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Pointwise Exponential Stability of State
Consensus with Intermittent Communication

Sean Phillips and Ricardo G. Sanfelice

Abstract— In this paper, we propose a solution to the
problem of achieving global consensus of the states of
scalar integrator systems over a directed graph when the
network connecting the agents is available only at isolated
(and possibly aperiodic) time instances. We propose de-
centralized consensus protocols that, using such intermit-
tent information obtained at communication times, globally
and asymptotically drives the values of their states to an
agreement value, with stability and robustness to pertur-
bations on the dynamics, the information exchanged over
the network, and the communication times. Using stability
analysis tools for hybrid systems, we recast the consen-
sus problem as a set stabilization problem and leverage
Lyapunov stability tools for the analysis of the networked
system, both in the nominal and perturbed cases. When
communication between the agents occurs synchronously,
we show that the set of points characterizing consensus
is globally exponentially stable, and, under some mild
additional conditions, is partially pointwise globally expo-
nentially stable. On the other hand, when communication
occurs asynchronously, we show global asymptotic sta-
bility of consensus, for which we exploit well-posedness
of the hybrid system modeling the network and an hybrid
invariance principle. Results certifying robustness of the
proposed consensus protocols, to a wide class of pertur-
bations, are presented. Numerical examples illustrate the
main results.

I. INTRODUCTION

A. Motivation, Related Work, and Challenges
A common problem in distributed coordinated control of

multi-agent systems is information agreement – or, equiva-
lently, consensus – among all agents. This problem consists
of multiple agents connected over a network sharing their local
state with their neighbors to converge to a common value. The
set of points to which their states shall converge is given by

x1 = x2 = · · · = xN . (1)
where xi ∈ R is the state of agent i. In this work, we consider
a network of N > 1 agents with scalar integrator dynamics
given by

ẋi = ui ∈ R, i ∈ V := {1, 2, . . . , N}. (2)
Some of the main challenges in designing robust control
protocols for consensus in real-world systems come from the
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unavoidable intermittency of information and asynchronous
communication in the network. The question driving this work
is how to design a protocol to achieve global consensus,
robustly and with stable behavior, when information shared
among the neighbors is available only intermittently without
a priori information or local knowledge of initial conditions.

Consensus algorithms have been thoroughly employed in
many scientific and engineering applications due to the preva-
lence of low-cost microcontrollers, sensors, and networks. The
idea of consensus is rooted in the field of computer science,
wherein agreement algorithms for multiagent systems were
used for distributed computation; see [1]. From computer
science, consensus of multiple agents entered the rigor of
control theory which lead to continuous-time and discrete-
time consensus algorithms [2]–[4]. However, these algorithms
require that all agents pass information continuously at each
time instant, or discretely and synchronously. In fact, one can
find in the literature that when each agent can communicate
continuously to their neighbors, the distributed control law
given by1

ui = −γ
∑

k∈N (i)

(xi − xk), γ > 0,

drives each agent, under certain network connectivity assump-
tions, in (2) to the average of the initial conditions of the
agents; see, e.g., [2]. A key assumption for such desired
convergence property is that the information between the
agents is available continuously, namely, for all ordinary time
t. In this paper, we are interested in the realistic case when
communication between agents may occur intermittently –
more specifically, at (not necessarily periodic) isolated time
instances.

To reduce the communication times necessary to reach
consensus, the combination of continuous-time and impulsive
updates in terms of event-driven communication has been
proposed in the literature. Recently, the topic of consensus of
continuous-time systems with discrete update times is gaining
some traction due to the efforts in cyber-physical systems and
hybrid systems [5], [6]. In [7], the authors study a case of
consensus (called therein as synchronization) where agents
have nonlinear continuous-time dynamics with continuous
coupling and impulsive perturbations. In [8], the authors
investigate a self-triggered approach and establish robustness
of consensus for the case of information delay and clock errors
for quantized dynamic control inputs. In [9], the authors use
Lyapunov-like analysis to derive sufficient conditions for the
synchronization of continuously coupled nonlinear systems

1N (i) is defined as the set of neighbors for agent i; see Section II-B for
more information.
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Fig. 1. a) An undirected connected graph; b) a directed strongly con-
nected and weight balanced graph; c) a directed spanning tree with the
root vertex labeled.
with impulsive resets on the difference between neighboring
agents. In [10], the authors present a sampled-data consensus
problem with both periodic and non-uniform update times
for synchronous updates. In [11], investigates the maximum
allowable transmission times between updates to yield asymp-
totic consensus. Similar to impulsive systems, consensus in
systems where feedback controllers are designed as state-
triggered discrete events appeared in [12]–[15]. In [12], a
distributed event-triggered control strategy was developed to
drive the outputs of the agents in a network to consensus.
An observer-based event policy was developed in [13] for a
network of linear time-invariant systems where communication
events occur when the distance between the local state and
its estimate is larger than a threshold. In [15], an event-
based protocol was developed for continuous-time systems to
achieve consensus using a Lyapunov based analysis. In [16],
a controller to achieve consensus for multi-agent systems is
proposed for the case when each agent transmits information
to their neighbors continuously. In [17], an algorithm for
leader-follower consensus under the presence of delays is
designed by appropriately choosing the sampling period and
the coupling strength. For a similar leader-follower consensus
problem, the work in [18] proposes the design of a consensus
algorithm under saturation constraints and with intermittent
information exchanged over a network modeled by a directed
graph – a similar problem but with limited information, for
which an observer-based algorithm is devised, is addressed
in [19]. In [20], [21], a heterogeneous timer synchronization
algorithm was developed for interconnected systems. In [22],
a case study of task allocation algorithms using a consensus-
based approach over a dynamic graph. A setting in which the
control input is only available over periodic time windows
for consensus of multiple agents operating over a network
is considered in [23]. The protocols designed in this paper
extend our previous work in [24] to achieve consensus using
measurements and communicated information, do not rely on
a leader-follower architecture and, instead, are distributed, and
allow for communication events to occur aperiodically.

For dynamic and control systems, the study of asymptotic
stability is continued to be an important concept and is often
a baseline requirement for control system development. More
specifically, asymptotic stability is the notion that solutions to
the dynamical system are convergent and Lyapunov stable to
a point or a set of points, i.e., when a solution is initialized
close (in some notion of distance) to this set of points it stays
close. Pointwise asymptotic stability for a dynamical system
is a property of a set of points that requires each point to
be Lyapunov stable and that every solution to the system be
convergent and have a limit in the set, [25]. This notion for
both continuous-time and discrete-time systems are considered
in [25]. In [26], pointwise asymptotic stability is considered

for the case of hybrid systems, namely, for when the dynamics
of a system may have both continuous-time and discrete-time
dynamics.

B. Contributions and Organization

To the best of our knowledge, besides our preliminary re-
sults in [27], protocols that guarantee consensus with pointwise
stability and robustness, when the information is only available
at intermittent time instances are not available in the literature.
Namely, many protocol design methods for consensus make
assumptions on the times when communication occurs, [14],
[28]. For instance, a common assumption is that communica-
tion occurs at time instances tk ∈ R≥0 where k ∈ N indexes
the sequential event times such that

0 = t0 < t1 < t2 < · · · < tN
where limk→∞ tk = ∞ implying that t0 (= 0) is contained
in the sequence of times; see e.g., [11], [29]–[32]. In this
paper, we only require that the time instances are upper and
lower bounded by positive constants, more over successive
communication event times may occur at any time instance
within this interval of time. We also do not assume that
communication occurs at the initial time instant t0 = 0.
More specifically, we allow for some time to elapse before
an initial communication to occur after the initial time. This
assumption is more realistic in deployed systems due to the
time it may take between initializing the consensus algorithm
and establishing communication between nodes.

In this paper, we design a hybrid first-order-hold state-
feedback protocol for consensus that undergoes an instanta-
neous change in its state when new information is available
and evolves continuously between such events. Due to the
combination of continuous state variables and the impulsive
communication events, along with the continuous and discrete
consensus protocol, we model the networked system as a
closed-loop hybrid system as in [33], [34]. For the resulting
hybrid closed-loop system, we recast the consensus problem
as a set stability problem and apply tools for the study of
Lyapunov stability to show the global stability properties of
the consensus set. More specifically, the main contributions in
this paper are as follows:

• Synchronous communication: when the connected agents
receive neighboring information at the same event times,

1) The consensus set in (1), under certain conditions, is
shown to be globally exponentially stable through a
Lyapunov-based stability analysis;

2) We characterize the point to which solutions converge
given the initial conditions of the hybrid closed-loop
system and initial communication time;

3) The consensus set is shown to be partially pointwise
globally exponentially stable2 (defined in Section III-
G) with respect to the states of the agents and the (to
be defined) hybrid controller states;

4) The hybrid system is shown to be input-to-state sta-
ble with respect to the consensus set and relative to
communication noise.

2Partial pointwise global exponential stability is defined for a given closed
set that enjoys the typical global exponential stability property, but with the
addition that each point in the set is also Lyapunov stable; more information
on pointwise asymptotic stability can be found in [35].
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• Asynchronous communication (the agents receive infor-
mation from their neighbors at different event times).

1) The consensus set in (1) is shown to be globally
asymptotically stable through the application of an
invariance principle;

2) The consensus set is shown to be robust to a wide
class of perturbations through a class-KL equivalence
argument.

The remainder of this article is outlined as follows. Sec-
tion II lists the notations used and some preliminaries on graph
theory. In Section III, we consider the case of synchronous
communications between agents and present the main results
for partial pointwise asymptotic stability. We then consider
the case for asynchronous communications in Section IV. In
Section V, we give the robustness results.

Compared to [27], this article includes detailed proofs –
[27] does not include any proofs –, Theorem 3.8 provides an
explicit bound on solutions, Proposition 3.11 provides a new
sufficient condition for consensus, and Section V thoroughly
studies robustness of the algorithm – only measurement noise
is considered in [27].

II. NOTATION AND PRELIMINARIES ON GRAPH THEORY

A. Notation
The set of natural numbers is denoted as N, i.e., N :=

{0, 1, 2, 3, . . . }. The set B ⊂ Rn is the closed unit circle
centered at the origin, i.e., B := {ξ ∈ Rn : |ξ| ≤ 1}. Given
a square matrix A, the set eig(A) collects the eigenvalues
of A. Given two vectors u, v ∈ Rn, |u| :=

√
u⊤u and the

notation [u⊤ v⊤]⊤ is equivalent to (u, v). Given a function
m : R≥0 → Rn, |m|∞ := supt≥0 |m(t)|. Given a vector
x ∈ Rn and a set A ⊂ Rn, the distance from x to the set A
is given by |x|A = infy∈A |x− y|. Given a symmetric matrix
P , λ(P ) := max{λ : λ ∈ eig(P )} and λ(P ) := min{λ :
λ ∈ eig(P )}. Given matrices A and B with appropriate
dimensions, we define the operator He(A,B) := A⊤B+B⊤A.
Given N ∈ N, IN ∈ RN×N defines the N dimensional
identity matrix, the vector 1N is a column vector of N ones,
and the vector 0N is a column vector of N zeros. A function
α : R≥0 → R≥0 is a class-K function, also written α ∈ K,
if α is zero at zero, continuous, and strictly increasing; it
is said to belong to class-K∞, also written α ∈ K∞, if
α ∈ K and is unbounded; α is positive definite, also written
α ∈ PD, if α(s) > 0 for all s > 0 and α(0) = 0. A
function β : R≥0 × R≥0 → R≥0 is a class-KL function, also
written β ∈ KL, if it is nondecreasing in its first argument,
nonincreasing in its second argument, limr→0+ β(r, s) = 0 for
each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

B. Preliminaries on Graph Theory
A directed graph (digraph) is defined as Γ = (V, E ,G). The

set of nodes of the digraph are indexed by the elements of
V = {1, 2, . . . , N} and the edges are pairs in the set E ⊂ V ×
V . Each edge directly links two different nodes, i.e., an edge
from i to k, denoted by (i, k), implies that agent i can send
information to agent k. The adjacency matrix of the digraph Γ
is denoted by G ∈ RN×N with elements gik ∈ {0, 1}, where
gik = 1 if (i, k) ∈ E , and gik = 0 otherwise. The in-degree

and out-degree of agent i are defined by din(i) =
∑N

k=1 gki
and dout(i) =

∑N
k=1 gik. The largest (smallest) in-degree in

the digraph is given by d = maxi∈V din(i) (respectively, d =
mini∈V din(i)). The in-degree matrix D is the diagonal matrix
with entries Dii = din(i) for all i ∈ V . The Laplacian matrix
of the digraph Γ, denoted by L, is defined as L = D−G. The
set of indices corresponding to the neighbors that can send
information to the i-th agent is denoted by N (i) := {k ∈ V :
(k, i) ∈ E}.

A digraph is said to be weight balanced if, at each node
i ∈ V , the out-degree and in-degree are equal; i.e., for each
i ∈ V , dout(i) = din(i); complete if every pair of vertices is
connected by a unique edge, namely, gik = 1 for each i, k ∈ V ,
i ̸= k; and strongly connected if and only if any two nodes
of the digraph can be connected via a path that traverses the
directed edges of the digraph. A spanning tree is a directed
graph whose vertices have exactly one parent except for one
which is called a the root vertex. We say that a graph contains
a spanning tree (or has a spanning tree) if the vertices V and
a subset of edges in E can form a spanning tree. A graph
is undirected if and only if (i, k) ∈ E and (k, i) ∈ E . See
Figure 1 for examples of network structures.

For a digraph, the Laplacian matrix with eigenvalues
{λi}Ni=1 is such that 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN . If the
digraph contains a spanning tree, then zero is a simple eigen-
value of L and all other eigenvalues have positive real parts
[36]. Moreover, there exists an orthogonal matrix U such that

U⊤AU =

[
0 0
0 ⋆

]
, where ⋆ represents any nonsingular matrix

with an appropriate dimension and L has a zero eigenvalue
with eigenvector 1N ∈ RN [37]. Given Π = IN − 1

N 1N1⊤
N

it follows that ΠL = L, furthermore, if the digraph is weight
balanced ΠL = LΠ = L. See [38] for more information on
algebraic graph theory.

III. POINTWISE ASYMPTOTIC STABILITY THROUGH
SYNCHRONOUS COMMUNICATION

A. Problem Description

As mentioned in Section I-A, the goal of this paper is to
design protocols that achieve global consensus for agents in (2)
with intermittent communication. Namely, we want each agent
with state xi and dynamics in (2) to converge asymptotically
to

x1 = x2 = · · · = xN ,
which characterizes the consensus set. Such a property is
typically referred to as static consensus and defined explicitly
in the forthcoming Section III-B; see [36], [39].

In this paper, we consider each agent to be able to access
the state information of their neighbors at time instances t ∈
{ts}∞s=1, where s ∈ N \ {0} is the communication event time
index. Given the scalars T2 ≥ T1 > 0, the sequence of times
{ts}∞s=1 must satisfy

T1 ≤ ts+1 − ts ≤ T2 ∀ s ∈ {1, 2, . . . }
t1 ≤ T2

(3)

where the positive scalars T1 and T2 define the lower and upper
bounds on the minimum and maximum time allowed to elapse
between consecutive communication instances, respectively.
Note that different from much of the literature on intermittent
communication and control, this particular formulation does
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not assume an initial communication event at t0 = 0; see
e.g., [10], [11], [29]–[32] for more information. Allowing
such communications at the initial time implicitly implies
that the controller states in each agent can be initialized
to appropriate values. The formulation in (3) allows any
(bounded) amount of continuous time (within [0, T2]) before
an initial communication event occurs. In the asynchronous
communication case, this captures the real-world situation of
agents receiving information at different times and rates than
others. The sequence of times {ts}∞s=1 is not assumed to be
known to any agent a priori. Due to the nonperiodic arrival of
information and impulsive dynamics, classical analysis tools
(for continuous-time or discrete-time systems) do not apply
to the design of the proposed controller. This motivates us to
design the proposed controller by recasting the interconnected
systems, the impulsive network, and the proposed control
protocol within a hybrid system framework; specifically, the
one given in [33], [40].

The remainder of this section is dedicated to the modeling
and stability analysis of the interconnected networked system
with synchronous communication. In Section III-B we intro-
duce the particular model technique we will leverage as well as
determine a set characterizing consensus. In Section III-C, we
use the connectivity properties of the graph to change the coor-
dinates of the state to prepare for the analysis. In Section III-E,
we give sufficient conditions for global exponential stability
of the consensus set. Section III-F determines the point to
which solutions converge. In Section III-G, we provide the
main results of this paper in the form of sufficient conditions
for partial pointwise exponential stability. Lastly, we provide
some numerical simulations showcasing the results.

B. Hybrid Modeling and Consensus Protocol
The dynamics of the closed-loop system inherently contains

both continuous-time – generated by the differential equations
modeling the agents’ dynamics in (2) – and discrete-time
– governed by the impulsive communication times in (3) –
dynamics which lead to a hybrid system model. Moreover,
the protocols designed in this paper to achieve consensus also
give rise to hybrid dynamics due to including a state variable
that is updated both continuously and discretely. In this way,
the state of the resulting hybrid closed-loop system is allowed
to evolve continuously between update times and, at such time
instances satisfying (3), the agents pass their internal states to
their neighbors and update their controller state discretely.

In this work, we will leverage the hybrid systems framework
defined in [33], [41] for modeling and Lyapunov-based anal-
ysis. A hybrid system H with state ξ ∈ Rn is defined by four
objects (C, f,D,G). The single-valued mapping f : Rn → Rn

is the flow map and defines the continuous dynamics; the set
C ⊂ Rn is the flow set and defines where the continuous
dynamics are applied; the set-valued mapping G : Rn ⇒ Rn

is the jump map and defines the discrete changes in ξ; and,
the set D ⊂ Rn is the jump set and defines where the discrete
changes in ξ can occur. Then, this system can be written in
compact form as

H :

{
ξ̇ = f(ξ) ξ ∈ C
ξ+ ∈ G(ξ) ξ ∈ D.

(4)

Solutions to the general hybrid system H in (4) are allowed
to evolve both continuously and discretely. As such, a solution

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
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t [s]

Fig. 2. A sample numerical solution to the decreasing nonperiodic hybrid
timer in (5).

ϕ to the hybrid system H in (4) is parametrized by two
independent variables, (t, j) ∈ R≥0 × N, where t denotes
ordinary time and j denotes jump time. The domain dom ϕ ⊂
R≥0×N is a hybrid time domain if for every (T, J) ∈ dom ϕ,
the set dom ϕ ∩ ([0, T ]× {0, 1, . . . , J}) can be written as the
union of sets

⋃J
j=0(Ij×{j}), where Ij := [tj , tj+1] for a time

sequence 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ+1. The tj’s with j > 0
define the time instants when ϕ jumps and j counts the number
of jumps. The set SH contains all maximal solutions to H, and
the set SH(ξ0) contains all maximal solutions to H from ξ0. A
solution to H is called maximal if it cannot be extended; i.e.,
if it is not a truncated version of another solution. A complete
solution is a solution that has an unbounded domain. A Zeno
solution is a complete solution with bounded domain in the t
direction.

Definition 3.1: A hybrid system H in (4) is said to satisfy
the hybrid basic conditions if

a) the sets C and D are closed;
b) the function f : Rn → Rn is continuous;
c) the set-valued mapping G : Rn ⇒ Rn is outer semi-

continuous and locally bounded relative to D, and D ⊂
domG.

Interestingly, as shown in [33], satisfying the hybrid basic
conditions implies that hybrid systems are well-posed and,
with asymptotic stability of a compact set, automatically gives
robustness to small enough perturbations.

A convenient example of a hybrid system is given by a
decreasing nonperiodic hybrid timer. More specifically, this
hybrid timer consists of a continuously decreasing timer state
τ ∈ [0, T2] that, upon reaching zero, is reset to a point in the
interval [T1, T2]. Inspired by [42], we can capture the dynamics
of such a timer via

τ̇ = −1 τ ∈ [0, T2]
τ+ ∈ [T1, T2] τ = 0

(5)

It follows that the timer formulation in (5) is capable of
capturing any sequence of communication times given by
{ts}∞s=1 satisfying (3). Figure 2 provides a sample numerical
solution of (5) with T1 = 0.2s and T2 = 0.5s. In the remainder
of this paper, we will leverage this hybrid system model for
the timer to trigger the communication event times between
each agent in the network.

Recalling the informal definition of consensus in Section III-
A and using the definition of solutions to hybrid systems, we
formally define static consensus next.

Definition 3.2 (static consensus): Given the agents in (2)
over a digraph Γ, a control protocol ui is said to globally solve
the consensus problem if every resulting maximal solution
ϕ = (ϕ1, ϕ2, . . . , ϕN ) with u = (u1, u2, . . . , uN ) is complete
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and satisfies
lim

t+j→∞
|ϕi(t, j)− ϕk(t, j)| = 0

for each i, k ∈ V , i ̸= k. □

To achieve this property under intermittent information, we
propose the following distributed hybrid consensus protocol,
which assigns the input of the i-th agent ui based on the
communicated value of the states of the neighboring agents
obtained at the isolated communication events generated by τ
reaching zero.

Protocol 3.3: Given the parameter T2 > 0 of the network,
the i-th hybrid controller has state ηi with the following
dynamics:

ui = ηi

η̇i = −hηi τ ∈ [0, T2]

η+i = −γ
∑

k∈N (i)

(xi − xk) τ = 0
(6)

where h ≥ 0 and γ > 0 are the controller parameters to be
designed.

Remark 3.4: The parameter h affects the change of the
state ηi of each agent during flows, namely, between update
times, making it another useful design parameter. If h > 0 (or
h < 0), then the state ηi exponentially decreases (or increases,
respectively) in between updates times. If h = 0, then the state
ηi remains constant in between such updates, leading to a
zero-order hold controller. Allowing h to be nonzero provides
some control on the rate of consensus, for example, to not
overshoot consensus. The parameter γ scales the so-called
(local) consensus error for the i-th agent, which is given by
the sum of the difference between the neighboring states and
the state of the i-th agent. □

We denote H as the closed-loop hybrid system resulting
from the interconnection of the agents dynamics in (2), the
algorithm in Protocol 3.3, and the hybrid model of the ape-
riodic decreasing timer in (5) to trigger the communication
events at any instants satisfying (3). The state of H is given
by ξ = (x, η, τ) ∈ RN × RN × [0, T2] =: X , where
x = (x1, x2, . . . , xN ) and η = (η1, η2, . . . , ηN ) comprise the
system states and controller states of all agents, respectively.
We have that H is given by

ξ̇ =

 η
−hη
−1

 =: f(ξ) ξ ∈ C := X ,

ξ+ ∈

 x
−γLx
[T1, T2]

 =: G(ξ) ξ ∈ D := RN × RN × {0}.

(7)

Using the consensus notion in Definition 3.2, the states of
the agents have to converge to xi = xk for each i, k ∈ V . Since
the state ηi in Protocol 3.3 is updated to the (local) consensus
error at communication events, when consensus occurs the
state η must converge to zero. Therefore, the goal is to render
the set
A := {ξ = (x, η, τ) ∈ X : xi − xk = 0, ηi = 0 ∀i, k ∈ V}

(8)
globally exponentially stable and, under extra conditions, par-
tially pointwise exponentially stable with respect to (x, η) for
the hybrid system H in (7), which is notion that is defined in
the forthcoming Section III-G. In the next section, we consider

a change of coordinates exploiting the natural structure of the
network that facilitates analysis and design of the protocol.

C. Change of Coordinates
We establish the main results of this work through a change

of coordinates for (7) that leverages key properties of the graph
structure. More precisely, let Γ contain a directed spanning
tree. Using the properties for graphs summarized in Section II,
the Laplacian L associated with Γ is positive semi-definite and,
as such, there exists a nonsingular matrix that satisfies U =

[u1, U1] such that U⊤LU =

[
0 0
0 L̄

]
, where u1 = α1N , α ∈

R, and U1 ∈ RN×(N−1). The matrix L̄ is a diagonal matrix
that has diagonal elements given by the positive eigenvalues
of L, namely, λi > 0 for each i ∈ {2, 3, . . . , N}. The change
of coordinates x̄ = U⊤x and η̄ = U⊤η applied to H in (7)
leads to

˙̄x = U⊤ẋ = U⊤η = η̄

˙̄η = U⊤η̇ = −hU⊤η = −hη̄.
(9)

At jumps and using the definition of H in (7), x̄ and η̄ are
updated via

x̄+ = U⊤x+ = U⊤x = x̄

η̄+ = −γU⊤Lx = −γU⊤LUx̄ = −γ

[
0 0
0 L̄

]
x̄

due to the properties of U in Section II.
The resulting hybrid system in the new coordinates is

denoted as H̃. Its state χ is defined by collecting the scalar
states x̄1 and η̄1 into z̄1 = (x̄1, η̄1) and stacking the remaining
states of x̄ and η̄ into z̄2 = (x̄2, x̄3, . . . , x̄N , η̄2, η̄3, . . . , η̄N ).
Then, the state χ is given by χ = (z̄1, z̄2, τ) ∈ X . The new
coordinates lead to the hybrid system H̃ with the following
data:

f̃(χ) :=

Af1z̄1
Af2z̄2
−1

 ∀χ ∈ C̃ := X

G̃(χ) :=

 Ag1z̄1
Ag2z̄2
[T1, T2]

 ∀χ ∈ D̃ := {χ ∈ X : τ = 0}

(10)

where
Af1 =

[
0 1
0 −h

]
, Ag1 =

[
1 0
0 0

]
,

Af2 =

[
0 IN−1

0 −hIN−1

]
, Ag2 =

[
IN−1 0
−γL̄ 0

] (11)

h ≥ 0 and γ > 0. Moreover, in the new coordinates and from
the definition of A in (8), the set to stabilize for the hybrid
system H̃ is given as
Ã := {χ = (z̄1, z̄2, τ) ∈ X : z̄1 = (x∗, 0), x∗ ∈ R, z̄2 = 0}.

(12)
The set Ã is derived directly from the change of coordinates
x̄ and η̄ and the properties of Laplacian matrices discussed in
Section II; see the proof of the forthcoming Lemma 3.13 in
Section III-E. Note that the first component of z̄1 in Ã is free.
In the next section, we present basic equivalency properties
between H and H̃ and their solutions.

D. Basic properties of H and H̃
In this section, we provide some basic properties of solu-

tions for both H and H̃ as well as show that these hybrid



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2023

systems satisfy the hybrid basic conditions introduced in
Definition 3.1.

Lemma 3.5: Suppose the positive scalars T1 and T2 satisfy
T1 ≤ T2. The hybrid systems H in (7) and H̃ in (10) satisfy
the hybrid basic conditions.

Proof: The jump and flow sets of both systems are closed
by definition. The flow maps f̃ and f are continuous. The jump
map G̃ is outer semicontinuous via [33, Lemma 5.10] since its
graph, which is given by {(x, y) : x ∈ D̃, y ∈ G̃(x)} is closed
due to the interval [T1, T2] being closed. Furthermore, G̃(χ)
is bounded and nonempty for each χ ∈ D̃. Similar arguments
can be used to show that G is outer semicontinuous.

With the definition of solutions to hybrid systems in Sec-
tion III-B, we have the following result.

Lemma 3.6: Let 0 < T1 ≤ T2 be given. Every maximal
solution ϕ to the hybrid system H in (7) satisfies the following:

1) ϕ is complete, i.e., domϕ is unbounded.
2) for each (t, j) ∈ domϕ, (j − 1)T1 ≤ t ≤ (j + 1)T2 for

all j ≥ 1.
The same properties hold for every maximal solution to H̃ in
(10).

Proof: This proof leverages the results in [33, Proposition
6.10] to establish completeness of maximal solutions to H.
Due to spatial constraints, we will only show that these
properties hold for H; however, similar steps establish these
properties for H̃. Given the hybrid system H with 0 < T1 ≤
T2, we first show completeness of maximal solutions. Note
that for any ξ ∈ C \ D, we have that the tangent cone3

satisfies TC(ξ) ∩ f(ξ) ̸= ∅ since TC(ξ) = R2n+1 for all
ξ ∈ C \D, which implies that every solution from ξ ∈ C \D
is nontrivial; namely, every maximal solution from ξ ∈ C \D
has a domain with at least two points [33]. Moreover, for each
ξ ∈ C∩D, solutions from ξ cannot be extended via flow. Due
to the fact that the flow map is linear, finite escape time during
flows is impossible. Lastly, it is straightforward to check that
G(D) ⊂ C ∪ D. Then, since the hybrid system H satisfies
the hybrid basic conditions, every maximal solution to H is
complete by [33, Proposition 6.10].

Next, we show item 2). Note that the jumps are triggered
when ξ ∈ D, implying that jumps are triggered only by the
timer state τ and jump times of solutions satisfy (3). For a
solution ϕ with domain domϕ, let the jump times be given
by t1 ≤ t2 ≤ t3 ≤ · · · ≤ tj . From (3), we have that 0 ≤
t1 ≤ T2, by definition. Then, it follows that T1 ≤ t2 ≤ 2T2,
2T1 ≤ t3 ≤ 3T2, 3T1 ≤ t4 ≤ 4T2, which can be generalized
to (j − 1)T1 ≤ tj ≤ jT2. Therefore, since t ∈ [tj , tj+1] for
each (t, j) domϕ, we obtain item 2).

E. Global Exponential Stability Results
In this section, we study the exponential stability of the

set Ã for the hybrid system H̃ and reveal some of its
consequences. We also show the equivalence between uniform
global exponential stability (UGES) for H̃ in (10) and UGES
for H in (7). The notion of exponential stability used is given
as follows; see [40, Definition 3.11].

3The tangent cone to a set S ⊂ Rn at a point x ∈ RN is the set of all
vectors w ∈ RN for which there exist xi ∈ S, τi > 0 with xi → x, τi ↘ 0,
and w = limi→∞

xi−x
τi

; see [33, Definition 5.12] for more information.

Definition 3.7: (uniform global exponential stability) Let a
hybrid system H with the state in Rn be given and A ⊂ Rn

be nonempty and closed. The set A is said to be uniformly
globally exponentially stable (UGES) for H if there exist
κ, α > 0 such that every maximal solution ϕ to H is complete
and satisfies

|ϕ(t, j)|A ≤ κ exp(−α(t+ j))|ϕ(0, 0)|A (13)
for all (t, j) ∈ domϕ. □

Inspired by [42] and using Lemma 3.13, we have the following
stability result for H̃.

Theorem 3.8: Let T1 and T2 be two positive scalars satis-
fying T1 ≤ T2. Let the digraph Γ contain a directed spanning
tree. The set Ã in (12) is uniformly globally exponentially
stable for the hybrid system H̃ with data in (10) if scalars
γ > 0 and h ≥ 0 are selected such that there exists P =
P⊤ > 0 satisfying

A⊤
g2 exp(A

⊤
f2ν)P exp(Af2ν)Ag2 − P < 0 (14)

for all ν ∈ [T1, T2], where Ag2 and Af2 are defined in (11).
Furthermore, every maximal solution ϕ to H̃ satisfies

|ϕ(t, j)|Ã ≤ exp

(
R

2

)√
α2

α1
exp

(
−α

2
(t+ j)

)
|ϕ(0, 0)|Ã (15)

for all (t, j) ∈ domϕ where α ∈
(
0, |λd|

1+T2

]
, R ∈

[
T2|λd|
1+T2

,∞
)

,

λd = ln
(
1− β

α2

)
, β = min{κ, 1} and

α1 = min
s∈[0,T2]

{
λ
(
exp(A⊤

f1s) exp(Af1s)
)
,

λ
(
exp(A⊤

f2s)P exp(Af2s)
)}

α2 = max
s∈[0,T2]

{
λ
(
exp(A⊤

f1s) exp(Af1s)
)
,

λ
(
exp(A⊤

f2s)P exp(Af2s)
)}

κ ∈
(
0,− min

ν∈[T1,T2]
λ(A⊤

g2 exp(A
⊤
f2ν)P exp(Af2ν)Ag2−P )

]
.

(16)
Proof: First, note that from Lemma 3.6 we have that

all maximal solutions to H̃ are complete. Next, consider the
Lyapunov function candidate

V (χ) = V1(χ) + V2(χ) (17)
to establish uniform global exponential stability of Ã for H̃,
where, for each χ ∈ X , we have

V1(χ) = exp(−2hτ)η̄21

V2(χ) = z̄⊤2 exp(A⊤
f2τ)P exp(Af2τ)z̄2

with P = P⊤ > 0. Due to the definition of Ã, the state x̄1

and τ are free in the domain of the state space, i.e., x̄1 ∈ R
and τ ∈ [0, T2]. It follows that for each χ ∈ Ã, V (χ) = 0
and, for each χ ∈ (C̃ ∪ D̃) \ Ã, V (χ) > 0. Furthermore, V
satisfies

α1|χ|2Ã ≤ V (χ) ≤ α2|χ|2Ã (18)
for all χ ∈ X , where α1 and α2 are defined in (16). Then, for
each χ ∈ C̃, we have that
⟨∇V (χ), f̃(χ)⟩ = −2h exp(−2hτ)η̄21 + 2h exp(−2hτ)η̄21

+2z̄⊤2 exp(A⊤
f2τ)P exp(Af2τ)Af2z̄2

−2z̄⊤2 exp(A⊤
f2τ)P exp(Af2τ)Af2z̄2 = 0

by using the property of commutability for exponential ma-
trices. At jumps, τ = 0 and, after the jump, τ is updated to



PHILLIPS et al.: POINTWISE EXPONENTIAL STABILITY OF STATE CONSENSUS WITH INTERMITTENT COMMUNICATION 7

a scalar ν in the interval [T1, T2]. Recall from Section III-C
that the change in coordinates above (9) requires the graph
to have a directed spanning tree. This property allows for the
partition of the states z̄1 and z̄2 with the diagonal Laplacian
used during jumps. Moreover, also at jumps, the states z̄1
and z̄2 are updated to Ag1z̄1 and Ag2z̄2, respectively. Due
to the form of the matrix Ag1, the change in V1 at such points
satisfies V1(g)−V1(χ) = −η̄21 ≤ 0 for each χ ∈ D̃, g ∈ G̃(χ),
implying that V (g)− V (χ) ≤ V2(g)− V2(χ). It follows that,
for each χ ∈ D̃, and each g ∈ G̃(χ), we have that the change
in V2 is given by
V2(g)− V2(χ) ≤ z̄⊤2 A⊤

g2 exp(A
⊤
f2ν)P exp(Af2ν)Ag2z̄2

− z̄⊤2 P z̄2

≤ z̄⊤2 (A
⊤
g2 exp(A

⊤
f2ν)P exp(Af2ν)Ag2−P )z̄2

where ν is the third component of g. Due to the continuity of
(14) with respect to ν, there exists a sufficiently small κ in
(16) such that

V (g)− V (χ) ≤ −η̄21 − κ|z̄2|2 ≤ −min{κ, 1}|χ|2Ã,
We employ the bounds in (18) to arrive to V (g) − V (χ) ≤
− β

α2
V (χ). Let λd = ln(1 − β/α2), which is negative since

β can be chosen to be arbitrarily small and positive. Then,
V (g) ≤ exp(λd)V (χ) for each χ ∈ D̃ and each g ∈ G̃(χ).

It remains to show that the distance of solutions to the set
Ã is bounded above by an exponentially decreasing function
with respect to hybrid time and the initial conditions in the
form of (13). With some abuse of notation, consider a maximal
solution ϕ = (ϕ1, ϕ2, ϕτ ) to H̃ where ϕ1 and ϕ2 correspond
to states z̄1 and z̄2, respectively. Since ⟨∇V (χ), f̃(χ)⟩ = 0
between jumps, direct integration of (t, j) 7→ V (ϕ(t, j)) over
domϕ leads to V (ϕ(t, j)) ≤ exp(λdj)V (ϕ(0, 0)) for each
(t, j) ∈ domϕ. Pick α ∈

(
0, |λd|

1+T2

]
and R ∈

[
T2|λd|
1+T2

,∞
)

.
In light of Lemma 3.6, straightforward computations lead to
λdj ≤ R− α(t+ j) for all (t, j) ∈ domϕ. More specifically,
we have that from (18),

α1|ϕ(t, j)|2Ã ≤ V (ϕ(t, j)) ≤ exp(λdj)V (ϕ(0, 0))

≤ exp(R− α(t+ j))V (ϕ(0, 0))

≤ α2 exp(R) exp(−α(t+ j))|ϕ(0, 0)|2Ã
which leads to (15). Hence, Ã is UGES for H̃ in (10).
Note that the graphical topology is implicitly considered
within the condition (14). Theorem 3.8 considers the case of
a network topology having a directed spanning tree. The next
result is for the case with a completely connected graph.

Corollary 3.9: Let T1 and T2 be two positive scalars sat-
isfying T1 ≤ T2 and the digraph Γ be completely connected.
Suppose that scalars h ≥ 0 and γ > 0 are chosen such that
there exists P = P⊤ > 0 satisfying

Ã⊤
g exp(Ã⊤

f ν)P exp(Ãfν)Ãg − P < 0 (19)
for all ν ∈ [T1, T2] where

Ãf =

[
0 1
0 −h

]
, Ãg =

[
1 0

−γN 0

]
,

and N is the number of agents in the network. Then, the set
Ã is uniformly globally exponentially stable for H̃.

Proof: Using the change of coordinates in (9), the result
follows from the proof of Theorem 3.8, where, for a com-
pletely connected network L̄ = NIN−1. More specifically,
this results in the hybrid system H in (10) with matrices in
(11). Moreover, the elements on the diagonal of L̄ are identical

and the block elements in (11) are all diagonal matrices, which
leads to the subsystem dynamics

˙̄xi = η̄i,

˙̄ηi = −hη̄i
during flows, while during jumps we have

x̄+
i = x̄i,

η̄+i = −γNxi

for each i ∈ {2, 3, . . . , N}. Note that each i-th system is
independent and identical. Then, following the steps in the
proof of Theorem 3.8 leads to condition (14). Due to the
structure of each i-th system, it follows that (14) is reduced
to (19).

Remark 3.10: Condition (14) may be difficult to satisfy
numerically as it is not convex in γ, h and P . Moreover, it
needs to be satisfied for infinitely many values of ν ∈ [T1, T2].
In [43], the authors use a polytopic embedding strategy to
reduce the problem into a linear matrix inequality problem
in which one needs to find finitely many matrices Xi such
that, for each ν ∈ [T1, T2], the exponential matrix exp(Af2ν)
is contained in the convex hull of the Xi matrices. That
methodology can be leveraged to find parameters that satisfy
(14). □

Condition (14) has a form that is similar to the discrete
Lyapunov equation A⊤PA − P < 0. Using this observation,
the following result gives a sufficient condition to satisfy (14).

Proposition 3.11: Given 0 < T1 ≤ T2 and a digraph Γ
containing a directed spanning tree, if there exists P = P⊤ >
0 such that (14) holds then there exist γ > 0 and h ≥ 0
satisfying ∣∣∣∣1 + λNγ(exp(−hT2)− 1)

h

∣∣∣∣ < 1

where λN is the largest eigenvalue of L.

Proof: Since P is positive definite and satisfies (14), the
spectral radius of the matrix exp(Af2ν)Ag2 can be found as
follows4. Due to the form of Af2 and Ag2, it follows that5

exp(Af2ν)Ag2 =

[
I + γ(exp(−hν)−1)

h L̄ 0

−γ exp(−hν)
h L̄ 0

]
=: Ã.

Note that since Γ is strongly connected, the eigenvalues λi of
the Laplacian are such that 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN

and the diagonal matrix L̄ = diag(λ2, λ3, . . . , λN ). Since
the (1, 1) block matrix of Ã is diagonal, it follows that the
eigenvalues of Ã are equal to the diagonal elements of the
(1,1) block, i.e., 1+ γ(exp(−hν)−1)

h λi for each i ∈ {2, . . . , N}
and zero with a multiplicity of N − 1. The spectral radius
is given by the maximum value of the eigenvalue of 1 +
γ(exp(−hν)−1)

h λi, namely, with ν ∈ [T1, T2],

max
i∈{2,3,...,N},ν∈[T1,T2]

∣∣∣∣1 + λiγ(exp(−hν)− 1)

h

∣∣∣∣
≤

∣∣∣∣1 + λNγ(exp(−hT2)− 1)

h

∣∣∣∣
4The spectral radius of a matrix M is the maximum absolute values of the

eigenvalues of M .
5Note that the matrix exponential of a lower block di-

agonal matrix X =

[
A 0
B C

]
is given by exp(Xt) =[

exp(At) 0∫ t
0 exp(t− τ)AB exp(Cτ)dτ exp(Ct)

]
.
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which, by assumption is less than one, where λN is the largest
eigenvalue of L.

Remark 3.12: Under the assumptions in Proposition 3.11,
which require the digraph to contain a directed spanning
tree, a similar analysis to the proof therein can be done
to determine the sufficient conditions for a sample-and-hold
consensus controller, i.e., h = 0. It can be found that there
exists a positive definite and symmetric matrix P that satisfies
(14) if γ ∈ (0, 2/(λNT2)). □

Next, we show that uniform global exponential stability of
Ã for H̃ implies that A is uniformly globally exponentially
stable for H.

Lemma 3.13: Let T1 and T2 be two positive scalars satisfy-
ing T1 ≤ T2 and a digraph Γ containing a directed spanning
tree be given. The set A is uniformly globally exponentially
stable for H if and only if the set Ã is uniformly globally
exponentially stable for H̃.

Proof: Given a solution ϕ̃ to H̃, we build a solution
ϕ̄ using the associated coordinates in (9). Denote Υ =
diag(U,U, 1), which is also orthogonal since its block diagonal
elements are orthogonal. Due to the fact that x = Ux̄ and
η = Uη̄, following from the change of coordinates (since
U is orthogonal), we have that ϕ = (Uϕx̄, Uϕη̄, ϕτ ) is a
solution to H. Following [21, Lemma 5.5], we have that
|χ|Ã ≤ |Υ−1||ξ|A and |ξ|A ≤ |Υ||χ|Ã for each χ and ξ such
that ξ = Υχ; however, with Υ being an orthogonal matrix, it
follows that |χ|Ã = |ξ|A.

To show sufficiency, since Ã is UGES for H̃, each solution
ϕ̃ to H̃ satisfies

|ϕ̃(t, j)|Ã ≤ κ exp(−α(t+ j))|ϕ̃(0, 0)|Ã (20)
for each (t, j) ∈ dom ϕ̃, where κ, α > 0. From (20), we have
that

|ϕ(t, j)|A = |ϕ̃(t, j)|Ã ≤ κ exp(−α(t+ j))|ϕ̃(0, 0)|Ã
≤ κ exp(−α(t+ j))|ϕ(0, 0)|A

which leads to A being UGES for H. To show the necessity
of the claim, let A be UGES for H, which, for some α, κ > 0,
leads to each solution ϕ satisfying |ϕ(t, j)|A ≤ κ exp(−α(t+
j))|ϕ(0, 0)|A for each (t, j) ∈ domϕ. We have that

|ϕ̃(t, j)|Ã = |ϕ(t, j)|A ≤ κ exp(−α(t+ j))|ϕ(0, 0)|A
≤ κ exp(−α(t+ j))|ϕ̃(0, 0)|Ã

which leads to Ã being UGES for H̃.

F. Consensus Convergence Point

The following result characterizes the point to which max-
imal solutions ϕ = (ϕx, ϕη, ϕτ ) to H converge, where ϕx =
(ϕx1 , ϕx2 , . . . , ϕxN

) and ϕη = (ϕη1 , ϕη2 , . . . , ϕηN
).

Proposition 3.14: Let T1 and T2 be two positive scalars
satisfying T1 ≤ T2 and the digraph Γ be weight balanced and
contain a directed spanning tree. If γ and h are chosen such
that A is UGES for H, then every solution ϕ = (ϕx, ϕη, ϕτ )
to H satisfies limt+j→∞ ϕη(t, j) = 0 and, for each i ∈ V ,

lim
t+j→∞

ϕxi
(t, j) =

1

N

N∑
i=1

(ϕxi
(0, 0) + ϕηi

(0, 0)ϕτ (0, 0)) (21)

when h = 0, and when h > 0 it follows that

lim
t+j→∞

ϕxi(t, j)=
1

N

N∑
i=1

(
ϕxi(0, 0)

+
exp(−hϕτ (0, 0))− 1

h
ϕηi

(0, 0)

)
.

Proof: Let δx = 1
N

∑
i∈V xi and δη = 1

N

∑
i∈V ηi be the

average of the system states and controller states, respectively.
The dynamics of (δx, δη, τ) is given by δ̇x = δη

δ̇η = −hδη
τ̇ = −1

τ ∈ [0, T2]. (22)

Since the digraph is weight balanced, we have din(i) =
dout(i) for each i ∈ V . Note that δη can be rewritten as
δη = 1

N 1⊤
Nη. At jumps, when τ = 0, we have

δ+x = δx, δ+η =
1

N
1⊤
Nη =

−γ

N
1⊤
NLx = 0

since 1⊤
NL = 0⊤ for weight balanced graphs [44, Theo-

rem 1.37]. Now, consider a solution ϕ = (ϕx, ϕη, ϕτ ) ∈
SH(ϕx(0, 0), ϕη(0, 0), ϕτ (0, 0)). First, consider the case when
h = 0. By direct integration of (22) and some abuse of
notation, we have

δx(t, 0) = δx(0, 0) + δη(0, 0)t

=
1

N

∑
i∈V

(ϕxi
(0, 0) + ϕηi

(0, 0)ϕτ (0, 0))
(23)

for each t ∈ [0, t1], where t1 = ϕτ (0, 0). When t = t1, a
jump occurs, and after the jump, δη(t1, 1) = 0. From the
dynamics in (22), both δx and δη are constant due to δ̇x(t, j) =
0 and δ̇η(t, j) = 0 for all (t, j) ∈ domϕ such that j ≥ 1.
Furthermore, due to Lemma 3.13 and Theorem 3.8, we know
that A is UGES for H. Since δx is constant for all j ≥ 1
and solutions to H converge to A exponentially, then we have
that every solution ϕxi

must converge to the average in (23),
which leads to (21) for each i ∈ V . Furthermore, at points on
(x, η, τ) ∈ A, η = 0N , which leads to limt+j→∞ ϕη(t, j) =
0N . For the case when h > 0, we have that direct integration
of the continuous dynamics of (xi, ηi) leads to ϕxi

(t, 0) =
ϕxi

(0, 0)+ 1
h (exp(ht)−1)ϕηi

(0, 0) for each t ∈ [0, t1]. Then,
by following an approach similar to the one above, one can
establish that (23) holds for each i ∈ V .

Remark 3.15: When the initial condition of the timer is set
to zero, namely, ϕτ (0, 0) = 0, Proposition 3.14 indicates that
maximal solutions to H converge to the average of the initial
conditions of the state ϕxi

(0, 0), i ∈ V . □

G. Partial pointwise exponential stability for H
Using the previous results, we now provide sufficient

conditions for the set A to be partially pointwise globally
exponentially stable with respect to (x, η) for H – namely, in
addition to A being uniformly globally exponentially stable
as a set, each point in A is also stable. The notion of partial
pointwise exponential stability is given as follows; see [35]
and [45] for more details.

Definition 3.16: (partial pointwise global exponential sta-
bility) Consider a hybrid system H with state ξ = (p, q) ∈ Rn.
The closed set A ⊂ Rr×Rn−r, where r ∈ N and 0 < r ≤ n is
partially pointwise globally exponentially stable with respect
to the state component p ∈ Rr for H if
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1) every maximal solution ϕ to H is complete and has a
limit belonging to A;

2) A is uniformly globally exponentially stable for H; and
3) for each p∗ ∈ Rr such that there exists q ∈ Rn−r

satisfying (p∗, q) ∈ A, it follows that for each ε > 0
there exists δ > 0 such that every solution ϕ = (ϕp, ϕq)
to H with ϕp(0, 0) ∈ p∗+δB satisfies |ϕp(t, j)−p∗| ≤ ε
for all (t, j) ∈ domϕ. □

The motivation behind the partial pointwise notion in Defini-
tion 3.16 is due to potential state components that may not
converge to a set, for example, timers and boolean logic states
(or modes). While not exercised in this article, if r = n, then
the notion in Definition 3.16 reduces to pointwise globally
exponentially stable as in [35].

In the next result, we exploit Theorem 3.8 to establish
that the (diagonal-like) set A is partially pointwise globally
exponentially stable with respect to (x, η) for H

Theorem 3.17: Let T1 and T2 be two positive scalars sat-
isfying T1 ≤ T2 and the digraph Γ be weight balanced and
contain a directed spanning tree. Suppose that scalars h ≥ 0
and γ > 0 are chosen such that there exists P = P⊤ > 0
satisfying (14) in Theorem 3.8 holds. Then, the set A is
partially pointwise globally exponentially stable with respect
to (x, η) for H.

Proof: Items 1 and 2 in Definition 3.16 are satisfied via
Lemma 3.6 and Theorem 3.8, respectively. It remains to show
item 3. Pick x∗ ∈ R. Denote x̃ = x − x∗1N , χ̃ = (x̃, η, τ),
and define H∗ as

˙̃χ =

 η
−hη
−1

 =: f∗(χ̃) χ̃ ∈ C,

χ̃+ ∈

 x̃
−γLx̃
[T1, T2]

 =: G∗(χ̃) χ̃ ∈ D.

where C and D are defined in (7). In these coordinates, the
set to stabilize is A∗ = {0N}×{0N}× [T1, T2]. Consider the
function χ̃ 7→ V (χ̃) = µ⊤ exp(A⊤

f2τ)P exp(Af2τ)µ, where
µ = (x̃, η), P = P⊤ > 0, and Af2 in (11). Note that

α1|χ̃|2A∗ ≤ V (χ̃) ≤ α2|χ̃|2A∗ ∀χ̃ ∈ C ∪D
where α1 = minτ∈[0,T2] λ(exp(A

⊤
f2τ)P exp(Af2τ)) and

α2 = maxτ∈[0,T2] λ(exp(A
⊤
f2τ)P exp(Af2τ)). During flows,

since µ̇ = Af2µ, we have
⟨∇V (χ̃), f∗(χ̃)⟩ = 0

for all χ̃ ∈ C. Furthermore, for each χ̃ ∈ D, and each g ∈
G∗(χ̃), since µ also satisfies µ̇ = Af2µ during flows and
µ+ = Ag2µ at jumps, where Af2 and Ag2 are given in (11),
we have

V (g)− V (χ̃) ≤ 0,
namely, V (g) ≤ V (χ̃). Then, since A∗ is compact, [40,
Theorem 3.19, item 1] implies that A∗ is stable.

IV. ASYMPTOTIC STABILITY OF SYNCHRONIZATION WITH
ASYNCHRONOUS INTERMITTENT INFORMATION

A. Problem Statement
In a more realistic setting, agents may have access to their

neighbors’ information at asynchronous time instances. In this
section, we consider the case where for each i ∈ V , the i-th

agent receives information from its neighbors at times in the
sequence {tis}∞s=1 satisfying

T i
1 ≤ tis+1 − tis ≤ T i

2 ∀ s ∈ {1, 2, . . . }
ti1 ≤ T i

2

(24)

where the positive scalars T i
1 and T i

2 define the lower and
upper bounds, respectively, of the time allowed to elapse
between consecutive information updates for agent i. Note
that, for each i ∈ V , the bounds T i

1 and T i
2 are assumed to be

known, but they might be independently determined by each
agent and not necessarily the same among agents.

Similar to the case when all agents communicate syn-
chronously, we assign a timer to trigger local communication
events at times {tis}∞s=1 satisfying (24). We attach to each
agent a timer state τi ∈ [T i

1, T
i
2], which evolves with dynamics

in (25), i.e., for each i ∈ V , we have the following hybrid
system modeling the communication times:

τ̇i = −1 τi ∈ [0, T i
2]

τ+i ∈ [T i
1, T

i
2] τi = 0

(25)

Due to the set-valued jump map of the timer states, these
dynamics are capable of modeling any sequence of local
communication events at times {tis}∞s=1 satisfying (24).

Remark 4.1: From the communication time law in (24) (or
in (3)), it is possible that such times are stochastically driven
where the sequence {tis}∞s=1 can be generated by evaluating
a random variable. For example, a random variable Yi with a
uniform distribution can be employed, in which case Yi takes
values in [T i

1, T
i
2] and tis+1 − tis = Yi for each agent index

i ∈ V and integer s > 1. □

B. Hybrid Modeling and Consensus Protocol

Similar to Protocol 3.3, we consider a dynamic hybrid
consensus protocol with state ηi that is assigned to the input
ui of the agent, for each i ∈ V . For agent i and when τi
reaches zero, ηi is updated based on information provided by
its neighbors, as explained next.

Protocol 4.2: For each i ∈ V , given the parameter T i
2 >

0, the i-th hybrid controller has state ηi with the following
dynamics:

ui = ηi

η̇i = −hηi τi ∈ [0, T i
2]

η+i = −γ
∑

k∈N (i)

(xi − xk) τi = 0

where h ≥ 0 and γ > 0 are the controller parameters to be
designed.

Following [42], [46], and following (but slightly abusing)
the notation in Section III, we consider the following change
of coordinates:

x̄i = xi −
1

N

N∑
k=1

xk

θi = −γ
∑

k∈N (i)

(xi − xk)− ηi

(26)

for each i ∈ V . We have that
θ = −γLx̄− η (27)

where x̄ = (x̄1, x̄2, . . . , x̄N ), θ = (θ1, θ2, . . . , θN ), η =
(η1, η2, . . . , ηN ), τ = (τ1, τ2 . . . , τN ), and L is the Laplacian
matrix given by the directed graph Γ of the network. Using
the change in coordinates in (26), the continuous dynamics of
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x̄i are given by

˙̄xi = −γ
∑

k∈N (i)

(x̄i − x̄k)− θi +
N∑

k=1

θk +
γ

N

N∑
k=1

∑
r∈N (i)

(xk − xr)

leading to6

˙̄x = −γLx̄−Πθ (28)
where Π = I− 1

N 1N1⊤
N . By taking the derivative of (27) and

applying (28), the dynamics of the auxiliary state θ are given
by θ̇ = (γ2LL − γhL)x̄+ (−hI + γLΠ)θ.

Through the change of coordinates in (26), we define a
hybrid system Hθ = (Cθ, fθ, Dθ, Gθ) as the collection of
all agents with dynamics in (2) and the control dynamics in
Protocol 4.2 with associated timers. Let the state of Hθ be
given by ξθ = (zθ, τ) ∈ Xθ, zθ = (x̄, θ), where Xθ :=
RN × RN × T and T = [0, T 1

2 ] × [0, T 2
2 ] × · · · × [0, TN

2 ].
The data of Hθ is given by
fθ(ξθ) := (Aθzθ,−1N ) ∀ξθ ∈ Cθ := Xθ

Gθ(ξθ) := {Gi(ξθ) : ξθ ∈ Di, i ∈ V} ∀ξθ ∈ D := ∪i∈VDi

(29)
where Di = {ξθ ∈ Xθ : τi = 0} and the i-th jump map is
given by

Gi(ξθ) :=

 x̄
(θ1, . . . , θi−1, 0, θi+1, . . . , θN )

(τ1, . . . , τi−1, [T
i
1, T

i
2], τi+1, . . . , τN )

 . (30)

Note that Gi only updates the i-th component of θ and τ . The
matrix Aθ for the continuous dynamics in (29) is given by

Aθ =

[
−γL −Π

γ2L2 − γhL γLΠ− hI

]
where L is the Laplacian matrix, and γ and h are to be
designed.

The following result is immediate and its proof follows
along the lines of the proof of Lemma 3.5.

Lemma 4.3: Suppose the positive scalars T i
1 and T i

2 satisfy
T i
1 ≤ T i

2 for each i ∈ V . The hybrid system Hθ =
(Cθ, fθ, Dθ, Gθ) in (29) satisfies the hybrid basic conditions.

Due to the construction of (29), we have that maximal solu-
tions are complete, non-Zeno, and have a uniformly bounded
(from below) amount of flow time between consecutive jumps,
much in the same way that Lemma 3.6 characterizes properties
of solutions to Hθ.

Lemma 4.4: [47, Lemma 3.5] For each i ∈ V , let 0 <
T i
1 ≤ T i

2 be given. Every maximal solution ϕ to Hθ satisfies
the following:

1) ϕ is complete;
2) ϕ is not Zeno;
3) for each (t, j) ∈ domϕ it follows that

(
j
N − 1

)
T̃1 ≤ t ≤

j
N T̃2 where T̃1 = mini∈V T i

1 and T̃2 = maxi∈V T i
2.

The objective of each agent in the hybrid system Hθ is to
drive the states xi to consensus, i.e., to asymptotically drive
the difference between the agents’ state xi to zero. Note that
the definition of η and θ implies that these states converge
to zero as the error converges to consensus. Therefore, in the
(x̄, θ, τ) coordinates, the set of interest is given by

Aθ := {0N} × {0N} × T (31)
for the hybrid system Hθ defined in (29).

6Due to the definition of din(i) =
∑N

k=1 gki, we can expand the summa-
tion terms in

∑N
k=1

∑
r∈N (i)(xk − xr) to obtain

∑N
k=1

∑
r∈N (i)(xk −

xr) = 0.

C. Global Asymptotic Stability
In this section, we establish sufficient conditions to guar-

antee global asymptotic stability of the consensus set Aθ

in (31) under asynchronous communication. We consider the
following notion of global asymptotic stability [33].

Definition 4.5: (global asymptotic stability) Let a hybrid
system H with state in Rn be given. Let A ⊂ Rn be closed.
The set A is said to be

• stable for H if for every ε > 0 there exists δ > 0 such
that every solution ϕ to H with |ϕ(0, 0)|A ≤ δ satisfies
|ϕ(t, j)|A ≤ ε for all (t, j) ∈ domϕ;

• globally attractive for H if every maximal solution ϕ to
H is complete and limt+j→∞ |ϕ(t, j)|A = 0;

• globally asymptotically stable for H if it is both stable
and globally attractive. □

Under the change of coordinates in (26), we will leverage the
quadratic-like function

Vθ(ξθ) = x̄⊤Px̄+ θ⊤Q(τ)θ (32)
where P is symmetric positive definite and Q(τ) is diagonal
and positive definite for all τ ∈ T . Through this choice
of V , regardless of which timer τi triggers a jump, this
function satisfies the property that Vθ(ξ

+
θ ) − Vθ(ξθ) is upper

bounded by a nonpositive function of θi for all ξθ ∈ Dθ. Such
a property is possible due to the convenient choice of the
auxiliary state θi at jumps, which, when applied to the control
law in Protocol 4.2, steers θi to zero. Under the conditions
of the following result, we have that during flows, namely,
for each ξθ ∈ Cθ, the change in Vθ is upper bounded by a
nonpositive function of zθ = (x̄, θ). These properties and the
fact that Hθ satisfies the hybrid basic conditions (Lemma 4.3)
are exploited in the following result through an application
of the invariance principle for hybrid systems involving a
nonincreasing function [40, Theorem 3.23].

Theorem 4.6: Let T i
1 and T i

2 be two positive scalars such
that T i

1 ≤ T i
2 for each i ∈ V and a digraph Γ contain a

directed spanning tree and be weight balanced. If the scalars
γ < 0 and h ∈ R are selected such that there exist σ > 0, a
positive definite symmetric matrix P ∈ RN×N , and a positive
definite diagonal matrix function ν 7→ Q(ν) ∈ RN×N such
that

M(ν) ≤ 0 (33)
for each ν = (ν1, ν2, . . . , νN ) ∈ T , where

M(ν) :=

[
−γHe(P,L) −PΠ+ (γ2L2 − γhL)Q(ν)

⋆ −σQ(ν) + He(Q(ν), (γLΠ− hI))

]
(34)

and Q(ν) = diag(q1 exp(σν1), q2 exp(σν2), . . . , qN exp(σνN )),
then Aθ in (31) is globally asymptotically stable for Hθ.

Proof: Let Vθ : RN ×RN ×T → R≥0 be given by (32).
We have that

α1|ξθ|2Aθ
≤ Vθ(ξθ) ≤ α2|ξθ|2Aθ

(35)
for all ξθ ∈ Cθ, where α1 = min{λ(P ), λ(Q)} and α2 =
maxν∈T {λ(P ), λ(Q(ν))}. For each ξθ ∈ Cθ, we have that

⟨∇Vθ(ξθ), fθ(ξθ)⟩ = z⊤θ M(τ)zθ
where M(τ) is given in (34). Therefore, by the fact that
M(τ) ≤ 0, we have that ⟨∇Vθ(ξθ), fθ(ξθ)⟩ ≤ 0 for each
ξθ ∈ Cθ. Define uc(ξθ) = z⊤θ M(τ)zθ for each ξθ ∈ Cθ and
uC(ξθ) = −∞ otherwise. Then, the zero-level set of uC is
given by u−1

C (0) = {ξθ ∈ Xθ : z⊤θ M(τ)zθ = 0} Note that
M(τ) can be decomposed as M(τ) = Ω⊤R(τ) + R(τ)Ω,
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where
Ω =

[
−γL −Π

γ2L2 − γhL γLΠ− hI − σ
2 I

]
, R(τ) =

[
P 0
0 Q(τ)

]
.

Note that R(τ) is positive definite and therefore invertible for
each τ ∈ T . Furthermore, note that z⊤θ M(τ)zθ = 0 when
z⊤θ R(τ)Ωzθ = 0 which implies that either zθ = 0 or Ωzθ = 0
– namely, zθ is zero or in the null space of Ω. Since the digraph
contains a directed spanning tree, the Laplacian matrix L is
such that L1N = 0 corresponds to a singular zero eigenvalue
for L.

The nullspace of Ω is the set of points (a, b) ∈ RN × RN

such that[
−γL −Π

γ2L2 − γhL γLΠ− hI − σ
2 I

] [
a
b

]
= 0. (36)

From (36), we have that −γLa = Πb and (γ2L2 − γhL)a+
(γLΠ − hI − σ

2 )b = 0. By substituting the former equation
into the latter equation and recalling the definition of Π, we
have that

−
(

h

N
1N1⊤

N +
σ

2
I

)
b = 0.

Due to
(
h
N 1N1⊤

N + σ
2 I

)
being full rank for all σ,N > 0,

h ≥ 0, it follows that b = 0. From (36), we have that γLx = 0.
Due to the fact that the digraph is weight balanced and contains
a directed spanning tree, there exists a singular eigenvalue at
zero (i.e., λ1 = 0) which corresponds to eigenvalue 1N , then
γLx = 0 when xi = xj for all i, j ∈ V . Due to the definition
of nullspace, it follows that u−1

C (0) = Aθ. Therefore, for each
ξθ ∈ Aθ, uC(ξθ) = 0 and, in light of (33), uC(ξθ) < 0 for
each point ξθ ∈ Cθ \ Aθ.

Now, we analyze the change in Vθ at jumps. Namely, for
each ξθ = (x, θ, τ) ∈ Dθ and for each gθ ∈ Gθ(ξθ), there
exists i ∈ V such that τi = 0. From the definition in (30), if
there are multiple timers that reach zero simultaneously, then
the jump map is set-valued and the state is sequentially up-
dated by the Gi map that corresponds to the i-th expired timer.
Therefore, without loss of generality, we consider the case of a
single τi reaching zero, noting that if multiple timers simulta-
neously reach zero, there would be multiple successive jumps.
Recalling that Q(ν) = diag(q1 exp(σν1), q2 exp(σν2), . . .
qN exp(σνN )), we denote the k-th diagonal element of Q(ν)
as q̃k : R≥0 → R≥0. Then, for each ξθ ∈ Dθ such that τi = 0
and each gθ ∈ Gθ(ξθ), we have that

Vθ(gθ)− Vθ(ξθ) =
N∑

k=1,k ̸=i

q̃k(τk)θ
2
k −

N∑
k=1

q̃k(τk)θ
2
k

= −q̃i(τi)θ
2
i ≤ 0.

Define uD(ξθ) := −q̃i(τi)θ
2
i for each ξθ ∈ Dθ and uD(ξθ) =

−∞ otherwise. The zero-level set of uD is given by u−1
D (0) =

{ξθ ∈ Xθ : θi = 0, τi = 0, i ∈ V} and note that Gθ(u
−1
D (0)) =

{ξθ ∈ Xa : θi = 0, τi ∈ [T1, T2], i ∈ V}.
From Lemma 4.4 we have that all maximal solutions to Hθ

are complete and non-Zeno. Moreover, from Lemma 4.3, Hθ

satisfies the hybrid basic conditions. In light of (35) and noting
that, for any r > 0, the largest weakly invariant set contained
in V −1

θ (r)∩Xθ∩
(
u−1
C (0) ∪ (u−1

D (0) ∪G(u−1
D (0)))

)
is empty.

Then, by [48, Theorem 8.8] and Lemma 4.3, it follows that
the set Aθ is globally asymptotically stable for Hθ.
The Lyapunov analysis in the proof of Theorem 4.6 establishes
global asymptotic stability of Aθ. Note that this analysis does

not imply that each point in the consensus set is Lyapunov
stable; hence, as a difference to the synchronous case, it does
not show that the consensus set is pointwisely asymptotically
stable for the case of asynchronous communication.

Note that condition (33) must be satisfied for an infinite
number of points in the compact set T . We can relax (33)
by noting that the interval [0, T i

2] ⊂ [0, T̃2], where T̃2 =
maxi∈V T i

2 and checking (33) on the boundary points of
[0, T̃2], as stated in the following result. Due to space con-
straints, the proof is omitted here, but it follows similar steps
as in the proof of [47, Propositions 3.8 and 3.9].

Proposition 4.7: Given the conditions of Theorem 4.6, it
follows that (33) holds if M(0N ) ≤ 0 and M(T̃21N ) ≤ 0
where T̃2 = maxi∈V T i

2.

D. Numerical Examples

In this section, we consider two examples illustrating the
consensus results.

Example 4.8: Consider five agents with dynamics as in (2)
over the following graph with adjacency matrix

G =


0 1 0 1 0
1 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 1 0

 . (37)

Let T1 = 0.5 and T2 = 1.5. It can be shown that the
parameters

P ≈



7.38 0 0 0 0.12 0 0 0
0 6.58 0 0 0 0.03 0 0
0 0 8.59 0 0 0 −.40 0
0 0 0 9.05 0 0 0 −1.18

0.12 0 0 0 5.83 0 0 0
0 0.03 0 0 0 5.83 0 0
0 0 −0.40 0 0 0 5.20 0
0 0 0 −1.77 0 0 0 3.80

,
h = 0.3, and γ = 0.3 satisfy condition (14). Fig-
ure 3 shows the xi components i ∈ {1, 2, 3, 4, 5} of
a solution ϕ = (ϕx, ϕη, ϕτ ) from initial conditions
given by ϕx(0, 0) = (−3,−5, 3.5,−3.5, 2.6), ϕη(0, 0) =
(0.84, 1.77, 0.65, 1.7,−4), and ϕτ (0, 0) = 1 as well as the
function V2 below Theorem 3.8 evaluated along ϕ projected
onto the ordinary time domain. In Section V-C, we consider
the case of perturbations on the agents’ dynamics and com-
munications. △

Example 4.9: Consider ten agents with dynamics as in (2)
over a random graph given by Figure 5. Let T i

1 = 0.2 and
T i
2 = 0.4 for each i ∈ V be given. Then, using parameters

γ = 0.3, h = 0.1, and σ = 50, we find the matrices
P = 1 ∗ 107I and Q = 0.26I satisfy condition (33) in
Theorem 4.6. Figure 4 shows a solution ϕ to the hybrid system
with agent dynamics (2) using Protocol 4.2, and asynchronous
timers τi to trigger communications. The solution is from
random initial conditions as follows ϕxi(0, 0) ∼ U([−5, 5]),
ϕηi(0, 0) ∼ U([−5, 5]) and ϕτ (0, 0) ∼ U([0, 0.4]) where
U(·) is the uniform distribution over the argument interval.
Furthermore, as indicated by Figure 4, the bottom plot shows
the Lyapunov function Vθ given by (32) over the solution ϕ.
In particular, it is worth noting that Vθ is non-increasing over
continuous flow time t. △
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Fig. 3. (top) The x and τ components of a solution ϕ = (ϕx, ϕη, ϕτ )
to H with G in (37) using Protocol 3.3 which satisfies Theorem 3.8.
(bottom) Note that since V2(χ) for H̃ deceases to zero with respect to
flow time, it indicates that the solution reaches consensus.
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Fig. 4. The xi components of a solution ϕ = (ϕx, ϕη, ϕτ ) to
a hybrid system with with agent dynamics (2) where asynchronous
communication is present. The asynchronous communication is shown
on the middle chart where an ‘o’ marker indicates a communication of
agent i, more specifically, ϕτi(t, j) = 0 for each (t, j) ∈ domϕ. The
Lyapunov function Vθ in (32) is plotted over time.

Fig. 5. Network configuration for Example 4.8.

V. ROBUSTNESS OF CONSENSUS WITH INTERMITTENT
COMMUNICATION

Note that the results in the previous sections are for ide-
alized models with no noise, perturbations, or unmodeled
dynamics. However, in real-world settings, systems are af-
fected by such uncertainty. This section expands the results in
Sections III and IV as follows. Section V-A considers nominal
robustness of consensus for Hθ in (29) leveraging the proper-
ties of the system – namely, well-posedness. In Section V-B,
we consider the hybrid system in (7) and provide sufficient
conditions for input-to-state stability of the consensus set A
in (8) with respect to communication noise.

A. Nominal Robustness to General Perturbations

In this section, we consider perturbations in the agent mod-
els and communication networks. Specifically, we consider the
agent dynamics given by

ẋi = ui + bi (38)
where |bi| ≤ b∗i is a (possibly state-dependent) perturbation;
for example, actuator/input noise or bias can be considered.
The information available to the agents, either measured or
communicated, may also be affected by some noise. We
consider communication noise cck from agent k, leading to

x̃c
k = xk + cck, (39)

and noise in the information measured at agent i, denoted cki ,
is given by

x̃m
i = xi + cmi . (40)

Furthermore, the timers triggering communication events at
each node may be perturbed due to uncertainty in the com-
munication network. We model such effects by the perturbed
timer system given by

τ̇i = −1 + ιi τi ∈ [0, T i
2 + ϑi

2]

τ+i ∈ [T i
1 + ϑi

1, T
i
2 + ϑi

2] τi = 0,
where ιi < 1 is a constant modeling a possible skew on the
timer dynamics for τi, and ϑi = (ϑi

1, ϑ
i
2) is a constant that

satisfies 0 < T i
1 + ϑi

1 ≤ T i
2 + ϑi

2 modeling the perturbations
on the known nominal values of the parameters T i

1 and T i
2.

Following Protocol 4.2, the perturbed versions of the dy-
namics of the proposed control algorithm are

η̇i = −hηi,
when τi ∈ [0, T i

2 + ϑi
2]. At every event time given by τi = 0,

the ηi state is updated to
η+i = −γ

∑
k∈N (i)

(x̃m
i − x̃c

k) = −γ
∑

k∈N (i)

(xi − xk)− c̃i,

where c̃i = γ
∑

k∈N (i) (c
m
i − cck), and x̃m

i and x̃c
i are given in

(39) and (40), respectively. Then, following the definition of
θi in (26), we define a perturbation of Hθ, denoted H̃θ with
data (C̃θ, f̃θ, D̃θ, G̃θ) given as follows. For each ξθ ∈ C̃θ :=
RN × RN × T̃ =: X̃θ, H̃θ flows are governed according to
the perturbed flow map

f̃θ(ξθ) = fθ(ξθ) +

 b
γb
ι


where b = (b1, b2, . . . , bN ), ι = (ι1, ι2, . . . , ιN ) and T̃ :=
[0, T 1

2 +ϑ1
2]× [0, T 2

2 +ϑ2
2]× · · · × [0, TN

2 +ϑN
2 ]. Since jumps

occur when τi = 0, the jump set for the perturbed hybrid
system is D̃θ = Dθ as given above (29), and the perturbed
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jump maps is
G̃θ(ξθ) := {G̃i(ξθ) : ξθ ∈ D̃i, i ∈ V},

where D̃i = Di defined after (29) and

G̃i(z) :=

 x̄
(θ1, . . . , θi−1,−c̃i, θi+1, . . . , θN )

(τ1, . . . , τi−1, [T
i
1 + ϑi

1, T
i
2 + ϑi

2], τi+1, . . . , τN )

 .

In light of Hθ satisfying the hybrid basic conditions in
Definition 3.1 and Aθ in (31) being compact, we have the
following result.

Theorem 5.1: Let 0 < T i
1 ≤ T i

2 be given for all i ∈ V .
Suppose the conditions in Theorem 4.6 for the unperturbed
hybrid system Hθ with data in (29). Then, there exists β ∈ KL
such that, for every compact set K ⊂ X̃θ and ε > 0, there
exists ρ⋆ > 0 such that if

max{|b|, |c|, |ι|} ≤ ρ⋆

then, every ϕ ∈ SHθ
(K) satisfies

|ϕ(t, j)|Aθ
≤ β(|ϕ(0, 0)|Aθ

, t+ j) + ε
for all (t, j) ∈ domϕ, i.e., Aθ is semiglobally practically
robustly KL asymptotically stable for Hθ.

Proof: Given any continuous function ρ : X̃θ → R≥0,
the ρ-perturbation of Hθ = (Cθ, fθ, Dθ, Gθ), denoted Hθ,ρ, is
given by {

ξ ∈ C̃ρ ξ̇ ∈ Fρ(ξ)

ξ ∈ D̃ρ ξ+ ∈ Gρ(ξ)
where7

C̃ρ = {ξ ∈ X̃θ : (ξ + ρ(ξ)B) ∩ Cθ ̸= 0}
Fρ(ξ) = confθ((ξ + ρ(ξ)B) ∩ Cθ) + ρ(ξ)B ∀ξ ∈ Cθ ∩Dθ

D̃ρ = {ξ ∈ X̃θ : (ξ + ρ(ξ)B) ∩Dθ ̸= 0}
Gρ(ξ) = {v ∈ X̃θ : v ∈ g + ρ(g)B, g ∈ Gθ(ξ + ρ(ξ)) ∩Dθ}

∀ξ ∈ Cθ ∩Dθ

Note that by Theorem 4.6, the set Aθ is globally asymptot-
ically stable for Hθ. Since ρ is continuous and Hθ satisfies
the hybrid basic conditions, by [33, Theorem 6.8], Hθ,ρ is
nominally well-posed and, moreover, by [33, Proposition 6.28]
is well-posed. Then, [33, Theorem 7.20] implies that Aθ is
semiglobally practically robustly KL pre-asymptotically stable
for Hθ,ρ. Namely, for every compact set K ⊂ RN ×RN × T̃
and for every ε > 0, there exists ρ̃ ∈ (0, 1) such that every
maximal solution ϕ to Hθ,ρ̃ρ from K that satisfies

|ϕ(t, j)|Aθ
≤ β(|ϕ(0, 0)|Aθ

, t+ j) + ε
for all (t, j) ∈ domϕ. Lastly, ρ is such that there exists ρ∗ > 0
such that ρ∗ ≤ ρρ̃ which concludes the proof.

Remark 5.2: The perturbations considered above for Hθ

in (29) can be extended to the single timer case in (7).
Naturally, the hybrid system in (7) can be affected by un-
modeled dynamics, perturbations in the communication times,
and additive communication noise as well. The set A in (8)
is globally exponentially stable for H per Theorem 3.8 and
Lemma 3.13 and satisfies the hybrid basic conditions. In this
case, A is not compact, therefore, we will have to consider
the results as being over a compact subset S of A, note that
this is not restrictive as S can be arbitrarily large. Under these
assumptions, similar steps can be followed as the proof of
Theorem 5.1 to show that S ⊂ A is semiglobally practically
robustly KL asymptotically stable for the associated perturbed

7Given a set X ∈ Rn, the notation conX is closed convex hull of X , more
specifically, the smallest closed convex set containing X .

hybrid system Hρ. □

B. Robustness to Perturbations on Communication
Noise

In this section, we consider the case of potentially large
communication and measurement noise for the synchronous
network case in Section III. More specifically, we consider
the hybrid system H = (C, f,D,G) given by (7) where the
agents are perturbed according to (39)–(40), where x̃k is the
perturbed information communicated from agent k to agent i
and x̃i is the perturbed measured information of agent i. In the
following results, we consider the case when cmi = cci = c∗i .
In such a case, the controller from Protocol 3.3 becomes

η̇i = −hηi τ ∈ [0, T2]

η+i = −γ
∑

k∈N (i)

(x̃i − x̃k) τ = 0

which, different than (6), leads to an update law with commu-
nication noise given by

η+i = −γ
∑

k∈N (i)

(xi − xk)− γ
∑

k∈N (i)

(c∗i − c∗k).

We show that the hybrid system H in (7) has A input-to-
state stable (ISS) with respect to noises cmi and cci , which is
defined as follows.

Definition 5.3 (Input-to-state stability [49]): A hybrid sys-
tem H with input m is input-to-state stable with respect to A
if there exist β ∈ KL and κ ∈ K such that each solution pair
(ϕ,m) to H satisfies89

|ϕ(t, j)|A ≤ max{β(|ϕ(0, 0)|A, t+ j), κ(|m|∞)}
for each (t, j) ∈ domϕ.
Let c∗ = (c∗1, c

∗
2, . . . , c

∗
N ). The controller state η =

(η1, η2, . . . , ηN ) is given by
η+ = −γLx− γLc∗

where L is the Laplacian. Recall that the set from stabilize for
H is (8). Moreover, recall that from the proof of Lemma 3.13,
the distance from solutions to H to A is equivalent to
the distance from solutions to H̃ to Ã. Using the change
of coordinates involving the matrix U , as in Section III-C,
namely,

x̄ = U−1x η̄ = U−1η c̄∗ = U−1c∗

it follows that, at jumps, the update of the new state η̄ is given
by

η̄+ = (0,−γL̄x̄− γL̄c̄∗).

Note that the first component of η̄+ does not depend on
the communication noise due to the change of coordinates.
Defining the perturbed error hybrid system as Hc and with
states χ = (z̄1, z̄2, τ) ∈ X := RN × RN × T , z̄1 = (x̄1, η̄1),
and z̄2 = (x̄2, x̄3, . . . , x̄N , η̄2, η̄3, . . . , η̄N ), the data of Hc is

8Given a hybrid arc x and a hybrid input u, (x, u) is a solution pair
to a hybrid system H = (C, f,D,G) if (x(0, 0), u(0, 0) ∈ C ∪ D,
domx = domu, for every j ∈ N such that Ij has nonempty interior
ẋ(t, j) ∈ f(x(t, j), u(t, j)) for almost all t ∈ Ij , (x(t, j), u(t, j)) ∈ C
for all t ∈ [inf Ij , sup Ij), and for every (t, j) ∈ domx such that
(t, j+1) ∈ domx = domu we have that x(t, j+1) ∈ G((x(t, j), u(t, j)),
x(t, j), u(t, j))) ∈ D.

9The L∞ norm of (t, j) 7→ u(t, j) is given by
|u|∞ := max

{
ess sup(t′,j′)∈domu\Υ(u),t′+j′≤t+j |u(t′, j′)|,

sup(t′,j′)∈Υ(u),t′+j′≤t+j |u(t′, j′)|
}

where Υ(u) = {(t, j) ∈ domu :

(t, j + 1) ∈ domu}; see [49, Definition 2.1] for details.
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given by
fc(χ) =(Af1z̄1, Af2z̄2,−1) ∀χ ∈ Cc := X

Gc(χ, c̄
∗) = (Ag1z̄1, Ag2z̄2 −Bg c̄

∗,−1)

∀χ ∈ Dc := {χ ∈ X : τ = 0}
(41)

where Af1, Af2, Ag1, and Ag2 are given in (11) and Bg =
(0, γL̄). Then, using the change of coordinates as in Sec-
tion III-C we can show that global exponential stability of
Ã in (12) for H̃ in (10) is robust to communication noise in
the sense of input-to-state stability.

Theorem 5.4: Let 0 < T1 ≤ T2 be given. Suppose the
digraph Γ = (E ,V,G) contains a directed spanning tree. If
the scalars γ > 0 and h ≥ 0 are selected so that there exists
P = P⊤ > 0 satisfying (14) holds for all ν ∈ [T1, T2], then
the hybrid system H̃ with input m̄ is ISS with respect to A as
in (12).

Proof: Consider the same Lyapunov function from the
proof of Theorem 3.8, i.e., V (χ) = V1(χ)+V2(χ) as in (17).
Note that for Hc, the communication noise does not appear on
the flow map. Therefore, the analysis on flows applies from
the proof of Theorem 3.8, namely, for each χ ∈ Cc

⟨∇V (χ), fc(χ)⟩ = 0. (42)
When τ = 0, a jump occurs mapping τ to some point
ν ∈ [T1, T2]. The state z̄2 is updated by Gc(χ, c̄

∗) in (41)
to Ag2z̄2 − Bg c̄

∗. At jumps, we have that, for each χ ∈ Dc

and g ∈ Gc(χ, c̄
∗), the change in V is given by

V (g)−V (χ)= z̄⊤2 A⊤
g2 exp(A

⊤
f2ν)P exp(Af2ν)Ag2z̄2

− 2c̄∗B⊤
g exp(A⊤

f2ν)P exp(Af2ν)Ag2z̄2

+ (c̄∗)⊤B⊤
g exp(A⊤

f2ν)P exp(Af2ν)Bg c̄
∗

− z̄⊤2 P z̄2

(43)

Following the steps in the proof of Theorem 3.8, from (14),
there exists a scalar β > 0 such that

z̄⊤2 (A⊤
g2 exp(A

⊤
f2ν)P exp(Af2ν)Ag2 − P )z̄2 < −βz̄⊤2 z̄2

which also implies that | exp(Af2ν)Ag2| < 1. Fur-
thermore, the second term of (43) can be decom-
posed using Young’s Inequality10. Let a = z̄2, b⊤ =
(c̄∗)⊤B⊤

g exp(A⊤
f2ν)P exp(Af2ν)Āg2, and c = β

2 . Then (43)
becomes

V (g)− V (χ) ≤ −β

2
z̄⊤2 z̄2 + γ2κ|c̄∗|2 (44)

where κ = λ2
N |P |(1+ 2

β |P |)maxν∈[T1,T2] | exp(Af2ν)|2, γ >

0, and λN is the maximum eigenvalue of L̄. Then, from (42)
and (44), we have that

V (g) ≤ exp(λd)V (χ) + γ2κ|c̄∗|2 (45)
for all χ ∈ Dc, g ∈ Gc(χ, c̄

∗), where λd = ln(1 − β/α2)
and α2 is defined in (16). Therefore, given any maximal
solution pair (ϕ, c̄∗) to Hc in (41), we have that during flows
V (ϕ(t, 0)) = V (ϕ(0, 0)) for all t ∈ [0, t1] and with jumps of
the solution given by (45), V over any maximal solution is
given by
V (ϕ(t, j)) ≤ exp(λdj)V (ϕ(0, 0))

+ κγ2

j−1∑
i=0

exp(λd(j − 1− i))|c∗(ti+1, i+ 1)|2

for all (t, j) ∈ domϕ, with j ≥ 1.
Following the proof of Theorem 3.8, we have V (ϕ(t, j)) ≤

eλdjV (ϕ(0, 0))+ κe−λdγ2

e−λd−1
|c̄∗|2(t,j) for each (t, j) ∈ domϕ such

that j ≥ 1. Recall from the proof of Lemma 3.13 that the set A
10Young’s Inequality is defined as 2a⊤b ≤ ca⊤a+ 1

c
b⊤b for c > 0.

for H and the set A for H satisfies |ξ|A = |χ|Ã. By following
similar arguments as in Theorem 3.8, we have

|ϕ(t, j)|2Ã ≤ α2

α1
eλdj |ϕ(0, 0)|2Ã +

κe−λdγ2

(e−λd − 1)α1
|c̄∗|2(t,j)

≤ α2

α1
e−α(t+j)eR|ϕ(0, 0)|2Ã +

κe−λdγ2

(e−λd − 1)α1
|c̄∗|2(t,j)

where α ∈
(
0, λd

1+T2

]
and R =

[
T2λd

1+T2
,∞

)
, which leads to

|ϕ(t, j)|Ã =max

{√
2
α2

α1
e−

α(t+j)
2 e

R
2 |ϕ(0, 0)|Ã,√
2

κe−λd

(e−λd − 1)α1
γ|c̄∗|(t,j)

}
.

which concludes the proof.
The following remark leverages Lemma 3.14 to provide a
discussion on the perturbation on initial conditions.

Remark 5.5: From Lemma 3.5, H satisfies the hybrid basic
conditions implying that the hybrid systems are nominally
well-posed [33, Definition 6.2]. Due to the fact that all
maximal solutions to H are complete, [33, Proposition 6.14]
implies that solutions with perturbed initial conditions stay
close to the unperturbed solutions. Consider any compact set
K ⊂ RN × RN × T . Then, for every τ ′ > 0, ε′ ≥ 0 there
exists σ > 0 such that, for every maximal solution ϕσ ∈
SH(K+σB), there exists a solution ϕ to H with ϕ(0, 0) ∈ K
such that ϕσ and ϕ are (τ ′, ε′)-close.11 Recall the existence of
a limit point for H as given by Lemma 3.14. Then, we can
show that given a perturbation on the initial conditions results
in a perturbation on the limit point. To show this, consider an
unperturbed initial condition ϕ(0, 0) for ϕσ(0, 0) ∈ ϕ(0, 0)+σ
where σ ∈ [−σ′

x, σ
′
x]

N × [−σ′
η, σ

′
η]

N × [−σ′
τ , σ

′
τ ] to H with

data in (10) where ϕσ = (ϕσx
, ϕση

, ϕστ
), ϕ = (ϕx, ϕη, ητ ).

With a slight abuse of notation, denote the initial condition of
a solution ϕ(0, 0) as ϕ0. From the proof of Proposition 3.14,
it follows that when h = 0 the limit point ϕxi

of the perturbed
solutions are given by

lim
t+j→∞

ϕxi
(t, j) =

1

N

N∑
i=1

(
ϕ0
xi

+ ϕ0
τϕ

0
ηi

)
+

1

N

N∑
i=1

(
ϕ0
σxi

+ ϕ0
τϕ

0
σηi

+ ϕ0
στ

(
ϕ0
ηi

+ ϕ0
σηi

))
,

and when h ̸= 0 it follows that the limit point of the perturbed
solution is given by

lim
t+j→∞

ϕxi(t, j)=
1

N

N∑
i=1

(
ϕ0
xi

+ ϕ0
σxi

+
exp(−h(ϕ0

τ + ϕ0
στ
))− 1

h
(ϕ0

ηi
+ ϕ0

σηi
)
)
.

C. Numerical Examples

Example 5.6: In this example, we consider the case of
parameters in Example 4.8 to exercise the results on pertur-
bations. In particular, we consider the case of perturbations

11Given τ ′, ε′ > 0, two hybrid arcs ϕ1 and ϕ2 are (τ ′, ε′)-close if the
following is satisfied: for all (t, j) ∈ domϕ1 with t+ j ≤ τ ′ there exists s
such that (s, j) ∈ domϕ2, |t− s| < ε′, and |ϕ1(t, j)− ϕ2(s, j)| < ε′; for
all (t, j) ∈ domϕ2 with t+j ≤ τ ′ there exists s such that (s, j) ∈ domϕ1,
|t− s| < ε′, and |ϕ2(t, j)− ϕ1(s, j)| < ε′.
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ϕxi

i

t [Flow time]

Fig. 6. Robustness of consensus to communication noise for asyn-
chronous communications. The xi components of a solution ϕ =
(ϕx, ϕη, ϕτ ) to a hybrid system with agent dynamics (2) where asyn-
chronous communication is present. The asynchronous communication
is shown on the bottom where an ‘o’ marker indicates a communication
of agent i, more specifically, ϕτi(t, j) = 0 for each (t, j) ∈ domϕ.

on the dynamics given by (38), communication and mea-
surement perturbations given by (40) and (39). In particular,
let bi ∼ U([−0.25, 0.25]) and csi ∼ U([−0.25, 0.25]) for
s ∈ {c,m}. Figure 6 illustrates Theorem 5.1 showing that
there exists ε > 0 such that the consensus set Aθ in (31) is
semiglobally practically robustly KL asymptotically stable for
Hθ in (29). In particular, it is worth noting that the solutions
never converge to consensus explicitly due to the perturbations,
however, they converge to a region nearby consensus.

△

Example 5.7: In this example, we will showcase the ro-
bustness results in Section V-B, which considers input-to-state
stability of the consensus set for synchronous communication.
In particular, we consider using the parameters and network
in Example 4 with perturbations on the communication given
by c∗. Let c∗i ∼ U([−1, 1]) where U(·) is the uniform
random distribution over the argument interval. Figure 7
shows the solution from the initial conditions considered in
Example 4. In this figure, we showcase the agents’ states,
the timer state, and the Lyapunov function evaluated over
the numerical solution. Note that due to the communication
noise inducing perturbations on the η+ term on jumps, the
Lyapunov function does not explicitly converge to the origin,
however, the Lyapunov function reduces significantly after
the first several jumps and converges to a region around the
consensus set A in (12).

△

VI. CONCLUSION

In this work, we design hybrid consensus protocols to
achieve consensus under intermittent communication events.
Using a hybrid systems framework, we define the communi-
cation events between the systems using a hybrid decreasing
timer. Recasting consensus as a set stability problem, we lever-
age the network topology and employed a Lyapunov-based
approach to certify that the consensus set is partially pointwise
globally exponentially stable. For the case of asynchronous
communication events, we show that, under certain conditions,
the consensus set is globally asymptotically stable which is,
in fact, robust to a rich class of perturbations.
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