance this

algorithm, with the intention to expand both the breadth and scale of instances

that can be solved. We explore several variants that can maintain the same

theoretical guarantees as the algorithm but offer potentially faster computation.

We consider different data structures, acceleration of gradient descent steps, and

the use of the blended pairwise conditional gradients algorithm. We describe the

original approach and these variants, and conduct numerical experiments in order

to explore various tradeoffs in these algorithmic design choices.

KEYWORDS

tensor completion, integer programming, conditional gradient method, acceleration,

benchmarking

1. Introduction

A tensor is a multi-dimensional array or a generalized matrix. ψ is called an order-p
tensor if ψ ∈ R

r1×···×rp , where ri is the length of the i-th dimension of ψ . For example, an
RGB image with a size of 30 by 30 pixels is an order-3 tensor in R

30×30×3. Since tensors
and matrices are closely related, many matrix problems can be naturally generalized to
tensors, such as computing a matrix norm and decomposing a matrix. However, the tensor
generalization of such problems can be substantially more computationally challenging [1].

Similar to matrix completion, tensor completion uses the observed entries of a partially
observed tensor ψ to interpolate the missing entries with a restriction on the rank of the
interpolated tensor. The purpose of the rank restriction is to restrict the degree of freedom
of the missing entries [2], e.g., avoiding overfitting. Without this rank restriction, the tensor
completion problem becomes ill-posed because there are too many degrees of freedom that

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1153184
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1153184&domain=pdf&date_stamp=2023-07-20
mailto:wenhao1102@berkeley.edu
https://doi.org/10.3389/fams.2023.1153184
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1153184/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

need to be constrained by the available data. Tensor completion is a
versatile model with many important applications in social sciences
[3], healthcare [4], computer vision [5], and many other domains.

In the past decade, there have been major advances in matrix
completion [6]. However, for general tensor completion, there
remains a critical tension. Past approaches either have polynomial-
time computation but require exponentially more samples than
the information-theoretic rate [4, 7–9], or they achieve the
information-theoretic rate but require solving NP-hard problems
for which there are no known practical numerical algorithms [10–
13].

We note that, aside from matrix completion, for some special
cases of tensor completion, there are numerical algorithms that can
achieve the information-theoretic rate; for instance, non-negative
rank-1 [14] tensors, or orthogonal symmetric [15] tensors. In this
study, we focus on a new approach, proposed by Bugg et al. [16],
that is designed for entrywise-nonnegative tensors, which naturally
exist in applications such as image demosaicing. The authors
defined a new norm for non-negative tensors by using the gauge of
a specific 0–1 polytope that they constructed. By using this gauge
norm, their approach achieved the information-theoretic rate in
terms of sample complexity although the resulting problem is NP-
hard to solve. Nevertheless, a practical approach was attained: as
the norm is defined by using a 0–1 polytope, the authors embedded
integer linear optimization within the blended conditional gradients
(BCG) algorithm [17], a variant of the Frank-Wolfe algorithm, to
construct a numerical computation algorithm that required a linear
(in numerical tolerance) number of oracle steps to converge to the
global optimum.

This study proposes several acceleration techniques for the
original numerical computation algorithm created by Bugg et al.
[16]; we tested multiple techniques in combination to evaluate
the configuration that provides the best overall speedup. The
motivation is to further improve the implementation on large-
scale problems. Our variants can maintain the same theoretical
guarantees as the original algorithm while offering potential
speedups. Indeed, our experiments demonstrate that such speedups
can be attained consistently across a range of problem instances.
Additionally, this study provides a full description of the original
numerical computation algorithm and its coding implementation,
details that were omitted in Bugg et al. [16].

We summarize preliminary material and introduce the
framework and theory of Bugg et al. [16]’s non-negative tensor
completion approach in Section 2. Then, we describe the
computation algorithm of their approach in Section 3 and our
acceleration techniques in Section 4. Numerical experiment results
are presented in Section 5.

2. Preliminaries

Given an order-p tensor ψ ∈ R
r1×···×rp , we refer to its entry

with indices x = (x1, . . . , xp) as ψx : = ψx1 ,...,xp . xi ∈ [ri] is the
value of the i-th index, where [ri] : = {1, . . . , ri}. We also define
ρ : =

∑
i ri, π : =

∏
i ri andR = [r1]× · · · × [rp]. The probability

simplex 1k
: = conv{e1, . . . , ek} is the convex hull of the coordinate

vectors in dimension k.

A nonnegative rank-1 tensor ψ is defined as ψ : = θ (1) ⊗ · · · ⊗
θ (p), where θ (k) ∈ R

rk
+ are non-negative vectors. Its entry ψx is∏p

k=1 θ
(k)
xk . Bugg et al. [16] defined the ball of nonnegative rank-1

tensors whose maximum entry is λ ∈ R+ to be

Bλ = {ψ : ψx = λ ·
p∏

k=1

θ (k)xk
, θ (k)xk

∈ [0, 1], for x ∈ R}, (1)

so the nonnegative rank of nonnegative tensor is

rank+(ψ) = min{q |ψ =
q∑

k=1

ψk, ψk ∈ B∞ for k ∈ [q]}, (2)

where B∞ = limλ→∞ Bλ. For a λ ∈ R+, consider a finite set
of points

Sλ = {ψ : ψx = λ ·
p∏

k=1

θ (k)xk
, θ (k)xk

∈ {0, 1}, for x ∈ R}. (3)

Bugg et al. [16] established the following connection between
Bλ and Sλ:

Cλ : = conv(Bλ) = conv(Sλ), (4)

where Cλ is the non-negative tensor polytope. Bugg et al. [16] also
presented three implications of this result that are useful to their
non-negative tensor completion approach. First, Cλ is a polytope.
Second, the elements of Sλ are the vertices of Cλ. Third, the
following relationships hold: Bλ = λB1, Sλ = λS1, and Cλ = λC1.

2.1. Norm for non-negative tensors

Key to the theoretical guarantee and numerical computation
of Bugg et al. [16]’s approach is their construction of a new norm
for non-negative tensors using a gauge (or Minkowski functional)
construction.

Definition 2.1 (Bugg et al. [16]). The function defined as

‖ψ‖+ : = inf{λ ≥ 0 |ψ ∈ λC1} (5)

is a norm for nonnegative tensors ψ ∈ R
r1×···×rp
+ .

This norm has an important property that it can be used as
a convex surrogate for tensor rank [16]. In other words, if ψ is a
non-negative tensor, then we have ‖ψ‖max ≤ ‖ψ‖+ ≤ rank+(ψ) ·
‖ψ‖max. If ‖ψ‖+ = 1, then ‖ψ‖+ = ‖ψ‖max.

2.2. Non-negative tensor completion

For a partially observed order-p tensor ψ , let (x〈i〉, y〈i〉) ∈
R × R for i = 1, . . . , n denote the indices and value of n

observed entries.We assume that an entry can be observedmultiple
times, so let U : = {x〈1〉, . . . , x〈u〉}, where u ≤ n denote the
set of unique indices of observed entries. Since ‖·‖+ is a convex

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

surrogate for tensor rank, we have the following non-negative
tensor completion problems:

ψ̂ ∈ argmin
ψ

1

n

n∑

i=1

(
y〈i〉 − ψx〈i〉

)2

s.t. ‖ψ‖+ ≤ λ

(6)

where λ ∈ R+ is given and ψ̂ is the completed tensor. The feasible
set {ψ : ‖ψ‖+ ≤ λ} is equivalent to Cλ by the norm definition (2.1)
and Cλ = λC1.

Although the problem (6) is a convex optimization problem,
Bugg et al. [16] showed that solving it is NP-hard. Nonetheless,
Bugg et al. [16] managed to design an efficient numerical
computation algorithm of global minima of the problem (6) by
using its substantial structure of the problem. We will explain
their algorithm more after showing their findings on the statistical
guarantees of the problem (6).

2.2.1. Statistical guarantees
Bugg et al. [16] observed that the problem (6) is equivalent to a

convex aggregation [18–20] problem for a finite set of functions, so
we have the following tight generalization bound for the solution of
the problem (6)

Proposition 2.1 (Lecué [20]). Suppose |y| ≤ b almost surely. Given

any δ > 0, with probability at least 1− 4δ we have that

E
(
(y−ψ̂x)

2) ≤ min
ϕ∈Cλ

E
(
(y−ϕ̂x)

2)+c0·max
[
b2, λ2

]
·max

[
ζn,

log(1/δ)

n

]
,

(7)
where c0 is an absolute constant and

ζn =





2ρ

n , if 2ρ ≤ √
n√

1
n log

(
e2ρ√
n

)
, if 2ρ >

√
n

(8)

Under specific noise models such as an additive noise model,
we have the following corollary to the above proposition combined
with the fact that ‖·‖+ is a convex surrogate for tensor rank.

Corollary 2.1 (Bugg et al. [16]). Suppose ϕ is a non-negative tensor

with rank+(ϕ) = k and ‖ϕ‖max ≤ µ. If (x〈i〉, y〈i〉) are independent
and identically distributed with |y|〈i〉 − ϕx〈i〉 ≤ e almost surely and

Ey〈i〉 = ϕx〈i〉, then given any δ > 0, with probability at least 1− 4δ,
we have

E
(
(y− ψ̂x)

2) ≤ e2 + c0 · (µk+ e)2 ·max
[
ζn,

log(1/δ)

n

]
(9)

where ζn is as in (8) and c0 is an absolute constant.

The two results above show that the problem (6) achieves the
information-theoretic sample complexity rate when k = O(1).

3. Original computation algorithm

Since C1 is a 0–1 polytope, we can employ integer linear
optimization to address the linear separation problem associated

with this polytope. Thus, we can apply the Frank–Wolfe algorithm
or its variants to solve the problem (6) to a desired numerical
tolerance. Bugg et al. [16] choose the BCG variant for two reasons.

First, the BCG algorithm can terminate (within numerical
tolerance) in a linear number of oracle steps for an optimization
problem with a polytope feasible set and a strictly convex objective
function over the feasible set. To make the objective function in the
problem (6) strictly convex, we can reformulate the problem (6) by
changing its feasible set from Cλ to ProjU (Cλ). The implementation
of this reformulation is to simply discard the unobserved entries
of ψ . Second, the weak-separation oracle in the BCG algorithm
accommodates early termination of the associated integer linear
optimization problem, which is formulated as follows:

min
ϕ,θ

〈c,ϕ − ψ〉

s.t. λ · (1− p)+ λ ·
p∑

k=1

θ (k)xk
≤ ϕx x ∈ R

0 ≤ ϕx ≤ λ · θ (k)xk
k ∈ [p], x ∈ R

θ (k)xk
∈ {0, 1} k ∈ [p], x ∈ R

(10)

The feasible set in the problem above is equivalent to Sλ, and
the linear constraints above are acquired from standard techniques
in integer optimization [21, 22]. Bugg et al. [16] also deploy a
fast alternatingminimization heuristic to solve the weak-separation
oracle to avoid (if possible) solving the problem (10) via integer
programming oracle.

Next, we will fully describe the Python 3 implementation of the
BCG algorithm adapted by Bugg et al. [16] to solve the problem
(6) and its major computation components. This detailed account
is vital as it will aid in our explanation of how to accelerate
this algorithm in the subsequent sections. It also supplements
the algorithm description omitted in Bugg et al. [16]. Their code
is available from https://github.com/WenhaoP/TensorComp. For
brevity, we do not explain the abstract frameworks of the adapted
BCG (ABCG) or its major computation components here, but they
can be found in Bugg et al. [16] and Braun et al. [17].

3.1. Adapted blended conditional gradients

The ABCG is implemented as the function nonten in
original_nonten.py. The inputs are indices of observed
entries (X), values of observed entries (Y), dimension (r), λ (lpar),
and numerical tolerance (tol). The output is the completed tensor
ψ̂ (sol). There are three important preparation steps of ABCG.
First, it reformulates the problem (6) by changing the feasible set
from Cλ to ProjU (Cλ). Second, it normalizes the feasible set to
ProjU (C1) and scales sol by λ at the end of ABCG. Third, it flattens
the iterate (psi_q) and recovers the original dimension of sol at
the end of ABCG.

We first build the integer programming problem (10) in
Gurobi. The iterate is initialized as a tensor of ones; the active
vertex set {v1, . . . , vk} (Pts and Vts) and the active vertex weight
set {γ1, . . . , γk} (lamb) are initialized accordingly. Vts stores the
θ (i)’s for constructing each active vertex in Pts. {v1, . . . , vk} are
all order-p tensors, but they are vectorized in the code. bestbd

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://github.com/WenhaoP/TensorComp
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

stores the best lower bound for the optimal objective value found
so far. It is initialized as 0, a lower bound on the optimal objective
value of problem (6). objVal stores the objective function value
of the current iterate. m._gap stores half of the current primal gap
estimate, the difference between objVal and the optimal objective
function value [17].

The iteration procedure of BCG is implemented as a
while loop. In each iteration, we first compute the gradient
of the objective function with respect to the current iterate
codec (lines 318–320). Then, we compute the dot products
({〈lpar*c, v1〉, . . . , 〈lpar*c, vk〉}) between the scaled gradient
(lpar*c) and each active vertex, store them in pro, and use
pro to find the away-step vertex (psi_a) and the Frank-
Wolfe-step vertex (psi_f). Based on the test that compares
〈lpar*c,psi_a - psi_f〉 and m._gap, we either use the
simplex gradient descent step (SiGD) or the weak-separation oracle
step (LPsep) to find the next iterate. Since we initialize m._gap as
+∞, we always solve the problem (10) to solve the weak-separation
oracle in the first iteration. At the end of each iteration, we update
objVal and bestbd. The iteration procedure stops when either
the primal gap estimate (2*m._gap) or the largest possible primal
gap objVal - bestbd is smaller than tol.

Figure 1 is a flowchart that generally explains the entire
procedure of the ABCG.

3.2. Simplex Gradient Descent Step

SiGD is implemented in the function nonten. It determines
the next iterate with a lower objective function value via a
single descent step that solves the following reformulation of the
problem (6)

γ̂1, . . . , γ̂k ∈ arg min
γ1 ,...,γk∈R+

1

n

n∑

i=1

(
y〈i〉 −

(k∑

j=1

γjvj
)
x〈i〉

)2

s.t.
k∑

j=1

γj = 1

(11)

For clarity, we ignore the projection in the problem above. Since
lamb is in 1k as all its elements are non-negative and sum to one,
SiGD has the term “Simplex” in its name [17].

We first compute the projection of pro onto the hyperplane of
1k and store it in d. If all elements ofd are zero, then we set the next
iterate to the first active vertex and end SiGD. Otherwise, we solve
the optimization problem η̂ = argmax{η ∈ R+ : γ − ηd ≥ 0},
where γ is lamb and d is d, and store the optimal solution η̂ in
eta. Next, we compute psi_nwhich is x−η̂

∑
i divi where x is the

current iterate, di’s are the elements of d, and vi are active vertices. If
the objective function value of psi_n is smaller or equal to that of
the current iterate, then we set the next iterate to psi_n and drop
any active vertex with zero weight in the updated active vertex set
for constructing psi_n. This is called drop step in Braun et al. [17].
Otherwise, we perform an exact line search over the line segment
between the current iterate and psi_n and set the next iterate to
the optimal solution. This is called descent step in Braun et al. [17].

3.3. Weak-separation oracle step

LPsep is implemented in the function nonten. It has two
differences from its implementation in the original BCG. First,
whether it finds a new vertex that satisfies the weak-separation
oracle or not, it always performs an exact line search over the line
segment between the current iterate and that new vertex to find the
next iterate. Second, it uses bestbd to update m._gap.

m._cmin is the dot product between lpar*c and the current
iterate. The flag variable oflg is True if an improving vertex
has not been found that satisfies either the weak-separation oracle
or the conditions described below. We first repeatedly use the
alternating minimization heuristic (AltMin) to solve the weak-
separation oracle. If AltMin fails to do so within 100 repetitions but
finds a vertex that shows that m._gap is an overestimate, we claim
that it satisfies the weak-separation oracle and update m._gap.
Otherwise, we solve the integer programming problem (10) via
the Gurobi global solver to obtain a satisfying vertex and update
m._gap. Note that an exact solution is not required; any solution
attaining weak separation suffices.

3.4. Alternating minimization

AltMin is implemented as the function altmin in
original_nonten.py. Since a vertex is in Sλ, the objective
function in the integer programming problem (10) becomes
〈c, (θ (1) ⊗ · · · ⊗ θ (p)) − ψ〉, where θ (k) ∈ {0, 1}rk . There is a
motivating observation for solving this problem. For example,
if we fix θ (2), . . . , θ (p), then the problem (10) is equivalent to
minθ (1)∈{0,1}r1 〈c̃(1), θ (1)〉 where c̃ is a constant in R

r1 computed

from c, θ (2), . . . , θ (p). The optimal solution can be easily found
based on the signs of c̃’s entries as θ (1) is binary. AltMin utilizes
this observation.

Given an incumbent solution 20 : = {θ̂ (1)0 , . . . , θ̂
(p)
0 },

AltMin keeps solving sequences of optimization problems to get
21,22, . . . ,2T . For t = 1, . . . ,T, we have

2t = {θ̂ (1)t = arg min
θ
(1)
t ∈{0,1}r1

〈c̃(1)t , θ (1)t 〉, . . . , θ̂
(p)
t

= arg min
θ
(p)
t ∈{0,1}rp

〈c̃(p)t , θ
(p)
t 〉}, (12)

where c̃
(k)
t stores in the variable fpro. At each t, θ̂

(1)
t , . . . , θ̂

(p)
t

are computed one by one. The difference between the objective
function values in (10) of 2T−1 and 2T are guaranteed to be
smaller than tol. AltMin outputs 2T at the end.

4. Accelerated computation algorithm

To show the efficacy and scalability of their approach, Bugg
et al. [16] conducted numerical experiments on a personal
computer. They compared the performance of their approach
and three other approaches—alternating least squares (ALS) [23],
simple low rank tensor completion (SiLRTC) [5], and trace
norm regularized CP decomposition (TNCP) [2]—in four sets of
different non-negative tensor completion problems. Normalized

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

FIGURE 1

Flowchart of ABCG.

mean squared error (NMSE) ‖ψ̂ − ψ‖2F/‖ψ‖2F is used to measure
the accuracy.

The results of their numerical experiments show that Bugg et al.
[16]’s approach has higher accuracy but requires more computation
time than the three other approaches in all four problem sets.
We worked directly on their code base to design acceleration
techniques. In addition to basic acceleration techniques such
as caching repetitive computation operations, we designed five
different acceleration techniques based on profiling results. By
combining these five techniques differently, we created 10 variants
of ABCG that can maintain the same theoretical guarantees but
offer potentially faster computation.

4.1. Technique 1A: Index

The first technique, Index, accelerates AltMin. We initially
computed fpro using a for-loop with u iterations, which can

become time-consuming for large u (that is, large sample sizes).
To address this, we rewrote the pro computation to use a for-
loop with rk iterations for k = 1, . . . , p. Despite each iteration
in the new computation being more time-consuming than in the
original, our numerical experiments showed a significant decrease
in total computation time, particularly for problems with large
sample sizes.

4.2. Technique 1B: Pattern

The second technique, Pattern, accelerates AltMin and builds
upon the Index technique described above. Instead of extracting
information from U during each iteration of the new loop
operation in Index, we can extract it at the beginning of the
algorithm since U remains unchanged throughout. This approach
circumvents unnecessary repetition.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

4.3. Technique 2: Sparse

The third technique, Sparse, accelerates the test that decides
whether to use SiGD or LPsep for determining the next iterate.
At the beginning of each BCG iteration, Pts and lpar*c
are used to find psi_a and psi_f. This operation involves a
matrix multiplication between Pts and lpar*c, which is time-
consuming when Pts has a large size (i.e., large sample size or
active vertex set size). We observed that the sparsity of Pts as
vertices are binary and used a SciPy [24] sparse matrix to represent
it instead of a NumPy [25] array. It not only accelerates the matrix
multiplication but also reduces the memory usage for storing Pts.

4.4. Technique 3: NAG

The fourth techniqueNAG is for accelerating SiGD. Since SiGD
is a gradient descent method, we can use Nesterov’s accelerated
gradient (NAG) to accelerate it. Specifically, we applied Besançon
et al.’s [26] technique of transforming the problem (6) to its
barycentric coordinates so that we minimize over 1k instead of the
convex hull of the active vertex set. We restart the NAG when the
active vertex set changes.

4.5. Technique 4: BPCG

The fifth technique BPCG is for accelerating SiGD. Tsuji et al.
[27] developed the blended pairwise conditional gradients (BPCG)
by combining the pairwise conditional gradients (PCG) with the
blending criterion from BCG. Specifically, we applied the lazified
version of BPCG, which only differs from BCG by replacing SiGD
with PCG.

4.6. Computation variants

We have developed ten computational variants of ABCG
by combining the five acceleration techniques described above.
Further details about these variants are provided in Table 1 of
Appendix 1. There are two observations. First, Index and Pattern
are always used together as Pattern relies on Index, so we combine
and consider them as a single technique in all following discussions.
Second, NAG and BPCG are exclusive to each other as BPCG
removes SiGD completely.

5. Numerical experiments

For benchmarking, we adopted the same problems (four sets
of nonnegative tensor completion problems) and setup as Bugg
et al. [16]. We repeated each problem 100 times. For each problem,
we constructed the true tensor ψ by randomly choosing 10 points
from S1 and then taking a random convex combination [16]. We
conducted the experiments on a laptop equipped with 32GB of
RAM and a 2.2Ghz Intel Core i7 processor with 6-cores/12-threads.
The algorithms were coded in Python 3. Gurobi v9.5.2 [28] was
used to solve the integer programming problem (10). The code

FIGURE 2

Results for order-3 non-negative tensors with size r × r × r and

n = 500 samples.

is available from https://github.com/WenhaoP/TensorComp. We
noted that the experiments in Bugg et al. [16] were conducted
using a laptop computer with 8GB of RAM and an Intel Core
i5 2.3Ghz processor with 2-cores/4-threads, algorithms coded in
Python 3, and Gurobi v9.1 [28] to solve the integer programming
problem (10).

We used NMSE to measure the accuracy and recorded its
arithmetic mean (with its standard error) over 100 repetitions
of each problem instance. We recorded the arithmetic mean
(with its standard error), geometric mean, minimum, median, and
maximum of the computation time over 100 repetitions of each
problem instance. Generally speaking, the most effective variants
were version 1 (Index + Pattern) and version 8 (BPCG + Index +
Pattern), offering consistent speedups over the original version 0
(ABCG). All variants achieve almost the same NMSE as the original
algorithm for each problem, which shows that they maintain in
practice the same theoretical guarantee as the original algorithm;
moreover, their runtimes weremostly competitive with the original.

5.1. Experiments with order-3 tensors

The first set of problems is order-3 tensors with increasing
dimensions and n = 500 samples (with indices sampled with
replacement). The results are shown in Table 2 of Appendix 2, and
the arithmetic mean and median computation time are plotted
in Figure 2. Among all versions, version 1 (Index + Pattern) has
the lowest mean and median computation time for each problem

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://github.com/WenhaoP/TensorComp
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

FIGURE 3

Results for increasing order non-negative tensors with size 10×p and

n = 10, 000 samples.

except for the 100× 100× 100 tensor problem, where the original
version 0 (ABCG) is slightly faster. Thus, we claim version 1 (Index
+ Pattern) as the best to use for this set of problems.

5.2. Experiments with increasing tensor
order

The second set of problems is tensors with an increasing tensor
order, with each dimension ri = 10 for i = 1, . . . , p, and
n = 10, 000 samples. The results are in Table 3 of Appendix 2,
and the arithmetic mean and median computation time is plotted
in Figure 3. Among all the versions, version 1 (Index + Pattern)
and version 8 (BPCG + Index + Pattern) has the lowest mean
and median computation time for each problem except for the
10×8 tensor problem. Thus, we claim versions 1 (Index + Pattern)
and 8 (BPCG + Index + Pattern) are the best to use for this set
of problems.

For the 10×8 tensor problem, version 5 (NAG + Index +
Pattern) has the lowest median computation time. We noted that
the median computation time for this variant was significantly
lower than themean computation time, a trend also seen with other
variants incorporating NAG. The maximum computation time of
these versions is also much higher than other versions. This is due
to the fact that, in certain cases, AltMin failed to solve the weak-
separation oracle, and the Gurobi solver was needed to solve the
time-consuming integer programming problem (10).

FIGURE 4

Results for non-negative tensors with size 10×6 and increasing n

samples.

5.3. Experiments with increasing sample
size

The third and fourth set of problems is tensors of size 10×6

and 10×7 with increasing sample sizes. The results are shown in
Tables 4, 5 of Appendix 2, and the arithmetic mean and median
computation time are plotted in Figures 4, 5. Among all the
versions, either version 1 (Index + Pattern) or version 8 (BPCG
+ Index + Pattern) has the lowest mean and median computation
time for each problem. Thus, we claim versions 1 (Index + Pattern)
and 8 (BPCG + Index + Pattern) are the best to use for this set of
problems.

6. Discussion and conclusion

In this study, we proposed and evaluated a range of speedup
techniques for the original numerical computation algorithm for
non-negative tensor completion, which was initially developed by
Bugg et al. [16]. We benchmarked these algorithm variants on the
same set of problem instances designed by Bugg et al. [16]. Our
benchmarking results were that versions 1 (Index + Pattern) and
8 (BPCG + Index + Pattern) generally had the fastest computation
time for solving the non-negative tensor completion problem (6),
offering substantial speedups over the original algorithm. Version 1
had Index and Pattern techniques, and version 8 had BPCG, Index,
and Pattern techniques. Because version 8 is version 1 with BPCG,
version 8 may be preferred over version 1 for problem instances

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

FIGURE 5

Results for non-negative tensors with size 10×7 and increasing n

samples.

where the active vertex set could be large. Surprisingly, we found
that Sparse failed to yield improvements. A possible reason is that
the implementation of Sparse needs extra operations (e.g., finding
the indices of nonzero entries) for converting NumPy arrays to
SciPy sparse arrays. If the active vertex set is not large enough
so that extra operations take time as least as the time saved from
matrix multiplications of the active vertex set, then we cannot see
an improvement. These results suggest that Index and Pattern are
the most important for acceleration and that BCG and BPCG work
equally well overall.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories

and accession number(s) can be found at: https://github.com/
WenhaoP/TensorComp.

Author contributions

WP, AA, and CC contributed to the conception and
design of the study. WP did the programming, ran the
numerical experiments, analyzed the results, and wrote
the first draft of the manuscript. All authors contributed
to the manuscript revision, read, and approved the
submitted version.

Funding

This material was based upon work partially supported by the
NSF under grant CMMI-1847666.

Conflict of interest

The authors declare that the research was conducted
in the absence of any commercial or financial relationships
that could be construed as a potential conflict
of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fams.2023.
1153184/full#supplementary-material

References

1. Hillar CJ, Lim LH. Most tensor problems are NP-hard. J ACM. (2013) 60:1–39.
doi: 10.1145/2512329

2. Song Q, Ge H, Caverlee J, Hu X. Tensor completion algorithms in big data
analytics. ACM Trans Knowl Discov Data. (2019) 13:1–48. doi: 10.1145/3278607

3. Tan H, Wu Y, Feng G, Wang W, Ran B. A new traffic prediction method
based on dynamic tensor completion. Procedia-Soc Behav Sci. (2013) 96:2431–42.
doi: 10.1016/j.sbspro.2013.08.272

4. Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank
tensor recovery via convex optimization. Inverse Probl. (2011) 27:025010.
doi: 10.1088/0266-5611/27/2/025010

5. Liu J, Musialski P, Wonka P, Ye J. Tensor completion for estimating missing
values in visual data. IEEE Trans Pattern Anal Mach Intell. (2013) 35:208–20.
doi: 10.1109/TPAMI.2012.39

6. Zhang X, Wang D, Zhou Z, Ma Y. Robust low-rank tensor
recovery with rectification and alignment. IEEE Trans Pattern
Anal Mach Intell. (2019) 43:238–55. doi: 10.1109/TPAMI.2019.
2929043

7. Mu C, Huang B, Wright J, Goldfarb D. Square deal: lower bounds and improved
relaxations for tensor recovery. In: International Conference on Machine Learning.
Cambridge, MA: PMLR. (2014). p. 73–81.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://github.com/WenhaoP/TensorComp
https://github.com/WenhaoP/TensorComp
https://www.frontiersin.org/articles/10.3389/fams.2023.1153184/full#supplementary-material
https://doi.org/10.1145/2512329
https://doi.org/10.1145/3278607
https://doi.org/10.1016/j.sbspro.2013.08.272
https://doi.org/10.1088/0266-5611/27/2/025010
https://doi.org/10.1109/TPAMI.2012.39
https://doi.org/10.1109/TPAMI.2019.2929043
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Pan et al. 10.3389/fams.2023.1153184

8. Barak B, Moitra A. Noisy tensor completion via the sum-of-squares hierarchy. In:
Conference on Learning Theory. Cambridge, MA: PMLR. (2016). p. 417–45.

9. Montanari A, Sun N. Spectral algorithms for tensor completion. Commun Pure
Appl Math. (2018) 71:2381–425. doi: 10.1002/cpa.21748

10. Chandrasekaran V, Recht B, Parrilo PA, Willsky AS. The convex
geometry of linear inverse problems. Found Comput Math. (2012) 12:805–49.
doi: 10.1007/s10208-012-9135-7

11. Yuan M, Zhang CH. On tensor completion via nuclear norm
minimization. Found Comput Math. (2016) 16:1031–68. doi: 10.1007/s10208-015-
9269-5

12. Yuan M, Zhang CH. Incoherent tensor norms and their applications in
higher order tensor completion. IEEE Trans Inf Theory. (2017) 63:6753–66.
doi: 10.1109/TIT.2017.2724549

13. Rauhut H. Stojanac Ž. Tensor theta norms and low rank recovery. Numer
Algorithms. (2021) 88:25–66. doi: 10.1007/s11075-020-01029-x

14. Aswani A. Low-rank approximation and completion of positive tensors. SIAM J
Matrix Anal Appl. (2016) 37:1337–64. doi: 10.1137/16M1078318

15. Rao N, Shah P, Wright S. Forward-backward greedy algorithms for
atomic norm regularization. IEEE Trans Signal Process. (2015) 63:5798–811.
doi: 10.1109/TSP.2015.2461515

16. Bugg CX, Chen C, Aswani A. Nonnegative tensor completion via integer
optimization. In: Oh AH, Agarwal A, Belgrave D, Cho K, editors. Advances in
Neural Information Processing Systems. San Diego, CA: Neural Information Processing
Systems Foundation, Inc (NeurIPS) (2022). p. 10008–20.

17. Braun G, Pokutta S, Tu D, Wright S. Blended conditonal gradients. In:
International Conference on Machine Learning. PMLR. (2019). p. 735–43.

18. Nemirovski A. Topics in non-parametric statistics. Lectures on Probability
Theory and Statistics (Saint-Flour, 1998). Berlin: Springer (2000) 1738:85–277.

19. Tsybakov AB. Optimal rates of aggregation. In: Schölkopf B, Warmuth MK,
editors. Learning Theory and Kernel Machines. Berlin: Springer (2003). p. 303–13.
doi: 10.1007/978-3-540-45167-9_23

20. Lecué G. Empirical risk minimization is optimal for the convex
aggregation problem. Bernoulli. (2013) 19(5B):2153–66. doi: 10.3150/12-
BEJ447

21. Hansen P. Methods of nonlinear 0–1 programming. In: Hammer PL, Johnson
EL, Korte BH, editors. Annals of Discrete Mathematics, Vol. 5. Amsterdam: Elsevier
(1979). p. 53–70. doi: 10.1016/S0167-5060(08)70343-1

22. Padberg M. The Boolean quadric polytope: some characteristics, facets and
relatives.Math Program. (1989) 45:139–72. doi: 10.1007/BF01589101

23. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.
(2009) 51:455–500. doi: 10.1137/07070111X

24. Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau
D, et al. SciPy 10: fundamental algorithms for scientific computing in Python. Nat
Methods. (2020) 17:261–72.

25. Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, et al. Array programming with NumPy. Nature. (2020) 585:357–62.
doi: 10.1038/s41586-020-2649-2

26. Besançon M, Carderera A, Pokutta S. FrankWolfe. jl: a high-
performance and flexible toolbox for Frank-Wolfe algorithms and conditional
gradients. INFORMS J Comput. (2022) 34:2611–20. doi: 10.1287/ijoc.
2022.1191

27. Tsuji K, Tanaka K, Pokutta S. Sparser kernel herding with pairwise
conditional gradients without swap steps. arXiv. [preprint]. doi: 10.48550/arXiv.2110.
12650

28. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. (2022).
Beaverton, OR: Gurobi Optimization, LLC.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2023.1153184
https://doi.org/10.1002/cpa.21748
https://doi.org/10.1007/s10208-012-9135-7
https://doi.org/10.1007/s10208-015-9269-5
https://doi.org/10.1109/TIT.2017.2724549
https://doi.org/10.1007/s11075-020-01029-x
https://doi.org/10.1137/16M1078318
https://doi.org/10.1109/TSP.2015.2461515
https://doi.org/10.1007/978-3-540-45167-9_23
https://doi.org/10.3150/12-BEJ447
https://doi.org/10.1016/S0167-5060(08)70343-1
https://doi.org/10.1007/BF01589101
https://doi.org/10.1137/07070111X
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1287/ijoc.2022.1191
https://doi.org/10.48550/arXiv.2110.12650
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	Accelerated non-negative tensor completion via integer programming
	1. Introduction
	2. Preliminaries
	2.1. Norm for non-negative tensors
	2.2. Non-negative tensor completion
	2.2.1. Statistical guarantees

	3. Original computation algorithm
	3.1. Adapted blended conditional gradients
	3.2. Simplex Gradient Descent Step
	3.3. Weak-separation oracle step
	3.4. Alternating minimization

	4. Accelerated computation algorithm
	4.1. Technique 1A: Index
	4.2. Technique 1B: Pattern
	4.3. Technique 2: Sparse
	4.4. Technique 3: NAG
	4.5. Technique 4: BPCG
	4.6. Computation variants

	5. Numerical experiments
	5.1. Experiments with order-3 tensors
	5.2. Experiments with increasing tensor order
	5.3. Experiments with increasing sample size

	6. Discussion and conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References

