ON THE CONNES-KASPAROV ISOMORPHISM,, II:
THE VOGAN CLASSIFICATION OF ESSENTIAL COMPONENTS IN
THE TEMPERED DUAL

PIERRE CLARE, NIGEL HIGSON, AND YANLI SONG

ABSTRACT. This is the second of two papers dedicated to the compu-
tation of the reduced C*-algebra of a connected, linear, real reductive
group up to C*-algebraic Morita equivalence, and the verification of the
Connes-Kasparov conjecture in operator K-theory for these groups. In
Part I we presented the Morita equivalence and the Connes-Kasparov
morphism. In this part we shall compute the morphism using David Vo-
gan’s description of the tempered dual. In fact we shall go further by
giving a complete representation-theoretic description and parametriza-
tion, in Vogan's terms, of the essential components of the tempered dual,
which carry the K-theory of the tempered dual.

1. INTRODUCTION

This is the second and concluding part of a work whose objectives are
to determine the reduced C*-algebra of a connected, linear, real reductive
group, up to Morita equivalence, compute its K-theory, and verify that the
Connes-Kasparov index homomorphism in K-theory is an isomorphism.

For further background on this problem we refer the reader to the intro-
duction to Part I of this work [CHST22]. We showed there if G is a real
reductive group, then:

(i) The reduced C*-algebra of G may be described, up to C*-algebra iso-
morphism, in a way that neatly encapsulates the major results of tem-
pered representation theory, as developed by Harish-Chandra, Lang-
lands, Knapp, Stein and others.

(ii) Using the Knapp-Stein theory of the R-group and following Wasser-
mann [Was87], the reduced group C*-algebra may be described in
a more streamlined way, up to Morita equivalence, and its K-theory
may be computed. Only certain components of the tempered dual
contribute to C*-algebra K-theory; these are the essential components,
and they may be characterized using the Knapp-Stein theory.

(iii) Contingent on a matching theorem that pairs Clifford algebra data asso-
ciated to a maximal compact subgroup of G with the above essential
components, the C*-algebraic indexes of indecomposable Dirac op-
erators on the symmetric space associated to G, which are elements

Date: April 15, 2024.



2 PIERRE CLARE, NIGEL HIGSON, AND YANLI SONG

in the K-theory of the reduced group C*-algebra, freely generate the
K-theory. This is the Connes-Kasparov isomorphism.

In this paper we shall complete our account of the Connes-Kasparov iso-
morphism in [CHST22] by proving the matching theorem.! The main re-
sults are:

(iv) A uniform construction of all the essential components of the tem-
pered dual.

(V) A parametrization of the essential components of the tempered dual
in terms of dominant weights for a maximal compact subgroup of G.

See Theorems 3.10 and 6.3. Our proofs will make very extensive use of
David Vogan’s approach to the representation theory of G [Vog79, Vog81],
which involves minimal K-types and cohomological induction. This is in
contrast to previous works on C;(G), which have used Harish-Chandra’s
approach, via discrete series representations and cuspidal parabolic induc-
tion.

The parameters that we use to list the essential components will turn out
to be exactly the same as the parameters used to construct indecomposable
Dirac operators. This puts the matching theorem, stated in this paper as
Theorem 7.4, within easy reach, as we shall explain in Section 7.

Notes on Terminology. We shall generally follow the teminology and no-
tation of Vogan’s monograph [Vog81]. Thus throughout the paper, G will
be a linear real reductive group in the sense of [Vog81, Sec. 0.1], except that
we shall in addition assume that G is connected as a real Lie group, which
Vogan does not.

Throughout the paper we shall work with a fixed Cartan involution 0
of G and denote by K C G the (necessarily connected) maximal compact
subgroup that is fixed by 6. We shall also work with a fixed maximal torus
T¢ C K.

We shall denote real Lie algebras of real groups by fraktur letters dec-
orated with the subscript 0, as in &, C go. The same fraktur letters, but
without the subscript 0, will be used to denote complexified Lie algebras.
Other fraktur letters without the subscript 0 will be used to denote other
complex Lie algebras.

We shall write the Lie algebraic Cartan decomposition as go = £ @ s¢
(which is a slight departure from Vogan’s notation) and we shall fix, once
and for all, a nondegenerate, G-invariant symmetric bilinear form

(11) <,>:gngo—)R

that is positive-definite on sy and negative-definite on ;. We shall use vari-
ous forms induced from (1.1), most notably the associated positive-definite
inner product on the space it§* = Homg(t§, iR).

lActually, there are some other, lesser, issues outstanding from [CHST22]. We shall re-
solve those too, in Section 8.
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Finally we shall denote by A(¢,t¢) the set of roots for (£ t°). We shall
fix, once and for all, a system of positive roots A*(¢,t¢). The term domi-
nant (which means (A, «) > 0 for all positive roots «) will always mean
with respect to this fixed system of positive roots. We shall use the standard
notation p(A*(¢t¢)) for the half-sum of positive roots, and we shall use
similar notation in other contexts, where we shall always count roots with
multiplicities. This is all as in [Vog81].

2. THETA-STABLE PARABOLIC SUBALGEBRAS

Vogan’s monograph [Vog81] uses Zuckerman’s method of cohomolog-
ical induction to construct the entire admissible dual of a real reductive
group, and in particular the tempered dual. In this section and the next we
shall quickly review some of the basic concepts that are involved.

Definition 2.1 (See [Vog81, Def. 5.2.1]). A 0-stable parabolic subalgebra of g is
any Lie subalgebra q C g defined by a weight A € it§* using the formula

q= @{gﬁ :B € it§" and (A, B) >0},

where gg C g is the 3-weight space for the adjoint action of tj on g. We
shall say that q is defined by A.

The subalgebra q decomposes as semidirect product q = [ + u, where

(2.2) [=D{ep: B € it and (A, B) =0}
and
(2.3) u=EP{gp: B €itf and (A, p) > 0}.

One has [ = q N q, so that [ is the complexification of a real algebra .
Throughout the paper, given a 0-stable parabolic subalgebra q, we shall
follow Vogan and denote by L the normalizer of q in G. This is a connected
Lie subgroup of G and a reductive group in its own right, stable under the
Cartan involution of G. Its Lie algebra is .
We shall now present the examples of 8-stable parabolic subalgebras that
will be of concern to us in this paper.

Proposition 2.4. If the parabolic subalgebra q C g is defined by a strictly domi-
nant weight A € §*, meaning that (A, x) > 0 for all x € A™(¢,t°), then there is
an isomorphism of Lie algebras

b =sl(2,R)® - ®sl(2,R) @ 30
with the following properties:

(i) The summand 3¢ is the center of ly, and the isomorphism is the identity on

30-

(ii) The isomorphism is compatible with the Cartan involution on |y that is ob-
tained by restriction from gy and the standard Cartan involutions on sl(2, R)-
summands.
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(iif) The summands on the right are orthogonal for the nondegenerate bilinear
form on Iy that is obtained by restriction from go.

Remark 2.5. The sl(2,R)-summands on the right-hand side correspond to
simple ideals in [y, so the isomorphism is canonical up to permutation of the
s[(2,R) summands and automorphisms of sl(2,R) preserving the Cartan
involution.

Remark 2.6. If A is strictly dominant not just for A™ (€, t°) but indeed for
some system of positive roots for the action of t° on g, then [y is in fact
abelian; that is, it has no s[(2, R)-summands. This is in fact the generic case,
and it is very easy to analyze from the point of view of this paper. But it is
not quite general enough for our purposes.

Proof of Proposition 2.4. The hypothesis that A is strictly dominant and the
definition of [ imply that [N € = t°. It follows that if we decompose [ into
weight spaces for the adjoint action of t¢,

(=t oPls,
B

then [g C s for all 3. Hence the Cartan involution 0 is —1 on each (3.

Let us examine the weight spaces [ for 3 # 0. Minor variations on the
standard arguments for semisimple Lie algebras (as in for example [Ser87,
Sec. V1.2]) show that

d1m([ﬁ) = dim([,ﬁ) = dim([[[g, [,[3]) =1.

Solg, [_g and [Ig, [_g] span a 3-dimensional Lie algebra isomorphic to sl(2, C).
It is stable under both the Cartan involution and complex conjugation,
which switches [ and [_g. So the Lie algebra is isomorphic to the com-
plexification of sl(2, R) with its standard Cartan involution.

If B1 # —B, then [lg,, [,] = 0 since

[[Bw[ﬁz] Ct and [[[51>[[32] - [ﬁ1+[52'

Moreover [lg,, [_g,] and [lg,, [_g,] are orthogonal subspaces of t°. The propo-
sition follows from these observations. O

At the Lie group level, we obtain from the isomorphism of Lie algebras
in Proposition 2.4 a morphism

(2.7) SL(2,R) x --- x SL(2,R) x Z(L)° — L

(the superscript denotes the connected component of the identity) that is
surjective and a local isomorphism. The kernel is central, as it is for any
local isomorphism, and its projection onto the product of SL(2, R)-factors
is injective because Z(L) C L. So the kernel identifies via this projection
with a subgroup of the (finite) group generated by the matrices [ %] in
each SL(2,R)-factor. The maximal torus T¢, which is a maximal compact

subgroup of L, is the image of the corresponding morphism
(2.8) SO(2) x ---x SO(2) x (T°NZ(L)°) — L
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in which the final factor is the maximal compact subgroup of Z(L)°, and is
therefore connected.

3. VOGAN DATA

The following definition will be used in the next section to construct rep-
resentations of G using a two-step process that goes from characters of a
Cartan subgroup HCG to representations of an intermediate group L by
means of parabolic induction, and then from these representations of L to
representations of G by means of cohomological induction.

Definition 3.1 (See [Vog81, Def. 6.5.1]). A triple (q,H,d) is a set of Vogan
data for G (Vogan uses the term discrete, 0-stable data) if

(i) g =4 uisa O-stable parabolic subalgebra of g.

(ii) H is a 0-stable Cartan subgroup of G (it is necessarily abelian under
our assumptions on G, but not necessarily connected) and a subgroup
of L = NG (q)

(iii) L is quasi-split (see [Vog81, Def.4.3.5]) and H is a maximally split Cartan
subgroup of L. Altogether, this means that if we write H = TA, where
T=HnKand A = explhy N sgl, then H = TA is the Levi factor of a
minimal (real) parabolic subgroup P = TAN of L.

(iv) 6: T — U(1) is a fine representation of T with respect to L, in the sense
of [Vog81, Definition 4.3.8]. This means that  is trivial on the intersec-
tion of T with the connected component of the identity in the semisim-
ple part of L.

(v) If AL € ity = Homg(to, iR) is the differential of §, and if

AC =AM+ p(u,t),

then it is required that (A\®, ) > 0 for all weights o« for the adjoint
action of t on u. (The positive-definite inner product here is on it,
and it is again obtained from the bilinear form on g. In addition p(u, t)
is the half-sum of the weights of the action of t on u, multiplicities
included.)

Examples of Vogan data may be constructed using the following devel-
opment of the computation in Proposition 2.4. They represent all the exam-
ples that we shall need to study in detail in this paper.

Proposition 3.2. Let k € it§* be a dominant weight, and let q = | + u be the
©-stable parabolic subalgebra defined by the strictly dominant weight

AG =k + p(AT (8, ).

From the isomorphism in Proposition 2.4, the nonzero weights for the action of t¢
on [ consist of a collection of pairs =3, one for each s{(2, R)-summand in ly. Denote
by AT (1,£°) be any set consisting of one member from each pair. Let H = TA be a
maximally split Cartan subalgebra of L = Ng(q). If the weight

p=K—p(s Nu,t) — p(AT (%)
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is analytically integral, and if & is the restriction to T of the character exp(u) of
T€ associated to y, then (q,H, d) is a set of Vogan data for G. Whether or not p is
integral is independent of the choice of A* (1,1¢), and, assuming that w is integral,
the character & is independent of the choice of A™ (I,t¢), too.

Remark 3.3. Taken together, the weights in A(u,t¢) and AT ([,t°) form a
system of positive roots for (g, t°) that includes A™ (¢, t°), and if A™ (s, t°) is
the subset of noncompact roots in A™ (g, t), then

AT (s5,t) = pls N, 1) + p(AT(1,£9)).
The weight AS is dominant for A*(g,t¢). Conversely, all of the instances

of the construction in this remark, using all possible AT ([, t¢), yield all the
systems of positive roots for (g, t) for which A® is dominant.

Remark 3.4. Before starting the proof we should clear up a notational am-
biguity. In the statement of the proposition, A® is defined as a weight in t§*
in terms of the dominant weight k € it§*, whereas in Definition 3.1, AS is
defined as a weight in it] in terms of the differential of 6. Let us check that
the two definitions are related in the following way: if the weight AS € it}
of Definition 3.1 is extended by 0 on the orthogonal complement of t, in t,
then one obtains the weight A® € it§* in the statement of the proposition.

First, for the weight AS in the statement of the proposition we have
ACJL = 0. To see this, use the orthogonal direct sum decomposition

(3.5) toL =50(2) - Dso(2)

resulting from the isomorphism in Proposition 2.4. Let 3 € it§* be a nonzero
weight for the action of t¢ on (the complexification of) one of the sl(2,R)-
summands of [y in Proposition 2.4. The restriction of (3 to the orthogonal
complement of the corresponding s0(2)-summand in t; is zero. Hence

O\G) B) = <)\G |so(2)) B|5o(2)>5a(2)

But according to the definition of [ in (2.2), (A®,B) = 0, and so it follows
that 7\G|50(2) = 0 for each s0(2)-summand in (3.5). Hence AS|,. = 0.

Second, if A® is again as in the statement of the proposition, then
A =k+pENu,t9) =k —p(s Nu, t) + p(u, ),

where p(€ N1, t¢), etc, denote the half-sum of the weights of t© in £ N u, etc.
Meanwhile

AN = ple = klg— p(s Ny, ) — p(AT (1, £9))];,
and therefore
}\L = K‘t - 9(5 N u, tc)|t»
since p(A™ (I, %)) = 0. This gives
ASle = klg— p(s N, )] + pluy £)]g = A" + p(u, t),

as required.
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In a somewhat similar vein, we shall use the following fact in the proof
of Proposition 3.2:

Lemma 3.6. Let q = [+u be the 0-stable parabolic subalgebra defined by a strictly
dominant weight in it§*. If H = TA is a maximally split Cartan subalgebra of
L = Ng(q), then p(u, t)[L = 0.

Proof. The orthogonal complement of ty in t§ is spanned by the images
of the one-dimensional Lie algebras so(2) in the s[(2, R)-summands of Iy,
so it suffices to show that p(u, t¢) restricts to zero on each so(2). But the
ideal u is a representation, under the adjoint action, not just of so(2) but of
sl(2,R), and the sum of the weights of any finite-dimensional representa-
tion of s[(2, R) is zero. O

Proof of Proposition 3.2. The group A C H is generated by images under the
Lie group morphism (2.7) of A-subgroups in each of the SL(2,R)-factors
that map to L. Because of this, the group T C H is generated by the torus
T¢NZ(L)° and the images m € L of the matrices [ ' ° | ineach SL(2,R) fac-
tors in (2.7). The character 6 is therefore fine, because the intersection of T
with the semisimple part of L is the finite group generated by the elements
m alone.

Next, let us show that if A € ity is the differential of 8, and if AG =
AL+p(u, 1) (this is the version of AC thatis a weight on t, as in Definition 3.1),
then (AS, o) > 0 for every « € it* that belongs to the set A(u, t) of weights
for the adjoint action of t on u. Given « € A(u,t), there exists y € A(u, t)
with v|; = «. It follows from the definition (2.3) of u and from the fact that
AC[L =0 that

(A%, ) = (A%,v) >0,
as required.

The above proves that (q,H,d) is a set of Vogan data. It is clear that
the difference of any two choices of AT ([, t°) is analytically integral, so it
remains to show that 8 is independent of the choice of A™ ([, t°).

We shall show that 6(m) = —1 for all of the images in L of the elements

[5] _0] } in the SL(2,R)-factors in (2.7), assuming of course that the weight

H=K—= p(5 ﬂu)tc) - p(A+([)tC))

is an integral weight, so that & is defined. This will suffice, since 8 is de-
termined by its differential on the torus T¢ N Z(L)°, and the differential is
independent of the choice of AT (1, t%).

Denote by £f3; two nonzero weights for the action of tj on the j'th sl(2)-
summand in [, and arrange the signs so that

P(AT(1,£)) = 3 (B1 +- -+ BN)-
It follows from the definition (2.2) of [ that
(B, k) + (Bj, p(E N, 1)) = (Bj, k) + (Bj, p(AT(E,19))) = (B}, AS) =0
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(all of the inner products above and below are taken in it§*) and so
(Bjy <) — (Bjy p(s Nu, 1)) = —(Bj, p(E N, 1)) — (Bj, (s N1y £°))
= _<B]) p(“) tc)>-

But this is zero, since by Lemma 3.6 p(u, t°) is supported on ty, while f3; is
supported on a single 50(2)-summand in t3. As a result,

(Bjy 1) = —(Bj, P(AT(1,£))) = =3 (Bj, Bj)-
It follows that the restriction of p to the j’th so(2)-summand is equal to
—% B;. Now if (3 is either nonzero weight for the action of so(2) on sl(2,R),

then
B([3]) ==2,

and so if @: sl(2,R) — [ is the inclusion of the j’th s[(2, R)-summand, then

i(o(150) ==

Using the fact that 0 is the restriction to T of the character exp(p) of T¢, we
therefore find that if ® the Lie group morphism corresponding to ¢, then

s(m) = exp(w) (@ ([ 7))

as required. O

To summarize, Proposition 3.2 associates to each dominant weight p €
it§" a unique set of Vogan data, as long as p satisfies a certain integrality
condition. We are now going to characterize the sets of Vogan data that are
obtained in this way.

Definition 3.7. A set (q, H, d) of Vogan data is essential if

(i) There is an isomorphism

lh=sl(2,R)® - @sl(2,R) @ 30

with the properties listed in Proposition 2.4.

(ii) The character b takes the value —1 on the images of each of the ele-

ments | o5 | € SL(2,R) under the associated morphism of Lie groups

SL(2,R) x --- x SL(2,R) x Z(L) — L.

Remark 3.8. The set of images in (ii) does not depend on the choice of
isomorphism in (i).

The proof that we have just completed shows that:
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Proposition 3.9. Each of the sets of Vogan data provided by Proposition 3.2 is
essential. 0

Theorem 3.10. The construction in Proposition 3.2 determines a bijection from
the dominant weights k € it5* for which the weight

w=rK—p(sNu,t) — p(AT (L))
is analytically integral to the K-conjugacy classes of sets of essential Vogan data.
Once again, we need a preliminary computation:

Lemma 3.11. Let (q, H, 8) be a set of essential Vogan data, and write H = TA, as
usual, so that & is a character of T. There is an analytically integral weight p € it§*
for which

(i) the corresponding global character exp(u) of T¢ restricts to 6 on T, and
(ii) if p € AT(1,1%) is the positive root associated to a given sl(2,R) summand in
Definition 3.7, then the restriction of u to the corresponding so(2)-summand
of t is
Hso(2) = —3Blso(2)-

Proof. This is a special case of one of the most important technical results
in Vogan’s monograph, [Vog81, Thm. 4.3.16]. But the special case is easy to
handle directly, as follows.

We shall use the surjective morphism of Lie groups (2.7). As indicated
in (2.8), the torus T is generated by the image of SO(2) x --- x SO(2) and
the compact part of the center of L. Because of this we need only define a
unitary character on SO(2) x --- x SO(2), namely a product of generating
characters on each factor, and a unitary character on the compact part of the
center, namely the restriction of 5, and then check that the product factors
through

(50(2) X ee X 50(2)) x <T° N Z(L)) T
using the property of 6 in the definition of essential Vogan data. This is
straightforward. O

Proof of Theorem 3.10. Let (q,H,d) be a set of essential Vogan data. After
conjugating by an element of K we may, and shall, assume that u N £ is the
direct sum of the already-fixed positive weight spaces in ¢.
Let AL be the differential of 5 and define the weight A® € it} by
AC = Al +p(u, ).

If we extend A€ to a weight in it§* by defining it to be zero on the orthogonal
complement of t; C t¢, then it follows from part (v) of Definition 3.1 that
the extension satisfies

(AS,x) >0 Vo e Alu, t9);
compare the proof of Proposition 3.2. In addition,
(A%, B) =0 VB EA(LL),
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since A® vanishes on f(J)‘ while B vanishes on ty. So A€ defines g.

Because the maximal compact subgroup of L is the torus T¢, the maxi-
amlly split Cartan subgroup H = TA of L is unique up to conjugacy by an
element of T¢, and T is uniquely determined, and a subgroup of T¢.

Choose an integral weight p of t© as in Lemma 3.11, so that

w+p(AT(L ) = Ak

here we extend Al by zero on t3. The unitary character of T¢ associated to
u restricts to 6 on T C T¢. Indeed the differential of this character is equal
to AL on t, so the character agrees with & on the connected component of
the identity in T. But in addition both the character and 6 are equal to —1
on the elements m that generate the component group of T.

Next, define a weight k € it§* by

n=k—p(sNu,t)—p(AT(I,t))
and observe that, thanks to Lemma 3.6,
K+ p(AT(6,19) = n+ p(AT (L)) + pu, ) = A"+ p(u, €©) = AC,

and so k + p(AT (&, t¢)) defines q.

It follows from the above that k + p(AT(&,t%)) is strictly dominant. If k
was integral, then it would it would follow from this that k is dominant.
But k is integral for a certain double cover K of K, namely the one defined
in Section 7 below; see the discussion following Proposition 7.5. So « is
dominant whether or not it is integral.

We have now shown that (q, H, d) is one of the sets of essential Vogan
data defined in Proposition 3.9, up to K-conjugacy. Since there are no in-
ner automorphisms of K that globally preserve both T¢ and the system of
positive roots AT (¢, t°), the map from weights to K-conjugacy classes of es-
sential Vogan data is not only surjective, but injective too. O

4. COMPONENTS OF THE TEMPERED DUAL

We shall now review Vogan'’s construction of the tempered dual? of G,
and compare it with Harish-Chandra’s construction, which we used in
[CHST22] to describe the reduced group C*-algebra.

Vogan'’s construction is carried out in the context of (g, K)-modules rather
than that of unitary Hilbert space representations. But we shall take ad-
vantage of the fact, due to Harish-Chandra, that every unitary admissible
(g, K)-module may be completed to a unitary representation of G, and usu-
ally make no distinction between the two contexts. But whenever it is help-
ful to do so we shall denote (g, K)-modules using the letter X, and Hilbert
space representations using the letter J{.

The following definition formalizes the construction of representations
from Vogan data.

2Vogam constructs the full admissible dual in [Vog81]; the fact that we are interested only
in the tempered dual simplifies matters for us considerably.
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Definition 4.1. Let (q, H, 8) be a set of Vogan data for G, and let L = Ng(q).
Let T = MA as in Definition 3.1, and let v € ag.

(i) We shall denote by X-(8, v) the unitary principal series representation
of L that is obtained by unitary parabolic induction from the character
5@ exp(iv) of H. When v = 0 we shall abbreviate the notation to X'(5)
or even X(4).

(ii) We shall denote by XS (q,H,8,v) the representation of G that is ob-
tained by cohomologically inducing X'(8,v) from L to G via the par-
abolic subalgebra q. See [Vog81, Def. 6.5.2]; this is the standard rep-
resentation with parameters (q,H,d,v). Again, when v = 0 we shall
abbreviate the notation to X% (g, H, 8) or X(g, H, 5).

Up to equivalence, the representation X¢(q, H, 8, v) depends only on the
K-conjugacy class of (q,H,d,v). It is unitarizable, tempered and a finite
direct sum of irreducible representations (generically XS(q,H, 8, V) is itself
irreducible). This follows, for example, from Theorem 4.2 below.

The representations X¢(q, H, 8, v) fit into the Harish-Chandra picture of
the tempered dual as follows. According to Harish-Chandra, the compo-
nents of the tempered dual of G are parametrized by associate classes of pairs
(P, o) consisting of a parabolic subgroup P of G and an irreducible, square-
integrable representation o of the compactly generated part M in the Lang-
lands decomposition P = MAN. See for instance [CHST22] for a summary
that is tailored to our viewpoint.

Let [P, 0] be an associate class, with P = MAN. We shall construct from
it a set of Vogan data.

First, choose a Cartan subgroup T (centralizer of a maximal torus) in
KN M, and set H = TA.

The compact factor T is a compact Cartan subgroup of M, and the Vogan-
Zuckerman method attaches to the discrete series representation o of M a
character y of T from which o may be obtained by cohomological induc-
tion using an appropriate 0-stable parabolic subalgebra of m; see [Vog81,
Lem. 6.6.12].

The character v, in turn, determines a 6-stable parabolic subalgebra q C
g, as well as a character § of T, which is a p-shift of v, and we obtain a set
of Vogan data (q, H, 9); see [Vog81, Prop. 6.6.2].

The K-conjugacy class [q, H, 8] depends only on the associate class [P, o],
and the representations of G associated to the two sets of data are related
as follows:

Theorem 4.2 ([Vog81, Thm. 6.6.15]). Suppose that the K-conjugacy class of Vo-
gan data [q,H, d] corresponds to the associate class [P, ol, as above. For every

v € ag, the unitary (P, o)-principal series representation s~ on Indg He®RCy is
equivalent to the representation X®(q, H, 8,v) described in Definition 4.1. O
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Putting this together with known facts about how associate classes orga-
nize the tempered dual, as summarized in [CHST22] for instance, or alter-
natively working directly with Vogan data, we obtain:

Theorem 4.3. Let (q,H, d) be a set of Vogan data for G, let H = TA as in Defini-
tion 3.1, and let v € ag.

(i) Every tempered irreducible representation of G arises as one of the summands
of some XC(q, H, 8, V), and it does so from a unique set of Vogan data, up to
K-conjugacy.

(ii) As v varies, with (q,H, ) fixed, the irreducible summands of all the repre-
sentations X©(q, H, 8,v) belong to a single component of the tempered dual,
and exhaust it. O

In short, the components of the tempered dual of G are parametrized
by the K-conjugacy classes of sets of Vogan data, and this parametrization
determines a bijection

{ Associate classes [P, ] } — { K-conjugacy classes [q, H, 8] }.

5. THE KNAPP-STEIN AND VOGAN INTERTWINING GROUPS

Let [P, o] be an associate class, as in the previous section. Harish-Chandra
showed that the decomposition of the (P, o)-principal series representation
T,y into irreducible constituents is governed by the interwining group

Wo = {w € N(ap)/Zx(ao) : Ad}, 0~ 0 },
and more specifically by the subgroup
Wev={weW;:Ad},v=v}.

Each element of W;; ,, corresponds to a unitary self-intertwiner of the rep-
resentation 71y, on Indg Hs®Cy, and together these unitaries span the in-
tertwining algebra.

In addition, Langlands proved that the unitary principal series represen-
tations 715,y and 715/ 7 on Indg HsCy and Indgl Hs®Cy/ are equivalent if
and only if the data (A, 0,v) and (A’,0’,v’) are conjugate by an element
of K, and that otherwise the two representations are disjoint. See [Lan89,

p-142ff].
Now let (g, H, 8) be a set of Vogan data. As usual let L = Ng(q) and let
H = TA. If we set

W = Nxnt(ao)/Zknt(ao),
then the intertwining groups in the Vogan-Zuckerman theory are
Ws={weW:Ad;,5=5}
and
Wsy = {w e Ws:Ad;, v :v}.
See [Vog81, Defs. 4.4.1 and 4.4.9].
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Theorem 5.1 ([Vog81, Thm. 6.5.12]). Let (q',H’,8’) be another set of Vogan
data and let v' € ay’. If the representations X®(q, H,8,v) and XS (q',H’,8,v')
have equivalent subrepresentations, then (q,H,d,v) and (q',H’,8’,v') are con-
jugate by an element of K.

Let (q,H,d) be the set of Vogan data that is constructed from (P, o) as
in the discussion prior to the statement of Theorem 4.2. Since both the
Vogan and Knapp-Stein intertwining groups may be faithfully represented
as groups of linear automorphisms of the same vector space ay, they may
be compared with one another. In fact they are equal:

Lemma 5.2. If (q, H, 8) is the set of Vogan data constructed from the pair (P, o),
as in the discussion prior to Theorem 4.2, then Wy = Ws.

Proof. Suppose that w is an element in Wj, acting on aj through w(v) =
Ad},v. Then the representations XS (q,H,8,v) and XC(q,H, 5, w(v)) are
equivalent, for all v, and therefore by Theorem 4.2 the representations 7, v
and 74 ,,(,) are equivalent, for all v. So by Langlands’ aforementioned re-
sult, for each v there is an element w., € W, such that w/,(v) = w(v).

Since W is finite, the elements w., cannot all be distinct from one an-
other. Indeed there must exist a single w’ € W such that

w/(v) = wi(v) =w(v)

for all v in a spanning set for af. This means that w' = w, and we have
proved that W5 C W,;.. The argument can be reversed to prove the reverse
inclusion. g

From now on we shall focus on the special case v = 0. The Knapp-Stein
theory [KS71, KS80] considerably refines Harish-Chandra’s completeness
result by decomposing W as a semidirect product

(5.3) W, = W/ x Rg,
in which intertwiners corresponding to the elements of W;, all act as multi-
ples of the identity on the Hilbert space Inds Ho of the representation 715,
while the intertwiners corresponding to the elements of R, act as a linearly
independent set of intertwining operators on Ind§ H,. Every element in
Ry has order 2. It follows from this and Harish-Chandra’s theorem that the
(P, o)-principal series representation 71, o decomposes as a direct sum of a
finite set of mutually inequivalent irreducible representations that may be
parametrized by the elements of the dual group R,

We shall now present some of the corresponding results in the Vogan-
Zuckerman theory.

Definition 5.4 ([Vog81, Def. 4.1.1]). Let q be a 6-stable parabolic subgroup
of g. Let L = Ng(q), as usual, and let H = TA be a maximally split Cartan
subgroup of L.
(i) Denote by A(l,a)Caj the set of (non-zero) roots associated to the ad-
joint action of a on [. These are the restricted roots for (q, H, 8).
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(ii) Denote by A(l,a)Caj set of those roots « € A(l,a) for which ¢
A(l, a). These are the reduced roots for (g, H, 8).
The following lemma is a standard fact about the set of restricted roots

associated to the Iwasawa decomposition of any reductive group [Kna02,
Thm. 6.57].

Lemma 5.5. If (q,H, d) is a set of Vogan data, and if H = TA and L = Ng(q), as
in Section 4, then

W(A(E, 1)) = Nxnr(ao)/Zknr (a0)
if both groups are viewed as groups of linear automorphisms of ay. O

Definition 5.6 ([Vog81, Def. 4.3.6]). A root « € A(l,a) is said to be real if it
is the restriction to a of a root for the adjoint action of h = a @ t on [ that
vanishes on t. Otherwise, « is said to be complex.

Associated to each real root « € A(l, a), there exists a morphism ([Vog81,
Notation 4.3.6])

(5.7) ©u: SI(2,R) — lo.

that is compatible with 0 and the standard Cartan involution on sl((2,R),
and that maps the strictly upper triangular matrices into the «-root space
in [p. See [Vog81, Def. 4.3.6]. Since the group L is linear, the Lie algebra
morphism ¢, exponentiates to a Lie group morphism

(5.8) Oy SL(2,R) — L.
Using this we put
(5.9) me =0y ([ %4]) € L.

This is in fact an element of T, and it is independent of the choice of @«
[Vog81, Lem. 4.3.7].

Of course, in the case of an essential set of Vogan data, all these structures
match those introduced in Section 3.

Definition 5.10 ([Vog81, Notation4.3.6]). Let (gq,H,d) be a set of Vogan
data. The set of good roots with respect to §, denoted As(l,a) C A(l,a), is
the set of those roots & € A(, a) such that either
(i) wisreal and 6(my) =1, or
(ii) o is complex.
Vogan shows in [Vog81, Lem. 4.3.12] that As(l, a) is a root system, and
makes the following definition:

Definition 5.11 ([Vog81, Def. 4.3.13]). The group WY is the subgroup of
W(A(I, a)) generated by the reflections associated to good roots.

Definition 5.12 ([Vog81, Def.4.3.13]). Let (q,H, ) be a set of Vogan data.
We define Rs = W;/WY. (This is actually a group since W? is a normal
subgroup of W5 [Vog81, Lems. 4.3.12 and 4.3.14]. But the group structure
will not be used here.)
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Theorem 5.13 ([Vog81, Cor. 4.4.11 and Cor. 6.5.14]). The representation XE(8)
of L in Definition 4.1 is a direct sum of |Rs| inequivalent irreducible subrepresen-
tations, and the same is true of the representation X¢(q, H, 8) of G.

Corollary 5.14. If q, H, &) is a set of Vogan data, and if [P, o] is the correspondzng
associate class, as in Theorem 4.2, then |Rq| = |Rs|.

Proof. According to the theorem above, and what we have noted about the
Knapp-Stein theory, both |Rs| and [Rq| equal the number of irreducible sum-
mands of the representation X®(q, H, o) = Indg He. O

6. ESSENTIAL COMPONENTS OF THE TEMPERED DUAL

The following is Definition 4.1 in [CHST22]. Its significance is that the
essential components of the tempered dual of G are precisely those that
contribute to C*-algebra K-theory; see [CHST22, Theorem 4.9].

Definition 6.1. A component of the tempered dual of G corresponding to
the associate class [P, o] is essential if the Knapp-Stein subgroup W/ <« Wj is
trivial.

Lemma 6.2. A K-conjugacy class [q, H, 8] corresponds to an essential component
of the tempered dual, as in Section 4, if and only if WY is the trivial subgroup of
Ws.

Proof. Suppose that a component of the tempered dual corresponds to an
associate class [P, 0]. It follows from Lemma 5.2 and Corollary 5.14 that

Wi=1 & [W)=1
The lemma now follows directly from the definition above. O

Theorem 6.3. The component of the tempered dual that is labeled by the set of
Vogan data (q,H, d) is essential if and only if (q, H, d) is essential in the sense of
Definition 3.7.

This is a special case of [Vog81, Lem.4.3.31]. But since our result some-
what hidden there, we shall give some of the details here.

Proof. If (q,H, 8) is essential, then it is immediate from Definitions 3.7, 5.10
and 5.11 that WY is trivial. So suppose, conversely, that W? is trivial, so
that, according to the definitions, every root in A(l, a) is real, and moreover

(6.4) 5(my) = —1 Vo € A(lya).

Write L = Ng(q) and H = TA, as usual.

Our first task is to show that the reduced root system A([, a) matches one
of those obtained from an essential (q, H, 8). These are the systems of type
Al X - X Aj.

Now A(l, a) is of type Aj x - -+ x A; if and only if for every «, p € A(l, a)
with o« # 3 the roots in the plane spanned by « and 3 span a system of
type A1 x Aq. But apart from A; x Ay, the only other possibilities are A;, B,
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and G,, and in all these cases there exist roots y1, v2, v3 for which the dual
roots (which also constitute a root system of rank 2) satisfy

(6.5) Y1 =%2+7V3-

But it is shown in [Vog81, Cor.4.3.20], again by considering the various
cases, that (6.5) implies

6(mY]) = 6(mY2)6(mY3))

and this is obviously inconsistent with (6.4).

Now let & € A(l,a). The root « is real, and is therefore the restriction to
a C hofarooty € A(l, ) that vanishes on t C h. Standard arguments in Lie
theory (see again [Ser87, Sec. VI1.2] for instance) show that the spaces [, [_,
and [l,, [_,] are each one-dimensional and span a copy of s((2,C) C [. The
reality condition implies that [l,,[_,] is included in a C h. In factif H, € a
is chosen so that (H, H,) = y(H) for all H € b, then [l,,[_,] = C - H,.

Now form the vector subspace

(66) [—Zcx S5, [—oc ® [[Oc) ch] ® [cx S¥ [Zoc

within [. This includes our copy of sl(2,C) since [+, C [i4, and so the
direct sum is a module over s((2,C). Because H, € a and because v|, = «,
the individual summands are the weight spaces for this module action. It
therefore follows from the representation theory of sl(2,C) thatif X € [, is
nonzero, then the morphism

ady: [y — oy o]
is injective. Butif Y € [_, and H € b, then
(X, YL H) = (Y [H, X)) = (Y v(H)X) = (\; X)(H,y, H).

As a result, adx(Y) € C- H,, and therefore dim(l_)=1, which means that
Lo = [y. Similarly [ = [,. It follows that the middle summand in
(6.6), which is the weight zero space for the sl(2, C)-representation, is one-
dimensional, and so it follows from the representation theory of sl(2,C)
that

L@l @ [[oc) [fcx] Dl @ by = [fy @ CHV ® [,Y

As a result, the above is the complexification of @[s((2,R)] C [o.

Now if o« # £f3, then the subalgebras @4[sl(2,R)] and @g[s((2,R)] com-
mute with one another and are orthogonal to one another, so it follows from
the above that [y is a direct sum

[O = Qq [5[(2) R)] - D (%N [5[(2) R)] S doy

where the direct sum is over an enumeration of a system of positive roots,
and this together with (6.4) shows that (g, H, 8) is essential. O
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7. DIRAC COHOMOLOGY

In [CHST22] we approached the Dirac operator from a direction conge-
nial to K-theory, but in representation theory it is convenient to follow a
different but equivalent approach, which we shall review here. For full
details see the monograph [HP06].

The algebraic Dirac operator. Pick an irreducible representation of asso-
ciative algebras

Cliff(so) — End(8).
When dim(so) is even there is a unique irreducible representation, up to
equivalence. When dim(sy) is odd there are two, but the main construction
below (of Dirac cohomology) is independent of the choice.

Definition 7.1. The Dirac operator associated to an admissible (for instance
irreducible) unitary (g, K)-module X is the linear operator

Ds: X8 —X®8
given by the formula
D= Z Xa ® ¢(Xa),

in which the sum is over an orthonormal basis for sy. See [HP06]. The Dirac
cohomology X is

Hpirac(X) = Kernel(ID: X® 8§ — X ® §).

G

Occasionally we shall write Hp, -

involved.

(X), if it is helpful to emphasize the group

The Dirac cohomology of X is a finite-dimensional vector space. It is also
a representation of the spin double cover of K, which is the (not necessarily
connected) double cover K of K defined by the pullback diagram

(7.2) K —— Spin(s)

|

K ——= SO(s).
This follows from the existence of a natural Lie algebra homomorphism
Eo — Cliff(sO),

see [HP06, Sec. 2.3], which allows us to equip X®8 with a diagonal ¢y-action
that exponentiates to a K-action, with respect to which the Dirac operator
is equivariant.

In [CHST22] in effect we used the spaces S = § ® V*, where V is an
irreducible representation of K, and formed the Dirac operator [J5 acting on
[X @ SI¥ (the diagonal action of K descends to K). This approach is related
to the definition of Dirac cohomology by

dim(kernel(Id5)) = multiplicity of V in Hpjac (X).
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In what follows we shall translate statements from the paper [CHST22]
about kernel(IJs) into the language of Dirac cohomology without further
comment.

The matching theorem.

Definition 7.3. A genuine, irreducible representation of K and a component

lq, H, 8] of the tempered dual are matched if 7 occurs in the Dirac cohomol-
, G

ogy space Hpirac (X" (q, H, 8)).

The result that we need to establish the Connes-Kasparov isomorphism
is as follows (it is Theorem 6.2 in [CHST22]):

Theorem 7.4 (Matching Theorem). Let G be a connected linear real reductive
group. Let X be a maximal compact subgroup of G, and let K be its spin double
cover, as in (7.2).
(i) For every essential component of the tempered dual of G there is a unique
genuine, irreducible representation of K to which it is matched.
(ii) For every genuine, irreducible representation of K there is a unique essential
component of the tempered dual of G which it is matched.

As for the genuine, irreducible representation of K, they may be classified
by highest weight theory, as follows. Pick any system of positive roots
A (g, t°) for the action of t° on g. We can do so in a way that includes our
choice of A™(,t%), and then there is a partition

AT(g,t°) = AT (6, ) UAT (5, t°)
into compact and noncompact positive roots. The weight p(A™ (s, t¢)) € t§°

is the highest weight of the spin representation §, and because of this we
have:

Proposition 7.5. Each genuine, irreducible representation of K has a unique high-
est weight k € it§*. The weight

w=k—p(At(s,t9)) € it§
is analytically integral for T¢. Conversely, if x € it§* is a dominant weight, and

if the weight  above is integral, then « is the highest weight of a unique genuine
irreducible representation of K. O

As usual, the integrality condition in the proposition is independent
of the choice of positive system AT (g,t°). But given a dominant weight
kK € it§", we could form the 0-stable parabolic subalgebra q = [+u in Propo-
sition 3.2, then choose a positive system A ([, ¢) as in Proposition 3.2, and
then define

P(AT(s,t%) = p(s Nu) + p(AT (L, £°).
Compare Remark 3.3. It follows that the integrality condition in Proposi-
tion 7.5 above is exactly the same as the integrality condition in Proposi-
tion 3.2. Therefore, thanks to Theorem 3.10, this means that:
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Theorem 7.6. There is a bijection from the equivalence classes of genuine irre-
ducible representations of K to the K-conjugacy classes of essential sets of Vogan
data that maps the representation with highest weight « to the set of Vogan data
generated by x, as in Proposition 3.2. O

It only remains to describe this bijection in terms of Dirac cohomology.

Dirac cohomology for essential theta-stable data. Let (q,H, ) be a set of
essential Vogan data, let L = Ng(q) and let H = TA. Write

o =sl(2,R)®--- ®sl(2,R) B30

N times

where 3 is the center of .

Lemma 7.7. Let kb € it§* be the extension by 0 on the orthogonal complement of
to of the differential of 5. The Dirac cohomology space Hk. _ (X(8)) is a direct sum

Dirac
of 2N copies of the unitary character with differential "

Proof. This is a simple explicit computation using the odd principal se-
ries for SL(2,R). The only subtle point is to construct enough vectors in
the principal series representation X(8) to account for H]BiraC(X(é)). These
vectors are functions on T¢ (which is the 0-fixed maximal compact sub-
group of L) that transform on the right according to the character 6 : T —
U(1), and the particular functions needed are those that are supplied by

Lemma 3.11. O

Dirac cohomology and cohomological induction. As explained in Sec-
tion 4, the representations X(q, H, 8) are obtained from the representations
X(8) by means of cohomological induction. Fortunately Dirac cohomology
and cohomological induction are very easily related to one another, as fol-
lows:

Theorem 7.8. Let G be a linear, connected, real reductive group with maximal
compact subgroup K and let (q, H, 8) be a set of essential Vogan data for G. Write
q=I[(®uand hy = ty ® qo and let k- € t5* be the extension by zero of the

differential of 5. Let

k® =kl +p(uns, ).

The Dirac cohomology space HS.  (X(q,H,d)) is a direct sum of 2N copies the

Dirac'”"
irreducible, genuine representation of K with highest weight k.

Proof. This is mostly proved in [DH15, Theorem 5.7], which gives a gen-
eral formula for the Dirac cohomology of a cohomologically induced rep-
resentation in terms of the Dirac cohomology of the initial representation,
assuming that infinitesimal character of the initial representation is weakly
good for q. In our case, the initial representation X-(8) has infinitesimal
character

A=A+ p(Aat (1) = AL
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where AL is the differential of 5. See [Vog81, Lem.4.1.8]; AL is of course
a weight of t, and to identify it with A we extend it by zero to become a
weight of the Cartan subalgebra h = t + a. The weakly good condition is in
this case that
A+plut),) >0  VaeAlut),

and this follows from the definition of g, since A + p(u, t) = AS.

So [DH15, Theorem 5.7] applies. Given Lemma 7.7, the conclusion is as
indicated in the statement of our theorem. O

Proof of the matching theorem. The proof of the matching theorem is now
within easy reach:

Proof of Theorem 7.4. Lemma 7.7 and Theorem 7.8 imply that if the set of
essential Vogan data (q, H, ) is constructed from the dominant weight k,
as in Proposition 3.2, then the Dirac cohomology of X(q, H, ) is a nonzero
multiple of the irreducible representation of K with highest weight . The
matching theorem is therefore a consequence of Theorems 3.10, 4.3 and
6.3, and the classification of the irreducible representations of K by highest
weight. O

8. MORE ON DIRAC COHOMOLOGY

In this concluding section we shall do two things. First we shall make
note of a detail from Section 5 of this paper that is used in the C*-algebra
K-theory computation in [CHST22]; see Theorem 3.7 there.

Theorem 8.1. If (q,H, d) is a set of essential Vogan data, and if H = TA, then
log, |Rs| = dim(a) — rank(G) 4 rank(K).

Proof. Since H is a Cartan subgroup of G,
rank(G) = dim(t) + dim(a),
and since T¢ is a maximal torus in K,
rank(K) = dim(t°).

If (q,H,9d) is essential, then |[Rs| = 2N, where N is the number of sl(2,R)
summands in ly. But this number N is also the difference in dimension
between t¢ and t, and so

log, [Rs| = dim(t°) — dim(t).

The formula in the statement of the theorem follows from the three dis-
played identities. O

Our second task is to prove a theorem that describes the Dirac cohomol-
ogy of an essential component of the tempered dual in a bit more detail.
This is used in a second proof of the Connes-Kasparov isomorphism in
[CHST22], which, in comparison to the first proof, uses less K-theory but
more representation theory. The following is the translation of Theorem 8.4
in [CHST22] into the language of this paper:
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Theorem 8.2. Let (q, H, d) be a set of essential Vogan data.

(i) Each minimal K-type of X(q, H, 8) has multiplicity one, and each irreducible
direct summand of X(q,H,d) includes precisely one of these minimal K-
types.

(ii) Ifis the irreducible representation of K to which X(q, H, 8) is matched, then
the K-module Hpirac(X(q, H, 8)) is the direct sum of |Rs| copies of T.

(iii) If X is an irreducible summand of X(q,H,d) and if V. C X is its minimal
K-type, then
Vs c HDirac(X)

and the inclusion is a vector space isomorphism.

Proof. Statement (i) is contained in [Vog81, Thm.6.5.9]. Statement (ii) is
Theorem 7.8. Statement (iii) is proved in [DD16, Sec. 4] (see the final para-
graph of the proof of Theorem 1.2 there; our statement (iii) appears in the
proof, but not in the formulation, of that theorem). O
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